WO2014148576A1 - 塩素化ポリオレフィン樹脂 - Google Patents
塩素化ポリオレフィン樹脂 Download PDFInfo
- Publication number
- WO2014148576A1 WO2014148576A1 PCT/JP2014/057608 JP2014057608W WO2014148576A1 WO 2014148576 A1 WO2014148576 A1 WO 2014148576A1 JP 2014057608 W JP2014057608 W JP 2014057608W WO 2014148576 A1 WO2014148576 A1 WO 2014148576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin resin
- chlorinated polyolefin
- peak area
- ink composition
- area ratio
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/18—Introducing halogen atoms or halogen-containing groups
- C08F8/20—Halogenation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/108—Hydrocarbon resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/06—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L23/28—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L23/30—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation
Definitions
- the present invention relates to a chlorinated polyolefin resin. Specifically, the present invention relates to a chlorinated polyolefin resin excellent in solubility in a solvent composition containing an alcohol solvent.
- Thermoplastic resins are used as products in various forms by forming them into a fixed shape such as a spherical shape, a cylindrical shape, a box shape, etc. as well as a flat shape such as a sheet and a film by utilizing the property of being deformed by heat.
- the thermoplastic resin is basically transparent, relatively soft, and easily damaged, printing and painting are performed on the surface for the purpose of protecting or improving the appearance.
- Thermoplastic resins include polar resins and nonpolar resins.
- nonpolar resins polyolefin resins such as polypropylene and polyethylene are widely used in recent years because they are inexpensive and have many excellent properties such as moldability, chemical resistance, water resistance, electrical properties, and safety.
- polyolefin resins are nonpolar and have crystallinity, and thus have a problem that inks, paints, or adhesives are difficult to adhere. It was.
- an object of the present invention is to provide a chlorinated polyolefin resin that has good adhesion to a polyolefin resin and excellent solubility in a solvent composition containing an alcohol solvent.
- the present invention provides the following [1] to [8].
- [1] In infrared spectroscopic spectrum measurement, the peak area ratio A / B ⁇ 100 is 10% or more, the peak area ratio C / B ⁇ 100 is 30 to 80%, and the peak area ratio A / C ⁇ 100 Is 30% or more (provided that A is a peak area derived from a hydroxyl group, B is a peak area derived from a methylene group, and C is a peak area derived from a carbonyl group).
- [2] The chlorinated polyolefin resin according to the above [1], wherein the chlorine content is 10 to 50% by weight.
- the chlorinated polyolefin resin of the present invention has at least a hydroxyl group, a carbonyl group and a methylene group. That is, the chlorinated polyolefin resin of the present invention has a peak area ratio A / B ⁇ 100 of 10% or more, a peak area ratio C / B ⁇ 100 of 30 to 80%, The area ratio A / C ⁇ 100 is 30% or more. More preferably, the peak area ratio A / B ⁇ 100 is 20% or more, the peak area ratio C / B ⁇ 100 is 40 to 70%, and the peak area ratio A / C ⁇ 100 is 40% or more.
- A is a peak area derived from a hydroxyl group, and is usually a peak area having a wavelength of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 .
- B is a peak area derived from a methylene group, and is usually a peak area having a wavelength of 1400 cm ⁇ 1 to 1500 cm ⁇ 1 .
- C is a peak area derived from a carbonyl group, and is usually a peak area having a wavelength of 1657 cm ⁇ 1 to 1845 cm ⁇ 1 .
- the peak area ratio A / B ⁇ 100 is 10% or more, preferably 20% or more.
- the upper limit of the peak area ratio A / B ⁇ 100 is usually 50% or less.
- the peak area ratio C / B ⁇ 100 is 30 to 80%.
- the lower limit is preferably 40% or more.
- the upper limit of the peak area ratio C / B ⁇ 100 is preferably 70% or less.
- the peak area ratio A / C ⁇ 100 is 30% or more.
- the lower limit of the peak area ratio A / C ⁇ 100 is preferably 40% or more.
- the upper limit of the peak area ratio A / C ⁇ 100 is not particularly limited, and may be 100% or more.
- the chlorinated polyolefin resin of the present invention exhibits an excellent effect is presumed as follows.
- the chlorinated polyolefin resin satisfies A / B ⁇ 100, C / B ⁇ 100, and A / C ⁇ 100 within the above range, more hydrogen bonds are formed between the alcohol solvent and the chlorinated polyolefin resin. Many are formed, thereby improving the affinity between the alcohol solvent and the chlorinated polyolefin resin. Therefore, the chlorinated polyolefin resin of the present invention has good solubility in a solvent composition containing a polar solvent such as alcohol.
- the chlorinated polyolefin resin of the present invention it is presumed that the hydroxyl group and methylene group are present in the carbon skeleton, and the carbonyl group is present at the end of the carbon skeleton.
- the production method of the chlorinated polyolefin resin of the present invention is not particularly limited, but the following production method can be exemplified.
- the first example is as follows. First, the polyolefin resin is dispersed or dissolved in water or a medium such as carbon tetrachloride or chloroform. Subsequently, at least one selected from air, oxygen, and ozone during or before or after the normal chlorination reaction in the temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays. Blow the above gas. Thereby, the chlorinated polyolefin resin which introduce
- the reaction temperature at the time of blowing gas for example, oxygen
- the molecular weight reduction (degradation) due to polymer chain breakage proceeds rapidly. Therefore, in the case of blowing a gas mainly for the purpose of degradation, which is conventionally known, the reaction temperature is preferably high.
- the peak area ratio A / C ⁇ 100 tends to increase.
- the second example is as follows. First, a polyolefin resin into which a hydroxyl group or a carbonyl group has been introduced is dispersed or dissolved in a medium such as water, carbon tetrachloride, or chloroform by heat degradation treatment or ultraviolet irradiation in air. Subsequently, gaseous chlorine is blown in a temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays. Thereby, the chlorinated polyolefin resin which introduce
- a medium such as water, carbon tetrachloride, or chloroform by heat degradation treatment or ultraviolet irradiation in air.
- gaseous chlorine is blown in a temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays.
- a chlorinated polyolefin resin into which a hydroxyl group and a carbonyl group have been introduced can be obtained by combining the above two methods.
- the amount of hydroxyl group and carbonyl group introduced into the chlorinated polyolefin resin can be controlled by appropriately adjusting conditions such as reaction temperature and reaction time.
- the polyolefin resin used as a raw material of the chlorinated polyolefin resin of the present invention is not particularly limited, but crystalline polypropylene, amorphous polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-propylene Examples include - ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, ethylene-vinyl acetate copolymers, and the like.
- the ethylene-propylene- ⁇ -olefin copolymer and the propylene- ⁇ -olefin copolymer are resins obtained by copolymerizing ethylene-propylene, propylene as main components and an ⁇ -olefin, respectively.
- the ⁇ -olefin component include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene and the like.
- the content of the propylene component is preferably 50 mol% or more from the viewpoint of adhesiveness to the polyolefin resin.
- the ethylene-vinyl acetate copolymer is a resin obtained by copolymerizing ethylene and a vinyl acetate monomer.
- the molar ratio of ethylene to vinyl acetate in the ethylene-vinyl acetate copolymer is not particularly limited, but the vinyl acetate component is preferably 5 to 45 mol% from the viewpoint of adhesion to polar substances and coating film strength. .
- the polyolefin resin used as a raw material for the chlorinated polyolefin resin of the present invention may be a single type or a combination of two or more types.
- the melting point of the polyolefin resin is preferably 100 to 180 ° C, more preferably 120 to 170 ° C.
- the chlorine content of the chlorinated polyolefin resin of the present invention is usually 10 to 50% by weight, preferably 15 to 40% by weight, more preferably 30 to 40% by weight, and further preferably 32 to 40% by weight. .
- the chlorine content is 10% by weight or more, sufficient solubility can be expressed in a composition containing an alcohol solvent.
- the chlorine content is 50% by weight or less, the adhesion to the polyolefin base material can be kept good.
- the chlorine content is a value measured according to JIS-K7229.
- alcohol solvents examples include ethanol, 1-propanol, 2-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and cyclohexanol.
- the weight average molecular weight of the chlorinated polyolefin resin of the present invention is not particularly limited, but is preferably 3,000 to 200,000.
- the weight average molecular weight is 3,000 or more, the cohesive strength of the resin and the adhesion to the substrate can be kept good.
- compatibility with other resins can be kept good.
- the weight average molecular weight of the chlorinated polyolefin resin of the present invention is a value based on a polystyrene resin measured by gel permeation chromatography (GPC).
- a stabilizer is usually added to the chlorinated polyolefin resin.
- An example of the stabilizer is an epoxy compound.
- the epoxy compound is not particularly limited, but an epoxy compound compatible with the chlorinated resin is preferable.
- Examples of the epoxy compound include compounds having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule.
- Epoxidized vegetable oil obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid such as peracetic acid (epoxidized soybean oil, epoxidized linseed oil, etc.)
- Epoxidized fatty acid esters obtained by epoxidizing unsaturated fatty acids such as oleic acid, tall oil fatty acid, soybean oil fatty acid; epoxidized alicyclic compounds such as epoxidized tetrahydrophthalate; condensation of bisphenol A or polyhydric alcohol and epichlorohydrin
- ethers such as bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether; and butyl glycidyl ether Mono-epoxy compounds represented by 2-ethylhex
- Examples of the stabilizer include stabilizers used as stabilizers for polyvinyl chloride resins.
- Examples of the stabilizer include metal soaps such as calcium stearate and lead stearate, organometallic compounds such as dibutyltin dilaurate and dibutylmalate, and hydrotalcite compounds.
- One type of stabilizer may be used alone, or a combination of two or more types may be used.
- the addition amount is preferably 1 to 20% by weight (solid content conversion) with respect to the chlorinated polyolefin resin.
- the measurement of the infrared spectrum of the chlorinated polyolefin resin and the measurement of the peak area can be performed on the chlorinated polyolefin resin not containing a stabilizer. That is, the infrared spectrum and peak area of the chlorinated polyolefin resin in the present invention usually mean the infrared spectrum and peak area of the chlorinated polyolefin resin to which no stabilizer is added. For example, a chloroform solution of resin is applied to a KBr plate and dried, and an infrared absorption spectrum is measured with an infrared spectrophotometer, and the area of each peak can be analyzed.
- FT-IR-4100 As an infrared spectrophotometer, FT-IR-4100 (JASCO Corporation) can be used. The calculation of the peak area when using this apparatus can be performed by analysis with the attached software (Spectro Manager JASCO Corporation). On the spectrum chart where the horizontal axis is wave number (cm ⁇ 1 ) and the vertical axis is absorbance. The base line is drawn in the peak range derived from the target functional group, and the area surrounded by the base line and the spectrum curve can be set as the peak area.
- the chlorinated polyolefin resin of the present invention may be an acid-modified chlorinated polyolefin resin into which an ⁇ , ⁇ -unsaturated carboxylic acid and / or a derivative thereof is introduced.
- the ⁇ , ⁇ -unsaturated carboxylic acid and derivatives thereof include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, aconitic anhydride, and anhydrous Highmic acid, (meth) acrylic acid, (meth) acrylic acid ester and the like can be mentioned.
- the amount of ⁇ , ⁇ -unsaturated carboxylic acid and / or derivative thereof introduced is not particularly limited, but is preferably 0 to 20% by weight, more preferably 0 to 10% by weight based on 100% by weight of chlorinated polyolefin resin. .
- the chlorinated polyolefin resin of the present invention is useful as a component of an ink composition.
- the ink composition is preferably a gravure printing ink composition or a flexographic printing ink composition.
- the content of the chlorinated polyolefin resin in the ink composition for offset printing or the ink composition for flexographic printing is preferably 1 to 30% by weight.
- the ink composition preferably further contains an alcohol solvent from the viewpoint of the present invention.
- the ink composition contains an alcoholic solvent
- the content of the alcoholic solvent is usually about 1 to 30% by weight in the total solvent in the ink composition, but 50% by using the chlorinated polyolefin resin of the present invention. It can be contained up to about% by weight.
- the ink composition may contain components that the ink composition normally contains, if necessary.
- the ink composition for gravure printing of the present invention can be printed on various printed materials by a gravure printing method.
- the ink composition for flexographic printing of the present invention can be printed on various printed materials by the flexographic printing method.
- Examples of the substrate to be printed include paper and resin films.
- the gravure printing method and the flexographic printing method may be performed according to information.
- the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer (FT-IR-4100, manufactured by JASCO Corporation) measuring the infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by and, provided software (Spectro Manager, JASCO Corporation) results were analyzed by the area of the portion surrounded by the spectral curve and the baseline of 3265cm -1 ⁇ 3616cm -1 is derived from a hydroxyl group a, a methylene group the portion surrounded by the area of a portion surrounded by the spectral curve and the baseline is from 1400cm -1 ⁇ 1500cm -1 B, in a spectral curve of 1657cm -1 ⁇ 1845cm -1 is derived from the carbonyl group and the baseline When the area is C, A / B ⁇ 100 is 19% and C / B ⁇ 100 is 37%.
- FT-IR-4100 manufactured by JASCO Corporation
- KK) of the obtained chlorinated polyolefin resin was 10,000.
- the obtained chlorinated polyolefin resin had a chlorine content of 34.0%. Further, the obtained chlorinated polyolefin resin had a weight average molecular weight (Mw) of 10,000 calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC; HLC8320 GPC, manufactured by Tosoh Corporation).
- a chlorinated polyolefin resin was produced in the same manner as in Production Example 1 except that the oxygen blowing time during the chlorination reaction was changed.
- the reaction solution does not contain solidified before the stabilizer is coated and dried on a KBr board infrared spectrophotometer (FT-IR-4100 manufactured by JASCO Corporation) by infrared absorption of 400cm -1 ⁇ 4000cm -1 the spectrum was collected, as a result of the analysis by the same manner provided software (Spectro Manager JASCO Corporation), an area of 3265cm -1 ⁇ 3616cm -1 (peak derived from a hydroxyl group) a, 1400cm -1 ⁇ 1500cm -1
- B is the area (peak derived from methylene group)
- C is the area (peak derived from carbonyl group) from 1657 cm ⁇ 1 to 1845 cm ⁇ 1
- a / B ⁇ 100 is 22%
- C / B ⁇ 100 is 65%.
- the obtained chlorinated polyolefin resin had a chlorine content of 34.0%. Moreover, the weight average molecular weight (Mw) computed by the standard polystyrene conversion method using the gel permeation chromatography (GPC; HLC8320GPC, the Tosoh Corporation make) of the obtained chlorinated polyolefin composition was 10,000. .
- the obtained chlorinated polyolefin resin had a chlorine content of 34.0%.
- KK) of the obtained chlorinated polyolefin resin was 10,000.
- a chlorinated polyolefin resin was produced in the same manner as in Production Example 1 except that the oxygen blowing time during the chlorination reaction was changed.
- the reaction solution does not contain solidified before the stabilizer is coated and dried on a KBr board infrared spectrometer infrared 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) Absorption spectra were collected and similarly analyzed by the attached software (Spectro Manager, JASCO Corporation).
- the area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 peak derived from hydroxyl group
- the obtained chlorinated polyolefin composition had a chlorine content of 34.0%.
- KK) of the obtained chlorinated polyolefin resin was 10,000.
- the obtained chlorinated polyolefin resin had a chlorine content of 30.0%.
- KK) of the obtained chlorinated polyolefin resin was 10,000.
- the obtained chlorinated polyolefin composition had a chlorine content of 40.0%.
- KK) of the obtained chlorinated polyolefin resin was 10,000.
- the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) taken As a result of analysis using the attached software (Spectro Manager, JASCO Corporation), an area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 (peak derived from a hydroxyl group) was found to be an area of A, 1400 cm ⁇ 1 to 1500 cm ⁇ 1 (methylene).
- KK) of the obtained chlorinated polyolefin resin was 70,000.
- the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) taken Similarly, as a result of analysis using the attached software (Spectro Manager, JASCO Corporation), the area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 (peak derived from hydroxyl group) was A, and the area of 1400 cm ⁇ 1 to 1500 cm ⁇ 1 .
- the obtained chlorinated polyolefin resin had a chlorine content of 36.0%. Moreover, the weight average molecular weight (Mw) computed by the standard polystyrene conversion method using the gel permeation chromatography (GPC; HLC8320GPC, the Tosoh Corporation make) of the obtained chlorinated polyolefin resin was 30,000.
- Example 1 15 g of the chlorinated polyolefin resin (solid material) obtained in Production Example 1 was dissolved in 15 g of ethyl acetate to prepare a 50 wt% ethyl acetate solution, and 30 g of this solution was placed in a 100 mL glass sample bottle. To this was added 3 g of isopropyl alcohol (IPA), and after stirring sufficiently, the solution was allowed to stand for 1 hour or longer to confirm the state of the solution. Thereafter, isopropyl alcohol was added in an amount of 3 g, and the solution state was confirmed and evaluated in the same manner. All the above operations were performed in a room kept at 25 ° C.
- IPA isopropyl alcohol
- Example 2 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 2.
- Example 3 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 3.
- Example 4 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 4.
- Example 5 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 5.
- Example 6 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 6.
- Example 7 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
[1]赤外分光スペクトル測定において、ピーク面積比A/B×100が10%以上であり、ピーク面積比C/B×100が30~80%であり、かつピーク面積比A/C×100が30%以上である(但しAは水酸基由来のピーク面積であり、Bはメチレン基由来のピーク面積であり、Cはカルボニル基由来のピーク面積である。)塩素化ポリオレフィン樹脂。
[2]塩素含有率が10~50重量%である上記[1]に記載の塩素化ポリオレフィン樹脂。
[3]上記[1]又は[2]に記載の塩素化ポリオレフィン樹脂を含有するグラビア印刷用インキ組成物。
[4]上記[1]又は[2]に記載の塩素化ポリオレフィン樹脂を含有するフレキソ印刷用インキ組成物。
[5]上記[3]に記載のグラビア印刷用インキ組成物を使用したグラビア印刷法により得られる印刷物。
[6]上記[4]に記載のフレキソ印刷用インキ組成物を使用したフレキソ印刷法により得られる印刷物。
[7]上記[3]に記載のグラビア印刷用インキ組成物を用いるグラビア印刷法。
[8]上記[4]に記載のフレキソ印刷用インキ組成物を用いるフレキソ印刷法。
チーグラー・ナッタ触媒を重合触媒として製造した結晶性ポリプロピレン(融点:145℃)5.0kgをグラスライニングされた反応釜に投入し、33L(リットル、以下同)のクロロホルムを加え、0.2MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル5.0gを加え、上記釜内圧力を0.2MPaに制御しながら塩素化反応を行い、塩素含有率37.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを測定し、付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、水酸基由来である3265cm-1~3616cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をA、メチレン基由来である1400cm-1~1500cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をB、カルボニル基由来である1657cm-1~1845cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をCとしたときに、A/B×100が19%、C/B×100が37%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン樹脂をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が47%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂をゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100 日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager 日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が22%、C/B×100が65%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン組成物のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が26%、C/B×100が53%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が43%、C/B×100が41%であった。また、得られた塩素化ポリオレフィン組成物は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素ガスと酸素の吹き込み時間を各々変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が65%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率30.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
塩素ガスと酸素の吹き込み時間を各々変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が50%であった。また、得られた塩素化ポリオレフィン組成物は塩素含有率40.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
メタロセン触媒を重合触媒として製造した結晶性ポリプロピレン(融点125℃)3.0kgをグラスライニングされた反応釜に投入し、33Lのクロロホルムを加え、0.20MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル3.0gを加え、上記釜内圧力を0.20MPaに制御しながら塩素反応を行い、塩素含有率33.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が9%、C/B×100が5%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン組成物をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率30.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は70,000であった。
チーグラー・ナッタ触媒を重合触媒として製造した結晶性ポリプロピレン(融点145℃)2.0kgをグラスライニングされた反応釜に投入し、20Lのクロロホルムを加え、0.2MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル2.0gを加え、上記釜内圧力を0.2MPaに制御しながら塩素化反応を行い、塩素含有率37.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が18%、C/B×100が25%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン樹脂をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率36.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は30,000であった。
製造例1で得られた塩素化ポリオレフィン樹脂(固形物)15gを15gの酢酸エチルに溶解し50重量%酢酸エチル溶液とし、この溶液30gを100mL容ガラスサンプル瓶に取った。これにイソプロピルアルコール(IPA)を3g添加して十分に撹拌後、1時間以上静置し溶液の状態を確認した。以下、3gずつイソプロピルアルコールを添加し同様に溶液状態を確認、評価した。尚、上記全ての操作は25℃で保たれた室内で行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例2で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例3で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例4で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例5で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例6で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例7で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例8で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
製造例1で得られた塩素化ポリオレフィン樹脂を製造例9で得られた塩素化ポリオレフィン樹脂に変更した以外は、実施例1と同様に評価を行った。
Claims (8)
- 赤外分光スペクトル測定において、
ピーク面積比A/B×100が10%以上であり、
ピーク面積比C/B×100が30~80%であり、かつ
ピーク面積比A/C×100が30%以上である、
(但しAは水酸基由来のピーク面積であり、Bはメチレン基由来のピーク面積であり、Cはカルボニル基由来のピーク面積である。)
塩素化ポリオレフィン樹脂。 - 塩素含有率が10~50重量%である請求項1に記載の塩素化ポリオレフィン樹脂。
- 請求項1又は2に記載の塩素化ポリオレフィン樹脂を含有するグラビア印刷用インキ組成物。
- 請求項1又は2に記載の塩素化ポリオレフィン樹脂を含有するフレキソ印刷用インキ組成物。
- 請求項3に記載のグラビア印刷用インキ組成物を使用したグラビア印刷法により得られる印刷物。
- 請求項4に記載のフレキソ印刷用インキ組成物を使用したフレキソ印刷法により得られる印刷物。
- 請求項3に記載のグラビア印刷用インキ組成物を用いるグラビア印刷法。
- 請求項4に記載のフレキソ印刷用インキ組成物を用いるフレキソ印刷法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014538015A JP5703423B2 (ja) | 2013-03-22 | 2014-03-19 | 塩素化ポリオレフィン樹脂 |
KR1020157025794A KR101650295B1 (ko) | 2013-03-22 | 2014-03-19 | 염소화 폴리올레핀 수지 |
EP14768351.0A EP2975070B1 (en) | 2013-03-22 | 2014-03-19 | Chlorinated polyolefin resin |
CN201480017283.9A CN105263970B (zh) | 2013-03-22 | 2014-03-19 | 氯化聚烯烃树脂 |
US14/779,097 US9458267B2 (en) | 2013-03-22 | 2014-03-19 | Chlorinated polyolefin resin |
HK16102483.2A HK1214616A1 (zh) | 2013-03-22 | 2016-03-04 | 氯化聚烯烴樹脂 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013061052 | 2013-03-22 | ||
JP2013-061052 | 2013-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148576A1 true WO2014148576A1 (ja) | 2014-09-25 |
Family
ID=51580248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057608 WO2014148576A1 (ja) | 2013-03-22 | 2014-03-19 | 塩素化ポリオレフィン樹脂 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9458267B2 (ja) |
EP (1) | EP2975070B1 (ja) |
JP (1) | JP5703423B2 (ja) |
KR (1) | KR101650295B1 (ja) |
CN (1) | CN105263970B (ja) |
HK (1) | HK1214616A1 (ja) |
WO (1) | WO2014148576A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062182A1 (ja) * | 2016-09-28 | 2018-04-05 | 日本製紙株式会社 | 変性ポリオレフィン系樹脂 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102068689B1 (ko) | 2016-07-25 | 2020-01-23 | 정민호 | O2o와 사물인터넷을 결합한 나만의 가격 결정방법과 핀-코인 생성 시스템 및 핀테크 시스템 |
WO2019142749A1 (ja) * | 2018-01-16 | 2019-07-25 | 日本製紙株式会社 | 塩素化ポリオレフィン樹脂及びその用途 |
CN115232237B (zh) * | 2022-06-24 | 2023-11-03 | 瑞易德新材料股份有限公司 | 一种高氯低粘度的氯化聚丙烯的制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61174275A (ja) * | 1985-01-23 | 1986-08-05 | ミネソタ マイニング アンド マニユフアクチユアリング コンパニー | フレキソ印刷用インキ組成物 |
JPH01301703A (ja) * | 1988-05-31 | 1989-12-05 | Sanyo Kokusaku Pulp Co Ltd | 新規なヒドロキシル基含有塩素化ポリオレフィンおよびその製法と組成物 |
JPH05271590A (ja) * | 1992-03-30 | 1993-10-19 | Nippon Paper Ind Co Ltd | インキ用組成物 |
JPH05271323A (ja) * | 1992-03-27 | 1993-10-19 | Nippon Paper Ind Co Ltd | 酸化変性塩素化ポリオレフィンの架橋方法及びその用途 |
JPH07258335A (ja) * | 1994-03-22 | 1995-10-09 | Nippon Paper Ind Co Ltd | インキ用組成物 |
JPH11323236A (ja) | 1998-05-22 | 1999-11-26 | Nippon Paper Industries Co Ltd | 印刷インキ用樹脂組成物及びその製造方法 |
JP2002317137A (ja) * | 2001-02-16 | 2002-10-31 | Nippon Paper Industries Co Ltd | 印刷インキ用樹脂組成物およびその製造方法 |
JP2005132991A (ja) * | 2003-10-31 | 2005-05-26 | Tonen Chem Corp | 塩素化ポリプロピレンおよび変性塩素化ポリプロピレン |
WO2013121871A1 (ja) * | 2012-02-17 | 2013-08-22 | 東洋紡株式会社 | 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310816A (en) * | 1987-09-28 | 1994-05-10 | The Dow Chemical Company | Oxidation of halogenated polymers and anticaking halogenated polymers |
CN1036017A (zh) * | 1988-03-23 | 1989-10-04 | 王利生 | 由废塑料制备含氧氯化聚烯烃的方法 |
JP2790621B2 (ja) | 1996-03-21 | 1998-08-27 | 日本製紙株式会社 | バインダー樹脂組成物 |
JP4168228B2 (ja) * | 2001-06-29 | 2008-10-22 | 東洋化成工業株式会社 | 低温流動性が良好なバインダー樹脂溶液組成物 |
CA2478301C (en) | 2002-03-05 | 2009-07-07 | Kenichi Fujino | Aqueous dispersion, process for producing the same, and use |
CN100562528C (zh) * | 2002-09-18 | 2009-11-25 | 昭和电工株式会社 | 氯化聚烯烃及其生产方法 |
CN101333266B (zh) * | 2008-07-25 | 2010-09-15 | 北京化工大学 | 非均相混合溶剂法制备氯化聚丙烯的方法 |
-
2014
- 2014-03-19 KR KR1020157025794A patent/KR101650295B1/ko active IP Right Grant
- 2014-03-19 CN CN201480017283.9A patent/CN105263970B/zh active Active
- 2014-03-19 EP EP14768351.0A patent/EP2975070B1/en active Active
- 2014-03-19 US US14/779,097 patent/US9458267B2/en active Active
- 2014-03-19 WO PCT/JP2014/057608 patent/WO2014148576A1/ja active Application Filing
- 2014-03-19 JP JP2014538015A patent/JP5703423B2/ja active Active
-
2016
- 2016-03-04 HK HK16102483.2A patent/HK1214616A1/zh not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61174275A (ja) * | 1985-01-23 | 1986-08-05 | ミネソタ マイニング アンド マニユフアクチユアリング コンパニー | フレキソ印刷用インキ組成物 |
JPH01301703A (ja) * | 1988-05-31 | 1989-12-05 | Sanyo Kokusaku Pulp Co Ltd | 新規なヒドロキシル基含有塩素化ポリオレフィンおよびその製法と組成物 |
JPH05271323A (ja) * | 1992-03-27 | 1993-10-19 | Nippon Paper Ind Co Ltd | 酸化変性塩素化ポリオレフィンの架橋方法及びその用途 |
JPH05271590A (ja) * | 1992-03-30 | 1993-10-19 | Nippon Paper Ind Co Ltd | インキ用組成物 |
JPH07258335A (ja) * | 1994-03-22 | 1995-10-09 | Nippon Paper Ind Co Ltd | インキ用組成物 |
JPH11323236A (ja) | 1998-05-22 | 1999-11-26 | Nippon Paper Industries Co Ltd | 印刷インキ用樹脂組成物及びその製造方法 |
JP2002317137A (ja) * | 2001-02-16 | 2002-10-31 | Nippon Paper Industries Co Ltd | 印刷インキ用樹脂組成物およびその製造方法 |
JP2005132991A (ja) * | 2003-10-31 | 2005-05-26 | Tonen Chem Corp | 塩素化ポリプロピレンおよび変性塩素化ポリプロピレン |
WO2013121871A1 (ja) * | 2012-02-17 | 2013-08-22 | 東洋紡株式会社 | 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2975070A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062182A1 (ja) * | 2016-09-28 | 2018-04-05 | 日本製紙株式会社 | 変性ポリオレフィン系樹脂 |
JPWO2018062182A1 (ja) * | 2016-09-28 | 2019-07-11 | 日本製紙株式会社 | 変性ポリオレフィン系樹脂 |
US11046844B2 (en) | 2016-09-28 | 2021-06-29 | Nippon Paper Industries Co., Ltd. | Modified polyolefin resin |
Also Published As
Publication number | Publication date |
---|---|
CN105263970A (zh) | 2016-01-20 |
EP2975070A1 (en) | 2016-01-20 |
CN105263970B (zh) | 2017-05-31 |
EP2975070A4 (en) | 2016-03-02 |
HK1214616A1 (zh) | 2016-07-29 |
KR20150119422A (ko) | 2015-10-23 |
JPWO2014148576A1 (ja) | 2017-02-16 |
KR101650295B1 (ko) | 2016-08-23 |
JP5703423B2 (ja) | 2015-04-22 |
EP2975070B1 (en) | 2017-05-17 |
US20160046741A1 (en) | 2016-02-18 |
US9458267B2 (en) | 2016-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5703423B2 (ja) | 塩素化ポリオレフィン樹脂 | |
JP5484642B2 (ja) | 塩素化ポリオレフィン系樹脂組成物 | |
US10800890B2 (en) | Aqueous resin dispersion, paint, adhesive, and laminate | |
US6586525B1 (en) | Binder resin for polyolefin resin, process for producing the same, and uses thereof | |
WO2020022251A1 (ja) | 塩素化ポリオレフィン樹脂及びその製造方法 | |
CN110023356B (zh) | 改性聚烯烃系树脂 | |
KR100656110B1 (ko) | 결합제 수지 조성물, 이의 제조방법 및 이의 용도 | |
WO2018128111A1 (ja) | 変性ポリオレフィン系樹脂 | |
KR100328378B1 (ko) | 안정성이뛰어난염소화폴리올레핀조성물 | |
JP6166564B2 (ja) | 塩素化ポリオレフィン樹脂組成物 | |
JP3318925B2 (ja) | バインダー樹脂組成物及びその製造方法と用途 | |
JP3898636B2 (ja) | バインダー樹脂組成物と製造方法及びその用途 | |
JP6780314B2 (ja) | 低温衝撃性が良好な樹脂組成物 | |
JP2002317137A (ja) | 印刷インキ用樹脂組成物およびその製造方法 | |
JP2001114961A (ja) | バインダー樹脂組成物及びその製造方法 | |
JP3965697B2 (ja) | 耐溶剤性良好な塩素化ポリオレフィン系バインダー樹脂組成物 | |
JP2001064396A (ja) | ポリオレフィン系樹脂用コーティング樹脂組成物 | |
WO2000042103A1 (fr) | Composition de resine liante et son procede de production | |
JP2015209450A (ja) | 塩素化ポリオレフィン樹脂組成物 | |
JP2015067719A (ja) | 塩素化ポリオレフィン樹脂組成物 | |
WO2020213528A1 (ja) | 変性ポリオレフィン樹脂組成物 | |
WO2013121871A1 (ja) | 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法 | |
JP2000119591A (ja) | ポリオレフィン系樹脂用プライマー組成物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480017283.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014538015 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768351 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157025794 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14779097 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014768351 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014768351 Country of ref document: EP |