WO2020075724A1 - フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法 - Google Patents

フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法 Download PDF

Info

Publication number
WO2020075724A1
WO2020075724A1 PCT/JP2019/039698 JP2019039698W WO2020075724A1 WO 2020075724 A1 WO2020075724 A1 WO 2020075724A1 JP 2019039698 W JP2019039698 W JP 2019039698W WO 2020075724 A1 WO2020075724 A1 WO 2020075724A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
solvent
solution
particles
carbon atoms
Prior art date
Application number
PCT/JP2019/039698
Other languages
English (en)
French (fr)
Inventor
孝太 坂口
智弥 下野
智成 長井
和也 岩永
翔平 弓野
田靡 正雄
亨 土井
Original Assignee
東ソ-株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018190833A external-priority patent/JP7225655B2/ja
Priority claimed from JP2019183819A external-priority patent/JP2020164781A/ja
Application filed by 東ソ-株式会社 filed Critical 東ソ-株式会社
Priority to US17/283,753 priority Critical patent/US20210380735A1/en
Priority to CN202310277404.4A priority patent/CN116217762A/zh
Priority to CN202211324416.XA priority patent/CN115677887B/zh
Priority to EP19871889.2A priority patent/EP3865521A4/en
Priority to CN201980066286.4A priority patent/CN112805308A/zh
Publication of WO2020075724A1 publication Critical patent/WO2020075724A1/ja
Priority to US18/406,542 priority patent/US20240141081A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F124/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/38Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2337/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Derivatives of such polymers

Definitions

  • the present invention relates to a fluororesin, a method for producing the same, and a method for producing fluororesin particles.
  • Cross-reference of related applications This application applies to Japanese Patent Application No. 2018-190833 filed on October 9, 2018, Japanese Patent Application No. 2019-061860 filed on March 27, 2019, and Japanese Patent Application filed on October 4, 2019. Claiming the priority of Japanese Patent Application No. 2019-183819, the entire description of which is specifically incorporated herein by reference.
  • Fluororesin containing a fluorinated alicyclic structure is amorphous, has excellent transparency, and has excellent liquid repellency, durability, electrical characteristics, etc., and is therefore used in various applications such as optical and electronic fields.
  • an amorphous fluoropolymer is used as an optical member such as an optical waveguide or a pellicle that is a dustproof film for a semiconductor photomask.
  • a fluororesin containing an oxolane ring has a bulky ring structure and thus is amorphous and has high transparency and high heat resistance.
  • it since it is composed only of carbon, fluorine, and oxygen, it has high electrical properties, chemical resistance, waterproofness, and liquid repellency. Furthermore, since it is amorphous, melt molding is possible.
  • Non-Patent Document 1 describes the synthesis and properties of a polymer of perfluoro-2-methylene-4-methyl-1,3-dioxolane (PFMMD) (polyPFMMD), which is one kind of fluororesin containing an oxolane ring. There is. Poly PFMMD has excellent heat resistance. Patent Document 1 describes a perfluoro (4-vinyloxy-1-butene) cyclized polymer as the fluororesin.
  • Patent Document 1 WO2014 / 156996
  • Non-Patent Document 1 Macromolecules 2005, 38, 4237-4245. The entire description of Patent Document 1 and Non-Patent Document 1 is specifically incorporated herein by reference.
  • the resin produced by the method of Non-Patent Document 1 has a problem that the haze value of the melt-formed product is high.
  • the first aspect of the present invention is intended to solve the problems in the above-mentioned fluororesin containing an oxolane ring, and specifically provides a fluororesin containing an oxolane ring having a small haze value of a melt-molded product and a method for producing the same.
  • the purpose is to do.
  • Fluororesin is generally provided in the form of a solution, but in the case of melt molding, it is possible to continuously supply the resin to the inside of the molding machine, so the resin must be in the form of particles. To be Further, also in other wide range of applications, the form of the resin is required to be particulate from the viewpoint of handling property and solubility.
  • Patent Document 1 exemplifies suspension polymerization as a method for obtaining particles of the fluororesin.
  • the dispersant or emulsifier used as a polymerization aid remains inside the resin particles and becomes a foreign substance or causes coloring when heated, the transparency and electrical characteristics of the fluororesin are There was a possibility of damage. According to the present inventors, particles were not obtained by suspension polymerization without using a dispersant.
  • the second aspect of the present invention has been made in view of the above problems, and an object thereof is to provide a method for producing fluororesin particles containing a fluorine-containing alicyclic structure which is excellent in productivity and capable of removing foreign matters. To do.
  • the first aspect of the present invention is as follows.
  • [1-1] A fluororesin containing a residue unit represented by the following general formula (1) and having a haze value of 2% or less in a heat press molded product (thickness 1 mm).
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched chain having 3 to 7 carbon atoms.
  • Rf 5 , Rf 6 , Rf 7 , and Rf 8 are each independently a fluorine atom, a straight-chain perfluoroalkyl group having 1 to 7 carbon atoms, or 3 to 3 carbon atoms.
  • step (1c) In the presence of a radical polymerization initiator and a poor solvent c1 for the fluororesin A, the monomer represented by the general formula (4) is polymerized to precipitate the fluororesin A, and a good solvent b1 for the fluororesin A is obtained. To obtain a mixture containing the fluororesin A, the good solvent b1, and the poor solvent c1.
  • the step (1a) is the production method according to [1-8], wherein the polymerization is performed in the coexistence of a poor solvent c1 for the fluororesin A in addition to the radical polymerization initiator and the good solvent b1 for the fluororesin A.
  • [1-12] The production method according to [1-10] or [1-11], wherein the insoluble matter removal step (2) is (2a).
  • [1-13] The manufacturing method according to any one of [1-10] to [1-12], wherein the filter is a filter having a 99% complementary particle size of 10 ⁇ m or less or a screen filter having a pore size of 10 ⁇ m or less.
  • the deposition step (3) is any one of the following (3a), (3b), (3c) or (3d), [1-7] to [1-13] Production method.
  • the second aspect of the present invention is as follows. [2-1] The fluororesin (A) containing a fluorinated alicyclic structure is deposited on the fluororesin (A) solution dissolved in the solvent (B) by lowering the temperature of the solution to precipitate the fluororesin (A) particles.
  • a method for producing fluororesin particles containing a fluorinated alicyclic structure which comprises a precipitation step of [2-2]
  • the solvent (B) is a composition containing a good solvent (b-1) for the fluororesin (A) and a poor solvent (b-2) for the fluororesin (A) [2-1] The method for producing the fluororesin particles according to 1.
  • [2-3] The method for producing fluororesin particles according to [2-2], wherein the good solvent (b-1) is an aliphatic fluorinated solvent having a hydrogen atom in the molecule or an aromatic fluorinated solvent.
  • the poor solvent (b-2) is a fluorinated solvent having a hydrogen atom in the molecule.
  • a poor solvent addition step of adding a poor solvent (b-2) to the fluororesin (A) solution obtained in the precipitation step, and a separation for solid-liquid separation of particles of the fluororesin (A) after the poor solvent addition step The method for producing fluororesin particles according to any one of [2-1] to [2-4], which further comprises a step.
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a straight chain, a branched chain or a chain which may have a fluorine atom or an etheric oxygen atom having 1 to 7 carbon atoms. (This represents one member of the group consisting of cyclic perfluoroalkyl groups. Rf 1 , Rf 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms.)
  • the first aspect of the present invention it is possible to provide a fluororesin containing a residue unit represented by the general formula (1) and having a haze value of 2% or less in a heat press molded product (thickness 1 mm). it can.
  • the second aspect of the present invention it is possible to provide a method for producing fluororesin particles having a fluorine-containing alicyclic structure which is excellent in productivity and capable of removing foreign matters.
  • a first aspect of the present invention relates to a fluororesin containing a residue unit represented by the following general formula (1) and having a haze value of 2% or less for a heat press molded product (thickness 1 mm).
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched chain having 3 to 7 carbon atoms.
  • a first aspect of the present invention is a fluororesin containing a residue unit represented by a specific general formula (1). Since the fluororesin of the first aspect of the present invention has the bulky ring structure contained in the specific general formula (1), it is amorphous and has high transparency and high heat resistance. In addition, since it is composed only of carbon, fluorine, and oxygen, it has high electrical properties, chemical resistance, waterproofness, and liquid repellency.
  • the Rf 1 , Rf 2 , Rf 3 and Rf 4 groups in the residue unit represented by the general formula (1) in the first aspect of the present invention are each independently a fluorine atom or a straight chain having 1 to 7 carbon atoms.
  • the perfluoroalkyl group may have an etheric oxygen atom.
  • Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 in the general formula (1) are synonymous with Rf 5 , Rf 6 , Rf 7 and Rf 8 in the general formulas (4) and (5) described later, respectively, Specific examples of Rf 1 , Rf 2 , Rf 3 , and Rf 4 described below are also specific examples of Rf 5 , Rf 6 , Rf 7 , and Rf 8 .
  • Examples of the straight-chain perfluoroalkyl group having 1 to 7 carbon atoms include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, undecafluoropentyl group, tridecafluorohexyl group, A pentadecafluoroheptyl group etc. are mentioned.
  • Examples of the branched perfluoroalkyl group having 3 to 7 carbon atoms include heptafluoroisopropyl group, nonafluoroisobutyl group, nonafluorosec-butyl group, nonafluorotert-butyl group and the like.
  • Examples of the cyclic perfluoroalkyl group having 3 to 7 carbon atoms include heptafluorocyclopropyl group, nonafluorocyclobutyl group, tridecafluorocyclohexyl group and the like.
  • Examples of the linear perfluoroalkyl group having 1 to 7 carbon atoms which may have an etheric oxygen atom include, for example, —CF 2 OCF 3 group, — (CF 2 ) 2 OCF 3 group, and — (CF 2 ) 2 OCF 2 CF 3 groups and the like.
  • Examples of the cyclic perfluoroalkyl group which may have an etheric oxygen atom having 3 to 7 carbon atoms include 2- (2,3,3,4,4,5,5,6,6-decafluoro) ) -Pyrinyl group, 4- (2,3,3,4,4,5,5,6,6-decafluoro) -pyrinyl group, 2- (2,3,3,4,4,5,5- Heptafluoro) -furanyl group and the like.
  • At least one of Rf 1 , Rf 2 , Rf 3 , and Rf 4 is a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or 3 carbon atoms.
  • a fluororesin which is one of the group consisting of ⁇ 7 cyclic perfluoroalkyl groups, is preferable from the viewpoint of exhibiting excellent heat resistance.
  • residue unit represented by the general formula (1) include various residue units represented by the following formula (2).
  • a fluororesin containing a residue unit represented by the following general formula (3) is preferable because of its excellent heat resistance and molding processability, and perfluoro (4-methyl-2-methylene-1,3-dioxolane) is preferable.
  • a fluororesin containing a residue unit is more preferred.
  • the fluororesin of the first aspect of the present invention has a haze value of 2% or less for a melt-molded product (thickness 1 mm).
  • a haze value of the hot press molded product 2% or less
  • the method for producing the fluororesin of the present invention in which the haze value of the hot press molded product (thickness 1 mm) is 2% or less will be described later.
  • the haze value is measured by the following method.
  • the haze (%) of the obtained hot press-formed product is determined by using a haze meter NDH5000 (light source: white LED) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7136.
  • the fluororesin of the first aspect of the present invention has a haze value of 2% or less, preferably 1% or less, more preferably 0.8% or less, and more preferably 0.8% or less. It is preferably 0.5% or less. There is no lower limit to the haze value, and the lower the better, the more preferable, but 0.01% or more can be mentioned, for example.
  • the fluororesin of the first aspect of the present invention preferably has a yellowness index (hereinafter, also referred to as “YI”) of 6 or less at 280 ° C. for 24 hours by heating and melt molding (thickness 3 mm).
  • YI yellowness index
  • the melt-molded product has a yellowness of 6 or less
  • an optical member having excellent transparency and excellent performance when used as an optical member can be obtained.
  • YI is preferably 4 or less, more preferably 3 or less, more preferably 2 or less, and more preferably 1 or less. There is no lower limit of YI, and the lower the better, the more preferable, but 0.01 or more can be mentioned, for example.
  • YI is measured by the following method.
  • the transmittance of a heat-melt-molded fluororesin having a thickness of 3 mm is measured at a wavelength of 200 nm to 1500 nm using a spectrophotometer.
  • Data with a wavelength of 380 nm to 780 nm is extracted from the measured transmittance data.
  • the tristimulus values X, Y, and Z of the XYZ color system are calculated according to JIS Z8701, and the YI of the C light source is calculated according to JIS K7373.
  • the fluororesin of the first aspect of the present invention preferably has a bulk density of 0.1 to 1.5 g / cm 3 in view of, for example, handleability and moldability.
  • the bulk density is more preferably 0.25 to 1.5 g / cm 3 , and even more preferably 0.25 to 1.0 g / cm 3 .
  • the YI exhibited by the fluororesin of the present invention is in a favorable range when the bulk density is within a specific range (see Examples 2, 4 to 6).
  • the bulk density is preferably 0.12 to 0.25 g / cm 3 , and more preferably 0.14 to 0.22 g / cm 3 .
  • the bulk density is measured as follows.
  • the weight average molecular weight Mw of the fluororesin of the first aspect of the present invention is not limited, and examples thereof include 1 ⁇ 10 3 to 5 ⁇ 10 7 .
  • the weight average molecular weight Mw is preferably in the range of 5 ⁇ 10 4 to 5 ⁇ 10 5 , because the haze value of the hot press molded product is excellent. Further, the weight average molecular weight Mw is preferably in the range of 5 ⁇ 10 4 to 3 ⁇ 10 5 , because the heat press molded product has excellent haze value. When the weight average molecular weight Mw is within this range, the haze value of the heat press molded product is excellent, the shear rate is 10 ⁇ 2 s, and the melt viscosity at 250 ° C.
  • the fluororesin of the present invention preferably has a weight average molecular weight Mw of 5 ⁇ 10 4 to 2 ⁇ 10 5 from the viewpoints of excellent haze value, excellent melt moldability, and excellent defoaming property during melting.
  • the shear rate is 10 ⁇ 2 s, and the melt viscosity at 250 ° C.
  • the weight average molecular weight Mw is in the range of 5 ⁇ 10 4 to 1.5 ⁇ 10 5 , and when heated and cooled. From the viewpoint of minimizing the occurrence of cracks, it is more preferably in the range of 6 ⁇ 10 4 to 1.5 ⁇ 10 5 .
  • the weight average molecular weight Mw of the fluororesin of the first aspect of the present invention is, for example, using gel permeation chromatography (GPC), a standard polymethylmethacrylate having a known molecular weight as a standard sample and a standard sample and a fluororesin as an eluent. It can be calculated from the elution time of the sample and the standard sample and the molecular weight of the standard sample using a solvent capable of dissolving both.
  • GPC gel permeation chromatography
  • the molecular weight distribution Mw / Mn which is the ratio of the weight average molecular weight Mw to the number average molecular weight Mn of the fluororesin of the first aspect of the present invention, is not particularly limited, but it has an excellent haze value and suppresses yellowing after heating and melting.
  • the molecular weight distribution Mw / Mn is preferably 1.2 to 8. It is more preferably from 0.2 to 5, more preferably from 1.5 to 3, and further preferably from 2.0 to 3.
  • the number average molecular weight Mn can be measured by the same method as the method for measuring the weight average molecular weight Mw described above, and the molecular weight distribution Mw / Mn can be calculated by dividing the weight average molecular weight Mw by the number average molecular weight Mn.
  • the particle size of the fluororesin of the first aspect of the present invention is not particularly limited, but the volume average particle size is preferably 1 to 10000 ⁇ m because it is excellent in handleability during molding.
  • the thickness is preferably 1 to 2000 ⁇ m, more preferably 1 to 1000 ⁇ m, still more preferably 10 to 1000 ⁇ m.
  • the volume average particle size of the fluororesin of the present invention can be evaluated by particle size distribution measurement (volume distribution) by a laser diffraction scattering method.
  • the particle size distribution by the laser diffraction / scattering method can be measured by dispersing resin particles in water or an organic solvent such as methanol and measuring.
  • the laser scatterometer Microtrac manufactured by Microtrac Bell Co. can be exemplified.
  • the volume average particle diameter is also referred to as the Mean Volume Diameter, and is an average particle diameter expressed on a volume basis.
  • the particle diameter distribution is divided for each particle diameter channel, and the representative particle diameter value of each particle diameter channel is d. It is represented by ⁇ (vd) / ⁇ (v), where v is the volume-based percentage for each particle size channel.
  • the amount of insoluble matter when dissolved in fluoromethyl) pentane (C 2 F 5 CF (OCH 3 ) C 3 F 7 , manufactured by 3M Japan, Novec 7300) is 0.2% by weight or less based on the fluororesin. Is preferable, 0.1% by weight or less is more preferable, 0.05% by weight or less is further preferable, and 0.01% by weight or less is further preferable.
  • the method for measuring the amount of insoluble matter is as follows.
  • the filter After cleaning the residual fluororesin by repeating the pressure filtration with the Novec 7300 from which foreign substances have been removed in the container, the filter is taken out and vacuum dried, and the weight of the obtained filter is subtracted by the filter weight before filtration. Thus, the amount of the residue on the filter was obtained, the amount of the residue on the filter was divided by the weight of the resin used, and the ratio was obtained to obtain the amount (% by weight) of the insoluble matter.
  • the method for producing a fluororesin according to the first aspect of the present invention is a method for producing a fluororesin in which a haze value of a melt-formed product (thickness 1 mm) is 2% or less, Polymerization step (1) of obtaining a fluororesin A containing a residue unit represented by the general formula (5) by polymerizing a monomer represented by the following general formula (4) in the presence of a radical polymerization initiator.
  • Rf 5 , Rf 6 , Rf 7 , and Rf 8 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a C 3 to 7 carbon atom.
  • Rf 5 , Rf 6 , Rf 7 and Rf 8 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.
  • Rf 5 , Rf 6 , Rf 7 and Rf 8 in formulas (4) and (5) have the same meanings as Rf 1 , Rf 2 , Rf 3 and Rf 4 in formula (1), respectively.
  • Polymerization process (1) a fluororesin A containing a residue unit represented by the general formula (5) is obtained by polymerizing a monomer represented by the general formula (4) in the presence of a radical polymerization initiator. It is a process of obtaining.
  • the polymerization method in the polymerization step (1) is not limited, and examples thereof include solution polymerization, precipitation polymerization, bulk polymerization, emulsion polymerization and suspension polymerization.
  • the monomer represented by the general formula (4) is perfluoro (4-methyl-2-methylene-1,3-dioxolane represented by the general formula (8). ),
  • the residue unit represented by the general formula (5) is a perfluoro (4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (9). Particularly preferred.
  • PFBPO perfluorobenzoyl peroxide
  • CF 3 COO CF 3 COO
  • CF 3 CF 2 COO CF 3 CF 2 COO
  • C 3 F 7 COO C 3 F 7 COO
  • Radical polymerization initiator has a small haze value, yellowing after heating and melting is suppressed, excellent melt moldability, excellent defoaming properties at the time of melting, and from the viewpoint of less cracking during heating and cooling.
  • Perfluoro organic peroxides are preferable, and bis (perfluorobenzoyl) peroxide (PFBPO) is more preferable.
  • the perfluoro organic peroxide refers to a compound having a structure in which a hydrogen atom of the organic peroxide is replaced with a fluorine atom.
  • the polymerization step (1) is suitably carried out in the coexistence of a solvent, and may be, for example, any one of the following steps (1a) or (1b) or (1c) depending on the type of the solvent. it can.
  • (1a) a step of polymerizing the monomer represented by the general formula (4) in the presence of a radical polymerization initiator and a good solvent b1 for the fluororesin A to obtain a mixture containing the fluororesin A and the solvent b1;
  • (1b) In the presence of the radical polymerization initiator and the poor solvent c1 for the fluororesin A, the monomer represented by the general formula (4) is polymerized to precipitate the fluororesin A, and the precipitated fluororesin A is recovered.
  • the good solvent for the fluororesin A means an organic solvent capable of dissolving the fluororesin A at 50 ° C.
  • Dissolvable means that at least a part of the fluororesin A having a weight average molecular weight Mw of 5 to 15 ⁇ 10 4 is soluble in the organic solvent.
  • the fluororesin A sample is 20 times as much (w / w When 80% by weight or more of the fluororesin A sample dissolves in the solvent when immersed in the organic solvent of 50) for 5 hours or more, this solvent can be regarded as a good solvent.
  • the fluororesin A can be a fluororesin containing a residue unit represented by the general formula (3).
  • the poor solvent for the fluororesin A means a solvent in which the fluororesin A is hardly dissolved, and for example, a fluororesin A sample having a weight average molecular weight Mw of 5 to 15 ⁇ 10 4 is used.
  • a fluororesin A sample having a weight average molecular weight Mw of 5 to 15 ⁇ 10 4 is used.
  • the amount of the fluororesin A sample dissolved in the solvent is less than 20% by weight, preferably 10% by weight. Less than one solvent can be a poor solvent.
  • the poor solvent for the fluororesin A is also a solvent capable of precipitating the fluororesin A from the fluororesin A solution in which the fluororesin is dissolved in a good solvent.
  • the poor solvent is preferably a solvent in which the fluororesin A precipitates when a solution prepared by dissolving the fluororesin A in a good solvent is added dropwise at 25 ° C. to 10 times the amount of the good solvent.
  • the fluororesin A can be a fluororesin containing a residue unit represented by the general formula (3).
  • the solvent is labeled with S
  • the solvent used in step (1) is S1
  • the solvent used in step (2) is S2
  • the solvent used in step (3) is
  • the solvent used in S3 and the step (4) is represented by S4
  • the solvent used in the step (n) is represented by Sn (n is an integer).
  • the good solvent is denoted by b
  • the good solvent used in the step (1) is b1
  • the good solvent used in the step (2) is b2
  • the good solvent used in the step (3) is b3, the step (4).
  • the good solvent used in step (b) is represented by b4
  • the good solvent used in step (n) is represented by bn (n is an integer).
  • the poor solvent is denoted by c, the poor solvent used in the step (1) is c1, the poor solvent used in the step (2) is c2, the poor solvent used in the step (3) is c3, the step (4).
  • the poor solvent used in step 1 is indicated as c4, and the poor solvent used in step (n) is indicated as cn (n is an integer).
  • the solvent that can be a good solvent is, for example, at least one selected from the group consisting of an aliphatic fluorine-containing solvent such as perfluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, hydrofluoroether, and hydrofluoroolefin, or an aromatic fluorine compound.
  • an aliphatic fluorine-containing solvent is more preferable because a fluororesin that is excellent in coloring when heated is obtained, and more preferably perfluorohexane, perfluoro-N-methylmorpholine, perfluoro-N-propyl.
  • perfluorocarbons such as Fluorinert FC-5052, FC-72, FC-770, FC-3283, FC-40, FC-43 (all manufactured by 3M Japan); Asahi Klin AK-225 (manufactured by Asahi Glass Co., Ltd.), etc.
  • Hydrochlorofluorocarbons such as Vertrel XF (manufactured by Mitsui-Kemers Co.), Asahiclin AC-2000, AC-6000 (all manufactured by Asahi Glass Co., Ltd.); Hydro such as Novec7100, Novec7200, Novec7300 (manufactured by 3M Japan) Fluoroethers; hydrofluoroolefins such as OPTEON SF10 (manufactured by Mitsui-Kemers); aromatic fluorine-containing solvents such as hexafluorobenzene; and the like.
  • hydrofluorocarbons such as Vertrel XF (manufactured by Mitsui-Kemers Co.), Asahiclin AC-2000, AC-6000 (all manufactured by Asahi Glass Co., Ltd.); Hydro such as Novec7100, Novec7200, Novec7300 (manufactured by 3M Japan) Fluoroether
  • the good solvent include 1,1,1,2,3,4,4,5,5,5-decafluoro-3-methoxy-2- (trifluoromethyl) pentane (C 2 F 5 CF (OCH 3) C 3 F 7 , 3M Japan Co., Novec7300) can be mentioned.
  • the good solvent is preferably a fluorine-containing solvent, and molecules such as hydrofluorocarbon, hydrofluoroether, hydrochlorofluorocarbon, and hydrofluoroolefin.
  • An aliphatic fluorine-containing solvent having a hydrogen atom in the inside; or an aromatic fluorine-containing solvent is more preferable, and an aliphatic having a hydrogen atom in the molecule such as hydrofluorocarbon, hydrofluoroether, hydrochlorofluorocarbon, and hydrofluoroolefin.
  • Fluorine-containing solvents are even more preferable, hydrofluorocarbons and hydrofluoroethers are even more preferable, and hydrofluoroethers are particularly preferable.
  • the aliphatic fluorine-containing solvent having a hydrogen atom may be saturated or unsaturated, and may be linear or cyclic.
  • Examples of the solvent that can be a poor solvent include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3 , 3,3-Hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane, 1H, 1H-pentafluoropropanol, 1H, 1H-heptafluorobutanol, 2-perfluorobutylethanol , 4,4,4-trifluorobutanol, 1H, 1H, 3H-tetrafluoropropanol, 1H, 1H, 5H-octafluoropropanol, 1H, 1H, 7H-dodecafluoroheptanol, 1H, 1H, 3H-hexafluoro Butanol, 2,2,3,3,3-pentafluoropropyl difluoromethyl ether
  • the poor solvent is preferably a fluorine-containing solvent, since it is possible to obtain a fluorine resin having excellent productivity, large bulk density, and excellent handleability as a powder, and the fluorine-containing solvent having a hydrogen atom in the molecule is preferable.
  • a fluorine-containing solvent having a hydrogen atom in the molecule is preferable.
  • the poor solvent is a fluorine-free organic material such as hexane, heptane, toluene, acetone, methanol, ethanol, isopropanol, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, trichloroethane. Solvents are preferred.
  • it is more preferably a non-chlorine-based solvent, and examples thereof include hexane, heptane, toluene, acetone, methanol, ethanol, isopropanol, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and tetrahydrofuran. .
  • the polymerization step (1a) is a step of carrying out polymerization in the presence of the good solvent b1 for the fluororesin A, and is preferably a step of solution polymerization in which the fluororesin A is dissolved in a solvent containing the good solvent b1.
  • the polymerization in addition to the radical polymerization initiator and the good solvent b1 for the fluororesin A, the polymerization may be performed in the coexistence of the poor solvent c1 for the fluororesin A.
  • the poor solvent c1 will be described later.
  • the content of the poor solvent c1 is preferably such that the fluororesin produced by the polymerization in the polymerization step does not precipitate, and the ratio of the good solvent b1 and the poor solvent c1 is, for example, the sum of the good solvent b1 and the poor solvent c1.
  • the poor solvent c1 may be in the range of 1 to 50% by weight.
  • the polymerization step (1b) is a step of polymerizing in the presence of the poor solvent c1 for the fluororesin A to deposit the fluororesin A.
  • the poor solvent c1 in the polymerization step (1b) may be water.
  • the poor solvent c1 is water, it is generally called suspension polymerization when the emulsifier is not present, and when it is present, it is called emulsion polymerization.
  • the poor solvent c1 preferably dissolves the monomer represented by the general formula (4), and the precipitation polymerization is more preferable, because the haze of the heat-press molded product becomes low.
  • the precipitation polymerization means a polymerization carried out in a solvent in which a monomer is dissolved and a polymer is precipitated.
  • the poor solvent c1 is preferably a solvent that precipitates the fluororesin A dissolved in the good solvent b1 at the polymerization temperature (for example, 30 to 70 ° C.).
  • the poor solvent c1 preferably has a solubility of the fluororesin A in 20 times the amount of the solvent of less than 20% by weight, more preferably less than 10% by weight.
  • the conditions in the polymerization step (1) for example, the polymerization temperature, the polymerization time, the concentration of the radical polymerization initiator, the concentration of the monomer, the ratio of the initiator to the monomer used, the amount of the solvent used, etc. It can be appropriately determined in consideration of the type of the polymer, radical polymerization initiator, solvent and the like. Examples are as follows.
  • the polymerization temperature is, for example, in the range of 30 to 70 ° C.
  • the polymerization time is, for example, in the range of 5 to 96 hours
  • the concentration of the radical polymerization initiator is, for example, in the range of 0.1 to 5 mol% with respect to the monomer
  • the concentration of the monomer can be, for example, in the range of 5 to 40% by weight based on the total weight of the monomer and the solvent.
  • these numerical ranges are merely examples, and are not intended to be limited to these ranges.
  • the concentration of the monomer is appropriately determined depending on the type of the monomer and the type of the solvent and also considering the solubility of the polymer produced in the solvent.
  • the chain transfer agent is not particularly limited, but for example, an organic compound having 1 to 20 carbon atoms and containing at least one atom selected from the group consisting of hydrogen atom and chlorine atom can be used.
  • the chain transfer agent means a substance which has the effect of lowering the molecular weight by being present in the system during radical polymerization of the fluororesin.
  • chain transfer agent examples include a hydrogen atom-containing organic compound having 1 to 20 carbon atoms such as toluene, acetone, ethyl acetate, tetrahydrofuran, methyl ethyl ketone, methanol, ethanol, and isopropanol; chloroform, dichloromethane, tetrachloromethane, chloro.
  • Examples thereof include organic compounds having 1 to 20 carbon atoms containing a chlorine atom such as methane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, benzyl chloride, pentafluorobenzyl chloride, and pentafluorobenzoyl chloride.
  • a chlorine atom such as methane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, benzyl chloride, pentafluorobenzyl chloride, and pentafluorobenzoyl chloride.
  • R 1 and R 2 are each independently a hydrocarbon group or an oxygen atom having 1 to 19 carbon atoms, the oxygen atom may also form a carbon atom and double bond adjacent .R 1 and R The total number of carbon atoms of 2 is 1 to 19, and the hydrocarbon group may have one or more atoms selected from an oxygen atom, a fluorine atom and a chlorine atom, or may not have a hydrogen atom.
  • the hydrocarbon group may be linear, branched, alicyclic, or aromatic cyclic, and R 1 and R 2 are linked to each other and have 3 carbon atoms. It may form a ring of ⁇ 19.
  • Examples of the organic compound containing a hydrogen atom and a chlorine atom and having 1 to 20 carbon atoms include chloroform, dichloromethane, chloromethane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, benzyl chloride, pentafluorobenzyl chloride and the like. Further, in an organic compound having 1 to 20 carbon atoms containing a hydrogen atom and a chlorine atom, the molecular weight of the fluororesin can be controlled while suppressing the haze value of the hot press molded product and suppressing the yellowing after heating and melting.
  • the organic compound having 1 to 20 carbon atoms and containing a hydrogen atom and a chlorine atom is preferably represented by the following general formula (B) or (C). Is more preferably represented by the general formula (B).
  • n and n are each independently an integer of 1 to 3
  • p is an integer of 0 to 1
  • q is an integer of 0 to 1
  • m + n + p + q is 4.
  • R 1 and R 2 are each independently a hydrocarbon group having 1 to 19 carbon atoms, the total number of carbon atoms of R 1 p and R 2 q is 0 to 19, and the hydrocarbon group is an oxygen atom or a fluorine atom.
  • m, n, u, and v are each independently an integer of 0 to 3
  • m + u is 1 to 5
  • n + v is 1 to 5
  • p, q, r, s. , T are each independently an integer of 0 to 1
  • m + n + p + q is 3
  • r + s + u + v is 3
  • R 1 , R 2 , R 3 , R 4 , and R 5 are independently carbon atoms of 1 to 18 hydrocarbon groups, the total number of carbon atoms of R 1 , R 2 , R 3 , R 4 and R 5 is 0 to 18, and the hydrocarbon group is selected from an oxygen atom, a fluorine atom and a chlorine atom.
  • the hydrocarbon group may be linear, branched, or alicyclic, may be an aromatic ring, R 1, R 2, R 3, R 4, 2 or more groups selected from R 5 is 3 carbon atoms linked to each other May form a 19 ring, the ring may be a plurality.
  • Examples of the organic compound having a chlorine atom and containing 1 to 20 carbon atoms represented by the general formula (A) include chloroform, dichloromethane, tetrachloromethane, chloromethane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, and benzyl. Examples thereof include chloride, pentafluorobenzyl chloride, pentafluorobenzoyl chloride and the like.
  • Examples of the organic compound containing a hydrogen atom and a chlorine atom represented by the general formula (B) and having 1 to 20 carbon atoms include chloroform, dichloromethane, chloromethane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, benzyl chloride and pentafluoro. Benzyl chloride and the like can be mentioned.
  • Examples of the organic compound having 1 to 20 carbon atoms containing a hydrogen atom and a chlorine atom represented by the general formula (C) include 1,1,1-trichloroethane.
  • the amount of the chain transfer agent is 0. It is preferably from 01 to 95% by weight, more preferably from 1 to 50% by weight, even more preferably from 3 to 50% by weight.
  • the insoluble matter removing step (2) removes the insoluble matter from the mixture containing the fluororesin A containing the residue unit represented by the general formula (5) obtained in the polymerization step (1) and the solvent S2. This is a step of obtaining a fluororesin A solution.
  • the haze of the heat-melt-molded article (1 mm thick) of the fluororesin obtained by providing the insoluble matter removing step can be set to 2% or less.
  • the mixture containing the fluororesin A and the solvent S2, or the fluororesin A solution containing an insoluble substance means, for example, that the mixture or the solution is preliminarily weighed in addition to the method of visually observing the mixture or the solution.
  • the fluororesin solution A was pressure-filtered with a PTFE membrane filter having a pore size of 0.1 ⁇ m in which the weight was recorded in advance, and a good solvent such as Novec7300 in which foreign substances were removed by a filter having a pore size of 0.1 ⁇ m
  • a good solvent such as Novec7300 in which foreign substances were removed by a filter having a pore size of 0.1 ⁇ m
  • the fluororesin A solution is obtained by removing at least a part of the insoluble matter in the insoluble matter removing step (2), and at least a part of the insoluble matter to be removed is a residue unit represented by the general formula (1).
  • the fluororesin containing A is a fluororesin A of the present invention finally obtained from the viewpoint that the haze value is lowered.
  • the structure of the insoluble matter, that is, the inclusion of the residue unit represented by the general formula (1) can be confirmed by microscopic FT-IR or the like, and can be evaluated by, for example, the following method.
  • the operation of passing 50 g of Novec7300 through the 0.1 ⁇ m PTFE filter used for filtering the resin diluted solution was repeated 5 times, and after drying, the foreign matter on the filter was picked up and the microscopic IR was measured to obtain the general formula (1). It is determined by comparing with an IR chart of a fluororesin containing a residue unit represented by As shown in the examples, the insoluble matter removed in the insoluble matter removing step (2) was confirmed to be a resin containing a residue unit represented by the general formula (1), and at least a part of this insoluble matter was confirmed.
  • the fluororesin A of the present invention from which the haze value was removed had a reduced haze value.
  • the fluororesin A containing the residue unit represented by the general formula (5) obtained in the polymerization step (1) can be obtained as a mixture with different solvents depending on the kind of the polymerization step.
  • the fluororesin A is, for example, a good solvent b1 or a mixture of a good solvent b1 and a poor solvent c1.
  • these solvents can be directly used as the solvent S2 in the insoluble matter removing step (2).
  • the good solvent b1 or the mixture of the good solvent b1 and the mixed solvent of the poor solvent c1 can be used as it is as the good solvent b2 or the mixed solvent of the good solvent b2 and the poor solvent c2.
  • the solvent S2 can be obtained by further mixing other solvent.
  • the fluororesin A is obtained as a precipitate.
  • the solvent S2 is a good solvent b2 or a good solvent b2 after the precipitate of the fluororesin A obtained in the polymerization step (1b) is recovered by solid-liquid separation or the like, and if necessary washed and / or dried.
  • a mixture containing a mixed solvent with the poor solvent c2 can be used.
  • the content of the poor solvent c2 is preferably such that the insoluble matter coexists but the fluororesin does not precipitate in consideration of the concentration of the fluororesin A.
  • the ratio with the solvent c2 can be, for example, in the range of 1 to 50% by weight of the poor solvent c2 with respect to the total of the good solvent b2 and the poor solvent c2.
  • the concentration of the fluororesin A in the mixture of the fluororesin A and the solvent S2 subjected to the insoluble matter removal step is 1 to 40 from the viewpoint of effectively reducing the haze in the heat-melt-molded product of the fluororesin. It is preferably in the range of 5% by weight, and preferably in the range of 5 to 30% by weight.
  • the insoluble matter removing step (2) can be, for example, the following step (2a) or (2b).
  • the mixture containing the fluororesin A and the solvent S2 is filtered by a filter to remove the insoluble matter.
  • the filtration method is not particularly limited, and examples thereof include pressure filtration, reduced pressure filtration, and centrifugal filtration.
  • the 99% trapped particle size of the filter is preferably 10 ⁇ m or less, because the haze in the heat-melt-molded product of the fluororesin A is effectively reduced, and it is preferably 5 ⁇ m.
  • the 99% trapped particle size represents the particle size of particles that the filter can capture 99% or more, and is described in the filter catalog, technical data, etc. You can also find out by examining the capture rate of.
  • the material of the filter used are polypropylene, polyethylene, polyethylene terephthalate, nylon, PTFE (polytetrafluoroethylene), PES (polyether sulfone), cellulose mixed ester, cellulose acetate, polycarbonate, cellulose, nylon, polyamide, etc. Resins; ceramics such as silica fibers and glass fibers; metals such as stainless steel and Hastelloy, and the like. Among them, PTFE made from PTFE can effectively reduce the haze in the heat-melt-molded product of the fluororesin A. preferable. Further, the filter may be hydrophobic or hydrophilic.
  • Examples of the type of filter used include a depth filter, a screen filter, and the like, and a screen filter includes a mesh filter, a membrane filter, and the like. Among them, the haze in the heat-melt-molded product of the fluororesin A can be effectively used. Since it can be made small, it is preferable to use a screen filter, more preferably to use a membrane filter, and even more preferably to use a PTFE membrane filter.
  • the depth filter is a filter that traps particles inside the filter
  • the screen filter is a filter that traps particles on the surface of the filter.
  • Membrane filters are a type of screen filter.
  • a plurality of types of filters to be used may be combined, and for example, a combination of a depth filter and a screen filter, and a combination of screen filters having different trapped particle diameters can be used.
  • a screen filter is combined with another filter such as a depth filter or a screen filter having a different trapped particle size, excellent filterability is obtained. Therefore, the 99% trapped particle size of the filter combined with the screen filter is 1 to 10 ⁇ m. It is preferable.
  • a screen filter having a pore size of 10 ⁇ m or less more preferably a screen filter having a pore size of 5 ⁇ m or less, and a screen having a pore size of 1 ⁇ m or less, since the haze of the heat-melt molded product of the fluororesin A can be effectively reduced.
  • a filter it is more preferable to use a screen filter having a pore size of 0.5 ⁇ m or less, and it is more preferable to use a screen filter having a pore size of 0.2 ⁇ m or less.
  • the pore size of the membrane filter is C ⁇ m
  • the 99% trapped particle size is less than C ⁇ m, and depending on the product, 99.99% or more of C ⁇ m particles are trapped.
  • the mixture containing the fluororesin A and the solvent S2 is subjected to centrifugation to remove the insoluble matter.
  • the method of centrifugation is not particularly limited, but for example, by placing a mixture containing the fluororesin A and the solvent S2 in a container and applying a centrifugal force to the container to precipitate the insoluble matter, and separating the solution, Examples include a method of removing insoluble matter.
  • the centrifugation method may be a batch method, a continuous method, or an intermediate method between the batch method and the continuous method.
  • the fluororesin A is precipitated from the fluororesin A solution obtained in the insoluble matter removing step.
  • the solvent S3 of the fluororesin A solution the solvent S2 used for the insoluble matter removal in the insoluble matter removal step (2) can be used as it is, or a solvent of a different type or composition can be used depending on the method.
  • the method for precipitating the polymer from the fluororesin A solution is not particularly limited, but the precipitation step (3) includes, for example, the following step (3a), (3b), (3c) or (3d).
  • the deposition step (3a) is a step of lowering the temperature of the fluororesin A solution to deposit the fluororesin A.
  • the solvent S3 of the fluororesin A solution the solvent S2 used for removing the insoluble matter in the insoluble matter removing step (2) can be used as it is, or a solvent of a different type or composition can be used depending on the method.
  • the good solvent b2 used for removing the insoluble matter in the removal step (2) or the mixed solvent of the good solvent b2 and the poor solvent c2 may be directly used as the solvent in the precipitation step (3a).
  • the good solvent b2 or the mixed solvent of the good solvent b2 and the poor solvent c2 is a good solvent b3 for the fluororesin A or a mixed solvent of the good solvent b3 for the fluororesin A and the poor solvent c3 for the fluororesin A, respectively.
  • the concentration of the fluororesin A in the fluororesin A solution is preferably 1 to 40% by weight, and preferably 1 to 30% by weight, from the viewpoint that particles having excellent productivity and handleability as powder can be obtained. More preferably, it is more preferably 2 to 20% by weight.
  • the solvent S3 used in the precipitation step is preferably a mixed solvent of a good solvent b3 and a poor solvent c3.
  • the solvent S3 used in the precipitation step is a mixed solvent of the good solvent b3 and the poor solvent c3
  • the ratio of the good solvent b3 and the poor solvent c3 is excellent in productivity, and particles excellent in handleability as a powder are obtained.
  • the weight ratio of good solvent: poor solvent is preferably 10:90 to 99: 1, more preferably 20:80 to 95: 5, and further preferably 30:70 to 95: 5 because the coloring of the heat-melted product becomes small. Is more preferable, 30:70 to 90:10 is more preferable, and 30:70 to 80:20 is further preferable.
  • the solution temperature T1 before lowering the temperature is, for example, preferably 30 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher, and lowering the temperature.
  • T1-T2 can be preferably 5 ° C. or higher, more preferably 10 ° C. or higher, more preferably 15 ° C. or higher, even more preferably 20 ° C. or higher.
  • the fluororesin A is sufficiently deposited.
  • the temperature is lowered.
  • the temperature at a rate of 0.05 to 20 ° C. per minute because particles having excellent productivity and handleability as a powder can be obtained, It is particularly preferred to lower the temperature at a rate of 1-5 ° C.
  • the deposition step (3b) is a step of depositing the fluororesin A by adding the fluororesin A solution to the poor solvent c3 for the fluororesin A
  • the deposition step (3c) is the fluororesin A solution and the fluororesin A solution. Is a step of depositing the fluororesin A by adding the poor solvent c3 to.
  • the solvent S3 of the fluororesin A solution in the precipitation steps (3b) and (3c) may be the solvent S2 used for the insoluble matter removal in the insoluble matter removal step (2).
  • the solvent s2 used for the insoluble matter removal in the insoluble matter removal step (2) is the good solvent b2 and the poor solvent c2. It is preferable that it is a mixed solvent of.
  • a precipitation step (3b) of precipitating the fluororesin A by adding the fluororesin A solution to the poor solvent c3 for the fluororesin A Is preferred.
  • the deposition step (3c) of depositing the fluororesin A by adding the poor solvent c3 for the fluororesin A solution to the fluororesin A solution is preferable from the viewpoint of easy handling as a powder.
  • any of the steps particles having excellent productivity, preventing mutual adhesion of particles, and having excellent handleability as a powder can be obtained. Therefore, good solvent after mixing with poor solvent c3: weight of poor solvent
  • the ratio is preferably in the range of 10:90 to 90:10, more preferably 20:80 to 80:20, further preferably 30:70 to 70:30, and further preferably 30:70 to 60:40. .
  • the fluororesin A is precipitated by evaporating the solvent S3 from the fluororesin A solution.
  • the solvent S3 can be a solvent having a relatively low boiling point.
  • the operation of volatilizing the solvent S3 can be carried out by a known method, for example, a method of volatilizing the solvent using a thin film evaporator such as Exeba, a method of passing the solvent through a heated flash tank to volatilize the solvent, and a method of removing the solvent.
  • steam When steam is introduced, it is generally called steam stripping, by heating a fluororesin A solution containing a good solvent having a low boiling point and a poor solvent having a high boiling point to evaporate the good solvent having a low boiling point.
  • the method of precipitating the resin A may be mentioned, and a plurality of methods may be combined. After removing the solvent by these methods, the fluororesin A may be processed into pellets by a pelletizer or the like.
  • the precipitation steps (3a) to (3d) may be appropriately combined and used.
  • the fluororesin A solution obtained in the insoluble matter removal step is subjected to the precipitation step (3b) or (3c), and the remaining fluororesin A solution is further subjected to the precipitation step (3a) or (3d) to remain.
  • the fluororesin A to be used can be further recovered.
  • the precipitation step it is preferable to stir the fluororesin A solution because particles having excellent productivity and handleability as powder are obtained, and examples thereof include stirring with a stirring blade and stirring with vibration.
  • the solution when the resin is precipitated it is preferable to stir the solution when the resin is precipitated.
  • the Pv value which is the value of the agitator motor power per unit agitation capacity, is 0.05 to 50 kW / m 3 . It is preferable to precipitate a particulate solid by lowering the temperature while stirring so that the Pv value is 0.2 to 50 kW / m 3, more preferably 0.5 to 30 kW / m 3 , 0.5 to 10 kW / m 3 is particularly preferable.
  • the Pv value (kW / m 3 ) can be calculated by the following equation (10).
  • Np power number
  • solution density (kg / m 3 )
  • n stirring blade rotation speed (rpm)
  • d stirring blade diameter (mm)
  • V solution amount (L) Represents.
  • Np in the equation (10) is a dimensionless number called a power number, which changes depending on the shape of the stirring blade.
  • This Np can be obtained from publicly known documents such as “Chemical device August 1995, pp. 71-79” and “Shinko Faudler Technical Report vol. 28, No. 8 (Oct. 1984), pp. 13-16”. be able to.
  • the ratio b / d of the blade width b and the diameter d of the stirring blade is different from that of the stirring blade described in the literature, it can be calculated by the following formula (11).
  • Np Np described in literature ⁇ (actual b / d) / (b / d described in literature) (11) (Here, Np is the power number, b is the blade width (mm) of the stirring blade, and d is the diameter (mm) of the stirring blade.)
  • the combination of the polymerization step (1), the insoluble matter removal step (2) and the precipitation step (3) is not particularly limited, but it is possible to include a step in which the fluororesin is precipitated as particles.
  • the polymerization step (1) is the step (1a) or (1c)
  • the precipitation step (3) is the step (3a).
  • the polymerization step (1) is step (1b)
  • the precipitation step (3) is steps (3a), (3b), (3c) or It is preferably (3d).
  • the polymerization step (1) is step (1a), the insoluble matter removal step (2) is step (2a), and the precipitation step (3) is step (3a) or (3b) or (3c).
  • the polymerization step (1) is step (1b), the insoluble matter removal step (2) is step (2a), and the precipitation step (3) is step (3a), ( It is preferably 3b), (3c) or (3d).
  • the combination of the polymerization step (1) and the precipitation step (3) is the above combination, the particulate fluororesin A is obtained in any step, and the particulate fluororesin A is further washed. Since the steps can be carried out, it is easy to obtain a fluororesin whose coloring of the heat-melted product is small, which is preferable.
  • the precipitation step is preferably the step (3a) or (3c) because particles having a high bulk density and excellent handleability as a powder can be obtained. Further, it is preferable that the precipitation step is the step (3a) from the viewpoint that the increase of the torque is unlikely to occur in the particle precipitation step and the productivity is excellent.
  • the fluororesin A solution in which the resin is precipitated which is obtained in the precipitation step (3), mutual adhesion of the obtained resin is prevented, and a resin excellent in handleability as powder is obtained.
  • It is preferable to perform the poor solvent addition step (4) of adding The amount of the poor solvent c4 added in the poor solvent addition step (4) is obtained in the precipitation step because it is excellent in productivity, particles are prevented from sticking to each other, and a resin excellent in handleability as a powder is obtained. It is preferable to add 0.1 times or more of the poor solvent c4 to the weight of the fluororesin A-containing solution, and more preferably 0.5 times or more and 1 time or more of the poor solvent c4.
  • any other step may be added, but after the precipitation step (3) or the poor solvent addition step (4), a separation step (5) for extracting a solid by solid-liquid separation is performed. It may be included.
  • the solid-liquid separation method is not particularly limited, and examples thereof include pressure filtration, reduced pressure filtration, centrifugal separation, and centrifugal filtration.
  • the size of the filter used is not limited, and examples thereof include a filter having a supplemental particle size of 30 ⁇ m or less.
  • the material of the filter used is not limited, but examples thereof include polypropylene, polyethylene, polyethylene terephthalate, nylon, PTFE and PES.
  • any other process may be added, and a cleaning process for cleaning the particles of the fluororesin A and / or a drying process for drying may be included.
  • the washing step (6) it is preferable to use the poor solvent c6, and the poor solvent c6 is preferably an organic solvent that precipitates the fluororesin A at 25 ° C.
  • the drying method is not particularly limited, and examples thereof include vacuum drying, reduced pressure drying, atmospheric pressure drying, blast drying, shaking drying, warm air drying, and heat drying.
  • the fluororesin A is separated from the solution in which the fluororesin A obtained in the precipitation step (3) is precipitated or the solution in which the poor solvent c4 is added in the poor solvent addition step (4). It is preferable to further include a separation step (5) for performing the cleaning step and a cleaning step (6) for cleaning the separated fluororesin A with the poor solvent c6. As a result, particles having more excellent yellowness can be obtained.
  • the poor solvent c6 a filter having a 99% complementary particle size of 5 ⁇ m or less or a solvent filtered with a screen filter having a pore size of 5 ⁇ m or less.
  • the second aspect of the present invention is as follows.
  • the fluororesin (A) containing a fluorinated alicyclic structure is deposited on the fluororesin (A) solution dissolved in the solvent (B) by lowering the temperature of the solution to precipitate the fluororesin (A) particles.
  • a method for producing fluororesin particles containing a fluorinated alicyclic structure which comprises a precipitation step of
  • fluorine resin (A) The structure of the fluorine-containing alicyclic structure-containing fluororesin (hereinafter referred to as “fluorine resin (A)”) is not limited as long as it has a fluorine-containing alicyclic structure.
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently linear, branched or cyclic which may have a fluorine atom or an etheric oxygen atom having 1 to 7 carbon atoms. Shows one of the group consisting of the perfluoroalkyl group of. Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms. More specifically, Rf 1 , Rf 2 , Rf 3 and Rf 4 in the formula (1) are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or 3 carbon atoms.
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.
  • Rf 1 , Rf 2 , Rf 3 and Rf 4 groups in the residue unit represented by the general formula (1) in the second aspect of the present invention are each independently a fluorine atom or an ether group having 1 to 7 carbon atoms. It represents one member of the group consisting of a linear, branched or cyclic perfluoroalkyl group which may have an oxygen atom. Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms.
  • Examples of the straight-chain perfluoroalkyl group having 1 to 7 carbon atoms include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, undecafluoropentyl group, tridecafluorohexyl group, Examples thereof include a pentadecafluoroheptyl group, and examples of the branched perfluoroalkyl group having 3 to 7 carbon atoms include a heptafluoroisopropyl group, a nonafluoroisobutyl group, a nonafluorosec-butyl group, a nonafluorotert-butyl group, and the like.
  • Examples of the cyclic perfluoroalkyl group having 3 to 7 carbon atoms include a heptafluorocyclopropyl group, a nonafluorocyclobutyl group, a tridecafluorocyclohexyl group, and the like.
  • linear perfluoroalkyl group having 1 to 7 carbon atoms which may have an etheric oxygen atom include, for example, —CF 2 OCF 3 group, — (CF 2 ) 2 OCF 3 group, and — (CF 2 ) 2 OCF 2 CF 3 groups and cyclic perfluoroalkyl groups having 3 to 7 carbon atoms and optionally having an etheric oxygen atom include, for example, 2- (2,3,3,4,4,5,5) 5,6,6-decafluoro) -pyrinyl group, 4- (2,3,3,4,4,5,5,6,6-decafluoro) -pyrinyl group, 2- (2,3,3,3) 4,4,5,5-heptafluoro) -furanyl group and the like.
  • At least one of Rf 1 , Rf 2 , Rf 3 and Rf 4 is preferably a linear, branched or cyclic perfluoroalkyl group having 1 to 7 carbon atoms because of excellent heat resistance.
  • examples of the specific residue unit represented by the general formula (1) include the following residue units.
  • a fluororesin containing a perfluoro (4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the following general formula (3) is obtained because a fluororesin having excellent heat resistance can be obtained. Is preferred.
  • the fluororesin (A) of the second aspect of the present invention may contain another monomer residue unit, and examples of the other monomer residue unit include tetrafluoroethylene (TFE) and hexa Examples thereof include fluoropropylene (HFP), chlorotrifluoroethylene (CTFE), trifluoroethylene, hexafluoroisobutylene, perfluoroalkylethylene and fluorovinyl ether.
  • TFE tetrafluoroethylene
  • HFP fluoropropylene
  • CTFE chlorotrifluoroethylene
  • trifluoroethylene hexafluoroisobutylene
  • perfluoroalkylethylene perfluoroalkylethylene
  • fluorovinyl ether fluorovinyl ether
  • the solvent (B) in the second aspect of the present invention dissolves the fluororesin (A) at a temperature before lowering the temperature in the precipitation step, and lowers the temperature in the precipitation step to remove the fluororesin (A). Any material may be used as long as it is precipitated.
  • the fact that the fluororesin (A) is dissolved in the solvent (B) means that at least a part of the fluororesin (A) is dissolved in the solvent (B).
  • solid precipitation occurs when the fluororesin (A) solution is added to the poor solvent in an amount of 4 times or more the amount of the fluororesin (A) solution. If the solid deposition occurs, it is determined that at least a part of the fluororesin (A) is dissolved in the fluororesin (A) solution before being added to the poor solvent. You can check.
  • the state of the solution may be any state that can be stirred, and examples thereof include a uniform liquid state, a cloudy liquid state, and a gel state.
  • the solubility of the fluororesin (A) in the solvent (B) at a temperature before lowering the temperature is 50% by weight because particles having excellent productivity and handleability as a powder are obtained.
  • % Or more preferably 70% by weight or more, more preferably 80% by weight or more.
  • solubility of the fluororesin (A) in the solvent (B) at the temperature after the temperature is lowered in the particle precipitation step is excellent in productivity and particles which are excellent in handleability as a powder, It is preferably less than 50% by weight, preferably less than 30% by weight and particularly preferably less than 20% by weight.
  • the solvent (B) in the second aspect of the present invention dissolves the fluororesin (A) at a temperature before lowering the temperature in the precipitation step, and lowers the temperature in the precipitation step to precipitate the fluororesin (A).
  • the component may be a single solvent or a composition containing a plurality of solvents.
  • the solvent (B) is a good solvent (b-1) for the fluororesin (A) and a poor solvent for the fluororesin (A) because particles having excellent productivity and handleability as a powder are obtained. It is preferably a composition containing (b-2).
  • the good solvent (b-1) is an organic solvent capable of dissolving the fluororesin (A) at a temperature before lowering the temperature in the precipitation step, and is preferably It is an organic solvent capable of dissolving the resin at 50 ° C.
  • the powdery or cotton-like fluororesin (A) may be immersed in an organic solvent at the same temperature as the temperature of the resin solution to be subjected to the precipitation step for 5 hours or more, and the one in which the resin dissolves may be determined as a good solvent. it can.
  • the temperature of the resin solution used in the precipitation step refers to the temperature before the temperature is lowered.
  • the good solvent (b-1) preferably has a solubility in the fluororesin (A) of 80 wt% or more, more preferably 90 wt% or more.
  • the good solvent (b-1) is preferably at least one selected from the group consisting of perfluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, hydrofluoroolefins and aromatic fluorine compounds, and more preferably perfluorohexane.
  • solvents examples include perfluorocarbons such as Fluorinert FC-5052, FC-72, FC-770, FC-3283, FC-40, FC-43 (all manufactured by 3M Japan); Asahi Klin AK-225 (Asahi Glass). Hydrochlorofluorocarbons, such as Vertrel XF (manufactured by Mitsui-Kemers), Asahi Clin AC-2000, AC-6000 (all manufactured by Asahi Glass Co., Ltd.); Novec7100, Novec7200, Novec7300 (manufactured by 3M Japan).
  • perfluorocarbons such as Fluorinert FC-5052, FC-72, FC-770, FC-3283, FC-40, FC-43 (all manufactured by 3M Japan); Asahi Klin AK-225 (Asahi Glass).
  • Hydrochlorofluorocarbons such as Vertrel XF (manufactured by Mitsui-Kemers), Asahi
  • hydrofluoroolefins such as Opteon SF10 (manufactured by Mitsui-Kemers Co.); aromatic fluorine-containing solvents such as hexafluorobenzene; and the like.
  • the good solvent (b-1) is preferably a fluorine-containing solvent, since it is possible to obtain particles having excellent productivity and handleability as a powder, and hydrofluorocarbon, hydrofluoroether, hydrochlorofluorocarbon, hydro
  • An aliphatic fluorine-containing solvent having a hydrogen atom in the molecule such as a fluoroolefin; or an aromatic fluorine-containing solvent is more preferable, and at least one member selected from the group consisting of hydrofluorocarbon, hydrofluoroether, and aromatic fluorine-containing solvent. It is even more preferable that it is, and it is particularly preferable that it is a hydrofluoroether.
  • the aliphatic fluorine-containing solvent having a hydrogen atom may be saturated or unsaturated, and may be linear or cyclic.
  • the poor solvent (b-2) is an organic solvent that precipitates the fluororesin (A) at a temperature after the temperature is lowered in the precipitation step, and preferably 25 It is an organic solvent that precipitates the fluororesin (A) at 0 ° C.
  • the good solvent (b-1) in which the fluororesin (A) is dissolved can be determined as the poor solvent when the organic solvent in which the fluororesin (A) precipitates when dropped into the organic solvent.
  • the poor solvent (b-2) preferably has a solubility in the fluororesin (A) of less than 20 wt%, more preferably less than 10 wt%.
  • Examples of the poor solvent (b-2) include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1 , 3,3,3-Hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane and other fluorine-containing solvents having a hydrogen atom in the molecule; trifluoroethanol and other fluorine-containing alcohols At least one member selected from the group consisting of fluorine-free organic solvents such as hexane, toluene, acetone, methanol, ethyl acetate and chloroform.
  • fluorine-free organic solvents such as hexane, toluene, acetone, methanol, ethyl acetate and chloroform.
  • the organic solvent is a fluorine-containing solvent, and more preferably a fluorine-containing solvent having a hydrogen atom in the molecule, since particles having excellent productivity and handleability as a powder are obtained.
  • the ratio of the good solvent (b-1) to the poor solvent (b-2) is excellent in productivity and particles having excellent handleability as a powder are obtained.
  • the weight ratio of good solvent: poor solvent is preferably 10:90 to 99: 1, more preferably 20:80 to 95: 5, further preferably 30:70 to 95: 5, still more preferably 30:70 to 90:10. Is more preferable, and 30:70 to 80:20 is further preferable.
  • the concentration of the solution for the fluororesin (A) is preferably 1 to 30 wt% and is preferably 2 to 20 wt% because particles having excellent productivity and handleability as powder are obtained. 5 to 15 wt% is particularly preferable.
  • the temperature of the fluororesin (A) solution used in the precipitation step is preferably 30 ° C. or higher, and more preferably 40 ° C. or higher.
  • the solution temperature after the temperature is lowered is preferably 30 ° C. or lower, and more preferably 25 ° C. or lower.
  • T 1 -T 2 is preferably 5 ° C. or higher, and more preferably 10 ° C. or higher, because particles having excellent productivity and handleability as a powder are obtained.
  • the temperature it is preferable to lower the temperature for 1 to 600 minutes, and more preferable to lower the temperature for 5 to 300 minutes, since particles having excellent productivity and handleability as powder are obtained. preferable.
  • the temperature it is preferable to lower the temperature at a rate of 0.05 to 20 ° C. per minute, because particles having excellent productivity and handleability as a powder can be obtained. It is especially preferred to reduce the temperature at a rate of 5 ° C.
  • stirring is preferably performed because particles having excellent productivity and handleability as a powder are obtained, and examples thereof include stirring with a stirring blade and stirring with vibration.
  • the Pv value which is the value of the agitator motor power per unit agitation capacity
  • the Pv value is 0.2 to 50 kW / m 3 . It is preferable to precipitate a particulate solid by lowering the temperature with stirring so that the Pv value is more preferably 0.2 to 30 kW / m 3, and still more preferably 0.5 to 30 kW / m 3 . 0.5 to 10 kW / m 3 is particularly preferable.
  • the Pv value (kW / m 3 ) can be calculated by the following equation (5).
  • Np in the equation (5) is a dimensionless number called a power number, which changes depending on the shape of the stirring blade.
  • This Np can be obtained from publicly known documents such as “Chemical Equipment August 1995, pp. 71-79” and “Shinko Faudler Technical Report vol. 28, No. 8 (Oct. 1984), pp. 13-16”. be able to.
  • the ratio b / d of the blade width b and the diameter d of the stirring blade is different from that of the stirring blade described in the literature, it can be calculated by the following formula (6).
  • the amount of the poor solvent (b-2) added in the poor solvent addition step is obtained in the precipitation step because it is excellent in productivity, particles are prevented from sticking to each other, and particles having excellent handleability as a powder are obtained. It is preferable to add 0.1 times or more of the poor solvent to the weight of the obtained fluororesin (A) solution, and it is more preferable to add 0.5 times or more to 1 times or more of the poor solvent.
  • a good solvent after addition of the poor solvent (b-2) in the poor solvent addition step poor solvent: poor solvent: poor solvent: poor The weight ratio of the solvent is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, further preferably 30:70 to 70:30, particularly preferably 30:70 to 60:40.
  • any other step may be added, but in order to ensure the strict cleanness required in the optical and electronic fields, the fluororesin (A) solution is added before the precipitation step. It is preferable to have a filtration step of removing foreign matter by filtering.
  • the filtration method is not particularly limited, and examples thereof include pressure filtration, reduced pressure filtration, and centrifugal filtration.
  • the size of the filter used is not limited, and examples thereof include a filter having a supplemental particle size of 1 ⁇ m or less.
  • the material of the filter used is not limited, but examples thereof include polypropylene, polyethylene, polyethylene terephthalate, nylon, PTFE and PES.
  • any other step may be added, but a separation step of extracting a particulate solid by solid-liquid separation may be included after the precipitation step or the poor solvent addition step.
  • the solid-liquid separation method is not particularly limited, and examples thereof include pressure filtration, reduced pressure filtration, centrifugal separation, and centrifugal filtration.
  • the size of the filter used is not limited, and examples thereof include a filter having a complementary particle size of 10 ⁇ m or less.
  • the material of the filter used is not limited, but examples thereof include polypropylene, polyethylene, polyethylene terephthalate, nylon, PTFE and PES.
  • a drying step of drying the particles of the fluororesin (A) may be included.
  • the drying method is not particularly limited, and examples thereof include vacuum drying, reduced pressure drying, atmospheric pressure drying, blast drying, shaking drying, warm air drying, and heat drying.
  • the weight average molecular weight Mw of the fluororesin (A) in the second aspect of the present invention may be any value, for example, the weight average molecular weight Mw measured using gel permeation chromatography (GPC) is 10,000 to 1 ,, 000,000.
  • GPC gel permeation chromatography
  • the fluororesin (A) according to the second aspect of the present invention may be produced by any method.
  • the monomer of the following general formula (4) is polymerized in the presence of a radical polymerization initiator. Can be obtained.
  • Rf 5 , Rf 6 , Rf 7 and Rf 8 are each independently a straight-chain, branched or Rf 5 , which may have a fluorine atom or an etheric oxygen atom having 1 to 7 carbon atoms. (This represents one kind of the group consisting of cyclic perfluoroalkyl groups.
  • Rf 5 , Rf 6 , Rf 7 and Rf 8 may be linked to each other to form a ring having 4 to 8 carbon atoms.
  • radical polymerization initiator used in radical polymerization include benzoyl peroxide, lauryl peroxide, octanoyl peroxide, acetyl peroxide, di-tetr-butyl peroxide, tetr-butyl cumyl peroxide, dicumyl peroxide.
  • the fluororesin (A) may be produced by any method, and examples thereof include bulk polymerization and solution polymerization.
  • the fluororesin solution (A) may be produced by any method, but since it will be excellent in productivity, the solid of the fluororesin (A) is used as a solvent. It is preferable to prepare in the solution preparation step of obtaining the fluororesin solution (A) by a method including a method of dissolving the fluororesin (A) or a method of directly using the solution obtained by polymerizing the fluororesin (A).
  • the solid of the fluororesin (A) is dissolved in the composition of the good solvent (b-1) and the poor solvent (b-2), the fluororesin (A)
  • the method of dissolving the solid of (2) in the good solvent (b-1) is preferable, and the method of dissolving the fluororesin (A) in the composition of the good solvent (b-1) and the poor solvent (b-2) is particularly preferable.
  • the solution obtained may be used as it is, or the composition of the good solvent (b-1) and the poor solvent (b-2) or the poor solvent (b-2) may be added to adjust the concentration. good.
  • the fluororesin (A) is polymerized using the composition of the good solvent (b-1) and the poor solvent (b-2) as a polymerization solvent.
  • a method using a solution and a method using a solution obtained by carrying out a polymerization reaction of the fluororesin (A) using the good solvent (b-1) as a polymerization solvent as they are are preferable.
  • the obtained solution may be used as it is, or the composition of the good solvent (b-1) and the poor solvent (b-2) or the poor solvent (b-2) may be added to the fluororesin (A )
  • the density may be adjusted.
  • the volume average particle size is It is preferably 1 to 10000 ⁇ m, more preferably 1 to 1000 ⁇ m, and further preferably 10 to 1000 ⁇ m.
  • Example of the first aspect of the present invention ⁇ Method of measuring physical properties> (1) Weight average molecular weight Mw The measurement was performed using a column TSKgel Super HZM-M manufactured by Tosoh Corporation and gel permeation chromatography equipped with an RI detector. As an eluent, Asahi Klin AK-225 (manufactured by Asahi Glass Co., Ltd.), 10 wt% of 1,1,1,3,3,3-hexafluoro-2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) with respect to AK-225. was used. As a standard sample, standard polymethylmethacrylate manufactured by Agilent was used, and the weight average molecular weight Mw in terms of polymethylmethacrylate was calculated from the elution time of the sample and the standard sample.
  • volume average particle diameter (unit: ⁇ m) was measured using Microtrac MT3000 manufactured by Microtrac Bell Co. using methanol as a dispersion medium.
  • the Pv value which is the value of the agitator motor power per unit agitation capacity, was calculated by the following formula. Np of 4.2 when using a four-blade paddle stirring blade (blade diameter 50 mm, diagonal 45 °) was used. (Here, Np: power number, ⁇ : solution density (kg / m 3 ), n: stirring blade rotation speed (rpm), d: stirring blade diameter (mm), V: solution amount (L) Represent.).
  • a hot press molded product (thickness: 1 mm) was obtained.
  • the solution was pressure-filtered with a pressure filter equipped with a PTFE membrane filter having a pore size of 0.1 ⁇ m, the weight of which was recorded in advance, and pressure filtration was performed using a Novec 7300 in which foreign matter was previously removed with a filter having a pore size of 0.1 ⁇ m.
  • the filter is taken out and vacuum dried, and the weight of the obtained filter is subtracted by the filter weight before filtration.
  • the amount of the residue on the filter was obtained, the amount of the residue on the filter was divided by the weight of the resin used, and the ratio was obtained to obtain the amount (% by weight) of the insoluble matter.
  • the obtained fluororesin heat-melt molded product was used for each petri dish, and the transmittance at each wavelength was measured at 1 nm intervals at a wavelength of 200 nm to 1500 nm using a spectrophotometer (U-4100 manufactured by Hitachi High-Tech Science). Data at 5 nm intervals at wavelengths of 380 nm to 780 nm were extracted from the measured transmittance data, and the tristimulus values X, Y, and Z of the XYZ color system were calculated according to the method of JIS Z8701, and the method of JIS K7373 was used.
  • Y light source for C light source (auxiliary illuminant C) was calculated, and YI of the fluororesin heat-melt-molded product including petri dish was obtained. Measure the YI of the petri dish (receiver only), and subtract the YI of the petri dish (receiver only) from the YI of the fluororesin-molded petri dish to obtain the YI of the fluororesin heat-melt molded product with a thickness of 3 mm. I asked. The YI of the petri dish alone (receiver only) was 0.21.
  • Example 1-1 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used.
  • a viscous liquid in which a resin was dissolved was obtained.
  • the ampoule was opened, and the resin solution was diluted with 100 g of Novec7300 to adjust the viscosity to prepare a resin diluted solution (solid content concentration 10% by weight).
  • the resin-diluted solution was placed in a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T010A manufactured by ADVANTEC) having a pore size of 0.1 ⁇ m, and the components insoluble in the solvent were removed by pressure filtration.
  • Example 1-2 In a glass ampoule with a diameter of 30 mm equipped with a magnetic stirrer, 0.0865 g (0.000205 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator was added to 0.260 g of hexafluorobenzene.
  • Precipitation polymerization was carried out by holding the magnetic stirrer at 55 ° C. for 24 hours while stirring the magnetic stirrer in a state where this ampoule was upright. As a result, a slurry was obtained in which the resin became cloudy and the resin was precipitated in the polymerization solvent. After cooling to room temperature, the ampoule was opened, the liquid containing the resin particles produced was filtered off, washed with acetone, and dried in vacuo to give particulate perfluoro (4-methyl-2-methylene) with a volume average particle diameter of 95 ⁇ m. -1,3-dioxolane) resin was obtained.
  • Example 1-3 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used.
  • a viscous liquid in which a resin was dissolved was obtained.
  • the ampoule was opened, and the resin solution was diluted with 100 g of Novec7300 to adjust the viscosity to prepare a resin diluted solution (solid content concentration 10% by weight).
  • the resin-diluted solution was placed in a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T010A manufactured by ADVANTEC) having a pore size of 0.1 ⁇ m, and the components insoluble in the solvent were removed by pressure filtration.
  • Example 1-4 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used.
  • a viscous liquid in which a resin was dissolved was obtained.
  • the ampoule was opened, and the resin solution was diluted with 100 g of Novec7300 to adjust the viscosity to prepare a resin diluted solution (solid content concentration 10% by weight).
  • the resin-diluted solution was placed in a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T010A manufactured by ADVANTEC) having a pore size of 0.1 ⁇ m, and the components insoluble in the solvent were removed by pressure filtration.
  • Example 1-5 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used.
  • the resin solution was put into a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T500A manufactured by ADVANTEC) having a pore size of 5 ⁇ m, and pressure-filtered to remove a component insoluble in the solvent.
  • a pressure filtration device manufactured by ADVANTEC
  • T500A manufactured by ADVANTEC
  • the resin solution was diluted with 100 g of Novec7300 which had been filtered with a 0.1 ⁇ m PTFE filter in advance to prepare a resin diluted solution (solid content concentration 10% by weight).
  • Example 1-6 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, perfluoro (4-methyl-2-methylene-1, 2-dioxolane) 20.0 g (0.0820 mol), FC-72 (manufactured by 3M Japan, perfluorohexane) 80.00 g as a polymerization solvent, and chloroform (Wako Pure Chemical Industries, Ltd.) 2.22 g (a chain transfer agent).
  • the resin-diluted solution was placed in a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T010A manufactured by ADVANTEC) having a pore size of 0.1 ⁇ m, and the components insoluble in the solvent were removed by pressure filtration.
  • a pressure filtration device manufactured by ADVANTEC
  • T010A manufactured by ADVANTEC PTFE membrane filter having a pore size of 0.1 ⁇ m
  • the weight average molecular weight of the obtained fluororesin was 7.2 ⁇ 10 4 .
  • hexane and acetone used were those which were previously filtered with a 0.1 ⁇ m PTFE filter.
  • Table 1 shows the evaluation results of the fluororesin.
  • the operation of passing 50 g of Novec7300 through the PTFE filter used for filtering the resin diluted solution was washed 5 times and dried.
  • the insoluble matter on the obtained filter was confirmed by microscopic IR, it was confirmed that it contained a fluororesin component containing a perfluoro (4-methyl-2-methylene-1,3-dioxolane) residue unit.
  • the haze of the fluororesin was clearly lower than that of Comparative Example 1-1.
  • Example 1-7 In a glass ampoule having a volume of 75 mL, 0.173 g (0.000410 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used. 20.0 g (0.0820 mol) of methylene-1,3-dioxolane, 80.00 g of hexafluorobenzene (manufactured by Tokyo Chemical Industry) as a polymerization solvent, and 2.22 g of chloroform (manufactured by Wako Pure Chemical Industries) as a chain transfer agent.
  • 20.0 g (0.0820 mol) of methylene-1,3-dioxolane 80.00 g of hexafluorobenzene (manufactured by Tokyo Chemical Industry) as a polymerization solvent
  • 2.22 g of chloroform manufactured by Wako Pure Chemical Industries
  • the resin-diluted solution was placed in a pressure filtration device (manufactured by ADVANTEC) equipped with a PTFE membrane filter (T010A manufactured by ADVANTEC) having a pore size of 0.1 ⁇ m, and the components insoluble in the solvent were removed by pressure filtration.
  • a pressure filtration device manufactured by ADVANTEC
  • T010A manufactured by ADVANTEC PTFE membrane filter having a pore size of 0.1 ⁇ m
  • Put 2 L of chloroform in a plastic cup equipped with anchor blades add the resin diluted solution filtered under pressure to a beaker under stirring to precipitate the resin, collect the precipitated resin by filtration, and dry under vacuum.
  • powdery perfluoro (4-methyl-2-methylene-1,3-dioxolane) resin was obtained.
  • the weight average molecular weight of the obtained fluororesin was 6.5 ⁇ 10 4 .
  • Table 1 shows the evaluation results of the fluororesin.
  • the operation of passing 50 g of Novec7300 through the PTFE filter used for filtering the resin diluted solution was washed 5 times and dried.
  • the insoluble matter on the obtained filter was confirmed by microscopic IR, it was confirmed that it contained a fluororesin component containing a perfluoro (4-methyl-2-methylene-1,3-dioxolane) residue unit.
  • the haze of the fluororesin was clearly lower than that of Comparative Example 1-1.
  • Comparative Example 1-1 It was performed according to the description of Sample 93 of Table 2 in Non-Patent Document 1. However, since there was no description about the polymer concentration at the time of reprecipitation purification, it was diluted to 10 wt%. In a glass ampoule having a volume of 75 mL, 0.0880 g (0.000209 mol) of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro (4-methyl-2-methyl) as a monomer were used.
  • the ampoule was opened and the resin solution was diluted with 147 g of hexafluorobenzene to adjust the viscosity to prepare a resin diluted solution.
  • Put 1 L of chloroform in a beaker equipped with anchor blades add the resin diluted solution to the beaker under stirring to precipitate the resin, collect the precipitated resin by filtration, and vacuum dry to obtain an amorphous resin.
  • a fluoro (4-methyl-2-methylene-1,3-dioxolane) resin was obtained.
  • Example 1-7 Example 1-7. It was a little strongly colored.
  • the size of the average size was measured with a ruler, and the average size was about 10 mm.
  • the weight average molecular weight of the obtained fluororesin was 3.7 ⁇ 10 5 . Table 1 shows the evaluation results of the fluororesin.
  • Solids precipitated Zeorora H, AE-3000, trifluoroethanol, ethyl acetate, chloroform, acetone, hexane.
  • the recovery rate of the fluororesin A after filtration and drying exceeded 80%, and the solubility was less than 20 wt%.
  • the Pv value which is the value of the agitator motor power per unit agitation capacity, was calculated from the following formula. Np of 1.25 was used when a four-blade paddle stirring blade (blade diameter 40 mm, blade width 8 mm, diagonal 45 °) was used.
  • Np power number
  • solution density (kg / m 3 )
  • n stirring blade rotation speed (rpm)
  • d stirring blade diameter (mm)
  • V solution amount (L) Represents.
  • a fluororesin (A) having a structure (poly (perfluoro (4-methyl-2-methylene-1,3-dioxolane)) was obtained.
  • the fluororesin (A) thus obtained was composed of fibers having a length of 5 cm or more. It had a cotton-like shape and had a large amount of winding around the stirrer when the diluted resin solution was added to hexane, and had a weight average molecular weight Mw of 470,000.
  • Example 2-1 In a 50 mL sample tube equipped with a stir bar, 5.0 g of fluororesin (A), Novec 7200 (manufactured by 3M Japan) as a good solvent (b-1), 21.31 g, and Zeorora H (Japan) as a poor solvent (b-2). 14.21 g (manufactured by Zeon) was taken, sealed and stirred at 50 ° C. to dissolve the fluororesin (A) to prepare a solution.
  • the obtained solution is subjected to suction filtration and dried under vacuum under heating to obtain a fluororesin A (poly (perfluoro (4-methyl-2-methylene-1,3-dioxolane) containing a fluorinated alicyclic structure. )) Particles were obtained (this step is referred to as "separation step").
  • the obtained particles were fine particles having a volume average particle diameter of 130 ⁇ m, and had almost no coarse particles.
  • Example 2-2 In the precipitation step, the fluororesin A solution was stirred at 250 rpm (Pv value: 0.54 kW / m 3 ) except that the same operation as in Example 2-1 was performed to obtain fluororesin A particles. It was The obtained particles were fine particles having a volume average particle diameter of 270 ⁇ m, and had almost no coarse particles.
  • Example 2-3 In Example 2-1, 5.0 g of fluororesin (A) was placed in a 50 mL sample tube equipped with a stir bar, Novec 7200 (manufactured by 3M Japan) 21.32 g as a good solvent (b-1), and poor solvent (b- As 2), take 14.21 g of Zeorora H (manufactured by Zeon Corporation), seal the container, dissolve the fluororesin (A) by stirring at 50 ° C., prepare a solution, and then use a 1 ⁇ m PTFE membrane filter. The same operation as in Example 2-1 was performed, except that a filtration step of removing foreign matters by pressure filtration was performed. The obtained particles were fine particles having a volume average particle diameter of 150 ⁇ m, and had almost no coarse particles.
  • Example 2-4 The same operation as in Example 2-1 was performed, except that AE-3000 (manufactured by Asahi Glass Co., Ltd.) was used as the poor solvent (b-2) instead of Zeolola H.
  • the obtained particles were fine particles having a volume average particle diameter of 170 ⁇ m, and had almost no coarse particles.
  • Example 2-5 The same operation as in Example 2-1 was performed, except that Novec7300 (manufactured by 3M Japan) was used as the good solvent (b-1) instead of Novec7200.
  • the obtained particles were fine particles having a volume average particle size of 40 ⁇ m, and had almost no coarse particles.
  • Example 2-6 Into a 50 mL sample tube equipped with a stirrer, 5.0 g of fluororesin (A) and 21.31 g of hexafluorobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) as a good solvent (b-1) are placed, sealed and stirred at 50 ° C. Thus, the fluororesin (A) was dissolved to prepare a solution.
  • Example 2-8 5.0 g of fluororesin (A) and 21.31 g of Novec7200 (manufactured by 3M Japan) as a good solvent (b-1) were placed in a 50 mL sample tube equipped with a stir bar, sealed, and stirred at 50 ° C. The fluororesin (A) was dissolved to prepare a solution.
  • Example 2-9 In a glass ampoule having a volume of 75 mL, 0.017 g of bis (2,3,4,5,6-pentafluorobenzoyl) peroxide as a radical polymerization initiator and perfluoro (4-methyl-2-methylene-1, as a monomer, 5 g of 3-dioxolane) and 20 g of Novec 7200 as a polymerization solvent were added, and nitrogen replacement by freeze deaeration and depressurization were repeated, and the mixture was sealed under reduced pressure.
  • This ampoule was placed in a constant temperature bath at 55 ° C. and held for 24 hours for radical solution polymerization, whereby a solution in which the fluororesin (A) was uniformly dissolved was obtained.
  • Example 2-10 In Example 2-1, while stirring the fluororesin (A) solution at 500 rpm (Pv value: 4.4 kW / m 3 ), the water bath was removed, and the mixture was allowed to cool in the air for about 10 to 20 minutes. Instead of obtaining a particulate solid by cooling to 30 ° C., the water bath is switched off while stirring the fluororesin (A) solution at 500 rpm (Pv value: 4.4 kW / m 3 ). The procedure was performed in the same manner as in Example 2-1, except that the particulate solid was obtained by cooling the whole body and cooling to 30 ° C. in about 150 minutes. The obtained particles were fine particles having a volume average particle size of 250 ⁇ m, and had almost no coarse particles.
  • the first aspect of the present invention is useful in the field related to fluororesins.
  • the second aspect of the present invention it is possible to provide a method for producing fluororesin particles having a fluorine-containing alicyclic structure which is excellent in productivity and capable of removing foreign matters.
  • the resin particles obtained by the method for producing a fluororesin particle containing a fluorine-containing alicyclic structure according to the second aspect of the present invention can be applied to various applications such as optical and electronic fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、一般式(1)で表される残基単位を含み、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下である、溶融成形物のヘイズ値が小さいフッ素樹脂及びその製造方法に関する。 式(1)中、Rf、Rf、Rf及びRfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、Rf、Rf、Rf及びRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。本発明は、さらに、含フッ素脂肪族環構造を含むフッ素樹脂(A)が、溶媒(B)に溶解しているフッ素樹脂(A)溶液に対して、溶液の温度を低下させてフッ素樹脂(A)の粒子を析出させる析出工程を含む、生産性に優れ、異物の除去が可能な含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法に関する。

Description

フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法
本発明は、フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法に関する。
関連出願の相互参照
本出願は、2018年10月9日出願の日本特願2018-190833号、2019年3月27日出願の日本特願2019-061860号および2019年10月4日出願の日本特願2019-183819号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
含フッ素脂肪族環構造を含むフッ素樹脂は、非晶性であり、透明性に優れ、撥液性、耐久性、電気特性等に優れるため、光学・電子分野などの様々な用途に用いられている。光学分野では、非晶性フッ素ポリマーは光導波路や半導体のフォトマスク用の防塵フィルムであるペリクル等の光学部材として用いられている。
なかでもオキソラン環を含むフッ素樹脂は嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素、酸素からのみ構成されることで高い電気特性、耐薬品性、防水性、撥液發油性を有する。さらに非晶性であることから溶融成形加工が可能である。
非特許文献1には、オキソラン環を含むフッ素樹脂の1種である、パーフルオロ-2-メチレン-4-メチル-1,3-ジオキソラン(PFMMD)のポリマー(ポリPFMMD)の合成および特性に関する記載がある。ポリPFMMDは耐熱性に優れる。特許文献1には、フッ素樹脂として、ペルフルオロ(4-ビニルオキシ-1-ブテン)の環化重合体の記載がある。
特許文献1:WO2014/156996
非特許文献1:Macromolecules 2005,38,4237-4245
特許文献1および非特許文献1の全記載は、ここに特に開示として援用される。
本発明者らの検討によれば、非特許文献1の方法で作製した樹脂は、溶融成形物のヘイズ値が高いという課題があった。
本発明の第一の態様は上記オキソラン環を含むフッ素樹脂における課題を解決することを目的とし、具体的には、溶融成形物のヘイズ値が小さいオキソラン環を含むフッ素樹脂およびその製造方法を提供することを目的とする。
フッ素樹脂は一般に溶液の形態で提供されることが多いが、溶融成形加工する場合、成形加工機内部への樹脂の連続した供給が可能となるため、樹脂の形態は粒子状であることが求められる。また、その他の広範囲な用途においても、ハンドリング性、溶解性の観点から樹脂の形態は粒子状であることが求められる。
特許文献1において、該フッ素樹脂の粒子を得る方法として懸濁重合が例示されている。しかし、重合助剤として用いる分散剤や乳化剤が樹脂粒子の内部に残存し、異物となったり、または加熱した際の着色の原因となったりするため、該フッ素樹脂の透明性や電気特性等を損なう可能性があった。また、本発明者らによれば、懸濁重合は分散剤を用いないと粒子が得られないものであった。
また、光学・電子分野で求められる厳しいクリーン性を確保するためには、該フッ素樹脂の溶液をろ過して、異物を取り除いた後に造粒することが望ましい。そのためには、一旦、該フッ素樹脂を良溶媒に溶解して溶液の状態にする必要がある。しかしながら、本発明者らによれば、一般に再沈殿法として知られている、良溶媒に溶解させたポリマー溶液を貧溶媒に滴下し粉末を得る方法では、該フッ素樹脂はストランド状や綿状等の形態となるために、粒子として取り出すことが困難であるという課題があった。
本発明の第二の態様は上記課題に鑑みてなされたものであり、その目的は、生産性に優れ、異物の除去が可能な含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法を提供することにある。
本発明の第一の態様は以下の通りである。
[1-1]
下記一般式(1)で表される残基単位を含み、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rf、Rf、Rf及びRfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf及びRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
[1-2]
フッ素樹脂を1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタンに溶解した際の不溶物の量がフッ素樹脂に対して0.2重量%以下である[1-1]に記載のフッ素樹脂。
[1-3]
フッ素樹脂の嵩密度が0.1~1.5g/cmである[1-1]又は[1-2]に記載のフッ素樹脂。
[1-4]
フッ素樹脂の嵩密度が0.12~0.25g/cmである[1-1]又は[1-2]に記載のフッ素樹脂。
[1-5]
フッ素樹脂の280℃24時間加熱溶融成形品(厚み3mm)の黄色度が4以下である[1-1]~[1-4]のいずれかに記載のフッ素樹脂。
[1-6]
フッ素樹脂の重量平均分子量が5×10~3×10である[1-1]~[1-5]のいずれかに記載のフッ素樹脂。
[1-7]
ラジカル重合開始剤の存在下、下記一般式(4)で表される単量体の重合を行って一般式(5)で表される残基単位を含むフッ素樹脂Aを得る重合工程(1)、
重合工程で得られた一般式(5)で表される残基単位を含むフッ素樹脂Aと、溶媒S2とを含む混合物から、不溶物を除去して、フッ素樹脂A溶液を得る不溶物除去工程(2)、
不溶物除去工程で得られたフッ素樹脂A溶液からフッ素樹脂Aを析出させる析出工程(3)を含む、
加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式(4)及び式(5)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
[1-8]
前記重合工程(1)は、以下の(1a)、(1b)又は(1c)のいずれかの工程である[1-7]に記載の製造方法。
(1a)ラジカル重合開始剤及びフッ素樹脂Aに対する良溶媒b1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aと良溶媒b1とを含む混合物を得る工程、
(1b)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、析出したフッ素樹脂Aを回収し、回収したフッ素樹脂Aとフッ素樹脂Aに対する良溶媒b1とを混合して、フッ素樹脂Aと良溶媒b1とを含む混合物を得る工程。
(1c)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、フッ素樹脂Aに対する良溶媒b1を混合して、フッ素樹脂Aと良溶媒b1と貧溶媒c1とを含む混合物を得る工程。
[1-9]
工程(1a)は、ラジカル重合開始剤、フッ素樹脂Aに対する良溶媒b1に加えて、フッ素樹脂Aに対する貧溶媒c1の共存下に重合を行う、[1-8]に記載の製造方法。
[1-10]
前記不溶物除去工程(2)は、以下の(2a)又は(2b)のいずれかの工程である[1-7]~[1-9]のいずれかに記載の製造方法。
(2a)フッ素樹脂Aと溶媒S2とを含む混合物をフィルターによりろ過して不溶物を除去する工程、
(2b)フッ素樹脂Aと溶媒S2とを含む混合物を遠心分離に供して不溶物を除去する工程。
[1-11]
溶媒S2が、フッ素樹脂Aに対する良溶媒b2又はフッ素樹脂Aに対する良溶媒b2及び貧溶媒c2の混合溶媒である、[1-10]に記載の製造方法。
[1-12]
前記不溶物除去工程(2)が(2a)である[1-10]又は[1-11]に記載の製造方法。
[1-13]
フィルターが、99%補足粒子径が10μm以下のフィルター又は孔径10μm以下のスクリーンフィルターである、[1-10]~[1-12]のいずれかに記載の製造方法。
[1-14]
前記析出工程(3)が、以下の(3a)、(3b)、(3c)又は(3d)のいずれかの工程である、[1-7]~[1-13]のいずれかに記載の製造方法。
(3a)フッ素樹脂A溶液の温度を低下させてフッ素樹脂Aを析出させる工程、
(3b)フッ素樹脂A溶液をフッ素樹脂Aに対する貧溶媒c3に加えることによりフッ素樹脂Aを析出させる工程、
(3c)フッ素樹脂A溶液に、フッ素樹脂A溶液に対する貧溶媒c3を加えることによりフッ素樹脂Aを析出させる工程
(3d)フッ素樹脂A溶液から溶媒を揮発させることによりフッ素樹脂Aを析出させる工程。
[1-15]
析出工程(3a)におけるフッ素樹脂A溶液の溶媒が、フッ素樹脂Aに対する良溶媒b3とフッ素樹脂Aに対する貧溶媒c3との混合溶媒である[1-14]に記載の製造方法。
[1-16]
析出工程(3a)において、温度を低下させる前の溶液温度T1が30℃以上であり、かつ、温度を低下させた後の溶液温度をT2とした場合に、T1-T2が5℃以上である[1-14]又は[1-15]に記載の製造方法。
[1-17]
析出工程(3)で得られたフッ素樹脂Aが析出している溶液又は貧溶媒添加工程(4)で貧溶媒c4を添加した溶液からフッ素樹脂Aを分離する分離工程(5)、及び分離したフッ素樹脂Aを貧溶媒c5で洗浄する洗浄工程(6)をさらに含む、[1-7]~[1-16]のいずれかに記載の製造方法。
[1-18]
前記重合工程(1)が工程(1b)であり、かつ
前記析出工程(3)が工程(3a)、(3b)、(3c)又は(3d)である[1-14]~[1-17]のいずれかに記載の製造方法。
[1-19]
前記析出工程(3)が工程(3a)又は(3c)である[1-14]~[1-18]のいずれかに記載の製造方法。
[1-20]
前記析出工程(3)が工程(3a)、(3b)又は(3c)のいずれかの工程であり、溶媒S2が脂肪族含フッ素溶媒である[1-14]~[1-17]のいずれかに記載の製造方法。
[1-21]
前記不溶物除去工程(2)において除去される不溶物が一般式(1)で表される残基単位を含むフッ素樹脂を少なくとも含む[1-7]~[1-20]のいずれかに記載の製造方法。
本発明の第二の態様は以下の通りである。
[2-1]
含フッ素脂肪族環構造を含むフッ素樹脂(A)が、溶媒(B)に溶解しているフッ素樹脂(A)溶液に対して、溶液の温度を低下させてフッ素樹脂(A)の粒子を析出させる析出工程を含む、含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法。
[2-2]
溶媒(B)が、フッ素樹脂(A)に対する良溶媒(b-1)と、フッ素樹脂(A)に対する貧溶媒(b-2)を含む組成物であることを特徴とする[2-1]に記載のフッ素樹脂粒子の製造方法。
[2-3]
良溶媒(b-1)が分子内に水素原子を有する脂肪族含フッ素溶媒又は芳香族含フッ素溶媒であることを特徴とする[2-2]に記載のフッ素樹脂粒子の製造方法。
[2-4]
貧溶媒(b-2)が分子内に水素原子を有する含フッ素溶媒であることを特徴とする[2-2]~[2-3]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-5]
析出工程で得られたフッ素樹脂(A)溶液に対して、貧溶媒(b-2)を添加する貧溶媒添加工程、貧溶媒添加工程の後にフッ素樹脂(A)の粒子を固液分離する分離工程とを有することを特徴とする[2-1]~[2-4]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-6]
析出工程において、温度を低下させる前の溶液温度Tが30℃以上であり、かつ、温度を低下させた後の溶液温度をTとした場合に、T-Tが5℃以上であることを特徴とする[2-1]~[2-5]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-7]
析出工程において、単位撹拌容量あたりの撹拌機モータ動力の値であるPv値が0.2~50kw/mとなるよう撹拌しながら温度を低下させることを特徴とする[2-1]~[2-6]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-8]
フッ素樹脂(A)を溶媒に溶解させる方法又は、フッ素樹脂(A)の重合反応を行った溶液を用いる方法のいずれかを含む方法でフッ素樹脂溶液(A)を得る溶液調製工程を含むことを特徴とする[2-1]~[2-7]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-9]
フッ素樹脂(A)が溶媒に溶解した溶液をろ過することにより異物を除去するろ過工程を有することを特徴とする[2-1]~[2-8]いずれかに記載のフッ素樹脂粒子の製造方法。
[2-10]
前記フッ素樹脂が下記一般式(1)で表される残基単位を含むことを特徴とする[2-1]~[2-9]いずれかに記載の含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子または炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状、分岐状または環状のパーフルオロアルキル基からなる群の1種を示す。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよい。)
本発明の第一の態様によれば、一般式(1)で表される残基単位を含み、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂を提供することができる。本発明の第二の態様によれば、生産性に優れ、異物の除去が可能な含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法を提供することができる。
<フッ素樹脂(本発明の第一の態様)>
本発明の第一の態様は、下記一般式(1)で表される残基単位を含み、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂に関する。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rf、Rf、Rf及びRfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf及びRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
以下に発明の第一の態様を詳細に説明する。
本発明の第一の態様は、特定の一般式(1)で表される残基単位を含むフッ素樹脂である。そして、本発明の第一の態様のフッ素樹脂は特定の一般式(1)に含まれる嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素、酸素からのみ構成されることで高い電気特性、耐薬品性、防水性、撥液發油性を有する。
本発明の第一の態様における一般式(1)で表される残基単位中のRf、Rf、Rf、Rf基はそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基、または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。一般式(1)中のRf、Rf、Rf、Rfは、後述する一般式(4)および(5)中のRf、Rf、Rf、Rfとそれぞれ同義であり、以下に説明するRf、Rf、Rf、Rfの具体例は、Rf、Rf、Rf、Rfの具体例でもある。
炭素数1~7の直鎖状パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ペンタデカフルオロヘプチル基等が挙げられる。炭素数3~7の分岐状パーフルオロアルキル基としては、例えば、ヘプタフルオロイソプロピル基、ノナフルオロイソブチル基、ノナフルオロsec-ブチル基、ノナフルオロtert-ブチル基等が挙げられる。炭素数3~7の環状パーフルオロアルキル基としては、例えば、ヘプタフルオロシクロプロピル基、ノナフルオロシクロブチル基、トリデカフルオロシクロヘキシル基等が挙げられる。炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状パーフルオロアルキル基としては、例えば、-CFOCF基、-(CFOCF基、-(CFOCFCF基等が挙げられる。炭素数3~7のエーテル性酸素原子を有していてもよい環状パーフルオロアルキル基としては、例えば、2-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、4-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、2-(2,3,3,4,4,5,5-ヘプタフルオロ)-フラニル基等が挙げられる。
Rf、Rf、Rf、Rfの少なくともいずれか1種が炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7環状のパーフルオロアルキル基からなる群の1種であるフッ素樹脂が、優れた耐熱性を示すという観点から好ましい。
一般式(1)で表される残基単位の具体例としては、例えば下記式(2)で表される各種残基単位が挙げられる。
Figure JPOXMLDOC01-appb-C000008
このなかでも、耐熱性、成型加工性に優れるため、下記一般式(3)で表される残基単位を含むフッ素樹脂が好ましく、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂がより好ましい。
Figure JPOXMLDOC01-appb-C000009
本発明の第一の態様のフッ素樹脂は、溶融成形品(厚み1mm)のヘイズ値が2%以下である。加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であることで、光学部材として用いた場合の透明性に優れ、性能に優れた光学部材が得られるという利点が有る。加熱プレス成形品(厚み1mm)のヘイズ値が2%以下である本発明のフッ素樹脂の製造方法は、後述する。ヘイズ値は、以下の方法により測定される。厚さ1mmの板の中央がくり抜いてある金型を、ポリイミドフィルムを乗せた平滑な金属板の上に乗せ、フッ素樹脂をくり抜いてある箇所に乗せ、その上にポリイミドフィルム、金属板を乗せて挟み、プレス機に乗せ、圧力をかけずに280℃で10分間加熱した後、プレス機で圧力10MPa、280℃で10分間加熱プレスした後、脱圧と圧力10MPaをかけ加熱プレスすることを5分間繰り返した後、プレス機で280℃、圧力10MPaで10分間加熱プレスを行い、その後脱圧し、金属板で挟んだ成形物を更に冷却用の金属板で挟み冷却することで加熱プレス成形品(厚さ1mm)を得た。得られた加熱プレス成形品(厚さ1mm)について、日本電色工業(株)製ヘーズメーターNDH5000(光源:白色LED)を用いてJIS K7136に従って測定することで、ヘイズ(%)を求める。
本発明の第一の態様のフッ素樹脂は、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であり、好ましくは1%以下であり、より好ましくは0.8%以下であり、より好ましくは0.5%以下である。ヘイズ値の下限はなく、低ければ低いほど好ましいが、例えば0.01%以上を挙げることができる。
本発明の第一の態様のフッ素樹脂は、好ましくは、280℃24時間加熱溶融成形品(厚み3mm)の黄色度(以下、「YI」ともいう。)が6以下である。溶融成形品(厚み3mm)の黄色度が6以下であることで、光学部材として用いた場合の透明性に優れ、性能に優れた光学部材が得られる。YIは、好ましくは4以下であり、より好ましくは3以下であり、より好ましくは2以下であり、より好ましくは1以下である。YIの下限はなく、低ければ低いほど好ましいが、例えば0.01以上を挙げることができる。YIは、以下の方法により測定される。まず、厚さ3mmのフッ素樹脂加熱溶融成型品を、分光光度計を用いて、波長200nm~1500nmにおいて透過率を測定する。測定した透過率のデータから波長380nm~780nmのデータを抽出する。該透過率のデータから、JIS Z8701に準拠してXYZ表色系の三刺激値X、Y、Zを計算し、JIS K7373に準拠してC光源におけるYIを計算する。
本発明の第一の態様のフッ素樹脂は、例えば、ハンドリング性や成形性等を考慮すると好ましくは、嵩密度が0.1~1.5g/cmである。嵩密度は、0.25~1.5g/cmであることがより好ましく、0.25~1.0g/cmであことがさらに好ましい。また、嵩密度が特定の範囲にあることで、本発明のフッ素樹脂が示すYIが良好な範囲になることが、本発明者らの検討で明らかになった(実施例2、4~6参照)。この観点で、嵩密度は0.12~0.25g/cmであることが好ましく、0.14~0.22g/cmであることがさらに好ましい。嵩密度の測定は、以下のように実施される。単位容量あたりの高さを予め測定した容積13.5mLのガラス製サンプル管(水10mLを入れた時の液面高さが2.8cm)にフッ素樹脂Aを振動を加えずに秤量して入れ、その時の粉の高さと粉の重量から、以下の式に従って、嵩密度を算出できる。この時の嵩密度はゆるみ嵩密度と呼ばれる。
嵩密度=(粉の重量(g))/((粉の高さ(cm)/0.28(cm/mL))
本発明の第一の態様のフッ素樹脂の重量平均分子量Mwには限定はないが、例えば、1×10~5×10が挙げられる。加熱プレス成型品のヘイズ値に優れることから、重量平均分子量Mwは5×10~5×10の範囲であることが好ましい。更に、加熱プレス成型品のヘイズ値に優れることから、重量平均分子量Mwは5×10~3×10の範囲であることが好ましい。重量平均分子量Mwがこの範囲にあることで、加熱プレス成型品のヘイズ値に優れ、せん断速度10-2s、250℃における溶融粘度が1×10~3×10Pa・sであることができ、その結果、溶融成形加工性に優れる。さらに、溶融時の脱泡性にも優れる。また、重量平均分子量Mwがこの範囲にあることで、加熱冷却時のクラック発生の少ないものとなる。本発明のフッ素樹脂は、ヘイズ値に優れ、溶融成形加工性に優れ、溶融時の脱泡性に優れる観点から、好ましくは重量平均分子量Mwが5×10~2×10の範囲であり、重量平均分子量Mwがこの範囲にあることで、せん断速度10-2s、250℃における溶融粘度が1×10~2×10Pa・sであることができ、その結果、溶融成形加工性に優れ、更に脱泡性にも優れるため好ましい。ヘイズ値に優れ、溶融成形加工性に優れ、溶融時の脱泡性に優れる観点から、更に好ましくは重量平均分子量Mwが5×10~1.5×10の範囲であり、加熱冷却時のクラック発生の少ないものとなる観点から、更に好ましくは6×10~1.5×10の範囲である。
本発明の第一の態様のフッ素樹脂の重量平均分子量Mwは、ゲルパーミッションクロマトグラフィー(GPC)を用いて、例えば標準試料として分子量既知の標準ポリメタクリル酸メチル、溶離液として標準試料とフッ素樹脂の両方を溶解可能な溶媒を用い、試料と標準試料の溶出時間、標準試料の分子量から算出することができる。前記溶液液としては、アサヒクリンAK-225(旭硝子株式会社製)に、AK-225に対して10wt%の1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(和光純薬工業製)を添加したものを挙げることができる。
本発明の第一の態様のフッ素樹脂の重量平均分子量Mwと数平均分子量Mnの比である分子量分布Mw/Mnには特に限定はないが、ヘイズ値に優れ、加熱溶融後の黄変が抑制され、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少ないものとなる観点から、分子量分布Mw/Mnは1.2~8であることが好ましく、1.2~5であることが更に好ましく、1.5~3であることが更に好ましく、2.0~3であることが更に好ましい。数平均分子量Mnは前述した重量平均分子量Mwの測定方法と同様の方法で測定でき、分子量分布Mw/Mnは重量平均分子量Mwを数平均分子量Mnで割ることにより算出することができる。
本発明の第一の態様のフッ素樹脂の粒径には特に限定は無いが、成形加工時の取扱い性に優れたものとなることから、体積平均粒径は1~10000μmであることが好ましく、1~2000μmであることが好ましく、1~1000μmが更に好ましく、10~1000μmが更に好ましい。
本発明のフッ素樹脂の体積平均粒子径は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、樹脂粒子を水中又はメタノール等の有機溶媒中に分散させて測定することで測定することができる。レーザー散乱計として、マイクロトラック・ベル株式会社製のマイクロトラックを例示することができる。
体積平均粒子径とは、Mean Volume Diameterとも言われ、体積基準で表した平均粒子径であり、粒子径分布を各粒径チャンネルごとに区切り、各粒径チャンネルの代表粒径値をd、各粒径チャンネルごとの体積基準のパーセントをvとした時に、Σ(vd)/Σ(v)で表される。
本発明の第一の態様のフッ素樹脂はヘイズ値が小さくなることから、1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン(CCF(OCH)C、スリーエムジャパン社製、Novec7300)に溶解した際の不溶物の量がフッ素樹脂に対して0.2重量%以下であることが好ましく、0.1重量%以下であることが更に好ましく、0.05重量%以下であることが更に好ましく、0.01重量%以下であることが更に好ましい。不溶物の量の測定方法は以下の通りである。フッ素樹脂に1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン(CCF(OCH)C、スリーエムジャパン社製、Novec7300)を加え、固形分濃度が10重量%になるように調製する。50℃で5h溶解させ、振盪攪拌することによりフッ素樹脂の溶液を調製する。該溶液を予め重量を記録した孔径0.1μmのPTFE製メンブレンフィルターを備えた加圧ろ過器により加圧ろ過し、予め孔径0.1μmのフィルターで異物を除去したNovec7300を用いて、加圧ろ過器に異物を除去したNovec7300を入れて加圧ろ過することを繰り返すことにより残存するフッ素樹脂を洗浄した後に、フィルターを取り出し、真空乾燥し、得られたフィルターの重量をろ過前のフィルター重量で引くことでフィルター上の残存物量を求め、フィルター上の残存物量を使用した樹脂の重量で割り、割合を求めることで不溶物の量(重量%)を求めた。
<フッ素樹脂の製造方法(本発明の第一の態様)>
本発明の第一の態様のフッ素樹脂の製造方法は、溶融成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂の製造方法であり、
ラジカル重合開始剤の存在下、下記一般式(4)で表される単量体の重合を行って一般式(5)で表される残基単位を含むフッ素樹脂Aを得る重合工程(1)、
重合工程で得られた一般式(5)で表される残基単位を含むフッ素樹脂Aと溶媒S2との混合物から、不溶物を除去して、フッ素樹脂A溶液を得る不溶物除去工程(2)、及び
不溶物除去工程で得られたフッ素樹脂A溶液からフッ素樹脂Aを析出さる析出工程(3)を含む。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
式(4)及び(5)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。式(4)および(5)中のRf、Rf、Rf、Rfは、式(1)中のRf、Rf、Rf、Rfとそれぞれ同義である。
重合工程(1)
重合工程(1)は、ラジカル重合開始剤の存在下、一般式(4)で表される単量体の重合を行って一般式(5)で表される残基単位を含むフッ素樹脂Aを得る工程である。重合工程(1)における重合方法に制限はないが、例えば、溶液重合、沈殿重合、塊状重合、乳化重合、懸濁重合などの方法を挙げることができる。
本発明の第一の態様の製造方法は、一般式(4)で表される単量体が一般式(8)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)であり、一般式(5)で表される残基単位が一般式(9)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
ラジカル重合を行う際のラジカル重合開始剤としては、例えば、ビス(パーフルオロベンゾイル)ペルオキシド(PFBPO)、(CFCOO)、(CFCFCOO)、(CCOO)、(CCOO)、(C11COO)、(C13COO)、(C15COO)、(C17COO)等のパーフルオロ有機過酸化物;ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、tert-ブチルパーオキシアセテート、パーフルオロ(ジ-trt-ブチルパーオキサイド)、ビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーピバレート等の有機過酸化物;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)、2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系開始剤等が挙げられる。
ラジカル重合開始剤は、ヘイズ値が小さく、加熱溶融後の黄変が抑制され、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少ないものとなる観点から、パーフルオロ有機過酸化物が好ましく、ビス(パーフルオロベンゾイル)ペルオキシド(PFBPO)が更に好ましい。ここで、パーフルオロ有機過酸化物とは有機過酸化物の水素原子がフッ素原子に置換された構造の化合物を示す。
重合工程(1)は、溶媒の共存下で実施されることが適当であり、溶媒の種類により、例えば、以下の(1a)又は(1b)又は(1c)のいずれかの工程であることができる。
(1a)ラジカル重合開始剤及びフッ素樹脂Aに対する良溶媒b1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aと溶媒b1とを含む混合物を得る工程、
(1b)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、析出したフッ素樹脂Aを回収し、回収したフッ素樹脂Aと良溶媒b1とを混合して、フッ素樹脂Aと良溶媒b1とを含む混合物を得る工程。
(1c)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、フッ素樹脂Aに対する良溶媒b1を混合して、フッ素樹脂Aと良溶媒b1と貧溶媒c1とを含む混合物を得る工程。
本明細書の第一の態様において、フッ素樹脂Aに対する良溶媒とは、50℃においてフッ素樹脂Aを溶解可能な有機溶媒を意味する。溶解可能とは、重量平均分子量Mwが5~15×10のフッ素樹脂Aの少なくとも一部がその有機溶媒に溶解することを意味し、例えば、フッ素樹脂A試料を20倍量(w/w)の50℃の有機溶媒に5時間以上浸漬したときに、フッ素樹脂A試料の80重量%以上が溶媒に溶解する場合、この溶媒を良溶媒とすることができる。ここで、フッ素樹脂Aは、前記一般式(3)で表される残基単位を含むフッ素樹脂であることができる。
本明細書の第一の態様において、フッ素樹脂Aに対する貧溶媒とは、フッ素樹脂Aを溶解しにくい溶媒を意味し、例えば、重量平均分子量Mwが5~15×10のフッ素樹脂A試料を20倍量(w/w)の50℃の溶媒に5時間以上浸漬し、25℃に冷却したときに、フッ素樹脂A試料の溶媒への溶解量が20重量%未満、好ましくは、10重量%未満の溶媒を貧溶媒とすることができる。さらに、本発明においては、フッ素樹脂Aに対する貧溶媒は、良溶媒にフッ素樹脂を溶解したフッ素樹脂A溶液からフッ素樹脂Aを析出させることができる溶媒でもある。貧溶媒は、好ましくは、フッ素樹脂Aをある良溶媒に溶解させた溶液を、25℃において良溶媒の10倍量の溶媒に滴下した際にフッ素樹脂Aが析出する溶媒である。ここで、フッ素樹脂Aは、前記一般式(3)で表される残基単位を含むフッ素樹脂であることができる。
本明細書の第一の態様において、溶媒はSの符号を付し、工程(1)で使用する溶媒はS1、工程(2)で使用する溶媒はS2、工程(3)で使用する溶媒はS3、工程(4)で使用する溶媒はS4、工程(n)で使用する溶媒はSnと表示する(nは整数)。良溶媒はbの符号を付し、工程(1)で使用する良溶媒はb1、工程(2)で使用する良溶媒はb2、工程(3)で使用する良溶媒はb3、工程(4)で使用する良溶媒はb4、工程(n)で使用する良溶媒はbnと表示する(nは整数)。貧溶媒はcの符号を付し、工程(1)で使用する貧溶媒はc1、工程(2)で使用する貧溶媒はc2、工程(3)で使用する貧溶媒はc3、工程(4)で使用する貧溶媒はc4、工程(n)で使用する貧溶媒はcnと表示する(nは整数)。
良溶媒となり得る溶媒としては、例えば、パーフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロフルオロオレフィン等の脂肪族含フッ素溶媒、又は芳香族フッ素化合物からなる群の少なくとも1種であることが好ましく、加熱時の着色が良好なフッ素樹脂が得られることから脂肪族含フッ素溶媒であることがより好ましく、さらに好ましくはパーフルオロヘキサン、パーフルオロ-N-メチルモルホリン、パーフルオロ-N-プロピルモルホリン、パーフルオロトリエチルアミン、パーフルオロメチルジブチルアミン、パーフルオロトリブチルアミン、CFCFCHCl、CFCHFCHFCFCF、CFCFCFCFCFCFH、CF(CFCHCH、COCH、COC、1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン(CCF(OCH)C)、ヘキサフルオロベンゼンからなる群の少なくとも1種であることが好ましい。
例えば、フロリナートFC-5052、FC-72、FC-770、FC-3283、FC-40、FC-43(いずれも3Mジャパン社製)等のパーフルオロカーボン;アサヒクリンAK-225(旭硝子社製)等のハイドロクロロフルオロカーボン;バートレルXF(三井・ケマーズ社製)、アサヒクリンAC-2000、AC-6000(いずれも旭硝子社製)等のハイドロフルオロカーボン;Novec7100、Novec7200、Novec7300(3Mジャパン社製)等のハイドロフルオロエーテル;オプテオンSF10(三井・ケマーズ社製)等のハイドロフルオロオレフィン;ヘキサフルオロベンゼン等の芳香族含フッ素溶媒;等が挙げられる。良溶媒の好ましい具体例としては、1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン(CCF(OCH)C、スリーエムジャパン社製、Novec7300)が挙げられる。
嵩密度が大きく、粉体としての取扱い性に優れた粒子が得られることから、良溶媒は含フッ素溶媒であることが好ましく、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロオレフィン等の分子内に水素原子を有する脂肪族含フッ素溶媒;又は芳香族含フッ素溶媒であることが更に好ましく、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロオレフィン等の分子内に水素原子を有する脂肪族含フッ素溶媒であることがまた更に好ましく、ハイドロフルオロカーボン、ハイドロフルオロエーテルであることがまた更に好ましく、ハイドロフルオロエーテルであることが特に好ましい。ここで水素原子を有する脂肪族含フッ素溶媒は飽和であっても不飽和であっても良く、直鎖状であっても、環状であっても良い。
貧溶媒となり得る溶媒としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、1H,1H-ペンタフルオロプロパノール、1H,1H-ヘプタフルオロブタノール、2-パーフルオロブチルエタノール、4,4,4-トリフルオロブタノール、1H,1H,3H-テトラフルオロプロパノール、1H,1H,5H-オクタフルオロプロパノール、1H,1H,7H-ドデカフルオロヘプタノール、1H,1H,3H-ヘキサフルオロブタノール、2,2,3,3,3-ペンタフルオロプロピルジフルオロメチルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチルエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、ヘキサフルオロイソプロピルメチルエーテル、1,1,3,3,3-ペンタフルオロ-2-トリフルオロメチルプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルエチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチルジフルオロメチルエーテル等の分子内に水素原子を有する含フッ素溶媒;ヘキサン、ヘプタン、トルエン、アセトン、メタノール、エタノール、イソプロパノール、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン等のフッ素不含の有機溶媒からなる群の少なくとも1種が挙げられる。
生産性に優れ、嵩密度が大きく、粉体としての取扱い性に優れたフッ素樹脂が得られることから、前記貧溶媒は含フッ素溶媒であることが好ましく、分子内に水素原子を有する含フッ素溶媒であることが更に好ましく、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンからなる群の少なくとも1種が更に好ましい。貧溶媒は、経済性の観点からは、ヘキサン、ヘプタン、トルエン、アセトン、メタノール、エタノール、イソプロパノール、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン等のフッ素不含の有機溶媒が好ましい。また、黄色度に優れることから、非塩素系の溶媒であることがより好ましく、ヘキサン、ヘプタン、トルエン、アセトン、メタノール、エタノール、イソプロパノール、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフランを挙げることができる。
重合工程(1a)は、フッ素樹脂Aに対する良溶媒b1の存在下で重合を行う工程であり、フッ素樹脂Aが良溶媒b1を含む溶媒に溶解した溶液重合による工程であることが好ましい。
重合工程(1a)は、ラジカル重合開始剤、フッ素樹脂Aに対する良溶媒b1に加えて、フッ素樹脂Aに対する貧溶媒c1の共存下に重合を行うこともできる。貧溶媒c1については後述する。貧溶媒c1の共存下に重合を行うことで、後述する析出工程における貧溶媒の使用量を低減できるという利点がある。貧溶媒c1の含有量は、重合工程において重合で生成するフッ素樹脂が析出しない程度とすることが好ましく、良溶媒b1と貧溶媒c1との比率は、例えば、良溶媒b1と貧溶媒c1の合計に対して貧溶媒c1が1~50重量%の範囲であることができる。
重合工程(1b)は、フッ素樹脂Aに対する貧溶媒c1の存在下で重合を行い、フッ素樹脂Aを析出させる工程である。重合工程(1b)における貧溶剤c1は水であることもできる。貧溶剤c1が水の場合、一般に、乳化剤が存在しない場合、懸濁重合と呼ばれ、乳化剤が存在する場合、乳化重合と呼ばれる。なかでも、加熱プレス成型品のヘイズが低くなることから、貧溶媒c1が一般式(4)で表される単量体を溶解することが好ましく、沈殿重合であることが更に好ましい。ここで沈殿重合とは、単量体を溶解し、重合体を析出させる溶媒中で行う重合を意味する。
貧溶媒c1は、重合温度(例えば、30~70℃)において、良溶媒b1に溶解したフッ素樹脂Aを析出させる溶媒であることが好ましい。貧溶媒c1は、20倍量の溶媒に対するフッ素樹脂Aの溶解度が20重量%未満であることが好ましく、10重量%未満が更に好ましい。
重合工程(1)における条件、例えば、重合温度、重合時間、ラジカル重合開始剤の濃度、単量体の濃度、単量体に対する開始剤の使用比率、溶媒の使用量などは、使用する単量体、ラジカル重合開始剤、溶媒等の種類等を考慮して、適宜決定できる。例示は以下の通りである。
重合温度は、例えば、30~70℃の範囲、重合時間は、例えば、5~96時間の範囲、
ラジカル重合開始剤の濃度は、例えば、単量体に対して0.1~5モル%の範囲、
単量体の濃度は、例えば、単量体と溶媒の合計に対して5~40重量%の範囲であることができる。但し、これらの数値範囲は、例示であり、これらの範囲に限定される意図ではない。特に、単量体の濃度は、単量体の種類及び溶媒の種類に応じ、かつ生成する重合体の溶媒への溶解性も考慮して適宜決定される。
重合には、単量体、ラジカル重合開始剤に加えて、連鎖移動剤等を併用することが加熱プレス成形品のヘイズ値が小さくなる観点から好ましい。連鎖移動剤としては特に制限はないが、例えば、水素原子又は塩素原子からなる群から選ばれる少なくとも1つの原子を含有する炭素数1~20の有機化合物を用いることができる。ここで連鎖移動剤とはフッ素樹脂のラジカル重合時に系中に存在していることにより分子量を低下させる効果を有する物質を表す。連鎖移動剤の具体例としては、トルエン、アセトン、酢酸エチル、テトラヒドロフラン、メチルエチルケトン、メタノール、エタノール、イソプロパノール等の水素原子を含有する炭素数1~20の有機化合物;クロロホルム、ジクロロメタン、テトラクロロメタン、クロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ベンジルクロリド、ペンタフルオロベンジルクロリド、ペンタフルオロベンゾイルクロリド等の塩素原子を含有する炭素数1~20の有機化合物等が挙げられる。なかでも、加熱プレス成形品のヘイズ値を抑制しつつ、加熱溶融後の黄変を抑制しつつ、フッ素樹脂の分子量を制御でき、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少なく、収率にも優れる観点から塩素原子を含有する炭素数1~20の有機化合物であることが好ましく、一般式(A)で表されることが更に好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(A)中、mは0~3の整数、nは1~3の整数であり、pは0~1の整数であり、qは0~1の整数であり、m+n+p+qは4である。R及びRはそれぞれ独立して炭素数1~19の炭化水素基又は酸素原子であり、前記酸素原子は隣り合う炭素原子と2重結合を形成していても良い。R及びRの炭素数の合計は1~19であり、前記炭化水素基は酸素原子、フッ素原子、塩素原子から選ばれる1以上の原子を有していても良く、水素原子を有していなくても良い。また炭化水素基は直鎖状であっても、分岐状であっても、脂環状であっても、芳香環状であっても良く、R及びRが互いに連結して炭素数3~19の環を形成していても良い。)
なかでも、加熱プレス成形品のヘイズ値を抑制しつつ、加熱溶融後の黄変を抑制しつつ、フッ素樹脂の分子量を制御でき、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少なく、収率にも優れる観点から水素原子と塩素原子を含有する炭素数1~20の有機化合物であることが更に好ましい。水素原子と塩素原子を含有する炭素数1~20の有機化合物としては、クロロホルム、ジクロロメタン、クロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ベンジルクロリド、ペンタフルオロベンジルクロリド等が挙げられる。また、水素原子と塩素原子を含有する炭素数1~20の有機化合物において、加熱プレス成形品のヘイズ値を抑制しつつ、加熱溶融後の黄変を抑制しつつ、フッ素樹脂の分子量を制御でき、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少なく、収率にも優れる観点から、水素原子と塩素原子は個数比で水素原子:塩素原子=1:9~9:1の範囲であることが好ましく、1:9~5:5の範囲であることが更に好ましい。また、加熱プレス成形品のヘイズ値を抑制しつつ、加熱溶融後の黄変を抑制しつつ、フッ素樹脂の分子量を制御でき、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少なく、収率にも優れる観点から、水素原子と塩素原子を含有する炭素数1~20の有機化合物は下記一般式(B)又は(C)で表されることが好ましく、一般式(B)で表されることが更に好ましい。
Figure JPOXMLDOC01-appb-C000015
(式(B)中、m、nはそれぞれ独立して1~3の整数であり、pは0~1の整数であり、qは0~1の整数であり、m+n+p+qは4である。R及びRはそれぞれ独立して炭素数1~19の炭化水素基であり、R 及びR の炭素数の合計は0~19であり、前記炭化水素基は酸素原子、フッ素原子、塩素原子から選ばれる1以上の原子を有していても良く、水素原子を有していなくても良い。また炭化水素基は直鎖状であっても、分岐状であっても、脂環状であっても、芳香環状であっても良く、R及びRが互いに連結して炭素数3~19の環を形成していても良い。)
Figure JPOXMLDOC01-appb-C000016
(式(C)中、m、n、u、vはそれぞれ独立して0~3の整数であり、m+uは1~5であり、n+vは1~5であり、p、q、r、s、tはそれぞれ独立して0~1の整数であり、m+n+p+qは3であり、r+s+u+vは3であり、R、R、R、R、Rはそれぞれ独立して炭素数1~18の炭化水素基であり、R、R、R、R、Rの炭素数の合計は0~18であり、前記炭化水素基は酸素原子、フッ素原子、塩素原子から選ばれる1以上の原子を有していても良く、水素原子を有していなくても良い。また炭化水素基は直鎖状であっても、分岐状であっても、脂環状であっても、芳香環状であっても良く、R、R、R、R、Rから選ばれる2以上の基は互いに連結して炭素数3~19の環を形成していても良く、その環が複数あっても良い。)
一般式(A)で表される塩素原子を含有する炭素数1~20の有機化合物としては、クロロホルム、ジクロロメタン、テトラクロロメタン、クロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ベンジルクロリド、ペンタフルオロベンジルクロリド、ペンタフルオロベンゾイルクロリド等が挙げられる。一般式(B)で表される水素原子と塩素原子を含有する炭素数1~20の有機化合物としては、クロロホルム、ジクロロメタン、クロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ベンジルクロリド、ペンタフルオロベンジルクロリド等が挙げられる。一般式(C)で表される水素原子と塩素原子を含有する炭素数1~20の有機化合物としては、1,1,1-トリクロロエタン等が挙げられる。
さらに、加熱プレス成形品のヘイズ値を抑制しつつ、加熱溶融後の黄変を抑制しつつ、溶融時の脱泡性およびクラック発生を両立し、更に溶融時の脱泡性、耐熱性に優れ、溶融粘度が低く、クラック発生が少ないフッ素樹脂が得られ、更に収率にも優れたものとなることから、連鎖移動剤の量が前記単量体と連鎖移動剤の合計に対し、0.01~95重量%であることが好ましく、1~50重量%であることが更に好ましく、3~50重量%であることが更に好ましい。
不溶物除去工程(2)
不溶物除去工程(2)は、重合工程(1)で得られた一般式(5)で表される残基単位を含むフッ素樹脂Aと溶媒S2とを含む混合物から、不溶物を除去して、フッ素樹脂A溶液を得る工程である。不溶物除去工程を設けることにより得られるフッ素樹脂の加熱溶融成形品(1mm厚)のヘイズを2%以下にすることができる。フッ素樹脂Aと溶媒S2とを含む混合物又は、フッ素樹脂A溶液が不溶物を含有することは、例えば、該混合物又は該溶液を目視により観察する方法のほか、該混合物又は該溶液を予め重量を記録した孔径0.1μmのPTFE製メンブレンフィルターにより加圧ろ過し、孔径0.1μmのフィルターで異物を除去したNovec7300等の良溶媒を用いて、該良溶媒を入れて加圧ろ過することを繰り返すことにより残存する樹脂を洗浄した後に、フィルターを取り出し、真空乾燥し、フィルターの重量をろ過前のフィルター重量で引き、フィルター上の残存物量を計算するか、フィルター上の残存物を観察する方法により評価でき、かつ不溶物の少なくとも一部が除去されたことは、例えば、該混合物又は該溶液を目視により観察する方法のほか、フッ素樹脂溶液Aを予め重量を記録した孔径0.1μmのPTFE製メンブレンフィルターにより加圧ろ過し、孔径0.1μmのフィルターで異物を除去したNovec7300等の良溶媒を用いて、該良溶媒を入れて加圧ろ過することを繰り返すことにより残存する樹脂を洗浄した後に、フィルターを取り出し、真空乾燥し、フィルターの重量をろ過前のフィルター重量で引き、フィルター上の残存物量を計算するか、フィルター上の残存物を観察する方法により評価できる。
上記フッ素樹脂A溶液は、不溶物除去工程(2)において不溶物の少なくとも一部を除去したものであり、除去される不溶物の少なくとも一部は一般式(1)で表される残基単位を含むフッ素樹脂であることが、最終的に得られる本発明のフッ素樹脂Aがヘイズ値を低下させたものであるという観点から好ましい。この場合、不溶物の構造、即ち一般式(1)で表される残基単位を含むことは、顕微FT-IR等で確認することができ、例えば、以下の方法で評価することができる。樹脂希釈溶液のろ過に用いた0.1μmPTFEフィルターにNovec7300を50g通液して洗浄する操作を5回繰り返し、乾燥後、フィルター上の異物をピックアップし、顕微IRを測定し、一般式(1)で表される残基単位を含むフッ素樹脂のIRチャートと比較することで判定する。実施例に示すように、不溶物除去工程(2)において除去した不溶物は、一般式(1)で表される残基単位を含む樹脂であることが確認され、この不溶物の少なくとも一部を除去した本発明のフッ素樹脂Aは、ヘイズ値を低下させたものであった。
重合工程(1)で得られた一般式(5)で表される残基単位を含むフッ素樹脂Aは、重合工程の種類により、異なる溶媒との混合物として得られる。重合工程(1a)の場合は、フッ素樹脂Aは、例えば、良溶媒b1又は、良溶媒b1と貧溶媒c1との混合溶媒との混合物である。この場合、不溶物除去工程(2)においては、これらの溶媒をそのまま溶媒S2とすることができる。良溶媒b1又は、良溶媒b1と貧溶媒c1との混合溶媒との混合物は、そのまま、良溶媒b2又は、良溶媒b2と貧溶媒c2との混合溶媒として使用することができる。あるいは、さらに、その他の溶媒を混合することで、溶媒S2とすることもできる。
重合工程(1b)の場合は、フッ素樹脂Aは、沈澱物として得られる。溶媒S2は、重合工程(1b)で得られたフッ素樹脂Aの沈澱物を固液分離等により回収し、必要に応じて、洗浄及び/又は乾燥した後に、良溶媒b2又は、良溶媒b2と貧溶媒c2との混合溶媒を含む混合物とすることができる。
溶媒S2が混合溶媒である場合、貧溶媒c2の含有量は、フッ素樹脂Aの濃度も考慮して、不溶物は共存するがフッ素樹脂は析出しない程度とすることが好ましく、良溶媒b2と貧溶媒c2との比率は、例えば、良溶媒b2と貧溶媒c2の合計に対して貧溶媒c2が1~50重量%の範囲であることができる。
何れの場合においても、不溶物除去工程に付すフッ素樹脂Aと溶媒S2との混合物のフッ素樹脂A濃度は、フッ素樹脂の加熱溶融成形品におけるヘイズを効果的に低減するという観点から、1~40重量%であることが好ましく、5~30重量%であることが好ましい。
不溶物除去工程(2)は、例えば、以下の(2a)又は(2b)のいずれかの工程であることができる。
(2a)フッ素樹脂Aと溶媒S2とを含む混合物をフィルターによりろ過して不溶物を除去する工程、
(2b)フッ素樹脂Aと溶媒S2とを含む混合物を遠心分離に供して不溶物を除去する工程。
不溶物除去工程(2a)では、フッ素樹脂Aと溶媒S2とを含む混合物をフィルターによりろ過して不溶物を除去する。ろ過方法には特に限定はないが、例えば、加圧ろ過、減圧ろ過、遠心ろ過等が挙げられる。用いるフィルターの粒状物除去性能には限定は無いが、フッ素樹脂Aの加熱溶融成形品におけるヘイズが効果的に小さくなることから、フィルターの99%捕捉粒子径が10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることがより好ましく、0.5μm以下であることがより好ましく、0.2μm以下であることが更に好ましく、0.1μm以下であることが一層好ましい。ここで、99%捕捉粒子径は、そのフィルターが99%以上を補足することが可能な粒子の粒子径を表し、フィルターのカタログや技術資料等に記載があるほか、粒径が既知の標準粒子の捕捉率を調べることでも知ることができる。
用いるフィルターの材質としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ナイロン、PTFE(ポリテトラフルオロエチレン)、PES(ポリエーテルサルホン)、セルロース混合エステル、セルロースアセテート、ポリカーボネート、セルロース、ナイロン、ポリアミド、等の樹脂;シリカ繊維、ガラス繊維等のセラミック;ステンレス、ハステロイ等の金属等が挙げられ、なかでも、フッ素樹脂Aの加熱溶融成形品におけるヘイズを効果的に小さくすることができることから、PTFE製が好ましい。また、フィルターは疎水性のものであっても、親水性のものであっても良い。
用いるフィルターの種類としては、例えば、デプスフィルター、スクリーンフィルター等が挙げられ、スクリーンフィルターとしてはメッシュフィルター、メンブレンフィルター等が挙げられ、なかでも、フッ素樹脂Aの加熱溶融成形品におけるヘイズを効果的に小さくすることができることから、スクリーンフィルターを用いることが好ましく、メンブレンフィルターを用いることが更に好ましく、PTFE製のメンブレンフィルターを用いることが更に好ましい。デプスフィルターはフィルターの内部で粒子を捕捉するフィルターであり、スクリーンフィルターはフィルターの表面で粒子を捕捉するフィルターである。メンブレンフィルターはスクリーンフィルターの一種である。また、優れたろ過性が得られることから、用いるフィルターの種類を複数組み合わせてもよく、例えば、デプスフィルターとスクリーンフィルターの組み合わせ、及び捕捉粒子径の異なるスクリーンフィルターの組み合わせを用いることができる。スクリーンフィルターにデプスフィルター等の他のフィルターや捕捉粒子径の異なるスクリーンフィルターを組み合わせる場合は、優れたろ過性が得られることから、スクリーンフィルターに組み合わせるフィルターの99%捕捉粒子径は1~10μmであることが好ましい。
フッ素樹脂Aの加熱溶融成形品におけるヘイズを効果的に小さくすることができることから、孔径10μm以下のスクリーンフィルターを用いることが好ましく、5μm以下のスクリーンフィルターを用いることがより好ましく、孔径1μm以下のスクリーンフィルターを用いることがより好ましく、孔径0.5μm以下のスクリーンフィルターを用いることがさらに好ましく、孔径0.2μm以下のスクリーンフィルターを用いることが一層好ましい。一般に、メンブレンフィルターの孔径がCμmであるとき、99%捕捉粒子径はCμmを下回り、製品によってはCμmの粒子を99.99%以上捕捉する。
不溶物除去工程(2b)では、フッ素樹脂Aと溶媒S2とを含む混合物を遠心分離に供して不溶物を除去する。遠心分離の方法には特に制限はないが、例えば、容器にフッ素樹脂Aと溶媒S2とを含む混合物を入れ、容器に遠心力をかけることにより不溶物を沈降させ、溶液を分離することで、不溶物を除去する方法等が挙げられる。遠心分離の方法としては、バッチ式であっても、連続式であっても、バッチ式と連続式の中間的な形式のものであっても良い。
析出工程(3)
析出工程(3)では、不溶物除去工程で得られたフッ素樹脂A溶液からフッ素樹脂Aを析出さる。フッ素樹脂A溶液の溶媒S3は、不溶物除去工程(2)で不溶物除去に用いられた、溶媒S2をそのまま用いても、あるいは方法によっては異なる種類や組成の溶媒を用いることができる。
フッ素樹脂A溶液から重合体を析出させる方法には特に制限はないが、析出工程(3)は、例えば、以下の(3a)、(3b)、(3c)又は(3d)のいずれかの工程であることができる。
(3a)フッ素樹脂A溶液の温度を低下させてフッ素樹脂Aを析出させる工程、
(3b)フッ素樹脂A溶液をフッ素樹脂Aに対する貧溶媒c3に加えることによりフッ素樹脂Aを析出させる工程、
(3c)フッ素樹脂A溶液に、フッ素樹脂A溶液に対する貧溶媒c3を加えることによりフッ素樹脂Aを析出させる工程
(3d)フッ素樹脂A溶液から溶媒を揮発させることによりフッ素樹脂Aを析出させる工程。
析出工程(3a)は、フッ素樹脂A溶液の温度を低下させてフッ素樹脂Aを析出させる工程である。フッ素樹脂A溶液の溶媒S3は、不溶物除去工程(2)で不溶物除去に用いられた溶媒S2をそのまま用いても、あるいは方法によっては異なる種類や組成の溶媒を用いることができ、不溶物除去工程(2)で不溶物除去に用いられた良溶媒b2又は、良溶媒b2と貧溶媒c2との混合溶媒を、析出工程(3a)における溶媒としてそのまま用いてもよい。即ち、良溶媒b2又は良溶媒b2と貧溶媒c2との混合溶媒は、それぞれフッ素樹脂Aに対する良溶媒b3又は、フッ素樹脂Aに対する良溶媒b3とフッ素樹脂Aに対する貧溶媒c3との混合溶媒とすることができる。フッ素樹脂A溶液におけるフッ素樹脂Aの濃度は、生産性に優れ、紛体としての取扱い性にすぐれた粒子が得られる観点から、1~40重量%であることが好ましく、1~30重量%であることが更に好ましく、2~20重量%が更に好ましい。生産性に優れ、紛体としての取扱い性にすぐれた粒子が得られる観点から、析出工程に供する溶媒S3が良溶媒b3と貧溶媒c3との混合溶媒であることが好ましい。析出工程に供する溶媒S3が良溶媒b3と貧溶媒c3との混合溶媒の場合、良溶媒b3と貧溶媒c3の比率は、生産性に優れ、粉体としての取扱い性に優れた粒子が得られ、加熱溶融品の着色が小さくなることから、良溶媒:貧溶媒の重量比が、10:90~99:1が好ましく、20:80~95:5が更に好ましく、30:70~95:5がまた更に好ましく、30:70~90:10が更に好ましく、30:70~80:20が更に好ましい。
析出工程(3a)において、温度を低下させる前の溶液温度T1は例えば、30℃以上であることが好ましく、より好ましくは40℃以上であり、更に好ましくは50℃以上であり、温度を低下させた後の溶液温度をT2とした場合に、T1-T2は好ましくは5℃以上、より好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であることができる。これにより、フッ素樹脂Aの析出が十分に行われる。
析出工程(3a)において、生産性に優れ、粉体としての取扱い性に優れ、加熱溶融品の着色が小さくなることから、1~600分間で温度を低下させることが好ましく、5~300分間で温度を低下させることが更に好ましい。
析出工程(3a)において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、毎分0.05~20℃の速度で温度を低下させることが好ましく、毎分0.1~5℃の速度で温度を低下させることが特に好ましい。
析出工程(3b)は、フッ素樹脂A溶液をフッ素樹脂Aに対する貧溶媒c3に加えることによりフッ素樹脂Aを析出させる工程であり、析出工程(3c)は、フッ素樹脂A溶液に、フッ素樹脂A溶液に対する貧溶媒c3を加えることによりフッ素樹脂Aを析出させる工程である。析出工程(3b)及び(3c)におけるフッ素樹脂A溶液の溶媒S3は、不溶物除去工程(2)で不溶物除去に用いられた溶媒S2であってもよい。但し、貧溶媒c3との混合により、フッ素樹脂Aの析出が容易であるという観点からは、不溶物除去工程(2)で不溶物除去に用いられた溶媒s2は良溶媒b2と貧溶媒c2との混合溶媒であることが好ましい。フッ素樹脂Aの析出が容易であり、加熱溶融品の着色が小さくなるという観点からは、フッ素樹脂A溶液をフッ素樹脂Aに対する貧溶媒c3に加えることによりフッ素樹脂Aを析出させる析出工程(3b)が好ましい。一方、粉体としての取扱い性に優れるという観点からは、フッ素樹脂A溶液に、フッ素樹脂A溶液に対する貧溶媒c3を加えることによりフッ素樹脂Aを析出させる析出工程(3c)が好ましい。
何れの工程においても、生産性に優れ、粒子の互着が防止され、粉体としての取扱い性に優れた粒子が得られることから、貧溶媒c3と混合した後の良溶媒:貧溶媒の重量比は、10:90~90:10の範囲であることが好ましく、20:80~80:20がより好ましく、30:70~70:30が更に好ましく、30:70~60:40が一層好ましい。
析出工程(3d)では、フッ素樹脂A溶液から溶媒S3を揮発させることによりフッ素樹脂Aを析出させる。溶媒S3を揮発により除去するという観点から、溶媒S3は、比較的沸点が低い溶媒であることができる。溶媒S3の揮発操作は、公知の方法で実施することができるが、例えば、エクセバ等の薄膜蒸発機を用いて溶媒を揮発させる方法、加熱したフラッシュタンクに溶媒を通し溶媒を揮発させる方法、脱揮押出装置を用いて押出機で溶液を加熱して溶媒を揮発させる方法、フッ素樹脂A溶液を水等のフッ素樹脂A溶液が混和しない溶媒に分散させ、加熱するか蒸気を導入することにより溶媒を揮発させる方法(蒸気を導入する場合、スチームストリッピングと一般に呼ばれる)、低沸点の良溶媒と高沸点の貧溶媒を含むフッ素樹脂A溶液を加熱し低沸点の良溶媒を揮発させることによりフッ素樹脂Aを析出させる方法等が挙げられ、複数の方法を組み合わせてもよい。また、それらの方法により溶媒を除去した後に、ペレタイザー等によりペレット状にフッ素樹脂Aを加工してもよい。
析出工程(3a)~(3d)は適宜組み合わせて利用することもできる。例えば、不溶物除去工程で得られたフッ素樹脂A溶液を析出工程(3b)又は(3c)に供し、残ったフッ素樹脂A溶液をさらに、析出工程(3a)又は(3d)に供して、残存するフッ素樹脂Aをさらに回収することもできる。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、フッ素樹脂A溶液の撹拌を行うことが好ましく、例えば、撹拌翼による撹拌、振動による撹拌などが挙げられる。析出工程(3a)~(3d)のいずれにおいても、樹脂の析出に際して、溶液の撹拌を行うことが好ましい。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、単位撹拌容量あたりの撹拌機モータ動力の値であるPv値が0.05~50kW/mとなるよう撹拌しながら温度を下げることにより、粒子状の固体を析出させることが好ましく、Pv値が0.2~50kW/mが更に好ましく、0.5~30kW/mがまた更に好ましく、0.5~10kW/mが特に好ましい。ここでPv値(kW/m)は以下の式(10)により算出することができる。
Figure JPOXMLDOC01-appb-M000017
(ここで、Np:動力数、ρ:溶液の密度(kg/m)、n:撹拌翼の回転数(rpm)、d:撹拌翼の直径(mm)、V:溶液量(L)を表す。)
式(10)におけるNpは動力数と呼ばれる無次元数で、撹拌翼の形状により変化する。このNpは例えば、「化学装置1995年8月号71-79頁」や「神鋼ファウドラー技報vol.28、No.8(1984年10月)、13-16頁」などの公知の文献により得ることができる。この際、翼幅bと撹拌翼の直径dの比b/dが文献に記載の撹拌翼と異なる場合には、以下の式(11)により算出することができる。
実際のNp=文献に記載のNp×(実際のb/d)/(文献に記載のb/d) (11)
(ここで、Np:動力数、b:撹拌翼の翼幅(mm)、d:撹拌翼の直径(mm)を表す。)
本発明の第一の態様において、重合工程(1)、不溶物除去工程(2)及び析出工程(3)の組合せには特に制限はないが、フッ素樹脂が粒子として析出する工程を含むことで不純物の少ないフッ素樹脂が得られ、加熱溶融品の着色が小さくなるという観点から、例えば、重合工程(1)が工程(1a)又は(1c)であり、かつ析出工程(3)が工程(3a)又は(3b)又は(3c)であることが好ましく、また、重合工程(1)が工程(1b)であり、かつ析出工程(3)が工程(3a)、(3b)、(3c)又は(3d)であることが好ましい。更に好ましくは、重合工程(1)が工程(1a)であり、不溶物除去工程(2)が工程(2a)であり、かつ析出工程(3)が工程(3a)又は(3b)又は(3c)であることが好ましく、また、重合工程(1)が工程(1b)であり、不溶物除去工程(2)が工程(2a)であり、かつ析出工程(3)が工程(3a)、(3b)、(3c)又は(3d)であることが好ましい。重合工程(1)及び析出工程(3)の組合せが上記の組合せであると、いずれかの工程において粒子状のフッ素樹脂Aが得られ、また、更に粒子状のフッ素樹脂Aを洗浄する等の工程を行うことができるために、加熱溶融品の着色が小さいフッ素樹脂が得られやすいため好ましい。また、嵩密度が高く、紛体としての取扱い性に優れた粒子が得られることから析出工程は工程(3a)又は(3c)であることが好ましい。また、粒子析出工程においてトルクの上昇等が起こりにくく、生産性に優れる観点から、析出工程は工程(3a)であることが好ましい。
析出工程(3)で得られた、樹脂が析出しているフッ素樹脂A溶液において、得られる樹脂の互着が防止され、紛体としての取扱い性に優れた樹脂が得られることから、貧溶媒c4を添加する貧溶媒添加工程(4)を行うことが好ましい。貧溶媒添加工程(4)における貧溶媒c4の添加量は、生産性に優れ、粒子の互着が防止され、粉体としての取扱い性に優れた樹脂が得られることから、析出工程で得られたフッ素樹脂A含有溶液の重量に対して、0.1倍以上の貧溶媒c4を添加することが好ましく、好ましくは0.5倍以上1倍以上の貧溶媒c4を添加することが更に好ましい。
本発明の第一の態様においては、他にいかなる工程を追加しても良いが、析出工程(3)または貧溶媒添加工程(4)後に、固液分離により固体を取り出す分離工程(5)を含んでいても良い。固液分離方法には特に限定はないが、例えば、加圧ろ過、減圧ろ過、遠心分離、遠心ろ過等が挙げられる。用いるフィルターのサイズには限定は無いが、例えば、補足粒子径が30μm以下のフィルター等が挙げられる。用いるフィルターの材質には限定は無いが、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ナイロン、PTFE、PES等が挙げられる。
本発明の第一の態様においては、他にいかなる工程を追加しても良く、フッ素樹脂Aの粒子を洗浄する洗浄工程及び/又は乾燥させる乾燥工程を含んでいても良い。洗浄工程(6)においては、貧溶媒c6を用いることが好ましく、貧溶媒c6は、好ましくは25℃において、フッ素樹脂Aを析出させる有機溶媒である。乾燥方法には特に限定はないが、例えば、真空乾燥、減圧乾燥、常圧乾燥、送風乾燥、振盪乾燥、温風乾燥、加熱乾燥などが挙げられる。
本発明の第一の態様においては、析出工程(3)で得られたフッ素樹脂Aが析出している溶液又は貧溶媒添加工程(4)で貧溶媒c4を添加した溶液からフッ素樹脂Aを分離する分離工程(5)、分離したフッ素樹脂Aを貧溶媒c6で洗浄する洗浄工程(6)をさらに含んでいることが好ましい。これにより、より黄色度に優れた粒子が得られる。
また、加熱溶融成形品におけるヘイズを効果的に小さくすることができることから、貧溶媒c6として99%補足粒子径が5μm以下のフィルター又は孔径5μm以下のスクリーンフィルターでろ過した溶媒を用いることが好ましい。
本発明の第二の態様は以下の通りである。
含フッ素脂肪族環構造を含むフッ素樹脂(A)が、溶媒(B)に溶解しているフッ素樹脂(A)溶液に対して、溶液の温度を低下させてフッ素樹脂(A)の粒子を析出させる析出工程を含む、含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法。
含フッ素脂肪族環構造を含むフッ素樹脂(以下「フッ素樹脂(A)」という。)の構造としては、含フッ素脂肪族環構造を含むものであれば限定はないが、例えば、下記一般式(1)で表される残基単位を含むもの、ペルフルオロ(4-ビニルオキシ-1-ブテン)の環化重合体及び共重合体、ペルフルオロ(2、2-ジメチル-1、3-ジオキソール)の重合体及び共重合体、ペルフルオロ(2、2-ジメチル-1、3-ジオキソール)とテトラフルオロエチレンとの共重合体、2、2、4-トリフルオロ-5-トリフルオロメトキシ-1、3-ジオキソールの重合体及び共重合体、2、2、4-トリフルオロ-5-トリフルオロメトキシ-1、3-ジオキソールとテトラフルオロエチレンとの共重合体からなる群の少なくとも1種が例示できる。
Figure JPOXMLDOC01-appb-C000018
式(1)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子または炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状、分岐状または環状のパーフルオロアルキル基からなる群の1種を示す。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよい。
式(1)中 のRf、Rf、Rf及びRfは、より具体的には、それぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf及びRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。
本発明の第二の態様における一般式(1)で表される残基単位中のRf、Rf、Rf、Rf基はそれぞれ独立してフッ素原子または炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状、分岐状または環状のパーフルオロアルキル基からなる群の1種を示す。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよい。炭素数1~7の直鎖状パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ペンタデカフルオロヘプチル基等が挙げられ、炭素数3~7の分岐状パーフルオロアルキル基としては、例えば、ヘプタフルオロイソプロピル基、ノナフルオロイソブチル基、ノナフルオロsec-ブチル基、ノナフルオロtert-ブチル基等が挙げられ、炭素数3~7の環状パーフルオロアルキル基としては、例えば、ヘプタフルオロシクロプロピル基、ノナフルオロシクロブチル基、トリデカフルオロシクロヘキシル基等が挙げられる。炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状パーフルオロアルキル基としては、例えば、-CFOCF基、-(CFOCF基、-(CFOCFCF基、炭素数3~7のエーテル性酸素原子を有していてもよい環状パーフルオロアルキル基としては、例えば、2-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、4-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、2-(2,3,3,4,4,5,5-ヘプタフルオロ)-フラニル基等が挙げられる。
優れた耐熱性となるため、Rf、Rf、Rf、Rfの少なくともいずれか一つが炭素数1~7の直鎖状、分岐状または環状のパーフルオロアルキル基であることが好ましい。
そして、具体的な一般式(1)で表される残基単位としては、例えば以下の残基単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
なかでも、耐熱性に優れたフッ素樹脂が得られることから、下記一般式(3)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂であることが好ましい。
本発明の第二の態様のフッ素樹脂(A)には他の単量体残基単位が含まれていても良く、他の単量体残基単位としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロアルキルエチレン、フルオロビニルエーテルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000020
本発明の第二の態様における溶媒(B)は、析出工程において温度を低下させる前の温度において、フッ素樹脂(A)を溶解させ、析出工程において温度を低下させることによりフッ素樹脂(A)を析出させるものであればよい。
ここで、本発明の第二の態様において、フッ素樹脂(A)が溶媒(B)に溶解しているとは、溶媒(B)に少なくとも一部のフッ素樹脂(A)が溶解していることを示し、例えば、目視により溶解しているかを確認する方法の他、フッ素樹脂(A)溶液をフッ素樹脂(A)溶液の4倍量以上の貧溶媒に添加した際に、固体の析出が起こるかどうかを確認し、固体の析出が起こった場合、貧溶媒に添加する前のフッ素樹脂(A)溶液において、少なくとも一部のフッ素樹脂(A)が溶解していると判断するなどの方法により確認することができる。溶液の状態は、攪拌可能な状態であればよく、均一な液体状、白濁した液体状、ゲル状が例示できる。
析出工程において、温度を低下させる前の温度におけるフッ素樹脂(A)の溶媒(B)への溶解度は、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、50重量%以上であることが好ましく、70重量%以上であることが更に好ましく、80重量%以上であることが特に好ましい。
粒子析出工程において温度を低下させた後の温度における、フッ素樹脂(A)の溶媒(B)への溶解度は、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、50重量%未満であることが好ましく、30重量%未満であることが好ましく、20重量%未満であることが特に好ましい。
本発明の第二の態様における溶媒(B)は、析出工程において温度を低下させる前の温度においてフッ素樹脂(A)を溶解させ、析出工程において温度を低下させることによりフッ素樹脂(A)を析出させるものであればよく、その成分は、単一溶媒であっても、複数の溶媒を含む組成物であっても良い。生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、溶媒(B)は、フッ素樹脂(A)に対する良溶媒(b-1)と、フッ素樹脂(A)に対する貧溶媒(b-2)を含む組成物であることが好ましい。
ここで、本発明の第二の態様において、良溶媒(b-1)とは、析出工程において温度を低下させる前の温度において、フッ素樹脂(A)を溶解可能な有機溶媒であり、好ましくは50℃で当該樹脂を溶解可能な有機溶媒である。
例えば、粉状又は綿状のフッ素樹脂(A)を、析出工程に供する樹脂溶液の温度と同じ温度の有機溶媒に5時間以上浸漬し、当該樹脂が溶解するものを良溶媒として判断することができる。ここで、析出工程に供する樹脂溶液の温度とは、温度を低下させる前の温度を指す。
良溶媒(b-1)は、フッ素樹脂(A)に対する溶解度が80wt%以上であることが好ましく、90wt%以上が更に好ましい。
良溶媒(b-1)として、パーフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロフルオロオレフィン又は芳香族フッ素化合物からなる群の少なくとも1種であることが好ましく、さらに好ましくはパーフルオロヘキサン、パーフルオロ-N-メチルモルホリン、パーフルオロ-N-プロピルモルホリン、パーフルオロトリエチルアミン、パーフルオロメチルジブチルアミン、パーフルオロトリブチルアミン、CFCFCHCl、CFCHFCHFCFCF、CFCFCFCFCFCFH、CF(CFCHCH、COCH、COC、CCF(OCH)C)、ヘキサフルオロベンゼンからなる群の少なくとも1種であることが好ましい。
これら溶媒として、例えば、フロリナートFC-5052、FC-72、FC-770、FC-3283、FC-40、FC-43(いずれも3Mジャパン社製)等のパーフルオロカーボン;アサヒクリンAK-225(旭硝子社製)等のハイドロクロロフルオロカーボン;バートレルXF(三井・ケマーズ社製)、アサヒクリンAC-2000、AC-6000(いずれも旭硝子社製)等のハイドロフルオロカーボン;Novec7100、Novec7200、Novec7300(3Mジャパン社製)等のハイドロフルオロエーテル;オプテオンSF10(三井・ケマーズ社製)等のハイドロフルオロオレフィン;ヘキサフルオロベンゼン等の芳香族含フッ素溶媒;等が挙げられる。生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、良溶媒(b-1)は含フッ素溶媒であることが好ましく、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロオレフィン等の分子内に水素原子を有する脂肪族含フッ素溶媒;又は芳香族含フッ素溶媒であることが更に好ましく、ハイドロフルオロカーボン、ハイドロフルオロエーテル、芳香族含フッ素溶媒からなる群の少なくとも1種であることがまた更に好ましく、ハイドロフルオロエーテルであることが特に好ましい。ここで水素原子を有する脂肪族含フッ素溶媒は飽和であっても不飽和であっても良く、直鎖状であっても、環状であっても良い。
ここで、本発明の第二の態様において、貧溶媒(b-2)とは、析出工程において温度を低下させた後の温度においてフッ素樹脂(A)を析出させる有機溶媒であり、好ましくは25℃において、フッ素樹脂(A)を析出させる有機溶媒である。フッ素樹脂(A)溶解させた良溶媒(b-1)を、有機溶媒に滴下した際にフッ素樹脂(A)が析出する有機溶媒を貧溶媒として判断することができる。
貧溶媒(b-2)は、フッ素樹脂(A)に対する溶解度が20wt%未満であることが好ましく、10wt%未満が更に好ましい。
貧溶媒(b-2)としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン等の分子内に水素原子を有する含フッ素溶媒;トリフルオロエタノール等の含フッ素アルコール;ヘキサン、トルエン、アセトン、メタノール、酢酸エチル、クロロホルム等のフッ素不含の有機溶媒がからなる群の少なくとも1種が挙げられる。生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、前記有機溶媒は含フッ素溶媒であることが好ましく、分子内に水素原子を有する含フッ素溶媒であることが更に好ましく、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンからなる群の少なくとも1種が更に好ましい。
析出工程に供する溶媒(B)において、良溶媒(b-1)と貧溶媒(b-2)の比率は、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、良溶媒:貧溶媒の重量比が、10:90~99:1が好ましく、20:80~95:5が更に好ましく、30:70~95:5がまた更に好ましく、30:70~90:10が更に好ましく、30:70~80:20が更に好ましい。
析出工程において、フッ素樹脂(A)用溶液の濃度としては、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、1~30wt%が好ましく、2~20wt%が好ましく、5~15wt%が特に好ましい。
析出工程において、析出工程に供するフッ素樹脂(A)溶液の温度、すなわち、温度を低下させる前の溶液温度(以下「T」という)は、30℃以上が好ましく、40℃以上が更に好ましい。一方、析出工程において、温度を低下させた後の溶液温度(以下「T」という)は、30℃以下が好ましく、25℃以下が更に好ましい。これにより、フッ素樹脂(A)の析出が十分に行われる。
また、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、T-Tは5℃以上であることが好ましく、10℃以上であることが更に好ましい。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、1~600分間で温度を低下させることが好ましく、5~300分間で温度を低下させることが更に好ましい。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、毎分0.05~20℃の速度で温度を低下させることが好ましく、毎分0.1~5℃の速度で温度を低下させることが特に好ましい。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、撹拌を行うことが好ましく、例えば、撹拌翼による撹拌、振動による撹拌などが挙げられる。
析出工程において、生産性に優れ、粉体としての取扱い性に優れた粒子が得られることから、単位撹拌容量あたりの撹拌機モータ動力の値であるPv値が0.2~50kW/mとなるよう撹拌しながら温度を下げることにより、粒子状の固体を析出させることが好ましく、Pv値が0.2~30kW/mが更に好ましく、0.5~30kW/mがまた更に好ましく、0.5~10kW/mが特に好ましい。ここでPv値(kW/m)は以下の式(5)により算出することができる。
Figure JPOXMLDOC01-appb-M000021
(ここで、Np:動力数、ρ:溶液の密度(kg/m)、n:撹拌翼の回転数(rpm)、d:撹拌翼の直径(mm)、V:溶液量(L)を表す。)
式(5)におけるNpは動力数と呼ばれる無次元数で、撹拌翼の形状により変化する。このNpは例えば、「化学装置1995年8月号71-79頁」や「神鋼ファウドラー技報vol.28、No.8(1984年10月)、13-16頁」などの公知の文献により得ることができる。この際、翼幅bと撹拌翼の直径dの比b/dが文献に記載の撹拌翼と異なる場合には、以下の式(6)により算出することができる。
実際のNp=文献に記載のNp×(実際のb/d)/(文献に記載のb/d) (6)
(ここで、Np:動力数、b:撹拌翼の翼幅(mm)、d:撹拌翼の直径(mm)を表す。)
析出工程で得られた、粒子が析出しているフッ素樹脂(A)溶液において、得られる粒子の互着が防止され、取扱い性に優れた粒子が得られることから、貧溶媒(b-2)を添加する貧溶媒添加工程を行うことが好ましい。貧溶媒添加工程における貧溶媒(b-2)の添加量は、生産性に優れ、粒子の互着が防止され、粉体としての取扱い性に優れた粒子が得られることから、析出工程で得られたフッ素樹脂(A)溶液の重量に対して、0.1倍以上の貧溶媒を添加することが好ましく、好ましくは0.5倍以上1倍以上の貧溶媒を添加することが更に好ましい。
生産性に優れ、粒子の互着が防止され、粉体としての取扱い性に優れた粒子が得られることから、貧溶媒添加工程において貧溶媒(b-2)を添加した後の良溶媒:貧溶媒の重量比は、10:90~90:10が好ましく、20:80~80:20が更に好ましく、30:70~70:30がまた更に好ましく、30:70~60:40が特に好ましい。
本発明の第二の態様においては、他にいかなる工程を追加しても良いが、光学・電子分野で求められる厳しいクリーン性を確保するために、析出工程の前にフッ素樹脂(A)溶液をろ過することにより異物を除去するろ過工程を有することが好ましい。ろ過方法には特に限定はないが、例えば、加圧ろ過、減圧ろ過、遠心ろ過等が挙げられる。用いるフィルターのサイズには限定は無いが、例えば、補足粒子径が1μm以下のフィルター等が挙げられる。用いるフィルターの材質には限定は無いが、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ナイロン、PTFE、PES等が挙げられる。
本発明の第二の態様においては、他にいかなる工程を追加しても良いが、析出工程または貧溶媒添加工程後に、固液分離により粒子状の固体を取り出す分離工程を含んでいても良い。固液分離方法には特に限定はないが、例えば、加圧ろ過、減圧ろ過、遠心分離、遠心ろ過等が挙げられる。用いるフィルターのサイズには限定は無いが、例えば、補足粒子径が10μm以下のフィルター等が挙げられる。用いるフィルターの材質には限定は無いが、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ナイロン、PTFE、PES等が挙げられる。
本発明の第二の態様においては、他にいかなる工程を追加しても良いが、フッ素樹脂(A)の粒子を乾燥させる乾燥工程を含んでいても良い。乾燥方法には特に限定はないが、例えば、真空乾燥、減圧乾燥、常圧乾燥、送風乾燥、振盪乾燥、温風乾燥、加熱乾燥などが挙げられる。
本発明の第二の態様におけるフッ素樹脂(A)の重量平均分子量Mwは如何なる値でも良いが、例えば、ゲルパーミッションクロマトグラフィー(GPC)を用いて測定される重量平均分子量Mwが10,000~1,000,000であるものが挙げられる。
本発明の第二の態様におけるフッ素樹脂(A)は如何なる方法で製造したものであってもよいが、例えば、ラジカル重合開始剤の存在下、下記一般式(4)の単量体を重合することにより得ることができる。
Figure JPOXMLDOC01-appb-C000022
(式(4)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子または炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状、分岐状または環状のパーフルオロアルキル基からなる群の1種を示す。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよい。)
ラジカル重合を行う際のラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-tetr-ブチルパーオキサイド、tetr-ブチルクミルパーオキサイド、ジクミルパーオキサイド、tetr-ブチルパーオキシアセテート、パーフルオロ(ジ-tetr-ブチルパーオキサイド)、ビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド、tetr-ブチルパーオキシベンゾエート、tetr-ブチルパーピバレート等の有機過酸化物;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)、2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系開始剤等が挙げられる。
本発明の第二の態様において、フッ素樹脂(A)は如何なる方法で製造したものであっても良いが、例えば、塊状重合、溶液重合などの方法が挙げられる。
本発明の第二の態様において、フッ素樹脂溶液(A)は、いかなる方法で作製したものであっても良いが、生産性に優れたものとなることから、フッ素樹脂(A)の固体を溶媒に溶解させる方法又は、フッ素樹脂(A)の重合反応を行い得られたた溶液をそのまま用いる方法のいずれかを含む方法でフッ素樹脂溶液(A)を得る溶液調製工程で作製することが好ましい。
フッ素樹脂(A)樹脂を溶媒に溶解させる方法では、フッ素樹脂(A)の固体を良溶媒(b-1)と貧溶媒(b-2)の組成物に溶解させる方法、フッ素樹脂(A)の固体を良溶媒(b-1)に溶解させる方法が好ましく、フッ素樹脂(A)を良溶媒(b-1)と貧溶媒(b-2)の組成物に溶解させる方法が特に好ましい。このとき、得られた溶液をそのまま用いても、良溶媒(b-1)と貧溶媒(b-2)の組成物又は、貧溶媒(b-2)を添加して濃度を調整しても良い。
フッ素樹脂(A)の重合反応を行った溶液を用いる方法では、良溶媒(b-1)と貧溶媒(b-2)の組成物を重合溶媒としてフッ素樹脂(A)の重合反応を行った溶液を用いる方法、良溶媒(b-1)を重合溶媒としてフッ素樹脂(A)の重合反応を行った溶液をそのまま用いる方法が好ましい。このとき、得られた溶液をそのまま用いてもよく、又は良溶媒(b-1)と貧溶媒(b-2)の組成物若しくは、貧溶媒(b-2)を添加してフッ素樹脂(A)濃度を調整しても良い。
本発明の第二の態様の含フッ素脂肪族環構造を含むフッ素樹脂粒子の粒径には特に限定は無いが、成形加工時の取扱い性に優れたものとなることから、体積平均粒径は1~10000μmであることが好ましく、1~1000μmであることが好ましく、10~1000μmが更に好ましい。
以下、本発明の第一の態様および第二の態様を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。
(本発明の第一の態様の実施例)
<物性測定方法>
(1)重量平均分子量Mw
東ソー(株)製のカラムTSKgel SuperHZM-M、RI検出器を備えたゲルパーミッションクロマトグラフィーを用いて測定を行った。溶離液としてアサヒクリンAK-225(旭硝子株式会社製)に、AK-225に対して10wt%の1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(和光純薬工業製)を添加したものを用いた。標準試料としてAgilent製の標準ポリメタクリル酸メチルを用い、試料と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量Mwを算出した。
(2)体積平均粒子径の測定
マイクロトラック・ベル社製マイクロトラックMT3000を用い、分散媒としてメタノ-ルを使用して体積平均粒子径(単位:μm)を測定した。
(3)Pv値の算出
単位撹拌容量あたりの撹拌機モータ動力の値であるPv値は以下の式より算出した。4枚ナナメパドル撹拌翼(翼径50mm、斜め45°)を用いた時のNpは4.2を用いた。
Figure JPOXMLDOC01-appb-M000023
(ここで、Np:動力数、ρ:溶液の密度(kg/m)、n:撹拌翼の回転数(rpm)、d:撹拌翼の直径(mm)、V:溶液量(L)を表す。)。
(4)ヘイズの測定
厚さ1mmの板の中央がくり抜いてある金型を、ポリイミドフィルムを乗せた平滑な金属板の上に乗せ、フッ素樹脂をくり抜いてある箇所に乗せ、その上にポリイミドフィルム、金属板を乗せて挟み、プレス機に乗せ、圧力をかけずに280℃で10分間加熱した後、プレス機で圧力10MPa、280℃で10分間加熱プレスした後、脱圧と圧力10MPaをかけ加熱プレスすることを5分間繰り返した後、プレス機で280℃、圧力10MPaで10分間加熱プレスを行い、その後脱圧し、金属板で挟んだ成形物を更に冷却用の金属板で挟み冷却することで加熱プレス成形品(厚さ1mm)を得た。得られた加熱プレス成形品(厚さ1mm)について、日本電色工業(株)製ヘーズメーターNDH5000(光源:白色LED)を用いてJIS K7136に従って測定することで、ヘイズ(%)を求めた。
(5)不溶分量の測定
フッ素樹脂に1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン(CCF(OCH)C、スリーエムジャパン社製、Novec7300)を加え、固形分濃度が10重量%になるように調製する。50℃で5h溶解させ、振盪攪拌することによりフッ素樹脂の溶液を調製する。該溶液を予め重量を記録した孔径0.1μmのPTFE製メンブレンフィルターを備えた加圧ろ過器により加圧ろ過し、予め孔径0.1μmのフィルターで異物を除去したNovec7300を用いて、加圧ろ過器に異物を除去したNovec7300を入れて加圧ろ過することを繰り返すことにより残存するフッ素樹脂を洗浄した後に、フィルターを取り出し、真空乾燥し、得られたフィルターの重量をろ過前のフィルター重量で引くことでフィルター上の残存物量を求め、フィルター上の残存物量を使用した樹脂の重量で割り、割合を求めることで不溶物の量(重量%)を求めた。
(6)嵩密度の測定
単位容量あたりの高さを予め測定した容積13.5mLのガラス製サンプル管(水10mLを入れた時の液面高さが2.8cm)にフッ素樹脂Aを振動を加えずに秤量して入れ、その時の粉の高さと粉の重量から、以下の式に従って、嵩密度を算出できる。この時の嵩密度はゆるみ嵩密度と呼ばれる。
嵩密度=(粉の重量(g))/((粉の高さ(cm)/0.28(cm/mL))
(7)黄色度(YI)の測定
内径26.4mmのシャーレ(株式会社フラット製フラットシャーレのフタと受器のセットのうち受器のみ、受器の底部のガラス厚み1mm)にフッ素樹脂2.0gを秤量し、イナートオーブン(ヤマト科学製DN411I)に入れ、エアー気流下(20L/min)で、室温で30分静置した後、30分かけて280℃まで昇温後、280℃で24h加熱した。その後、エアー気流下(20L/min)を維持しながら、オーブンの扉を閉めたままにして、イナートオーブンの電源を切り、12h放冷後、サンプルを取出すことで、シャーレ上に厚さ3mm、直径26.4mmのフッ素樹脂加熱溶融成型品を得た。この時、エアーとしては、コンプレッサーで圧縮した空気を除湿機に通したもの(露点温度-20℃以下)を用いた。得られたフッ素樹脂加熱溶融成形品をシャーレごと、分光光度計(日立ハイテクサイエンス社製U-4100)を用いて、波長200nm~1500nmにおいて、1nm間隔で各波長における透過率を測定した。測定した透過率のデータから波長380nm~780nmにおける5nm間隔のデータを抽出し、JIS Z8701の方法にのっとり、XYZ表色系の三刺激値X、Y、Zを計算し、JIS K7373の方法にのっとり、C光源(補助イルミナントC)におけるYIを計算し、フッ素樹脂加熱溶融成型品のシャーレ込みのYIを求めた。シャーレ単体(受器のみ)のYIを測定し、フッ素樹脂成型品のシャーレ込みのYIからシャーレ単体(受器のみ)のYIを引くことで、厚さ3mmのフッ素樹脂加熱溶融成型品のYIを求めた。なお、シャーレ単体(受器のみ)のYIは0.21であった。
実施例1-1
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてNovec7300(スリーエムジャパン社製、CCF(OCH)C)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を100gのNovec7300で希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。
この溶液を50℃に加温した4枚ナナメパドル撹拌翼(翼径50mm、翼幅12mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量1000mLのセパラブルフラスコに移し、200rpmで撹拌しながら50℃に加温し5分保持した後、270gのゼオローラH(日本ゼオン製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン)を加え、200rpmで撹拌しながら50℃で5分保持した(ゼオローラH/Novec7300=60/40(wt/wt))。600rpmで撹拌しながら(Pv値:8.1kw/m)、ウォーターバスを外し、空気中で放冷し、約30分で30℃まで冷却することにより粒子状の固体が得られた。その後、600rpmで撹拌しながら、更に、150gのゼオローラHを加えた(ゼオローラH/Novec7300=70/30(wt/wt))。吸引ろ過を行い、アセトン洗浄を2回行い、加熱下で真空乾燥することでフッ素樹脂Aの粒子を得た。得られた樹脂は、重量平均分子量が7.2×10であり、体積平均粒径88μmの微粒子であり、粗粒の殆ど無いものであった。このとき、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-2
磁気撹拌子を備えた直径30mmのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.0865g(0.000205モル)をヘキサフルオロベンゼン0.260gに溶解した溶液を入れ、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)10.0g(0.0205モル)、重合溶媒としてゼオローラ-H(日本ゼオン製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン)39.74g、連鎖移動剤としてクロロホルム(和光純薬製)1.111g(0.00931モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(連鎖移動剤の量:単量体と連鎖移動剤の合計に対し10重量%)。このアンプルが直立した状態で磁気撹拌子をスターラーにより撹拌しながら、55℃で24時間保持することにより沈殿重合を行ったところ、白濁し、樹脂が重合溶媒に析出したスラリーが得られた。室温まで冷却後アンプルを開封し、生成した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することより体積平均粒径95μmの粒子状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂10.0gに90gのNovec7300(スリーエムジャパン社製、CCF(OCH)C)を加え、50℃で4時間加熱することにより樹脂を溶解させ、樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。アンカー翼を備えたプラスチック製カップにアセトン2Lを入れ、攪拌下、前記の加圧ろ過した樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、アセトン洗浄を1回し、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の重量平均分子量は9.7×10であった。フッ素樹脂の評価結果を表1に示す。このとき、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-3
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてNovec7300(スリーエムジャパン社製、CCF(OCH)C)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を100gのNovec7300で希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。
この溶液を50℃に加温した4枚ナナメパドル撹拌翼(翼径50mm、翼幅12mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量1000mLのセパラブルフラスコに移し、600rpmで撹拌しながら(Pv値:20.6kw/m)、420gのゼオローラH(日本ゼオン製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン)をゆっくり加えることにより粒子状の固体が得られた(ゼオローラH/Novec7300=70/30(wt/wt)、添加終了後のPv値:6.1kw/m)。吸引ろ過を行い、アセトン洗浄を2回行い、加熱下で真空乾燥することでフッ素樹脂Aの粒子を得た。得られた樹脂は、重量平均分子量が7.9×10であり、体積平均粒径87μmの微粒子であり、粗粒の殆ど無いものであった。このとき、析出工程以降におけるゼオローラH、Novec7300、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-4
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてNovec7300(スリーエムジャパン社製、CCF(OCH)C)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を100gのNovec7300で希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。アンカー翼を備えたプラスチック製カップにアセトン2Lを入れ、攪拌下、前記の加圧ろ過した樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、アセトン洗浄を2回行い、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の重量平均分子量は5.7×10であった。このとき、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-5
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてNovec7300(スリーエムジャパン社製、CCF(OCH)C)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封した(固形分濃度20重量%)。孔径5μmのPTFEメンブレンフィルター(ADVANTEC社製T500A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。粘度調整のため樹脂溶液を予め0.1μmPTFEフィルターでろ過した100gのNovec7300で希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。アンカー翼を備えたプラスチック製カップにアセトン2Lを入れ、攪拌下、前記の加圧ろ過した樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、アセトン洗浄を2回行い、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の重量平均分子量は5.5×10であった。このとき、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-6
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてFC-72(スリーエムジャパン社製、パーフルオロヘキサン)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封した(固形分濃度20重量%)。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を100gのFC-72で希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。アンカー翼を備えたプラスチック製カップにヘキサン2Lを入れ、攪拌下、前記の加圧ろ過した樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、アセトン洗浄を2回行い、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の重量平均分子量は7.2×10であった。このとき、ヘキサン、アセトンは予め0.1μmPTFEフィルターでろ過したものを用いた。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
実施例1-7
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてヘキサフルオロベンゼン(東京化成工業製)80.00g、連鎖移動剤としてクロロホルム(和光純薬社製)2.22g(0.0186モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封した(固形分濃度20重量%)。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を100gのヘキサフルオロベンゼンで希釈して樹脂希釈溶液を作製した(固形分濃度10重量%)。孔径0.1μmのPTFEメンブレンフィルター(ADVANTEC社製T010A)を備えた加圧ろ過装置(ADVANTEC社製)に前記樹脂希釈溶液を入れ、加圧ろ過することにより、溶媒に不溶な成分を除去した。アンカー翼を備えたプラスチック製カップにクロロホルム2Lを入れ、攪拌下、前記の加圧ろ過した樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の重量平均分子量は6.5×10であった。フッ素樹脂の評価結果を表1に示す。一方、樹脂希釈溶液のろ過に用いたPTFEフィルターに、Novec7300を50g通液して洗浄する操作を5回繰り返し、乾燥した。得られたフィルター上の不溶物を顕微IRにて確認したところ、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂成分を含むことを確認した。この樹脂成分(不要物)を除去することで、フッ素樹脂のヘイズは比較例1-1に比べ明らかに低下した。
比較例1-1
非特許文献1のTable 2のSample93の記載に従って行った。ただし、再沈精製時のポリマー濃度については記載が無かったため、10wt%まで希釈して行った。容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.0880g(0.000209モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)20.0g(0.0820モル)、重合溶媒としてヘキサフルオロベンゼン32.63gを入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=38/62(wt/wt))。このアンプルを60℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液をヘキサフルオロベンゼン147gで希釈して樹脂希釈溶液を作製した。アンカー翼を備えたビーカーにクロロホルム1Lを入れ、攪拌下、前記の樹脂希釈溶液をビーカーに加えることで樹脂を析出させ、析出した樹脂をろ過により回収後、真空乾燥することにより、不定形のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た。得られたフッ素樹脂の280℃24h加熱後の成形品は泡多数であったが、着色は目視観察で実施例1-1より強く着色しており、実施例1-7と比較し、同等かやや着色が強いものであった。さらに得られたフッ素樹脂について、平均的な大きさのものを定規で大きさを測ったところ、平均的な大きさは約10mmであった。得られたフッ素樹脂の重量平均分子量は3.7×10であった。フッ素樹脂の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000024
参考例1-1
実施例1-1で作製したフッ素樹脂A(重量平均分子量Mw=7.2×10)を50℃でフッ素樹脂Aの20倍量(w/w)の各種有機溶媒に5時間以上浸漬し、溶解するかを目視で確認したところ、以下の通りの結果となった。
  溶解する:FC-72、FC-770、Novec7200、Novec7300、ヘキサフルオロベンゼン。これらの溶媒に溶解した溶液を25℃まで冷却したところ、いずれも溶解した状態を維持していた。いずれも、溶け残りは殆ど無く、溶解度90wt%以上のものであった。
  溶解しない:ゼオローラH、AE-3000、トリフルオロエタノール、酢酸エチル、クロロホルム、アセトン、ヘキサン。いずれも、25℃に冷却後、ろ過、乾燥後のフッ素樹脂Aの回収率は80%を超え、溶解度は20wt%未満のものであった。
参考例1-2
フッ素樹脂A(重量平均分子量Mw=7.2×10)をNovec7300に固形分濃度10重量%で溶解させたフッ素樹脂A溶液を25℃でフッ素樹脂A溶液の10倍量の以下の有機溶媒に滴下した際、固体が析出するかを目視で確認したところ、以下の通りの結果となった。
  固体は析出しなかった:FC-72、FC-770、Novec7200、Novec7300、ヘキサフルオロベンゼン。いずれも、析出物は無く、溶解度90wt%以上のものであった。
  固体が析出した:ゼオローラH、AE-3000、トリフルオロエタノール、酢酸エチル、クロロホルム、アセトン、ヘキサン。いずれも、ろ過、乾燥後のフッ素樹脂Aの回収率は80%を超え、溶解度は20wt%未満のものであった。
(本発明の第二の態様の実施例)
[重量平均分子量Mwの測定]
東ソー(株)製のカラムTSKgel SuperAWM-H、RI検出器を備えたゲルパーミッションクロマトグラフィーを用いて測定を行った。標準試料としてAgilent製の標準ポリメタクリル酸メチルを用い、試料と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量Mwを算出した。
[体積平均粒子径の測定]
マイクロトラック社製MT3000を用い、分散媒としてメタノ-ルを使用して体積平均粒子径(単位:μm)を測定した。
[Pv値の算出]
単位撹拌容量あたりの撹拌機モータ動力の値であるPv値は以下の式より算出した。4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)を用いた時のNpは1.25を用いた。
Figure JPOXMLDOC01-appb-M000025
(ここで、Np:動力数、ρ:溶液の密度(kg/m)、n:撹拌翼の回転数(rpm)、d:撹拌翼の直径(mm)、V:溶液量(L)を表す。)
[合成例2-1]
容量75mLのガラスアンプルにラジカル重合開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.017g、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)5g、重合溶媒としてFC-72(スリーエムジャパン社製)20gを入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行った。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液を25gのFC-72で希釈して樹脂希釈溶液を作製した。撹拌子を備えたビーカー中にヘキサンを加え、攪拌下、前記の樹脂希釈溶液を前記ヘキサン中に加えることで樹脂を析出させ、吸引ろ過行い、加熱下で真空乾燥することで含フッ素脂肪族環構造を含むフッ素樹脂(A)(ポリ(パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン))を得た。得られたフッ素樹脂(A)は長さ5cm以上の繊維がまとまった綿状であり、樹脂希釈溶液をヘキサン中に加えた際の撹拌子への巻き付きが大きいものであった。重量平均分子量Mwは47万であった。
[参考例2-1]
フッ素樹脂(A)を50℃の各種有機溶媒に5時間以上浸漬し、溶解するかを目視で確認したところ、以下の通りの結果となった。
  溶解する:FC-72、FC-770、Novec7200、Novec7300、ヘキサフルオロベンゼン
これらの溶媒に溶解した溶液を25℃まで冷却したところ、いずれも溶解した状態を維持していた。いずれも、溶け残りは殆ど無く、溶解度90wt%以上のものであった。
  溶解しない:ゼオローラH、AE-3000、トリフルオロエタノール、酢酸エチル、クロロホルム、アセトン、ヘキサン
[参考例2-2]
フッ素樹脂(A)を溶解させたFC-72の溶液を25℃で以下の有機溶媒に滴下した際、固体は析出しなかった。
  FC-72、FC-770、Novec7200、Novec7300、ヘキサフルオロベンゼン
[比較例2-1]
フッ素樹脂(A)を溶解させたFC-72の溶液を25℃で以下の有機溶媒に滴下した際、固体が析出した。得られたフッ素樹脂(A)は長さ5cm以上の繊維がまとまった綿状であった。
  ゼオローラH、AE-3000、トリフルオロエタノール、酢酸エチル、クロロホルム、アセトン、ヘキサン
いずれも、ろ過、乾燥後のフッ素樹脂(A)の回収率は80%を超え、溶解度は20wt%以下のものであった。
[実施例2-1]
撹拌子を備えた50mLサンプル管にフッ素樹脂(A)を5.0g、良溶媒(b-1)としてNovec7200(スリーエムジャパン社製)21.31g、貧溶媒(b-2)としてゼオローラH(日本ゼオン社製)14.21gをとり、密栓し、50℃で撹拌することでフッ素樹脂(A)を溶解し、溶液を調製した。4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量50mLのセパラブルフラスコに室温まで戻した前記溶液を投入後、150rpmで撹拌しながらゼオローラH7.10gを投入したところ、塊状の固体が析出した。150rpmで撹拌しながら50℃に加温し10分保持することにより、フッ素樹脂(A)溶液が得られた(ゼオローラH/Novec7200=50/50(wt/wt))(ここまでの工程を「溶液調製工程」とする)。
フッ素樹脂(A)溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得られた(この工程を「析出工程」とする)。この時、約40℃で粒子状の固体の析出が始まった。
その後、500rpmで撹拌しながら、更に、ゼオローラH18.27gを加えた(ゼオローラH/Novec7200=65/35(wt/wt))(この工程を「貧溶媒添加工程」とする)。
得られた溶液に対して吸引ろ過を行い、加熱下で真空乾燥することで含フッ素脂肪族環構造を含むフッ素樹脂A(ポリ(パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン))粒子を得た(この工程を「分離工程」とする)。
得られた粒子は体積平均粒径130μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-2]
析出工程において、フッ素樹脂A溶液に対して攪拌を250rpm(Pv値:0.54kW/m)で行ったこと以外は実施例2-1と同様の操作を行い、フッ素樹脂Aの粒子を得た。得られた粒子は体積平均粒径270μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-3]
実施例2-1において、撹拌子を備えた50mLサンプル管にフッ素樹脂(A)を5.0g、良溶媒(b-1)としてNovec7200(スリーエムジャパン社製)21.32g、貧溶媒(b-2)としてゼオローラH(日本ゼオン社製)14.21gをとり、密栓し、50℃で撹拌することでフッ素樹脂(A)を溶解し、溶液を調製した後に、1μmのPTFEメンブレンフィルターを用いて加圧ろ過し、異物を除去するろ過工程を行ったこと以外は、実施例2-1と同様の操作を行った。得られた粒子は体積平均粒径150μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-4]
貧溶媒(b-2)としてゼオローラHの代わりにAE-3000(旭硝子社製)を用いたこと以外は実施例2-1と同様の操作を行った。得られた粒子は体積平均粒径170μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-5]
良溶媒(b-1)としてNovec7200の代わりにNovec7300(スリーエムジャパン社製)を用いたこと以外は実施例2-1と同様の操作を行った。得られた粒子は体積平均粒径40μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-6]
撹拌子を備えた50mLサンプル管にフッ素樹脂(A)を5.0g、良溶媒(b-1)としてヘキサフルオロベンゼン(東京化成社製)21.31gをとり、密栓し、50℃で撹拌することでフッ素樹脂(A)を溶解し、溶液を調製した。4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量50mLのセパラブルフラスコに室温まで戻した前記溶液を投入後、150rpmで撹拌しながら貧溶媒(b-2)としてゼオローラH11.48gを投入したところ、塊状の固体が析出した。150rpmで撹拌しながら50℃に加温し10分保持することにより、大部分のフッ素樹脂(A)が有機溶媒に溶解し、白濁した溶液が得られた(ゼオローラH/ヘキサフルオロベンゼン=35/65(wt/wt))。
大部分のフッ素樹脂(A)が有機溶媒に溶解し、白濁した前記溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得られた。その後、500rpmで撹拌しながら、更に、ゼオローラH9.84gを加えた(ゼオローラH/ヘキサフルオロベンゼン=50/50(wt/wt)。吸引ろ過を行い、加熱下で真空乾燥することでフッ素樹脂(A)の粒子を得た。得られた粒子は体積平均粒径410μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-7]
撹拌子を備えた50mLサンプル管にフッ素樹脂(A)を5.0g、良溶媒(b-1)としてFC-72(スリーエムジャパン社製)21.31g、貧溶媒(b-2)としてゼオローラH(日本ゼオン社製)14.21gをとり、密栓し、50℃で撹拌することでフッ素樹脂(A)を溶解し、溶液を調製した(ゼオローラH/FC-72=40/60(wt/wt))。4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量50mLのセパラブルフラスコに室温まで戻した前記溶液を投入後、150rpmで撹拌しながらゼオローラH 21.31gを投入したところ、塊状の固体が析出した。150rpmで撹拌しながら50℃に加温し10分保持することにより、フッ素樹脂(A)が有機溶媒にゲル状で分離した溶液が得られた(ゼオローラH/FC-72=62.5/37.5(wt/wt))。
前記のフッ素樹脂(A)が有機溶媒にゲル状で分離した溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得られた。その後、500rpmで撹拌しながら、更に、ゼオローラH14.21gを加えた(ゼオローラH/FC-72=70/30(wt/wt))。吸引ろ過を行い、加熱下で真空乾燥することでフッ素樹脂(A)の粒子を得た。得られた粒子は定規により計測した平均的な粒径が約1.5mm程度で、直径5~10mm程度の粗粒も含まれる粒子であった。
[実施例2-8]
撹拌子を備えた50mLサンプル管にフッ素樹脂(A)を5.0g、良溶媒(b-1)としてNovec7200(スリーエムジャパン社製)21.31gをとり、密栓し、50℃で撹拌することでフッ素樹脂(A)を溶解し、溶液を調製した。4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量50mLのセパラブルフラスコに室温まで戻した前記溶液を投入後、150rpmで撹拌しながら貧溶媒(b-2)として酢酸エチル2.37gを投入したところ、塊状の固体が析出した。150rpmで撹拌しながら50℃に加温し10分保持することにより、フッ素樹脂(A)が有機溶媒(B)に溶解した溶液が得られた(酢酸エチル/Novec7200=10/90(wt/wt)。更に、酢酸エチル1.39gを追加し、70℃に加温したところ、フッ素樹脂Aがゲル状で分離した溶液が得られた(酢酸エチル/Novec7200=15/85(wt/wt))。
前記のフッ素樹脂(A)がゲル状で分離した溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得られた。その後、500rpmで撹拌しながら、更に、酢酸エチル3.34gを加えた(酢酸エチル/Novec7200=25/75(wt/wt))。吸引ろ過を行い、加熱下で真空乾燥することでフッ素樹脂(A)の粒子を得た。得られた粒子は定規により計測した平均的な粒径が約2mm程度で、直径5~10mm程度の粗粒も含まれる粒子であった。
[実施例2-9]
容量75mLのガラスアンプルにラジカル重合開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.017g、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)5g、重合溶媒としてNovec7200 20gを入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、フッ素樹脂(A)が均一に溶解した溶液が得られた。室温まで冷却後アンプルを開封し、AE-3000 20gを加え、磁気撹拌子で撹拌しながら、50℃まで加温したところ、フッ素樹脂が均一に溶解した溶液が得られた(AE-3000/Novec7200=50/50(wt/wt))。
この溶液を50℃まで加温して、50℃に加温した4枚ナナメパドル撹拌翼(翼径40mm、翼幅8mm、斜め45°)、スリーワンモーター、ウォーターバスを備えた容量50mLのセパラブルフラスコに移し、150rpmで撹拌しながら50℃に加温し10分保持した後、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得られた。その後、500rpmで撹拌しながら、更に、AE-3000 17.143gを加えた(AE-3000 /Novec7200=65/35(wt/wt))。吸引ろ過を行い、加熱下で真空乾燥することでフッ素樹脂(A)の粒子を得た。得られた粒子は体積平均粒径200μmの微粒子であり、粗粒の殆ど無いものであった。
[実施例2-10]
実施例2-1において、フッ素樹脂(A)溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスを外し、空気中で放冷し、約10~20分で30℃まで冷却することにより粒子状の固体が得る代わりに、フッ素樹脂(A)溶液を、500rpm(Pv値:4.4kW/m)で撹拌しながら、ウォーターバスのスイッチを切り、ウォーターバスごと放冷し、約150分で30℃まで冷却することにより粒子状の固体が得た以外は実施例2-1と同様に行った。得られた粒子は体積平均粒径250μmの微粒子であり、粗粒の殆ど無いものであった。
[比較例2-2]
合成例2-1のフッ素樹脂AをFC-72に、ポリマー濃度10wt%になるように溶解し樹脂溶液を作製した。撹拌子を備えたビーカー中にヘキサンを加え、攪拌下、前記の樹脂希釈溶液を前記ヘキサン中に加えることで樹脂を析出させ、吸引ろ過を行うことで固体を得た。得られた固体は、長さ5cm以上の繊維がまとまった綿状であり、樹脂溶液をヘキサン中に加えた際の撹拌子への巻き付きが大きいものであった。
本発明の第一の態様は、フッ素樹脂に関連する分野において有用である。本発明の第二の態様によれば、生産性に優れ、異物の除去が可能な含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法を提供することができる。本発明の第二の態様の含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法で得られた樹脂粒子は光学・電子分野などの様々な用途応用可能である。
 

Claims (31)

  1. 下記一般式(1)で表される残基単位を含み、加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Rf、Rf、Rf及びRfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf及びRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
  2. フッ素樹脂を1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタンに溶解した際の不溶物の量がフッ素樹脂に対して0.2重量%以下である請求項1に記載のフッ素樹脂。
  3. フッ素樹脂の嵩密度が0.1~1.5g/cmである請求項1又は2に記載のフッ素樹脂。
  4. フッ素樹脂の嵩密度が0.12~0.25g/cmである請求項1又は2に記載のフッ素樹脂。
  5. フッ素樹脂の280℃24時間加熱溶融成形品(厚み3mm)の黄色度が4以下である請求項1~4のいずれかに記載のフッ素樹脂。
  6. フッ素樹脂の重量平均分子量が5×10~3×10である請求項1~5のいずれかに記載のフッ素樹脂。
  7. ラジカル重合開始剤の存在下、下記一般式(4)で表される単量体の重合を行って一般式(5)で表される残基単位を含むフッ素樹脂Aを得る重合工程(1)、
    重合工程で得られた一般式(5)で表される残基単位を含むフッ素樹脂Aと、溶媒S2とを含む混合物から、不溶物を除去して、フッ素樹脂A溶液を得る不溶物除去工程(2)、
    不溶物除去工程で得られたフッ素樹脂A溶液からフッ素樹脂Aを析出させる析出工程(3)を含む、
    加熱プレス成形品(厚み1mm)のヘイズ値が2%以下であるフッ素樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(4)及び式(5)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
  8. 前記重合工程(1)は、以下の(1a)、(1b)又は(1c)のいずれかの工程である請求項7に記載の製造方法。
    (1a)ラジカル重合開始剤及びフッ素樹脂Aに対する良溶媒b1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aと良溶媒b1とを含む混合物を得る工程、
    (1b)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、析出したフッ素樹脂Aを回収し、回収したフッ素樹脂Aとフッ素樹脂Aに対する良溶媒b1とを混合して、フッ素樹脂Aと良溶媒b1とを含む混合物を得る工程。
    (1c)ラジカル重合開始剤及びフッ素樹脂Aに対する貧溶媒c1の存在下、一般式(4)で表される単量体の重合を行い、フッ素樹脂Aを析出させ、フッ素樹脂Aに対する良溶媒b1を混合して、フッ素樹脂Aと良溶媒b1と貧溶媒c1とを含む混合物を得る工程。
  9. 工程(1a)は、ラジカル重合開始剤、フッ素樹脂Aに対する良溶媒b1に加えて、フッ素樹脂Aに対する貧溶媒c1の共存下に重合を行う、請求項8に記載の製造方法。
  10. 前記不溶物除去工程(2)は、以下の(2a)又は(2b)のいずれかの工程である請求項7~9のいずれかに記載の製造方法。
    (2a)フッ素樹脂Aと溶媒S2とを含む混合物をフィルターによりろ過して不溶物を除去する工程、
    (2b)フッ素樹脂Aと溶媒S2とを含む混合物を遠心分離に供して不溶物を除去する工程。
  11. 溶媒S2が、フッ素樹脂Aに対する良溶媒b2又はフッ素樹脂Aに対する良溶媒b2及び貧溶媒c2の混合溶媒である、請求項10に記載の製造方法。
  12. 前記不溶物除去工程(2)が(2a)である請求項10又は11に記載の製造方法。
  13. フィルターが、99%補足粒子径が10μm以下のフィルター又は孔径10μm以下のスクリーンフィルターである、請求項10~12のいずれかに記載の製造方法。
  14. 前記析出工程(3)が、以下の(3a)、(3b)、(3c)又は(3d)のいずれかの工程である、請求項7~13のいずれかに記載の製造方法。
    (3a)フッ素樹脂A溶液の温度を低下させてフッ素樹脂Aを析出させる工程、
    (3b)フッ素樹脂A溶液をフッ素樹脂Aに対する貧溶媒c3に加えることによりフッ素樹脂Aを析出させる工程、
    (3c)フッ素樹脂A溶液に、フッ素樹脂A溶液に対する貧溶媒c3を加えることによりフッ素樹脂Aを析出させる工程
    (3d)フッ素樹脂A溶液から溶媒を揮発させることによりフッ素樹脂Aを析出させる工程。
  15. 析出工程(3a)におけるフッ素樹脂A溶液の溶媒が、フッ素樹脂Aに対する良溶媒b3とフッ素樹脂Aに対する貧溶媒c3との混合溶媒である請求項14に記載の製造方法。
  16. 析出工程(3a)において、温度を低下させる前の溶液温度T1が30℃以上であり、かつ、温度を低下させた後の溶液温度をT2とした場合に、T1-T2が5℃以上である請求項14又は15に記載の製造方法。
  17. 析出工程(3)で得られたフッ素樹脂Aが析出している溶液又は貧溶媒添加工程(4)で貧溶媒c4を添加した溶液からフッ素樹脂Aを分離する分離工程(5)、及び分離したフッ素樹脂Aを貧溶媒c5で洗浄する洗浄工程(6)をさらに含む、請求項7~16のいずれかに記載の製造方法。
  18. 前記重合工程(1)が工程(1b)であり、かつ
    前記析出工程(3)が工程(3a)、(3b)、(3c)又は(3d)である請求項14~17のいずれかに記載の製造方法。
  19. 前記析出工程(3)が工程(3a)又は(3c)である請求項14~18のいずれかに記載の製造方法。
  20. 前記析出工程(3)が工程(3a)、(3b)又は(3c)の工程であり、溶媒S2が脂肪族含フッ素溶媒である請求項14~17のいずれかに記載の製造方法。
  21. 前記不溶物除去工程(2)において除去される不溶物が一般式(1)で表される残基単位を含むフッ素樹脂を少なくとも含む請求項7~20のいずれかに記載の製造方法。
  22. 含フッ素脂肪族環構造を含むフッ素樹脂(A)が、溶媒(B)に溶解しているフッ素樹脂(A)溶液に対して、溶液の温度を低下させてフッ素樹脂(A)の粒子を析出させる析出工程を含む、含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法。
  23. 溶媒(B)が、フッ素樹脂(A)に対する良溶媒(b-1)と、フッ素樹脂(A)に対する貧溶媒(b-2)を含む組成物であることを特徴とする請求項22に記載のフッ素樹脂粒子の製造方法。
  24. 良溶媒(b-1)が分子内に水素原子を有する脂肪族含フッ素溶媒又は芳香族含フッ素溶媒であることを特徴とする請求項23に記載のフッ素樹脂粒子の製造方法。
  25. 貧溶媒(b-2)が分子内に水素原子を有する含フッ素溶媒であることを特徴とする請求項23又は24に記載のフッ素樹脂粒子の製造方法。
  26. 析出工程で得られたフッ素樹脂(A)溶液に対して、貧溶媒(b-2)を添加する貧溶媒添加工程、貧溶媒添加工程の後にフッ素樹脂(A)の粒子を固液分離する分離工程とを有することを特徴とする請求項22~25いずれか一項に記載のフッ素樹脂粒子の製造方法。
  27. 析出工程において、温度を低下させる前の溶液温度Tが30℃以上であり、かつ、温度を低下させた後の溶液温度をTとした場合に、T-Tが5℃以上であることを特徴とする請求項22~26いずれか一項に記載のフッ素樹脂粒子の製造方法。
  28. 析出工程において、単位撹拌容量あたりの撹拌機モータ動力の値であるPv値が0.2~50kw/mとなるよう撹拌しながら温度を低下させることを特徴とする請求項22~27いずれか一項に記載のフッ素樹脂粒子の製造方法。
  29. フッ素樹脂(A)を溶媒に溶解させる方法又は、フッ素樹脂(A)の重合反応を行った溶液を用いる方法のいずれかを含む方法でフッ素樹脂溶液(A)を得る溶液調製工程を含むことを特徴とする請求項22~28いずれか一項に記載のフッ素樹脂粒子の製造方法。
  30. フッ素樹脂(A)が溶媒に溶解した溶液をろ過することにより異物を除去するろ過工程を有することを特徴とする請求項22~29いずれか一項に記載のフッ素樹脂粒子の製造方法。
  31. 前記フッ素樹脂が下記一般式(1)で表される残基単位を含むことを特徴とする請求項22~30いずれか一項に記載の含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子または炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状、分岐状または環状のパーフルオロアルキル基からなる群の1種を示す。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよい。)
PCT/JP2019/039698 2018-10-09 2019-10-08 フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法 WO2020075724A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/283,753 US20210380735A1 (en) 2018-10-09 2019-10-08 Fluororesin, method for producing same, and method for producing fluororesin particles
CN202310277404.4A CN116217762A (zh) 2018-10-09 2019-10-08 氟树脂及其制造方法以及氟树脂粒子的制造方法
CN202211324416.XA CN115677887B (zh) 2018-10-09 2019-10-08 氟树脂及其制造方法以及氟树脂粒子的制造方法
EP19871889.2A EP3865521A4 (en) 2018-10-09 2019-10-08 FLUORORESIN, PROCESS FOR PRODUCTION THEREOF AND PROCESS FOR PRODUCTION OF FLUORORESIN PARTICLES
CN201980066286.4A CN112805308A (zh) 2018-10-09 2019-10-08 氟树脂及其制造方法以及氟树脂粒子的制造方法
US18/406,542 US20240141081A1 (en) 2018-10-09 2024-01-08 Fluororesin, and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-190833 2018-10-09
JP2018190833A JP7225655B2 (ja) 2018-10-09 2018-10-09 含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法
JP2019-061860 2019-03-27
JP2019061860 2019-03-27
JP2019-183819 2019-10-04
JP2019183819A JP2020164781A (ja) 2019-03-27 2019-10-04 フッ素樹脂及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/283,753 A-371-Of-International US20210380735A1 (en) 2018-10-09 2019-10-08 Fluororesin, method for producing same, and method for producing fluororesin particles
US18/406,542 Division US20240141081A1 (en) 2018-10-09 2024-01-08 Fluororesin, and method for producing same

Publications (1)

Publication Number Publication Date
WO2020075724A1 true WO2020075724A1 (ja) 2020-04-16

Family

ID=70163976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039698 WO2020075724A1 (ja) 2018-10-09 2019-10-08 フッ素樹脂及びその製造方法並びにフッ素樹脂粒子の製造方法

Country Status (3)

Country Link
US (1) US20240141081A1 (ja)
CN (2) CN116217762A (ja)
WO (1) WO2020075724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053173A4 (en) * 2019-11-01 2023-12-20 Daikin Industries, Ltd. METHOD FOR PRODUCING A FLUORINE-CONTAINING POLYMER AND COMPOSITION THEREOF

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4329154B1 (ja) * 1966-04-28 1968-12-13
EP0773244A1 (en) 1994-07-22 1997-05-14 Daikin Industries, Ltd. Fine powder of molten high-molecular-weight fluororesin, molded article thereof, and process for producing both
JPH09512854A (ja) * 1994-05-09 1997-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー パーハロ−2,2−ジ−低級アルキル−1,3−ジオキソールとパーフルオロ−2−メチレン−4−メチル−1,3−ジオキソランのコポリマー類
JP2007504125A (ja) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料
WO2008075545A1 (ja) * 2006-12-20 2008-06-26 Asahi Glass Company, Limited 含フッ素化合物および含フッ素重合体
EP2738603A1 (en) 2011-07-29 2014-06-04 Asahi Glass Company, Limited Pellicle for lithography, photomask fitted with pellicle and exposure method
WO2014156996A1 (ja) 2013-03-27 2014-10-02 旭硝子株式会社 末端基変換方法および末端安定化方法
EP3239215A1 (en) 2014-12-25 2017-11-01 Asahi Glass Company, Limited Method for manufacturing fluorine-containing polymer particles
EP3582278A1 (en) 2017-02-08 2019-12-18 National University Corporation Yamagata University Composition, organic optoelectronic device, and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234209A (ja) * 2010-09-03 2013-11-21 Asahi Glass Co Ltd フッ素樹脂オルガノゾルの製造方法、フッ素樹脂オルガノゾルおよびコーティング用組成物
CN112771086B (zh) * 2018-09-28 2023-09-26 东曹株式会社 氟树脂、氟树脂粒子及它们的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4329154B1 (ja) * 1966-04-28 1968-12-13
JPH09512854A (ja) * 1994-05-09 1997-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー パーハロ−2,2−ジ−低級アルキル−1,3−ジオキソールとパーフルオロ−2−メチレン−4−メチル−1,3−ジオキソランのコポリマー類
EP0773244A1 (en) 1994-07-22 1997-05-14 Daikin Industries, Ltd. Fine powder of molten high-molecular-weight fluororesin, molded article thereof, and process for producing both
JP2007504125A (ja) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料
WO2008075545A1 (ja) * 2006-12-20 2008-06-26 Asahi Glass Company, Limited 含フッ素化合物および含フッ素重合体
EP2738603A1 (en) 2011-07-29 2014-06-04 Asahi Glass Company, Limited Pellicle for lithography, photomask fitted with pellicle and exposure method
WO2014156996A1 (ja) 2013-03-27 2014-10-02 旭硝子株式会社 末端基変換方法および末端安定化方法
EP3239215A1 (en) 2014-12-25 2017-11-01 Asahi Glass Company, Limited Method for manufacturing fluorine-containing polymer particles
EP3582278A1 (en) 2017-02-08 2019-12-18 National University Corporation Yamagata University Composition, organic optoelectronic device, and method for producing same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FRANTISEK MIKES, YU YANG, IWAO TERAOKA, TAKAAKI ISHIGURE, YASUHIRO KOIKE, YOSHIYUKI OKAMOTO: "Synthesis and Characterization of an Amorphous Perfluoropolymer: Poly(perfluoro-2-methylene-4-methyl-1,3-dioxolane)", MACROMOLECULES, vol. 38, no. 10, 1 May 2005 (2005-05-01), US , pages 4237 - 4245, XP055702867, ISSN: 0024-9297, DOI: 10.1021/ma050085u
KAGAKU SOCHI, CHEMICAL APPARATUSES, August 1995 (1995-08-01), pages 71 - 79
LIU ET AL.: "Free-radical polymerization of dioxolane and dioxane derivatives: effect of fluorine substituents on the ring opening polymerization", J. POLYMER SCIENCE, vol. 42, 8 September 2004 (2004-09-08), pages 5180 - 5188, XP002315310, DOI: 10.1002/pola.20309 *
MACROMOLECULES, vol. 38, 2005, pages 4237 - 4245
MIKES ET AL.: "Characterization and properties of semicrystalline and amorphous perfluoropolymer: poly(perfluoro-2-methylene-1, 3-dioxolane", POLYMER ADVANCED TECHNOLOGIES, vol. 22, 2 May 2011 (2011-05-02), pages 1272 - 1277, XP055702872 *
MIKES ET AL.: "Synthesis and characterization of an amorphous perfluoropolymer: poly(perfluoro-2- methylene-4-methyl-1, 3-dioxolane", MACROMOLECULES, vol. 38, 21 April 2005 (2005-04-21), pages 4237 - 4245, XP055702867 *
OKAMOTO, Y. MIKES, F. YANG, Y. KOIKE, Y.: "The effect of fluorine substituents on the polymerization mechanism of 2-methylene-1,3-dioxolane and properties of the polymer products", JOURNAL OF FLUORINE CHEMISTRY, vol. 128, no. 3, 8 February 2007 (2007-02-08), NL , pages 202 - 206, XP005880378, ISSN: 0022-1139, DOI: 10.1016/j.jfluchem.2006.12.005
SHINKO PFAUDLER, TECHNICAL REPORT, vol. 28, no. 8, October 1984 (1984-10-01), pages 13 - 16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053173A4 (en) * 2019-11-01 2023-12-20 Daikin Industries, Ltd. METHOD FOR PRODUCING A FLUORINE-CONTAINING POLYMER AND COMPOSITION THEREOF

Also Published As

Publication number Publication date
CN115677887B (zh) 2024-03-08
CN115677887A (zh) 2023-02-03
CN116217762A (zh) 2023-06-06
US20240141081A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US20240076426A1 (en) Fluororesin, fluororesin particles, and methods for producing these
US20240141081A1 (en) Fluororesin, and method for producing same
EP3885372A1 (en) Production method of modified polytetrafluoroethylene and composition
EP3885406A1 (en) Composition and stretched body
JP7231868B2 (ja) 組成物およびその製造方法
JP2024054374A (ja) フッ素樹脂の製造方法
JP2020164781A (ja) フッ素樹脂及びその製造方法
JP2022179573A (ja) 含フッ素脂肪族環構造を含むフッ素樹脂粒子の製造方法
JP7339830B2 (ja) フッ素樹脂粒子およびその製造方法
CN112771086B (zh) 氟树脂、氟树脂粒子及它们的制造方法
EP3865521A1 (en) Fluororesin, method for producing same, and method for producing fluororesin particles
JP7478370B2 (ja) フッ素樹脂
WO2021193717A1 (ja) フッ素樹脂およびその製造方法
JP7295507B2 (ja) フッ素樹脂の製造方法
TW201609921A (zh) 氟聚合物組合物
JP7338169B2 (ja) フッ素樹脂の製造方法
JP2024023453A (ja) フッ素樹脂
JP2024023454A (ja) フッ素樹脂
JPS62106807A (ja) ポリクロロトリフルオロエチレン系多孔膜及びその製法
WO2022244784A1 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2021112232A1 (ja) 光学用樹脂組成物の製造方法及び光学用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019871889

Country of ref document: EP

Effective date: 20210510