WO2014156996A1 - 末端基変換方法および末端安定化方法 - Google Patents

末端基変換方法および末端安定化方法 Download PDF

Info

Publication number
WO2014156996A1
WO2014156996A1 PCT/JP2014/057864 JP2014057864W WO2014156996A1 WO 2014156996 A1 WO2014156996 A1 WO 2014156996A1 JP 2014057864 W JP2014057864 W JP 2014057864W WO 2014156996 A1 WO2014156996 A1 WO 2014156996A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
group
fluorine
carboxylic acid
mol
Prior art date
Application number
PCT/JP2014/057864
Other languages
English (en)
French (fr)
Inventor
岳文 阿部
昭彦 浅川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157026296A priority Critical patent/KR102134128B1/ko
Priority to JP2015508431A priority patent/JP6135753B2/ja
Priority to EP14774796.8A priority patent/EP2980105B1/en
Publication of WO2014156996A1 publication Critical patent/WO2014156996A1/ja
Priority to US14/848,639 priority patent/US9624319B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/185Monomers containing fluorine not covered by the groups C08F114/20 - C08F114/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/24Haloalkylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Definitions

  • the present invention relates to a terminal group conversion method and a terminal stabilization method.
  • fluoropolymers having excellent heat resistance and chemical resistance have been used for various purposes.
  • Fluoropolymers have unstable terminal groups in which a polymerization initiator, chain transfer agent, etc. are bonded to the ends of the polymer. Therefore, the fluoropolymers are not suitable for molding fluoropolymers or for use at high temperatures.
  • the decomposition of the stable end group may corrode the apparatus or the fluoropolymer itself may be colored. Further, the inclusion of the unstable terminal group may impair the inherent ultraviolet resistance, chemical resistance, optical properties, etc. of the fluoropolymer.
  • the present invention provides a terminal group conversion method and a terminal stabilization method having the following configurations [1] to [7].
  • the fluorine-containing polymer is heated at 200 to 400 ° C. for 1 hour or more in the presence of 50 mol or more of molecular oxygen with respect to 1 mol of the unstable terminal group of the fluorine-containing polymer.
  • a terminal group conversion method comprising converting 50 to 100 mol% of a group into a carboxylic acid fluoride group.
  • the unstable terminal group is at least one selected from the group consisting of a polymerization initiator, a chain transfer agent, and a dispersion stabilizer used in the production of a fluoropolymer by polymerizing monomers.
  • [5] The terminal group conversion method according to any one of [1] to [4], wherein the fluoropolymer is a perfluorofluoropolymer.
  • [6] Convert 50 to 100 mol% of the unstable terminal groups of the fluoropolymer by any of the methods [1] to [5] to form carboxylic acid fluoride groups, and then react with molecular fluorine.
  • [7] The terminal stabilization method of a fluoropolymer according to [6], wherein a fluorine gas is dissolved in a solution of a fluoropolymer having a carboxylic acid fluoride group and reacted.
  • the terminal group conversion method and terminal stabilization method of the present invention can convert unstable terminal groups in a fluoropolymer to carboxylic acid fluoride groups with a high conversion rate.
  • the method for stabilizing a terminal of a fluoropolymer of the present invention can convert unstable terminal groups in the fluoropolymer into perfluoromethyl groups with a high conversion rate.
  • the “fluorinated polymer” is a polymer having a fluorine atom in its structure.
  • the fluorine atom may be bonded to the carbon atom constituting the main chain or may be bonded to the side chain.
  • “Unit” means a repeating part constituting a polymer derived from a monomer.
  • the compound represented by the formula (1) is also referred to as “compound (1)”.
  • the unit represented by formula (3-1) is also referred to as “unit (3-1)”.
  • the unstable terminal group is heated at 200 to 400 ° C. for 1 hour or more in the presence of 50 moles or more of molecular oxygen with respect to 1 mole of the unstable terminal group of the fluoropolymer. Is converted to carboxylic acid fluoride groups.
  • a method for stabilizing unstable terminal groups of a fluoropolymer As described above, a method of fluorinating a fluoropolymer obtained by polymerization in the presence of fluorine gas is known.
  • unstable terminal groups are groups derived from polymerization initiators, chain transfer agents, dispersion stabilizers, etc., and have various structures, so all unstable terminal groups are stable perfluoromethyl groups. It was difficult to convert to.
  • the fluoropolymer obtained by polymerization is heated to convert unstable terminal groups to carboxylic acid fluoride groups at a high conversion rate. By heating the above fluoropolymer at 200 to 400 ° C.
  • fluoropolymer examples include tetrafluoroethylene-fluoro (alkyl vinyl ether) copolymer (also referred to as “PFA”), tetrafluoroethylene-hexafluoropropylene copolymer (also referred to as “FEP”), and the like.
  • PFA tetrafluoroethylene-fluoro (alkyl vinyl ether) copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • Tetrafluoroethylene-fluoro (alkyl vinyl ether) -hexafluoropropylene copolymer also referred to as “EPA”
  • ethylene-tetrafluoroethylene copolymer also referred to as “ETFE”
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • fluoropolymers are preferably fluoropolymers excluding terminal groups and substantially free of hydrogen atoms bonded to carbon atoms (hereinafter also referred to as “perfluorofluoropolymers”).
  • the fluoropolymer in the present invention is preferably a fluoropolymer having an aliphatic ring in the main chain, and more preferably a perfluorofluoropolymer having an aliphatic ring in the main chain.
  • a perfluoro fluorine-containing polymer having an aliphatic ring in the main chain is a fluorine-containing polymer having high amorphousness and high optical transparency.
  • fluorinated polymer having an aliphatic ring in the main chain “having an aliphatic ring in the main chain” means that at least one of the carbon atoms constituting the ring skeleton of the aliphatic ring is fluorine-containing heavy. It means a carbon atom constituting the main chain of the coalescence.
  • fluoropolymer is obtained by polymerization of a monomer having a polymerizable double bond, carbon atoms derived from the polymerizable double bond of the monomer used for the polymerization At least one of them becomes a carbon atom constituting the main chain.
  • the fluoropolymer is a polymer obtained by polymerizing a cyclic monomer as described later, two carbon atoms constituting the polymerizable double bond of the cyclic monomer are the main chain. It becomes the carbon atom which constitutes. Further, in the case of a fluorinated polymer obtained by cyclopolymerizing a monomer having two polymerizable double bonds, among the four carbon atoms constituting the two polymerizable double bonds At least two are carbon atoms constituting the main chain.
  • “Aliphatic ring” refers to a ring having no aromaticity.
  • the aliphatic ring may be saturated or unsaturated.
  • the aliphatic ring may be a carbocycle having a ring skeleton composed of only carbon atoms, or may be a heterocycle containing atoms (heteroatoms) other than carbon atoms in the ring skeleton. Examples of the hetero atom include an oxygen atom and a nitrogen atom.
  • the number of atoms constituting the ring skeleton of the aliphatic ring is preferably 4 to 7, and particularly preferably 5 to 6. That is, the aliphatic ring is preferably a 4- to 7-membered ring, particularly preferably a 5- to 6-membered ring.
  • the aliphatic ring may or may not have a substituent.
  • the phrase “which may have a substituent” means that a substituent (an atom or group other than a hydrogen atom) may be bonded to an atom constituting the ring skeleton of the aliphatic ring.
  • the aliphatic ring is preferably an aliphatic ring containing a fluorine atom.
  • Examples of the aliphatic ring containing a fluorine atom include an aliphatic ring in which a fluorine atom or a substituent containing a fluorine atom is bonded to a carbon atom constituting the ring skeleton of the aliphatic ring.
  • fluoropolymer having an aliphatic ring in the main chain examples include the following polymer (I) and polymer (II). These fluoropolymers are preferably perfluorofluoropolymers.
  • the polymer (I) has a unit based on a cyclic fluorine-containing monomer.
  • Cyclic fluorine-containing monomer means a monomer having a polymerizable double bond between carbon atoms constituting an aliphatic ring, or a carbon atom constituting an aliphatic ring and a carbon atom outside the aliphatic ring. And a monomer having a polymerizable double bond.
  • the following compound (1) or compound (2) is preferable.
  • Compound (1) and compound (2) are perfluoro compounds, that is, compounds having no hydrogen atom bonded to a carbon atom.
  • X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 are each independently a fluorine atom, a perfluoroalkyl group that may be intervened by an oxygen atom, or an oxygen atom. Represents a good perfluoroalkoxy group.
  • X 3 and X 4 represent a perfluoroalkylene group which may be bonded to each other and may have an etheric oxygen atom.
  • the perfluoroalkyl group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 preferably has 1 to 7 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the perfluoroalkyl group is preferably linear or branched, and particularly preferably linear. Specific examples include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and the like, and a trifluoromethyl group is particularly preferable.
  • Examples of the perfluoroalkoxy group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 include those in which an oxygen atom (—O—) is bonded to the perfluoroalkyl group, and a trifluoromethoxy group is particularly preferred. preferable.
  • an etheric oxygen atom may be present between the carbon atoms of the perfluoroalkyl group or perfluoroalkoxy group.
  • X 1 is preferably a fluorine atom.
  • X 2 is preferably a fluorine atom, a trifluoromethyl group, or a perfluoroalkoxy group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethoxy group.
  • X 3 and X 4 are each independently preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethyl group.
  • X 3 and X 4 represent a perfluoroalkylene group which may have an etheric oxygen atom by bonding to each other, it constitutes a ring skeleton of a ring formed from one carbon atom, X 3 and X 4
  • the number of atoms to be formed is preferably 4 to 7, and particularly preferably 5 to 6.
  • compound (1) include compounds (1-1) to (1-5).
  • Y 1 and Y 2 are each independently preferably a fluorine atom, a C 1-4 perfluoroalkyl group or a C 1-4 perfluoroalkoxy group, and a fluorine atom or a trifluoromethyl group Particularly preferred.
  • compound (2) examples include compounds (2-1) to (2-2).
  • Compound (1) and Compound (2) each have one polymerizable double bond, and two carbon atoms of those double bonds become carbon atoms constituting the main chain of the polymer.
  • the two carbon atoms constituting the double bond are simultaneously carbon atoms constituting the aliphatic ring, two carbon atoms among the carbon atoms constituting the aliphatic ring are It becomes a carbon atom constituting the main chain.
  • one of the two carbon atoms that constitute the double bond is a carbon atom that constitutes an aliphatic ring, so that of the carbon atoms that constitute the aliphatic ring, One carbon atom becomes the carbon atom constituting the main chain.
  • the polymer (I) may be composed only of units formed by the cyclic fluorine-containing monomer, or may be a copolymer having the units and other units.
  • the proportion of the units based on the cyclic fluorine-containing monomer in the polymer (I) is preferably 20 mol% or more, more preferably 40 mol% or more with respect to the total of all units constituting the polymer (I). Is particularly preferred and may be 100 mol%.
  • the other monomer is not particularly limited as long as it is copolymerizable with the cyclic fluorine-containing monomer.
  • Specific examples include diene fluorine-containing monomers, tetrafluoroethylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether), and the like.
  • Examples of the diene fluorine-containing monomer include those similar to those mentioned in the description of the polymer (II) described later.
  • the other monomer is preferably a perfluoromonomer, that is, a fluorine-containing monomer that does not contain a hydrogen atom bonded to a carbon atom.
  • a perfluorodiene-based fluorine-containing monomer and tetrafluoroethylene described later are preferable.
  • a polymer obtained by copolymerization of a cyclic fluorine-containing monomer and a diene fluorine-containing monomer is considered as the polymer (I).
  • Polymer (II) has a unit formed by cyclopolymerization of a diene fluorine-containing monomer.
  • the “diene fluorine-containing monomer” is a monomer having two polymerizable double bonds and fluorine atoms.
  • the polymerizable double bond is not particularly limited, but a polymerizable double bond in a vinyl group, allyl group, 3-butenyl group, acryloyl group, or methacryloyl group is preferable.
  • the diene fluorine-containing monomer is preferably a perfluorodiene fluorine-containing monomer, that is, a diene fluorine-containing monomer that does not contain a hydrogen atom bonded to a carbon atom.
  • the perfluorodiene fluorine-containing monomer the following compound (3) is preferable.
  • Q may have an etheric oxygen atom, and a part of fluorine atoms may be substituted with a halogen atom other than fluorine atoms, preferably 1 to 5, preferably 1 to 3 is a perfluoroalkylene group which may have a branch.
  • halogen atoms other than fluorine include chlorine atom and bromine atom.
  • Q is preferably a perfluoroalkylene group having an etheric oxygen atom.
  • the etheric oxygen atom in the perfluoroalkylene group may be present at one end of the group, may be present at both ends of the group, and is present between the carbon atoms of the group. It may be. From the viewpoint of cyclopolymerizability, it is preferably present at one end of the group.
  • Examples of units formed by cyclopolymerization of compound (3) include the following units (3-1) to (3-4).
  • Compound (3) has two polymerizable double bonds, and four or two of the total four carbon atoms of these double bonds become carbon atoms constituting the main chain of the polymer, and Two to four of the four carbon atoms together with Q form an aliphatic ring.
  • the units (3-1) to (3-4) are carbon atoms in which four of the four carbon atoms of the double bond constitute the main chain.
  • the unit (3-4) indicates that two of the four carbon atoms of the double bond are carbon atoms constituting the main chain.
  • unit (3-1) two carbon atoms and Q form an aliphatic ring
  • unit (3-2) and unit (3-3) three carbon atoms and Q are
  • unit (3-4) an aliphatic ring is formed, and four carbon atoms and Q form an aliphatic ring.
  • the number average molecular weight (Mn) of the fluoropolymer in the present invention is preferably from 3,000 to 300,000, particularly preferably from 5,000 to 200,000.
  • Mn is not less than the lower limit of the above range, the fluoropolymer is hardly brittle, and when it is not more than the upper limit, the solubility in a solvent and the moldability are excellent.
  • a polymerization initiator In the production of the fluoropolymer in the present invention, it is preferable to use a polymerization initiator. You may use a chain transfer agent together by the point which can control molecular weight.
  • the polymerization initiator is not particularly limited, and known compounds can be used.
  • 2,2′-azobis N, N′-dimethyleneisobutylamidine) dihydrochloride, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (N, N′-di) Methyleneisobutylamidine), 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] Propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- (2-hydroxy) Ethyl) propionamide ⁇ , 2,2′-azobis (isobutyramide) dihydrate, 2,2′-azobis (4-methoxy-2,4-dimethylpareronitrile), 2 2′-azobis (
  • the chain transfer agent is not particularly limited, and known compounds can be used. Examples thereof include alcohols such as methanol, ethanol, propanol and butanol, and cycloalkanes such as cyclohexane.
  • Examples of the unstable terminal group of the fluoropolymer in the present invention include a polymerization initiator, a chain transfer agent, a dispersion stabilizer, a monomer, etc. used in the production of a fluoropolymer by polymerizing monomers.
  • the residue derived from is mentioned.
  • a group derived from at least one selected from the group consisting of a polymerization initiator, a chain transfer agent and a dispersion stabilizer tends to be an unstable end group.
  • unstable terminal groups include functional groups having active hydrogen such as hydroxyl groups, amino groups, carboxy groups, and sulfo groups, groups derived from carboxylic acids such as carboxylic acid halides, carboxylic acid amides, and carboxylic acid esters, and carbonates.
  • group, a group derived from sulfonic acid such as sulfonic acid halide, sulfonic acid amide, and sulfonic acid ester, a hydrocarbon group, hydrogen and the like.
  • the dispersion stabilizer is a compound used for stabilizing dispersibility when polymerization is performed by suspension polymerization.
  • the fluorine-containing polymer has the unstable terminal group, the unstable terminal group is decomposed when the fluorine-containing polymer is molded or used under a high temperature to corrode the apparatus, or the fluorine-containing polymer itself. May be colored.
  • the terminal group conversion method of the present invention is a method for converting the unstable terminal group in the above-mentioned fluoropolymer into a carboxylic acid fluoride group.
  • heating is performed while contacting molecular oxygen with the fluorine-containing polymer in the presence of 50 mol or more of molecular oxygen with respect to 1 mol of the unstable terminal group of the fluorine-containing polymer. I do.
  • the heating temperature is 200 to 400 ° C., and the heating time is 1 hour or more.
  • the heating temperature is preferably 250 to 380 ° C, particularly preferably 250 to 350 ° C.
  • a high conversion rate is obtained when the heating temperature is at least the lower limit of the above range.
  • the light transmittance of the obtained fluoropolymer can be increased. It is preferable that it is less than or equal to the upper limit of the above range in that the fluoropolymer is hardly decomposed by the main chain.
  • the heating time is preferably 1 to 24 hours, particularly preferably 1 to 20 hours.
  • the heating time is not less than the lower limit of the above range, a high conversion rate is obtained, and when it is not more than the upper limit of the above range, the fluoropolymer is not easily decomposed by the main chain, and the production cost is not significantly increased.
  • the heating is performed in the presence of 50 mol or more of molecular oxygen with respect to 1 mol of the unstable terminal group of the fluoropolymer.
  • the molecular oxygen is preferably from 50 to 800 mol, particularly preferably from 50 to 500 mol, per mol of the unstable end group.
  • the conversion rate is high, and when it is at most the upper limit value of the range, it is excellent in that the production cost is not significantly increased.
  • oxygen gas may be used or air may be used. If molecular oxygen is in the above range, any other gas may be used as long as it does not decompose the fluoropolymer.
  • An inert gas such as nitrogen or air is preferred from the viewpoint of low cost and safety.
  • the heating is preferably performed in a heating furnace such as an electric oven.
  • the gas in the heating furnace may be circulated or may not be circulated.
  • a gas containing new molecular oxygen may be supplied from the outside. You may supply the gas containing a new molecular oxygen, circulating the gas in a heating furnace.
  • FIG. 1 shows an example of an apparatus for supplying a gas containing new molecular oxygen while circulating the gas in the heating furnace.
  • a heating furnace 10 is provided with a fan 12 for supplying air into the furnace, a heater 14 for heating air circulated by the fan 12, and a container 16 for containing a fluoropolymer to be treated. And a shelf 18 to be placed.
  • the heating furnace 10 preferably includes an intake damper 20 and an exhaust damper 22 in order to circulate the air while newly supplying air from the outside of the heating furnace 10.
  • the amount of air supplied into the heating furnace 10 can be adjusted by appropriately adjusting the opening degrees of the intake damper 20 and the exhaust damper 22, but the supply amount of air may be controlled using a flow meter (not shown).
  • the temperature in the heating furnace is uniform, and it is more preferable to circulate a gas containing molecular oxygen by a fan or the like.
  • a baffle plate may be attached inside the heating furnace 10 to forcibly create an air flow, or the air may be stirred with a stirring device.
  • the heating damper 10 and the exhaust damper 22 are closed, that is, without supplying air from the outside into the heating furnace 10.
  • a method of heating only with air (molecular oxygen) present in the heating furnace 10 at the start (hereinafter also referred to as “air non-supplying process”), the intake damper 20 and the exhaust damper 22 are appropriately opened, and the heating furnace 10 is opened.
  • air supply processing There is a method of heating while supplying outside air to the heating furnace 10 (hereinafter also referred to as “air supply processing”).
  • the air non-feeding treatment molecular oxygen that is 50 times or more in molar ratio with respect to the unstable end groups in the fluoropolymer is heated. Since it is necessary to make it exist, it is necessary to enlarge the heating furnace 10 or to reduce the processing amount of the fluoropolymer once.
  • the molecular oxygen supplied during heating may be 50 times or more in terms of molar ratio with respect to the unstable end groups in the fluoropolymer, so that the heating furnace 10 can be downsized. This is preferable because it is possible.
  • the volume of the heating furnace 10 and the amount of molecular oxygen in the air previously existing in the heating furnace 10 are 50 mol or more with respect to 1 mol of unstable terminal groups.
  • the amount of the fluoropolymer to be treated is adjusted.
  • the total amount of molecular oxygen in the air existing in the heating furnace 10 before heating and molecular oxygen in the air supplied during heating is 1 mol of unstable end groups.
  • the volume of the heating furnace 10, the amount of the fluoropolymer to be treated, and the supply amount of air are adjusted so as to be 50 moles or more.
  • the supply of air is preferably performed at a rate of 5 to 300 mol / hour with respect to 1 mol of unstable terminal groups.
  • the material of the container 16 is not particularly limited as long as it can withstand the heating temperature.
  • aluminum, nickel, stainless steel, etc. are mentioned.
  • the shape of the container 16 is not particularly limited, but it is preferable that the mouth is wide in that it can efficiently contact molecular oxygen.
  • the thickness of the fluorine-containing polymer placed in the container 16 is preferably 1 to 2 mm from the viewpoint that it can come into contact with molecular oxygen efficiently.
  • Terminal stabilization method In the terminal stabilization method of the present invention, 50 to 100 mol% of the unstable terminal group of the fluoropolymer obtained by polymerization by the terminal group conversion method described above is converted into a carboxylic acid fluoride group, It is a method of converting the carboxylic acid fluoride group into a perfluoromethyl group by reacting the fluorine-like fluorine.
  • the terminal group conversion method of the present invention the unstable terminal group in the fluoropolymer can be converted into a carboxylic acid fluoride group with a high conversion rate, and the carboxylic acid fluoride group can be converted into a perfluoromethyl group with a high conversion rate.
  • the unstable terminal group of the fluoropolymer can be converted to a perfluoromethyl group with a high conversion rate.
  • fluorine gas is dissolved in a solution obtained by dissolving the fluoropolymer having a carboxylic acid fluoride group in a solvent.
  • a method in which molecular fluorine is reacted with a carboxylic acid fluoride group in a solution to convert the carboxylic acid fluoride group into a perfluoromethyl group is preferable.
  • a solution of a fluoropolymer having a carboxylic acid fluoride group (hereinafter also referred to as “fluorinated polymer solution”) and a molecular fluorine solution in which a fluorine gas is dissolved in a solvent are mixed, It can also be reacted.
  • a solvent having high solubility of the fluorine-containing polymer and inert to molecular fluorine is used, and the fluorine-containing polymer does not have a hydrogen atom bonded to a carbon atom such as perfluorotrialkylamine.
  • a solvent is preferred.
  • the reaction between the fluorine-containing polymer dissolved in the fluorine-containing solvent and molecular fluorine is an exothermic reaction, and since molecular fluorine is very active against the container material used for the reaction, fluorine gas is not used. It is preferable to use it diluted with an active gas such as nitrogen gas. If the fluorine gas concentration is too low, the production efficiency is lowered. Therefore, the proportion of fluorine gas in the mixed gas of fluorine gas and inert gas is preferably 0.1 to 20 mol%, particularly 0.5 to 5 mol%. preferable.
  • the concentration of the fluoropolymer is preferably 1 to 20% by mass, particularly preferably 5 to 15% by mass.
  • the supply ratio of the fluorine gas to 1 g of the fluoropolymer is usually preferably 10 to 100 ml in the standard state.
  • the fluorine gas may be supplied batchwise or continuously.
  • the reaction pressure is arbitrary, but normal pressure to 2 MPaG is preferable.
  • the reaction temperature is usually 100 to 300 ° C., but is preferably 170 ° C.
  • reaction time is longer when the reaction temperature is low and shorter when the reaction temperature is high.
  • reaction time is suitably 10 to 100 hours.
  • the carboxylic acid fluoride group can be converted to a carboxylic acid by reacting with water, while being converted to a methyl ester group by reacting with methanol.
  • Various functional groups can be introduced from the methyl ester group to the end of the fluoropolymer by transesterification or the like.
  • Examples 1 to 5, 8 and 11 are examples, and examples 6 to 7 and 9 to 10 are comparative examples.
  • the production method, the heating method, and the end group amount measurement method of the fluoropolymer in the present examples and comparative examples were carried out by the methods described below.
  • CH is 5ppm near peak (isopropyl from each unstable terminal groups, HO-CH 2 - near CH 2 medium is 4.3 ppm, CF 2 H- middle of
  • concentration (mol / g) of each unstable terminal group was determined from the ratio to the area of H being around 6.5 ppm, etc.), and the total was determined as the terminal group concentration before heating.
  • the correction coefficient was obtained from an infrared absorption spectrum of a compound having a known carboxylic acid fluoride group concentration (mol / g), and was 9 ⁇ 10 ⁇ 6 (mol ⁇ mm / g).
  • the obtained fluoropolymer A particles are recovered by filtration, washed with methanol and water, and then dried at 100 ° C. to contain perfluoro (3-butenyl vinyl ether) and a group having end groups derived from methanol.
  • 125 kg of fluoropolymer A (number average molecular weight (Mn): 45,000, mass average molecular weight (Mw): 100,000.
  • the average molecular weight was measured by GPC (gel permeation chromatography) in PMMA conversion). Obtained.
  • Example 1 15 kg of fluoropolymer A was heated at 345 ° C. for 10 hours (air supply treatment) while supplying air at 900 L / hour in an oven (heating furnace) with an internal volume of 630 L to obtain a fluoropolymer ( B-1) was obtained.
  • an absorption peak due to the carboxylic acid fluoride group was confirmed at 1,883 cm ⁇ 1 .
  • the transmittance of the film at a wavelength of 300 nm was measured, it was a high transmittance of 91%.
  • Table 1 Various conditions and evaluation results are shown in Table 1.
  • the “oxygen amount” in Example 1 is the sum of the oxygen amount in the air existing in the oven before heating and the oxygen amount in the circulated air.
  • the “unstable end group concentration before heating” is the concentration of unstable end groups.
  • Carboxylic acid fluoride group conversion rate is the ratio of unstable terminal groups converted to carboxylic acid fluoride groups, and was determined by the method described above.
  • Fluorinated polymers (B-2) to (B-4) were obtained in the same manner as in Example 1 except that the amount of air supplied was changed to the value shown in Table 1.
  • a compression-molded film was produced using the fluoropolymers (B-2) to (B-4) instead of the fluoropolymer (B-1), and the infrared absorption spectrum and the transmittance at a wavelength of 300 nm were measured. .
  • Various conditions and evaluation results are shown in Table 1.
  • Example 5 1.5 kg of fluoropolymer A was heated in an oven with an internal volume of 630 L at 300 ° C. for 10 hours (non-air supply treatment) to obtain a fluoropolymer (B-5).
  • a compression molded film was produced in the same manner as in Example 1 except that the fluoropolymer (B-5) was used in place of the fluoropolymer (B-1), and the infrared absorption spectrum and the transmittance at a wavelength of 300 nm were obtained. It was measured.
  • Table 1 the “oxygen amount” in Example 5 is the amount of oxygen in the air existing in the oven before heating.
  • Example 6 A fluoropolymer (B-6) was obtained in the same manner as in Example 5 except that the mass of the fluoropolymer A was 15 kg and the heating temperature was 345 ° C.
  • a compression-molded film was produced in the same manner as in Example 5 except that the fluoropolymer (B-6) was used instead of the fluoropolymer (B-1), and the infrared absorption spectrum and the transmittance at a wavelength of 300 nm were obtained. It was measured. The evaluation results are shown in Table 1.
  • Example 7 15 kg of fluoropolymer A was heated in the same oven as in Example 5 at 320 ° C. for 0.83 hours (non-air supply treatment) to obtain a fluoropolymer (B-7).
  • a compression molded film was produced in the same manner as in Example 5 except that the fluoropolymer (B-7) was used in place of the fluoropolymer (B-1), and the infrared absorption spectrum and the transmittance at a wavelength of 300 nm were obtained. It was measured.
  • Table 1 15 kg of fluoropolymer A was heated in the same oven as in Example 5 at 320 ° C. for 0.83 hours (non-air supply treatment) to obtain a fluoropolymer (B-7).
  • a compression molded film was produced in the same manner as in Example 5 except that the fluoropolymer (B-7) was used in place of the fluoropolymer (B-1), and the infrared absorption spectrum and the transmittance at a wavelength of 300
  • Example 8 After reducing the pressure of a nickel 2 L autoclave to ⁇ 760 Torr, the fluoropolymer (B-1) obtained in Example 1 was dissolved in perfluorotributylamine (PTBA) to adjust the concentration to 9% by mass. 150 g was charged under reduced pressure. Next, a fluorine gas diluted to a concentration of 2% with nitrogen gas was introduced into the autoclave up to 0.8 MPaG, and the mixture was stirred twice at 195 ° C. for 10 hours to obtain a fluoropolymer (C-1).
  • PTBA perfluorotributylamine
  • Example 9 A fluorination polymer (C-2) was obtained by carrying out a fluorination reaction in the same manner as in Example 8 except that the fluoropolymer (B-1) was replaced with the fluoropolymer A obtained in Synthesis Example 1. It was. Fluoropolymer (C-2) and p-hexafluoroxylene as a standard substance were dissolved in perfluorobenzene at a ratio of 100: 1 (mass ratio), and 1 H-NMR measurement was carried out. The amount was calculated. As a result, it was confirmed that only 20 mol% of the unstable terminal groups in the fluoropolymer A could be converted into perfluoromethyl groups.
  • Example 1 to 5 and 11 using the terminal group conversion method of the present invention the conversion rate of carboxylic acid fluoride group was 50 to 100%.
  • the carboxylic acid fluoride group conversion was less than 50%.
  • Example 7 since the heating time was as short as 1 hour in addition to the shortage of molecular oxygen, the carboxylic acid fluoride group conversion rate was the lowest.
  • Example 8 using the terminal stabilization method of the present invention unstable terminal groups of the fluoropolymer obtained by polymerization could be stabilized at a high conversion rate.
  • Example 9 in which the terminal stabilization method of the present invention was not used, stabilization of unstable terminal groups of the fluoropolymer obtained by polymerization was insufficient.
  • Example 10 where reaction was performed at 180 ° C. even when the molecular oxygen was 50 moles or more relative to 1 mole of the unstable terminal group of the fluoropolymer, the unstable terminal group of the fluoropolymer obtained by polymerization was used. The stabilization of did not progress at all.
  • the light transmittance is high. If the transmittance at a wavelength of 300 nm is less than 88%, it will appear colored, so the transmittance is preferably 88% or more. All of the fluoropolymers obtained in Examples 1 to 5 and 11 have a transmittance of 88% or more, and can be used as an optical material.
  • fluoropolymer obtained in the present invention include optical waveguide materials, optical fiber core / cladding materials, wire coating materials, ink repellent agents (for example, for printing equipment such as for coating and inkjet), and oil repellent agents (for example, filters)
  • Oil-proof coatings, high-performance oil repellents such as oil seepage prevention agents for fluid bearing motors, antifouling coatings
  • lubricants for fluid bearing motors, antifouling coatings
  • lens materials for LED encapsulants
  • adhesives for semiconductor elements eg LOC (lead-on-chip)
  • Tape adhesives eg LOC (lead-on-chip)
  • Tape adhesives eg LOC (lead-on-chip)
  • semiconductor protective coatings eg buffer coating films, passivation films, semiconductor element ⁇ -ray shielding films, moisture-proof coating agents
  • interlayer insulation films eg semiconductors
  • semiconductors for devices, liquid crystal display bodies, multilayer wiring boards
  • the transmittance at a wavelength of 300 nm can be 88% or more, it can also be used for optical applications such as lenses, optical fibers, LED sealing materials, and optical thin films that require particularly high transmittance.
  • optical applications such as lenses, optical fibers, LED sealing materials, and optical thin films that require particularly high transmittance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換できる末端基変換方法および末端安定化方法を提供する。 含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下、含フッ素重合体を上記分子状酸素に接触させながら、200~400℃で1時間以上加熱し、上記不安定末端基の50~100モル%をカルボン酸フロリド基に変換する。

Description

末端基変換方法および末端安定化方法
 本発明は、末端基変換方法および末端安定化方法に関する。
 従来より耐熱性、耐薬品性等に優れる含フッ素重合体は、様々の用途に使用されている。含フッ素重合体には、重合開始剤、連鎖移動剤等が重合体の末端に結合した不安定末端基が存在するため、含フッ素重合体を成形する際または高温下での使用において、該不安定末端基の分解により装置を腐食させたり含フッ素重合体自身が着色したりすることがある。また、該不安定末端基を含むことで、含フッ素重合体が本来持つ耐紫外線性、耐薬品性、光学特性等を損なうことがある。
 かかる問題を解決するために、重合で得た含フッ素重合体をフッ素ガスの存在下フッ素化して、不安定末端基をペルフルオロメチル基(-CF)に変換する方法が知られている(特許文献1)。
特開2003-313236号公報
 近年、光導波路材料、電線被覆材、撥インク剤(例えば塗装用、インクジェット等の印刷機器用)、撥油剤(例えばフィルターの防油コート、流体軸受けモーターのオイル染み出し防止剤等の高性能撥油剤)、レンズ材料、半導体素子用接着剤(例えばLOC(リードオンチップ)、テープ用接着剤、ダイボンド用接着剤、ペリクル膜固定用接着剤)、半導体用保護コート(例えばバッファコート膜、パッシベーション膜、半導体素子α線遮蔽膜、防湿コート剤)、層間絶縁膜(例えば半導体素子用、液晶表示体用、多層配線板用)、光学薄膜等の用途においては、特に高い耐紫外線性、耐薬品性、光学特性が要求されている。本発明者によれば、特許文献1に記載の方法においては、不安定末端基からペルフルオロメチル基への変換が不充分であり、上記用途に使用できない場合があった。
 本発明は、含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換する末端基変換方法の提供を目的とする。また、本発明は、含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換し、該カルボン酸フロリド基をフッ素化する末端安定化方法の提供を目的とする。
 本発明は、下記[1]~[7]の構成を有する末端基変換方法および末端安定化方法を提供する。
[1]含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下、前記含フッ素重合体を200~400℃で1時間以上加熱し、前記不安定末端基の50~100モル%をカルボン酸フロリド基に変換することを特徴とする末端基変換方法。
[2]前記分子状酸素を、前記不安定末端基の1モルに対して5~300mol/時間の割合で供給する、[1]の末端基変換方法。
[3]前記不安定末端基が、単量体を重合して含フッ素重合体を製造する際に使用された、重合開始剤、連鎖移動剤および分散安定剤からなる群から選択される少なくとも1種に由来する基である、[1]または[2]の末端基変換方法。
[4]前記含フッ素重合体が、主鎖に脂肪族環を有する含フッ素重合体である、[1]~[3]のいずれかの末端基変換方法。
[5]含フッ素重合体がペルフルオロ含フッ素重合体である、[1]~[4]のいずれかの末端基変換方法。
[6]前記[1]~[5]のいずれかの方法で含フッ素重合体の不安定末端基の50~100モル%を変換してカルボン酸フロリド基とし、次に、分子状フッ素を反応させてカルボン酸フロリド基をペルフルオロメチル基に変換する、含フッ素重合体の末端安定化方法。
[7]カルボン酸フロリド基を有する含フッ素重合体の溶液にフッ素ガスを溶解させて反応させる、[6]の含フッ素重合体の末端安定化方法。
 本発明の末端基変換方法および末端安定化方法は、含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換できる。
 本発明の含フッ素重合体の末端安定化方法は、含フッ素重合体中の不安定末端基を高い変換率でペルフルオロメチル基に変換できる。
加熱に使用される加熱炉の例を示す図である。
 本明細書において、「含フッ素重合体」とは、その構造中にフッ素原子を有する重合体である。フッ素原子は、主鎖を構成する炭素原子に結合していてもよく、側鎖に結合していてもよい。
 「単位」は、単量体に由来する、重合体を構成する繰り返し部分を意味する。
 本明細書において、式(1)で表される化合物を「化合物(1)」とも記す。他の式で表される単位、化合物等についても同様に記し、例えば式(3-1)で表される単位を「単位(3-1)」とも記す。
 本発明の末端基変換方法では、含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下、200~400℃で1時間以上加熱し、不安定末端基の50~100モル%をカルボン酸フロリド基に変換する。
 含フッ素重合体の不安定末端基の安定化方法としては、上述したように、重合で得た含フッ素重合体をフッ素ガスの存在下フッ素化する方法が知られている。不安定末端基は後述するように重合開始剤、連鎖移動剤、分散安定剤等に由来する基であり、種々の構造を有しているため、全ての不安定末端基を安定なペルフルオロメチル基に変換することが困難であった。本発明においては、まずは重合で得た含フッ素重合体を加熱して、不安定末端基を高い変換率でカルボン酸フロリド基に変換させる。加熱条件を、不安定末端基の1モルに対して50モル以上の分子状酸素の存在下、上記含フッ素重合体を200~400℃で1時間以上加熱とすることで、不安定末端基を高い変換率でカルボン酸フロリド基に変換できる。次いで該カルボン酸フロリド基をフッ素化して、ペルフルオロメチル基に高い変換率で変換できる。これにより、含フッ素重合体の不安定末端基の安定化を効率的に行えることを見出した。
[含フッ素重合体]
 本発明における含フッ素重合体としては、テトラフルオロエチレン-フルオロ(アルキルビニルエーテル)共重合体(「PFA」ともいう。)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(「FEP」ともいう。)、テトラフルオロエチレン-フルオロ(アルキルビニルエーテル)-ヘキサフルオロプロピレン共重合体(「EPA」ともいう。)、エチレン-テトラフルオロエチレン共重合体(「ETFE」ともいう。)、ポリビニリデンフルオライド(「PVDF」ともいう。)、ポリビニルフルオライド(「PVF」ともいう。)、ポリクロロトリフルオロエチレン(「PCTFE」ともいう。)、エチレン-クロロトリフルオロエチレン共重合体(「ECTFE」ともいう。)、主鎖に脂肪族環を有する含フッ素重合体等が挙げられる。これら含フッ素重合体は、末端基を除き、炭素原子に結合した水素原子を実質的に含まない含フッ素重合体(以下、「ペルフルオロ含フッ素重合体」ともいう。)であることが好ましい。
 また、本発明における含フッ素重合体は、主鎖に脂肪族環を有する含フッ素重合体であることが好ましく、特に主鎖に脂肪族環を有するペルフルオロ含フッ素重合体が好ましい。主鎖に脂肪族環を有するペルフルオロ含フッ素重合体は、非晶質性が高く、光学的透明性が高い含フッ素重合体である。
 「主鎖に脂肪族環を有する含フッ素重合体」において、「主鎖に脂肪族環を有する」とは、脂肪族環の環骨格を構成する炭素原子のうち、少なくとも1つが、含フッ素重合体の主鎖を構成する炭素原子であることを意味する。
 例えば、含フッ素重合体が、重合性二重結合を有する単量体の重合により得られたものである場合、重合に用いられた単量体が有する重合性二重結合に由来する炭素原子のうちの少なくとも1つが、前記主鎖を構成する炭素原子となる。例えば含フッ素重合体が、後述するような環状単量体を重合させて得た重合体の場合は、該環状単量体が有する重合性二重結合を構成する2個の炭素原子が主鎖を構成する炭素原子となる。また、2個の重合性二重結合を有する単量体を環化重合させて得た含フッ素重合体の場合は、2個の重合性二重結合を構成する4個の炭素原子のうちの少なくとも2個が主鎖を構成する炭素原子となる。
 「脂肪族環」とは、芳香族性を有さない環を示す。脂肪族環は、飽和であってもよく、不飽和であってもよい。脂肪族環は、環骨格が、炭素原子のみから構成される炭素環であってもよく、環骨格に、炭素原子以外の原子(ヘテロ原子)を含む複素環であってもよい。該ヘテロ原子としては酸素原子、窒素原子等が挙げられる。
 脂肪族環の環骨格を構成する原子の数は、4~7個が好ましく、5~6個が特に好ましい。すなわち、脂肪族環は4~7員環が好ましく、5~6員環が特に好ましい。
 脂肪族環は置換基を有していてもよく、有さなくてもよい。「置換基を有していてもよい」とは、該脂肪族環の環骨格を構成する原子に置換基(水素原子以外の原子または基)が結合してもよいことを意味する。
 脂肪族環は、フッ素原子を含む脂肪族環であることが好ましい。フッ素原子を含む脂肪族環としては、脂肪族環の環骨格を構成する炭素原子に、フッ素原子やフッ素原子を含む置換基が結合した脂肪族環が挙げられる。フッ素原子を含む置換基としては、ペルフルオロアルキル基、ペルフルオロアルコキシ基、ジフルオロメチリデン基(=CF)等が挙げられる。
 また、脂肪族環は、フッ素原子を含む置換基以外の置換基を有していてもよい。
 主鎖に脂肪族環を有する含フッ素重合体としては、下記重合体(I)、重合体(II)が挙げられる。これら含フッ素重合体はペルフルオロ含フッ素重合体であることが好ましい。
 重合体(I):環状含フッ素単量体に基づく単位を有する重合体。
 重合体(II):ジエン系含フッ素単量体の環化重合により形成される単位を有する重合体。
 重合体(I)は、環状含フッ素単量体に基づく単位を有する。「環状含フッ素単量体」とは、脂肪族環を構成する炭素原子間に重合性二重結合を有する単量体、または、脂肪族環を構成する炭素原子と脂肪族環外の炭素原子との間に重合性二重結合を有する単量体である。
 環状含フッ素単量体としては、下記の化合物(1)または化合物(2)が好ましい。化合物(1)および化合物(2)はペルフルオロ化合物、すなわち炭素原子に結合した水素原子を有しない化合物である。
Figure JPOXMLDOC01-appb-C000001
[式中、X、X、X、X、YおよびYは、それぞれ独立に、フッ素原子、酸素原子が介在してもよいペルフルオロアルキル基、または酸素原子が介在してもよいペルフルオロアルコキシ基を表す。または、XおよびXは相互に結合してエーテル性酸素原子を有していてもよいペルフルオロアルキレン基を表す。]
 X、X、X、X、YおよびYにおけるペルフルオロアルキル基は、炭素数が1~7であることが好ましく、炭素数が1~4であることが特に好ましい。該ペルフルオロアルキル基は、直鎖状または分岐鎖状が好ましく、直鎖状が特に好ましい。具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等が挙げられ、特にトリフルオロメチル基が好ましい。
 X、X、X、X、YおよびYにおけるペルフルオロアルコキシ基としては、上記ペルフルオロアルキル基に酸素原子(-O-)が結合したものが挙げられ、トリフルオロメトキシ基が特に好ましい。
 上記ペルフルオロアルキル基またはペルフルオロアルコキシ基の炭素数が2以上である場合、該ペルフルオロアルキル基またはペルフルオロアルコキシ基の炭素原子間にエーテル性酸素原子(-O-)を有してもよい。
 式(1)中、Xは、フッ素原子であることが好ましい。Xは、フッ素原子、トリフルオロメチル基、または炭素数1~4のペルフルオロアルコキシ基であることが好ましく、フッ素原子またはトリフルオロメトキシ基であることが特に好ましい。XおよびXは、それぞれ独立に、フッ素原子または炭素数1~4のペルフルオロアルキル基であることが好ましく、フッ素原子またはトリフルオロメチル基であることが特に好ましい。
 XおよびXが相互に結合してエーテル性酸素原子を有していてもよいペルフルオロアルキレン基を表す場合、1個の炭素原子、XおよびXから形成される環の環骨格を構成する原子の数は、4~7個が好ましく、5~6個であることが特に好ましい。
 化合物(1)の好ましい具体例として、化合物(1-1)~(1-5)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、YおよびYは、それぞれ独立に、フッ素原子、炭素数1~4のペルフルオロアルキル基または炭素数1~4のペルフルオロアルコキシ基が好ましく、フッ素原子またはトリフルオロメチル基が特に好ましい。
 化合物(2)の好ましい具体例として、化合物(2-1)~(2-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 化合物(1)と化合物(2)はそれぞれ1個の重合性二重結合を有し、それら二重結合の2個の炭素原子が重合体の主鎖を構成する炭素原子となる。化合物(1)の場合、その二重結合を構成する2個の炭素原子は同時に脂肪族環を構成する炭素原子であるから、脂肪族環を構成する炭素原子のうちの2個の炭素原子が主鎖を構成する炭素原子となる。一方、化合物(2)の場合、その二重結合を構成する2個の炭素原子のうちの1個が脂肪族環を構成する炭素原子であるから、脂肪族環を構成する炭素原子のうちの1個の炭素原子が主鎖を構成する炭素原子となる。
 重合体(I)は、上記環状含フッ素単量体により形成される単位のみから構成されてもよく、該単位と、それ以外の他の単位とを有する共重合体であってもよい。ただし、該重合体(I)中、環状含フッ素単量体に基づく単位の割合は、該重合体(I)を構成する全単位の合計に対し、20モル%以上が好ましく、40モル%以上が特に好ましく、100モル%であってもよい。
 該他の単量体としては、上記環状含フッ素単量体と共重合可能なものであればよく、特に限定されない。具体的には、ジエン系含フッ素単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等が挙げられる。ジエン系含フッ素単量体としては、後述する重合体(II)の説明で挙げるものと同様のものが挙げられる。
 他の単量体としては、ペルフルオロ単量体、すなわち炭素原子に結合した水素原子を含まない含フッ素単量体であることが好ましい。特に、後述のペルフルオロジエン系含フッ素単量体やテトラフルオロエチレンが好ましい。
 なお環状含フッ素単量体とジエン系含フッ素単量体との共重合により得られる重合体は重合体(I)として考える。
 重合体(II)は、ジエン系含フッ素単量体の環化重合により形成される単位を有する。
 「ジエン系含フッ素単量体」とは、2個の重合性二重結合およびフッ素原子を有する単量体である。該重合性二重結合としては、特に限定されないが、ビニル基、アリル基、3-ブテニル基、アクリロイル基、メタクリロイル基における重合性二重結合が好ましい。
 ジエン系含フッ素単量体はペルフルオロジエン系含フッ素単量体、すなわち炭素原子に結合した水素原子を含まないジエン系含フッ素単量体が好ましい。
 ペルフルオロジエン系含フッ素単量体としては、下記化合物(3)が好ましい。
   CF=CF-Q-CF=CF ・・・(3)。
 式(3)中、Qは、エーテル性酸素原子を有していてもよく、フッ素原子の一部がフッ素原子以外のハロゲン原子で置換されていてもよい炭素数1~5、好ましくは1~3の、分岐を有してもよいペルフルオロアルキレン基である。該フッ素以外のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Qはエーテル性酸素原子を有するペルフルオロアルキレン基であることが好ましい。その場合、該ペルフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の点から、該基の一方の末端に存在していることが好ましい。
 化合物(3)の具体例としては、下記化合物が挙げられる。
 CF=CFOCFCF=CF
 CF=CFOCF(CF)CF=CF
 CF=CFOCFCFCF=CF
 CF=CFOCFCF(CF)CF=CF
 CF=CFOCF(CF)CFCF=CF
 CF=CFOCFClCFCF=CF
 CF=CFOCClCFCF=CF
 CF=CFOCFOCF=CF
 CF=CFOC(CFOCF=CF
 CF=CFOCFCF(OCF)CF=CF
 CF=CFCFCF=CF
 CF=CFCFCFCF=CF
 CF=CFCFOCFCF=CF
 化合物(3)の環化重合により形成される単位として、下記単位(3-1)~(3-4)等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 化合物(3)は2個の重合性二重結合を有し、それら二重結合の合計4個の炭素原子のうちの4個または2個が重合体の主鎖を構成する炭素原子となり、また4個の炭素原子のうちの2~4個がQとともに脂肪族環を形成する。上記単位(3-1)~(3-4)のうち単位(3-1)~(3-3)は二重結合の4個の炭素原子のうちの4個が主鎖を構成する炭素原子となることを示し、単位(3-4)は二重結合の4個の炭素原子のうちの2個が主鎖を構成する炭素原子となることを示している。また、単位(3-1)の場合は2個の炭素原子とQが脂肪族環を形成し、単位(3-2)および単位(3-3)の場合は3個の炭素原子とQが脂肪族環を形成し、単位(3-4)の場合は4個の炭素原子とQが脂肪族環を形成している。
 本発明における含フッ素重合体の数平均分子量(Mn)は、3千~30万が好ましく、5千~20万が特に好ましい。Mnが前記範囲の下限値以上であると、含フッ素重合体が脆くなりにくく、上限値以下であると、溶媒への溶解性および成形性に優れる。
 本発明における含フッ素重合体の製造には、重合開始剤を用いることが好ましい。分子量を制御できる点で連鎖移動剤を併用してもよい。
 重合開始剤としては、特に限定されるものではなく、公知の化合物が使用できる。例えば、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジヒドロクロリド、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、4,4’-アゾビス(4-シアノペンタノイックアシッド)、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド}、2,2’-アゾビス(イソブチルアミド)ジハイドレート、2,2’-アゾビス(4-メトキシ-2,4-ジメチルパレロニトリル)、2,2’-アゾビス(2,4-ジメチルパレロニトリル)、(1-フェニルエチル)アゾジフェニルメタン、2,2’-アゾビスイソブチロニトリル、ジメチル2,2’-アゾビスイソブチレート、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)-イソブチロニトリル、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2,4-ジメチル-4-メトキシパレロニトリル、2,2’-アゾビス(2-メチルプロパン)等のアゾ化合物、ビスステアロイルペルオキシド、ジイソプロピルペルオキシジカーボネート、ベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、ジアセチルペルオキシド、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、パラ-メンタンヒドロペルオキシド、2,5-ジメチルヘキサン-2,5-ジヒドロペルオキシド、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、ジ-t-ブチルペルオキシド、ジクミルペルオキシド、t-ブチルクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、ジオクタノイルペルオキシド、ジデカノイルペルオキシド、ジラウロイルペルオキシド、t-ブチルペルオキシベンゾエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシビパレート、t-ブチルペルオキシイソブチレート、t-ブチルペルオキシソプロピルカーボネート、ジ-t-ブチルジペルオキシフタレート、t-ブチルペルオキシラウレート、2,5-ジメチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、ジ-ペルフルオロブタノイックペルオキシド、ジ-ペルフルオロ3-オキサ-2-メチルヘキサノイックペルオキシド、ジ-ペルフルオロナノイックペルオキシド等の有機ペルオキシド、K、(NH等の無機ペルオキシド等が挙げられる。
 連鎖移動剤としては、特に限定されるものではなく、公知の化合物が使用できる。例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類や、シクロヘキサン等のシクロアルカン類が挙げられる。
 本発明における含フッ素重合体の不安定末端基としては、単量体を重合して含フッ素重合体を製造する際に使用された重合開始剤、連鎖移動剤、分散安定剤、単量体等に由来する残基が挙げられる。特に、重合開始剤、連鎖移動剤および分散安定剤からなる群から選択される少なくとも1種に由来する基が不安定末端基となりやすい。
 不安定末端基としては、例えば、水酸基、アミノ基、カルボキシ基、スルホ基等の活性水素を有する官能基、カルボン酸ハライド、カルボン酸アミド、カルボン酸エステル等のカルボン酸から誘導される基、カーボネート基、スルホン酸ハライド、スルホン酸アミド、スルホン酸エステル等のスルホン酸から誘導される基、炭化水素基、水素等が挙げられる。例えば、重合開始剤であるジイソプロピルペルオキシジカーボネート由来の(CHCHOC(=O)O-、連鎖移動剤であるメタノール由来のHO-CH-、含フッ素単量体由来の水素等が例示される。分散安定剤は、重合を懸濁重合にて行う場合に分散性を安定させるために使用する化合物である。
 含フッ素重合体が該不安定末端基を有すると、含フッ素重合体を成形する際または高温下での使用において、該不安定末端基が分解し、装置を腐食させたり、含フッ素重合体自身が着色することがある。
[末端基変換方法]
 本発明の末端基変換方法は、上述した含フッ素重合体中の不安定末端基を、カルボン酸フロリド基に変換する方法である。
 本発明の末端基変換方法においては、含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下で、分子状酸素を含フッ素重合体に接触させながら加熱を行う。また、上記加熱の温度は200~400℃であり、加熱時間は1時間以上である
 加熱温度は、250~380℃が好ましく、250~350℃が特に好ましい。加熱温度が前記範囲の下限値以上であると高い変換率が得られる。また、得られる含フッ素重合体の光透過率を高くできる。前記範囲の上限値以下であると含フッ素重合体が主鎖で分解しにくい点で好ましい。
 加熱時間は、1~24時間が好ましく、1~20時間が特に好ましい。加熱時間が前記範囲の下限値以上であると高い変換率であり、前記範囲の上限値以下であると含フッ素重合体が主鎖で分解しにくくおよび製造コストが著しく高くならない点で優れる。
 加熱は、含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下で行う。分子状酸素は、不安定末端基の1モルに対して分子状酸素は、50~800モルが好ましく、50~500モルが特に好ましい。前記範囲の下限値以上であると高い変換率であり、前記範囲の上限値以下であると製造コストが著しく高くならない点で優れる。
 分子状酸素は、酸素ガスを使用してもよく、空気を使用してもよい。分子状酸素が上記範囲であれば、それ以外の気体は、含フッ素重合体が分解しない気体であれば特に問わない。安価かつ安全性の点から窒素等の不活性ガスや空気であることが好ましい。
 上記加熱は、例えば電気オーブン等の加熱炉により行うことが好ましい。加熱炉内の気体は、循環させてもよいし、循環しなくてもよい。また、外部から新たな分子状酸素を含む気体を供給してもよい。加熱炉内の気体を循環させながら新たな分子状酸素を含む気体を供給してもよい。
 加熱炉内の気体を循環させながら新たな分子状酸素を含む気体を供給する装置の例を図1に示す。図1において、加熱炉10には、炉内に空気を供給させるファン12と、ファン12により循環される空気を加熱するヒータ14と、処理対象である含フッ素重合体を収容する容器16を載置する棚18とを備えている。また、加熱炉10には、加熱炉10の外部から新たに空気を供給しながら空気の循環を行うために、吸気ダンパ20と排気ダンパ22とを備える構成が好適である。加熱炉10内に供給する空気量は、吸気ダンパ20と排気ダンパ22との開度を適宜調整することにより行えるが、図示しない流量計を使用して空気の供給量を制御してもよい。加熱炉中の含フッ素重合体の不安定末端基を均一に変換させるためには、加熱炉内の温度は均一であることが望ましく、分子状酸素を含む気体をファン等により循環させることがより好ましい。なお、加熱炉10内は邪魔板を付けて空気の流れを強制的に作成してもよく、撹拌装置で空気をかき回してもよい。
 上記加熱炉10内で含フッ素重合体を加熱する場合には、吸気ダンパ20と排気ダンパ22とを閉じた状態で、すなわち加熱炉10内に外部からの空気の供給を行わずに、加熱の開始時に加熱炉10内に存在した空気(分子状酸素)のみで加熱する方法(以下、「空気非供給処理」ともいう。)と、吸気ダンパ20と排気ダンパ22とを適宜開き、加熱炉10の外部の空気を加熱炉10内に供給しながら加熱する方法(以下、「空気供給処理」ともいう。)とがある。
 以上に述べた空気非供給処理と空気供給処理とを比較すると、空気非供給処理では、加熱において、含フッ素重合体中の不安定末端基に対してモル比で50倍以上の分子状酸素を存在させる必要があるので、加熱炉10を大型化するか、1回の含フッ素重合体の処理量を少なくする必要がある。一方、空気供給処理では、加熱中に供給する分子状酸素が含フッ素重合体中の不安定末端基に対してモル比で50倍以上とすればよいので、加熱炉10を小型化することができるので、好ましい。
 空気非供給処理の場合には、予め加熱炉10内に存在した空気中の分子状酸素の量が、不安定末端基の1モルに対して50モル以上となるように加熱炉10の容積および処理対象の含フッ素重合体の量を調整する。また、空気供給処理の場合には、加熱前に加熱炉10内に存在した空気中の分子状酸素と加熱中に供給する空気中の分子状酸素の合計量が、不安定末端基の1モルに対して50モル以上となるように加熱炉10の容積、処理対象の含フッ素重合体の量および空気の供給量を調整する。また、空気の供給は、不安定末端基の1モルに対して5~300mol/時間の割合で行うことが好ましい。
 容器16の材質は、加熱温度中で耐えるものであれば特に限定されない。例えば、アルミニウム、ニッケル、ステンレス等が挙げられる。容器16の形状は特に限定されないが、効率良く分子状酸素に触れることができる点で、口が広いことが好ましい。また、容器16の中に入れる含フッ素重合体の厚さは、効率良く分子状酸素に触れることができる点で、1~2mmであることが好ましい。
[末端安定化方法]
 本発明の末端安定化方法は、上述の末端基変換方法により重合で得られた含フッ素重合体の不安定末端基の50~100モル%を変換してカルボン酸フロリド基とし、次に、分子状フッ素を反応させて、該カルボン酸フロリド基をペルフルオロメチル基に変換する方法である。上述のように、本発明の末端基変換方法により、含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換でき、該カルボン酸フロリド基を高い変換率でペルフルオロメチル基に変換できるため、結果として含フッ素重合体の不安定末端基を高い変換率でペルフルオロメチル基に変換できる。
 含フッ素重合体のカルボン酸フロリド基を分子状フッ素と反応させてペルフルオロメチル基に変換する方法としては、カルボン酸フロリド基を有する含フッ素重合体を溶媒に溶解させた溶液にフッ素ガスを溶解させ、溶液中で分子状フッ素をカルボン酸フロリド基に反応させてカルボン酸フロリド基をペルフルオロメチル基に変換する方法が好ましい。また、カルボン酸フロリド基を有する含フッ素重合体の溶液(以下、「含フッ素重合体溶液」ともいう。)とフッ素ガスを溶媒に溶解させた分子状フッ素の溶液とを混合して、同様に反応させることもできる。この反応に使用される溶媒としては、含フッ素重合体の溶解性が高くかつ分子状フッ素に不活性な溶媒が使用され、ペルフルオロトリアルキルアミン等の炭素原子に結合した水素原子を有しない含フッ素溶媒が好ましい。
 含フッ素溶媒に溶解した含フッ素重合体と分子状フッ素との反応は発熱反応であり、また、分子状フッ素はその反応に用いる容器材質に対しても非常に活性が高いので、フッ素ガスは不活性ガス、例えば窒素ガスによって希釈して用いることが好ましい。フッ素ガス濃度が低すぎると生産効率が低下するため、フッ素ガスと不活性ガスとの混合ガス中のフッ素ガスの割合は0.1~20モル%が好ましく、0.5~5モル%が特に好ましい。
 含フッ素重合体溶液における含フッ素重合体濃度は、高すぎると溶液の粘度が高くなり、反応効率反応の均一性が低下し、また除熱が困難になり異常反応が生じるおそれがあり、低すぎると生産効率が低下する。したがって、含フッ素重合体濃度は1~20質量%が好ましく、5~15質量%が特に好ましい。
 含フッ素重合体の1gに対するフッ素ガスの供給割合は、通常、標準状態において10~100ミリリットルであることが好ましい。フッ素ガスは回分式に供給してもよく、連続的に供給してもよい。反応圧力は任意であるが、常圧~2MPaGが好ましい。反応温度は通常100~300℃であるが、実用的な処理時間を考慮すると、170℃以上が好ましく、かつ容器の耐圧、安全性を考慮すると、230℃以下が好ましい。反応時間は反応温度が低い場合には長く、反応温度が高い場合に短くなる。反応温度が170~230℃の場合、反応時間は10~100時間が適当である。
 カルボン酸フロリド基は、水と反応させてカルボン酸に変換し、一方でメタノールと反応させてメチルエステル基に変換することができる。該メチルエステル基から、エステル交換反応等により、様々な官能基を含フッ素重合体の末端に導入することもできる。含フッ素重合体中の不安定末端基を高い変換率でカルボン酸フロリド基に変換できることで、末端を種々の末端基に高い変換率で変換できる。
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されない。例1~5、8および11は実施例、例6~7および9~10は比較例である。
 本実施例および比較例における含フッ素重合体の製造方法、加熱方法、末端基量の測定方法については、下記に記載した方法で実施した。
[含フッ素重合体の末端基濃度の測定]
(1)本発明の末端基変換方法による加熱前の含フッ素重合体の不安定末端基濃度の測定方法
 加熱前の不安定末端基濃度は、H-NMRより求めた。含フッ素重合体と標準物質としてのp-ヘキサフルオロキシレンとを100:1(質量比)の比率でペルフルオロベンゼンに溶解し、測定用サンプルとした。p-ヘキサフルオロキシレン由来のピークの面積と、各不安定末端基由来のピーク(イソプロピル基のCHが5ppm付近、HO-CH-中のCHが4.3ppm付近、CFH-中のHが6.5ppm付近等。)の面積との比より各不安定末端基の濃度(mol/g)を求め、その合計を加熱前末端基濃度として求めた。
(2)本発明の末端基変換方法による加熱後のカルボン酸フロリド基(-COF)濃度の測定方法
 サーモフィッシャーサイエンティフィック社製「Nicolet iS10 FT-IR」を用いて、含フッ素重合体の圧縮成形フィルム(厚さ200μm)の赤外線吸収スペクトルを測定した。1,883cm-1の吸光度を求め、カルボン酸フロリド基の官能基濃度(mol/g)をランベルト-ベール式より算出した。
 カルボン酸フロリド基濃度(mol/g)=吸光度×補正係数(mol×mm/g)/圧縮成形フィルムの厚さ(mm)
 補正係数は、カルボン酸フロリド基濃度(mol/g)が既知の化合物の赤外線吸収スペクトルより求め、9×10-6(mol×mm/g)とした。
(3)カルボン酸フロリド基変換率(%)の計算方法
 上記(加熱後のカルボン酸フロリド基濃度)/(加熱前の不安定末端基濃度)から計算した。
[光透過率の測定]
 紫外可視近赤外分光光度計 UV3100PC(島津製作所製)を用いて、含フッ素重合体の圧縮成形フィルム(厚さ200μm)の透過率を波長200~800nmの範囲で測定し、透明性を波長300nmの透過率で評価した。
[合成例1]
 ペルフルオロ(3-ブテニルビニルエーテル)の135kg、イオン交換水の180kg、分散安定剤(日本乳化剤社製、商品名:ニューコール714SN)の5.1kg、連鎖移動剤としてのメタノールの15.7kgおよび重合開始剤としてのジイソプロピルペルオキシジカーボネートの0.3kgを、内容積300Lのガラスライニングの反応器に入れた。系内を窒素で置換した後、40℃で20時間、50℃で6時間懸濁重合を行い、含フッ素重合体Aを得た。次いで、得られた含フッ素重合体Aの粒子をろ過により回収し、メタノール、水により洗浄した後、100℃で乾燥し、ペルフルオロ(3-ブテニルビニルエーテル)およびメタノールに起因する末端基を有する含フッ素重合体Aの125kg(数平均分子量(Mn):45,000、質量平均分子量(Mw):100,000。平均分子量の測定はGPC(ゲル浸透クロマトグラフィ)により、PMMA換算で行った。)を得た。
[例1]
 含フッ素重合体Aの15kgを、内容積630Lのオーブン(加熱炉)内にて、900L/時間で空気を供給しながら、345℃で10時間加熱(空気供給処理)し、含フッ素重合体(B-1)を得た。含フッ素重合体(B-1)の圧縮成形フィルム(厚さ200μm)の赤外線吸収スペクトルを測定した結果、1,883cm-1にカルボン酸フロリド基に起因する吸収ピークが確認された。また、同フィルムの波長300nmにおける透過率を測定したところ、91%と高い透過率であった。各種条件、評価結果を表1に示す。なお、表1において、実施例1の「酸素量」とは、オーブン内に加熱前に存在した空気中の酸素量と流通させた空気中の酸素量との総和である。また、「加熱前の不安定末端基濃度」とは、不安定末端基の濃度である。また「カルボン酸フロリド基変換率」とは、不安定末端基がカルボン酸フロリド基に変換した割合であり、上述の方法で求めた。
[例2~4]
 空気の供給量を表1に示した値とした以外は例1と同様にして、含フッ素重合体(B-2)~(B-4)を得た。含フッ素重合体(B-1)の代わりに含フッ素重合体(B-2)~(B~4)を用いて圧縮成形フィルムを製造し、赤外線吸収スペクトルおよび波長300nmでの透過率を測定した。各種条件、評価結果を表1に示す。
[例5]
 含フッ素重合体Aの1.5kgを、内容積630Lのオーブン内にて、300℃で10時間加熱(空気非供給処理)し、含フッ素重合体(B-5)を得た。含フッ素重合体(B-1)の代わりに含フッ素重合体(B-5)を用いた以外は例1と同様にして圧縮成形フィルムを製造し、赤外線吸収スペクトルおよび波長300nmでの透過率を測定した。各種条件、評価結果を表1に示す。なお、表1において、例5の「酸素量」は、オーブン内に加熱前に存在した空気中の酸素量である。
[例6]
 含フッ素重合体Aの質量を15kgとし、加熱温度を345℃とした以外は例5と同様にして、含フッ素重合体(B-6)を得た。含フッ素重合体(B-1)の代わりに含フッ素重合体(B-6)を用いた以外は例5と同様にして圧縮成形フィルムを製造し、赤外線吸収スペクトルおよび波長300nmでの透過率を測定した。評価結果を表1に示す。
[例7]
 含フッ素重合体Aの15kgを、例5と同じオーブン内にて、320℃で0.83時間加熱(空気非供給処理)し、含フッ素重合体(B-7)を得た。含フッ素重合体(B-1)の代わりに含フッ素重合体(B-7)を用いた以外は例5と同様にして圧縮成形フィルムを製造し、赤外線吸収スペクトルおよび波長300nmでの透過率を測定した。各種条件、評価結果を表1に示す。
[例8]
 ニッケル製2Lのオートクレーブを-760Torrまで減圧した後、例1で得た含フッ素重合体(B-1)をペルフルオロトリブチルアミン(PTBA)中に溶解して濃度9質量%に調整した溶液の2,150gを減圧仕込みした。次いで、オートクレーブ内に窒素ガスで濃度2%に希釈したフッ素ガスを0.8MPaGまで導入し、195℃で10時間撹拌する処理を2回行い、含フッ素重合体(C-1)を得た。含フッ素重合体(C-1)の圧縮成形フィルム(厚さ200μm)の赤外線吸収スペクトルを測定したところ、カルボン酸フロリド基に由来する1,883cm-1の特性吸収が認められなかった。すなわち含フッ素重合体(B-1)中のカルボン酸フロリド基の100モル%がペルフルオロメチル基に変換したことを確認した。
[例9]
 含フッ素重合体(B-1)を合成例1で得た含フッ素重合体Aに代えた以外は、例8と同様にしてフッ素化反応を行い、含フッ素重合体(C-2)を得た。含フッ素重合体(C-2)と標準物質としてのp-ヘキサフルオロキシレンとを100:1(質量比)の比率でペルフルオロベンゼンに溶解し、H-NMR測定し、残存した不安定末端基量を算出した。その結果、含フッ素重合体A中の不安定末端基の20モル%しかペルフルオロメチル基に変換できていなかったことを確認した。
[例10~11]
 含フッ素重合体Aの質量を15kgとし、加熱温度を180℃、250℃とした以外は例5と同様にして、含フッ素重合体(B-10)、(B-11)を得た。含フッ素重合体(B-1)の代わりに含フッ素重合体(B-10)、(B-11)を用いた以外は例5と同様にして圧縮成形フィルムを製造し、赤外線吸収スペクトルおよび波長300nmでの透過率を測定した。各種条件、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明の末端基変換方法を用いた例1~5および11は、カルボン酸フロリド基変換率が50~100%であった。
 一方、分子状酸素が、含フッ素重合体の不安定末端基の1モルに対して50モル未満である例6~7は、カルボン酸フロリド基変換率が50%未満であった。なお、例7は、分子状酸素の不足に加え加熱時間が1時間未満と短時間であったため、カルボン酸フロリド基変換率が最も低い。
 本発明の末端安定化方法を用いた例8は、重合で得た含フッ素重合体の不安定末端基を高い変換率で安定化することができた。
 一方、本発明の末端安定化方法を用いなかった例9では、重合で得た含フッ素重合体の不安定末端基の安定化が不充分であった。
 分子状酸素が、含フッ素重合体の不安定末端基の1モルに対して50モル以上であっても、180℃で反応した例10では、重合で得た含フッ素重合体の不安定末端基の安定化が全く進まなかった。
 含フッ素重合体を光学材料として使用する場合、光透過率は高いことが望ましい。波長300nmでの透過率が88%未満であると、着色して見えてしまうため、透過率は88%以上であることが好ましい。例1~5および11で得た含フッ素重合体の透過率はいずれも88%以上であり、光学材料として使用することができる。
 本発明で得られる含フッ素重合体の用途としては、光導波路材料、光ファイバーのコア/クラッド材、電線被覆材、撥インク剤(例えば塗装用、インクジェット等の印刷機器用)、撥油剤(例えばフィルターの防油コート、流体軸受けモーターのオイル染み出し防止剤等の高性能撥油剤、防汚コート)、潤滑材、レンズ材料、LED封止材、半導体素子用接着剤(例えばLOC(リードオンチップ)、テープ用接着剤、ダイボンド用接着剤、ペリクル膜固定用接着剤)、半導体用保護コート(例えばバッファコート膜、パッシベーション膜、半導体素子α線遮蔽膜、防湿コート剤)、層間絶縁膜(例えば半導体素子用、液晶表示体用、多層配線板用)、タンパク質等の生体物質付着防止コート、ガス選択分離膜等が挙げられる。波長300nmにおける透過率が88%以上にできることから、特に高い透過率が要求される、レンズ、光ファイバー、LED封止材、光学薄膜等の光学用途にも使用できる。
 なお、2013年3月27日に出願された日本特許出願2013-066015号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 加熱炉、12 ファン、14 ヒータ、16 容器、18 棚、20 吸気ダンパ、22 排気ダンパ。

Claims (7)

  1.  含フッ素重合体の不安定末端基の1モルに対して50モル以上の分子状酸素の存在下、前記含フッ素重合体を200~400℃で1時間以上加熱し、前記不安定末端基の50~100モル%をカルボン酸フロリド基に変換することを特徴とする末端基変換方法。
  2.  前記分子状酸素を、前記不安定末端基の1モルに対して5~300mol/時間の割合で供給する、請求項1に記載の末端基変換方法。
  3.  前記不安定末端基が、単量体を重合して含フッ素重合体を製造する際に使用された、重合開始剤、連鎖移動剤および分散安定剤からなる群から選択される少なくとも1種に由来する基である、請求項1または2に記載の末端基変換方法。
  4.  前記含フッ素重合体が、主鎖に脂肪族環を有する含フッ素重合体である、請求項1~3のいずれか一項に記載の末端基変換方法。
  5.  含フッ素重合体がペルフルオロ含フッ素重合体である、請求項1~4のいずれか一項に記載の末端基変換方法。
  6.  請求項1~5のいずれか一項に記載の方法で含フッ素重合体の不安定末端基の50~100モル%を変換してカルボン酸フロリド基とし、次に、分子状フッ素を反応させてカルボン酸フロリド基をペルフルオロメチル基に変換する、含フッ素重合体の末端安定化方法。
  7.  カルボン酸フロリド基を有する含フッ素重合体の溶液にフッ素ガスを溶解させて反応させる、請求項6に記載の含フッ素重合体の末端安定化方法。
PCT/JP2014/057864 2013-03-27 2014-03-20 末端基変換方法および末端安定化方法 WO2014156996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157026296A KR102134128B1 (ko) 2013-03-27 2014-03-20 말단기 변환 방법 및 말단 안정화 방법
JP2015508431A JP6135753B2 (ja) 2013-03-27 2014-03-20 末端基変換方法および末端安定化方法
EP14774796.8A EP2980105B1 (en) 2013-03-27 2014-03-20 Terminal group conversion method and terminal stabilizing method
US14/848,639 US9624319B2 (en) 2013-03-27 2015-09-09 Terminal group conversion method and terminal stabilizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-066015 2013-03-27
JP2013066015 2013-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,639 Continuation US9624319B2 (en) 2013-03-27 2015-09-09 Terminal group conversion method and terminal stabilizing method

Publications (1)

Publication Number Publication Date
WO2014156996A1 true WO2014156996A1 (ja) 2014-10-02

Family

ID=51623973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057864 WO2014156996A1 (ja) 2013-03-27 2014-03-20 末端基変換方法および末端安定化方法

Country Status (6)

Country Link
US (1) US9624319B2 (ja)
EP (1) EP2980105B1 (ja)
JP (1) JP6135753B2 (ja)
KR (1) KR102134128B1 (ja)
TW (1) TW201446820A (ja)
WO (1) WO2014156996A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762083A (zh) * 2018-12-29 2019-05-17 山东华夏神舟新材料有限公司 含氟聚合物不稳定端基的稳定化处理方法
WO2020075724A1 (ja) 2018-10-09 2020-04-16 東ソ-株式会社 フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法
JP2020128520A (ja) * 2018-09-28 2020-08-27 東ソー株式会社 フッ素樹脂粒子およびその製造方法
WO2023157589A1 (ja) * 2022-02-21 2023-08-24 Agc株式会社 フッ素樹脂、その製造方法、組成物及び物品
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145385A4 (en) * 2014-05-22 2018-02-14 Invuity, Inc. Medical device featuring cladded waveguide
CN116731226B (zh) * 2023-07-04 2024-02-23 四川红华实业有限公司 一种含氟热塑性聚合物不稳定端基的氟化处理方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279537A (ja) * 1993-03-29 1994-10-04 Japan Synthetic Rubber Co Ltd カルボキシル基含有フッ素重合体の製造方法
JPH11152310A (ja) * 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2000198813A (ja) * 1998-11-04 2000-07-18 Daikin Ind Ltd 含フッ素重合体の安定化方法
JP2003313236A (ja) * 2002-04-23 2003-11-06 Asahi Glass Co Ltd パーハロポリフルオロ重合体の不安定末端基のフッ素化方法
WO2005049661A1 (ja) * 2003-11-20 2005-06-02 Daikin Industries, Ltd. 含フッ素重合体製造方法及び含フッ素重合体物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675380A (en) * 1985-10-25 1987-06-23 E. I. Du Pont De Nemours And Company Melt-processible tetrafluoroethylene/perfluoroolefin copolymer granules and processes for preparing them
US7528198B2 (en) * 2001-09-11 2009-05-05 Daikin Industries, Ltd. Fluororesin composition, process for preparing the same and cable coated with the same
WO2007077722A1 (ja) * 2006-01-05 2007-07-12 Asahi Glass Company, Limited 含フッ素重合体およびそれを含む含フッ素重合体組成物
US8785560B2 (en) * 2012-05-09 2014-07-22 E I Du Pont De Nemours And Company Employing pretreatment and fluorination of fluoropolymer resin to reduce discoloration
US9175115B2 (en) * 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing heating and oxygen source to reduce discoloration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279537A (ja) * 1993-03-29 1994-10-04 Japan Synthetic Rubber Co Ltd カルボキシル基含有フッ素重合体の製造方法
JPH11152310A (ja) * 1997-11-20 1999-06-08 Asahi Glass Co Ltd 含フッ素脂肪族環構造含有重合体の製造方法
JP2000198813A (ja) * 1998-11-04 2000-07-18 Daikin Ind Ltd 含フッ素重合体の安定化方法
JP2003313236A (ja) * 2002-04-23 2003-11-06 Asahi Glass Co Ltd パーハロポリフルオロ重合体の不安定末端基のフッ素化方法
WO2005049661A1 (ja) * 2003-11-20 2005-06-02 Daikin Industries, Ltd. 含フッ素重合体製造方法及び含フッ素重合体物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128520A (ja) * 2018-09-28 2020-08-27 東ソー株式会社 フッ素樹脂粒子およびその製造方法
JP7339830B2 (ja) 2018-09-28 2023-09-06 東ソー株式会社 フッ素樹脂粒子およびその製造方法
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these
WO2020075724A1 (ja) 2018-10-09 2020-04-16 東ソ-株式会社 フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法
CN115677887A (zh) * 2018-10-09 2023-02-03 东曹株式会社 氟树脂及其制造方法以及氟树脂粒子的制造方法
CN115677887B (zh) * 2018-10-09 2024-03-08 东曹株式会社 氟树脂及其制造方法以及氟树脂粒子的制造方法
CN109762083A (zh) * 2018-12-29 2019-05-17 山东华夏神舟新材料有限公司 含氟聚合物不稳定端基的稳定化处理方法
CN109762083B (zh) * 2018-12-29 2021-06-29 山东华夏神舟新材料有限公司 含氟聚合物不稳定端基的稳定化处理方法
WO2023157589A1 (ja) * 2022-02-21 2023-08-24 Agc株式会社 フッ素樹脂、その製造方法、組成物及び物品

Also Published As

Publication number Publication date
EP2980105B1 (en) 2019-10-02
JPWO2014156996A1 (ja) 2017-02-16
KR102134128B1 (ko) 2020-07-15
EP2980105A1 (en) 2016-02-03
US9624319B2 (en) 2017-04-18
JP6135753B2 (ja) 2017-05-31
KR20150135301A (ko) 2015-12-02
US20150376302A1 (en) 2015-12-31
TW201446820A (zh) 2014-12-16
EP2980105A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6135753B2 (ja) 末端基変換方法および末端安定化方法
JP5061446B2 (ja) 含フッ素エラストマーラテックス、その製造方法、含フッ素エラストマーおよび含フッ素ゴム成形品
EP2443194B1 (en) Low temperature curable amorphous fluoropolymers
JP2006504844A (ja) フッ化オレフィンと炭化水素オレフィンとのコポリマーを製造するための、乳化剤非含有水性乳化重合
JP7112000B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
JP2004534118A (ja) フルオロポリマーを製造するための連鎖移動剤としてのエーテルの存在下での水性乳化重合
US10557031B2 (en) Composition including amorphous fluoropolymer and fluoroplastic particles and methods of making the same
JP6441791B2 (ja) 変色を低減させるためのフッ素化ポリマー樹脂の前処理およびフッ素化の利用
TWI482784B (zh) 全氟彈性體
EP1068248A1 (en) Perfluoroelastomer compositions
JP2018531316A6 (ja) 非晶質フルオロポリマーとフルオロプラスチック粒子とを含む組成物及びその製造方法
JP6127976B2 (ja) 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムの製造方法
EP2914659A1 (en) Peroxide-curable fluoropolymer composition including solvent and method of using the same
KR20070058592A (ko) 불소탄성중합체를 제조하기 위한 불소중합체
JP4828783B2 (ja) 低いガラス転移温度を有するペルフルオロエラストマーおよびそれらの製造方法
CN108017746B (zh) 一种低压缩永久变形的过氧化物硫化氟橡胶及其制备方法
JP4956868B2 (ja) 安定性に優れるテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体の製造方法
WO2022191286A1 (ja) フルオロポリマー水性分散液の製造方法
JPH06136218A (ja) 硬化性含フッ素ポリマー組成物およびその硬化方法
JPH06248026A (ja) 硬化性含フッ素共重合体組成物
JPS6256887B2 (ja)
EP1829905B1 (en) Perfluoroelastomers having a low glass transition temperature and method of making them
JP2004175855A (ja) 含フッ素共重合体の製造方法並びに該方法で得られた成形用含フッ素共重合体
WO2022163815A1 (ja) フルオロポリマー組成物の製造方法
JP2006037025A (ja) 含フッ素エラストマーおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508431

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014774796

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157026296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE