WO2014148576A1 - 塩素化ポリオレフィン樹脂 - Google Patents

塩素化ポリオレフィン樹脂 Download PDF

Info

Publication number
WO2014148576A1
WO2014148576A1 PCT/JP2014/057608 JP2014057608W WO2014148576A1 WO 2014148576 A1 WO2014148576 A1 WO 2014148576A1 JP 2014057608 W JP2014057608 W JP 2014057608W WO 2014148576 A1 WO2014148576 A1 WO 2014148576A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
chlorinated polyolefin
peak area
ink composition
area ratio
Prior art date
Application number
PCT/JP2014/057608
Other languages
English (en)
French (fr)
Inventor
小野 勇
悠 北村
貴夫 吉元
雅規 田中
関口 俊司
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2014538015A priority Critical patent/JP5703423B2/ja
Priority to KR1020157025794A priority patent/KR101650295B1/ko
Priority to EP14768351.0A priority patent/EP2975070B1/en
Priority to CN201480017283.9A priority patent/CN105263970B/zh
Priority to US14/779,097 priority patent/US9458267B2/en
Publication of WO2014148576A1 publication Critical patent/WO2014148576A1/ja
Priority to HK16102483.2A priority patent/HK1214616A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/108Hydrocarbon resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/30Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation

Definitions

  • the present invention relates to a chlorinated polyolefin resin. Specifically, the present invention relates to a chlorinated polyolefin resin excellent in solubility in a solvent composition containing an alcohol solvent.
  • Thermoplastic resins are used as products in various forms by forming them into a fixed shape such as a spherical shape, a cylindrical shape, a box shape, etc. as well as a flat shape such as a sheet and a film by utilizing the property of being deformed by heat.
  • the thermoplastic resin is basically transparent, relatively soft, and easily damaged, printing and painting are performed on the surface for the purpose of protecting or improving the appearance.
  • Thermoplastic resins include polar resins and nonpolar resins.
  • nonpolar resins polyolefin resins such as polypropylene and polyethylene are widely used in recent years because they are inexpensive and have many excellent properties such as moldability, chemical resistance, water resistance, electrical properties, and safety.
  • polyolefin resins are nonpolar and have crystallinity, and thus have a problem that inks, paints, or adhesives are difficult to adhere. It was.
  • an object of the present invention is to provide a chlorinated polyolefin resin that has good adhesion to a polyolefin resin and excellent solubility in a solvent composition containing an alcohol solvent.
  • the present invention provides the following [1] to [8].
  • [1] In infrared spectroscopic spectrum measurement, the peak area ratio A / B ⁇ 100 is 10% or more, the peak area ratio C / B ⁇ 100 is 30 to 80%, and the peak area ratio A / C ⁇ 100 Is 30% or more (provided that A is a peak area derived from a hydroxyl group, B is a peak area derived from a methylene group, and C is a peak area derived from a carbonyl group).
  • [2] The chlorinated polyolefin resin according to the above [1], wherein the chlorine content is 10 to 50% by weight.
  • the chlorinated polyolefin resin of the present invention has at least a hydroxyl group, a carbonyl group and a methylene group. That is, the chlorinated polyolefin resin of the present invention has a peak area ratio A / B ⁇ 100 of 10% or more, a peak area ratio C / B ⁇ 100 of 30 to 80%, The area ratio A / C ⁇ 100 is 30% or more. More preferably, the peak area ratio A / B ⁇ 100 is 20% or more, the peak area ratio C / B ⁇ 100 is 40 to 70%, and the peak area ratio A / C ⁇ 100 is 40% or more.
  • A is a peak area derived from a hydroxyl group, and is usually a peak area having a wavelength of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 .
  • B is a peak area derived from a methylene group, and is usually a peak area having a wavelength of 1400 cm ⁇ 1 to 1500 cm ⁇ 1 .
  • C is a peak area derived from a carbonyl group, and is usually a peak area having a wavelength of 1657 cm ⁇ 1 to 1845 cm ⁇ 1 .
  • the peak area ratio A / B ⁇ 100 is 10% or more, preferably 20% or more.
  • the upper limit of the peak area ratio A / B ⁇ 100 is usually 50% or less.
  • the peak area ratio C / B ⁇ 100 is 30 to 80%.
  • the lower limit is preferably 40% or more.
  • the upper limit of the peak area ratio C / B ⁇ 100 is preferably 70% or less.
  • the peak area ratio A / C ⁇ 100 is 30% or more.
  • the lower limit of the peak area ratio A / C ⁇ 100 is preferably 40% or more.
  • the upper limit of the peak area ratio A / C ⁇ 100 is not particularly limited, and may be 100% or more.
  • the chlorinated polyolefin resin of the present invention exhibits an excellent effect is presumed as follows.
  • the chlorinated polyolefin resin satisfies A / B ⁇ 100, C / B ⁇ 100, and A / C ⁇ 100 within the above range, more hydrogen bonds are formed between the alcohol solvent and the chlorinated polyolefin resin. Many are formed, thereby improving the affinity between the alcohol solvent and the chlorinated polyolefin resin. Therefore, the chlorinated polyolefin resin of the present invention has good solubility in a solvent composition containing a polar solvent such as alcohol.
  • the chlorinated polyolefin resin of the present invention it is presumed that the hydroxyl group and methylene group are present in the carbon skeleton, and the carbonyl group is present at the end of the carbon skeleton.
  • the production method of the chlorinated polyolefin resin of the present invention is not particularly limited, but the following production method can be exemplified.
  • the first example is as follows. First, the polyolefin resin is dispersed or dissolved in water or a medium such as carbon tetrachloride or chloroform. Subsequently, at least one selected from air, oxygen, and ozone during or before or after the normal chlorination reaction in the temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays. Blow the above gas. Thereby, the chlorinated polyolefin resin which introduce
  • the reaction temperature at the time of blowing gas for example, oxygen
  • the molecular weight reduction (degradation) due to polymer chain breakage proceeds rapidly. Therefore, in the case of blowing a gas mainly for the purpose of degradation, which is conventionally known, the reaction temperature is preferably high.
  • the peak area ratio A / C ⁇ 100 tends to increase.
  • the second example is as follows. First, a polyolefin resin into which a hydroxyl group or a carbonyl group has been introduced is dispersed or dissolved in a medium such as water, carbon tetrachloride, or chloroform by heat degradation treatment or ultraviolet irradiation in air. Subsequently, gaseous chlorine is blown in a temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays. Thereby, the chlorinated polyolefin resin which introduce
  • a medium such as water, carbon tetrachloride, or chloroform by heat degradation treatment or ultraviolet irradiation in air.
  • gaseous chlorine is blown in a temperature range of 50 to 120 ° C. under pressure or normal pressure in the presence of a catalyst or under irradiation with ultraviolet rays.
  • a chlorinated polyolefin resin into which a hydroxyl group and a carbonyl group have been introduced can be obtained by combining the above two methods.
  • the amount of hydroxyl group and carbonyl group introduced into the chlorinated polyolefin resin can be controlled by appropriately adjusting conditions such as reaction temperature and reaction time.
  • the polyolefin resin used as a raw material of the chlorinated polyolefin resin of the present invention is not particularly limited, but crystalline polypropylene, amorphous polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-propylene Examples include - ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, ethylene-vinyl acetate copolymers, and the like.
  • the ethylene-propylene- ⁇ -olefin copolymer and the propylene- ⁇ -olefin copolymer are resins obtained by copolymerizing ethylene-propylene, propylene as main components and an ⁇ -olefin, respectively.
  • the ⁇ -olefin component include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene and the like.
  • the content of the propylene component is preferably 50 mol% or more from the viewpoint of adhesiveness to the polyolefin resin.
  • the ethylene-vinyl acetate copolymer is a resin obtained by copolymerizing ethylene and a vinyl acetate monomer.
  • the molar ratio of ethylene to vinyl acetate in the ethylene-vinyl acetate copolymer is not particularly limited, but the vinyl acetate component is preferably 5 to 45 mol% from the viewpoint of adhesion to polar substances and coating film strength. .
  • the polyolefin resin used as a raw material for the chlorinated polyolefin resin of the present invention may be a single type or a combination of two or more types.
  • the melting point of the polyolefin resin is preferably 100 to 180 ° C, more preferably 120 to 170 ° C.
  • the chlorine content of the chlorinated polyolefin resin of the present invention is usually 10 to 50% by weight, preferably 15 to 40% by weight, more preferably 30 to 40% by weight, and further preferably 32 to 40% by weight. .
  • the chlorine content is 10% by weight or more, sufficient solubility can be expressed in a composition containing an alcohol solvent.
  • the chlorine content is 50% by weight or less, the adhesion to the polyolefin base material can be kept good.
  • the chlorine content is a value measured according to JIS-K7229.
  • alcohol solvents examples include ethanol, 1-propanol, 2-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and cyclohexanol.
  • the weight average molecular weight of the chlorinated polyolefin resin of the present invention is not particularly limited, but is preferably 3,000 to 200,000.
  • the weight average molecular weight is 3,000 or more, the cohesive strength of the resin and the adhesion to the substrate can be kept good.
  • compatibility with other resins can be kept good.
  • the weight average molecular weight of the chlorinated polyolefin resin of the present invention is a value based on a polystyrene resin measured by gel permeation chromatography (GPC).
  • a stabilizer is usually added to the chlorinated polyolefin resin.
  • An example of the stabilizer is an epoxy compound.
  • the epoxy compound is not particularly limited, but an epoxy compound compatible with the chlorinated resin is preferable.
  • Examples of the epoxy compound include compounds having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule.
  • Epoxidized vegetable oil obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid such as peracetic acid (epoxidized soybean oil, epoxidized linseed oil, etc.)
  • Epoxidized fatty acid esters obtained by epoxidizing unsaturated fatty acids such as oleic acid, tall oil fatty acid, soybean oil fatty acid; epoxidized alicyclic compounds such as epoxidized tetrahydrophthalate; condensation of bisphenol A or polyhydric alcohol and epichlorohydrin
  • ethers such as bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether; and butyl glycidyl ether Mono-epoxy compounds represented by 2-ethylhex
  • Examples of the stabilizer include stabilizers used as stabilizers for polyvinyl chloride resins.
  • Examples of the stabilizer include metal soaps such as calcium stearate and lead stearate, organometallic compounds such as dibutyltin dilaurate and dibutylmalate, and hydrotalcite compounds.
  • One type of stabilizer may be used alone, or a combination of two or more types may be used.
  • the addition amount is preferably 1 to 20% by weight (solid content conversion) with respect to the chlorinated polyolefin resin.
  • the measurement of the infrared spectrum of the chlorinated polyolefin resin and the measurement of the peak area can be performed on the chlorinated polyolefin resin not containing a stabilizer. That is, the infrared spectrum and peak area of the chlorinated polyolefin resin in the present invention usually mean the infrared spectrum and peak area of the chlorinated polyolefin resin to which no stabilizer is added. For example, a chloroform solution of resin is applied to a KBr plate and dried, and an infrared absorption spectrum is measured with an infrared spectrophotometer, and the area of each peak can be analyzed.
  • FT-IR-4100 As an infrared spectrophotometer, FT-IR-4100 (JASCO Corporation) can be used. The calculation of the peak area when using this apparatus can be performed by analysis with the attached software (Spectro Manager JASCO Corporation). On the spectrum chart where the horizontal axis is wave number (cm ⁇ 1 ) and the vertical axis is absorbance. The base line is drawn in the peak range derived from the target functional group, and the area surrounded by the base line and the spectrum curve can be set as the peak area.
  • the chlorinated polyolefin resin of the present invention may be an acid-modified chlorinated polyolefin resin into which an ⁇ , ⁇ -unsaturated carboxylic acid and / or a derivative thereof is introduced.
  • the ⁇ , ⁇ -unsaturated carboxylic acid and derivatives thereof include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, aconitic anhydride, and anhydrous Highmic acid, (meth) acrylic acid, (meth) acrylic acid ester and the like can be mentioned.
  • the amount of ⁇ , ⁇ -unsaturated carboxylic acid and / or derivative thereof introduced is not particularly limited, but is preferably 0 to 20% by weight, more preferably 0 to 10% by weight based on 100% by weight of chlorinated polyolefin resin. .
  • the chlorinated polyolefin resin of the present invention is useful as a component of an ink composition.
  • the ink composition is preferably a gravure printing ink composition or a flexographic printing ink composition.
  • the content of the chlorinated polyolefin resin in the ink composition for offset printing or the ink composition for flexographic printing is preferably 1 to 30% by weight.
  • the ink composition preferably further contains an alcohol solvent from the viewpoint of the present invention.
  • the ink composition contains an alcoholic solvent
  • the content of the alcoholic solvent is usually about 1 to 30% by weight in the total solvent in the ink composition, but 50% by using the chlorinated polyolefin resin of the present invention. It can be contained up to about% by weight.
  • the ink composition may contain components that the ink composition normally contains, if necessary.
  • the ink composition for gravure printing of the present invention can be printed on various printed materials by a gravure printing method.
  • the ink composition for flexographic printing of the present invention can be printed on various printed materials by the flexographic printing method.
  • Examples of the substrate to be printed include paper and resin films.
  • the gravure printing method and the flexographic printing method may be performed according to information.
  • the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer (FT-IR-4100, manufactured by JASCO Corporation) measuring the infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by and, provided software (Spectro Manager, JASCO Corporation) results were analyzed by the area of the portion surrounded by the spectral curve and the baseline of 3265cm -1 ⁇ 3616cm -1 is derived from a hydroxyl group a, a methylene group the portion surrounded by the area of a portion surrounded by the spectral curve and the baseline is from 1400cm -1 ⁇ 1500cm -1 B, in a spectral curve of 1657cm -1 ⁇ 1845cm -1 is derived from the carbonyl group and the baseline When the area is C, A / B ⁇ 100 is 19% and C / B ⁇ 100 is 37%.
  • FT-IR-4100 manufactured by JASCO Corporation
  • KK) of the obtained chlorinated polyolefin resin was 10,000.
  • the obtained chlorinated polyolefin resin had a chlorine content of 34.0%. Further, the obtained chlorinated polyolefin resin had a weight average molecular weight (Mw) of 10,000 calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC; HLC8320 GPC, manufactured by Tosoh Corporation).
  • a chlorinated polyolefin resin was produced in the same manner as in Production Example 1 except that the oxygen blowing time during the chlorination reaction was changed.
  • the reaction solution does not contain solidified before the stabilizer is coated and dried on a KBr board infrared spectrophotometer (FT-IR-4100 manufactured by JASCO Corporation) by infrared absorption of 400cm -1 ⁇ 4000cm -1 the spectrum was collected, as a result of the analysis by the same manner provided software (Spectro Manager JASCO Corporation), an area of 3265cm -1 ⁇ 3616cm -1 (peak derived from a hydroxyl group) a, 1400cm -1 ⁇ 1500cm -1
  • B is the area (peak derived from methylene group)
  • C is the area (peak derived from carbonyl group) from 1657 cm ⁇ 1 to 1845 cm ⁇ 1
  • a / B ⁇ 100 is 22%
  • C / B ⁇ 100 is 65%.
  • the obtained chlorinated polyolefin resin had a chlorine content of 34.0%. Moreover, the weight average molecular weight (Mw) computed by the standard polystyrene conversion method using the gel permeation chromatography (GPC; HLC8320GPC, the Tosoh Corporation make) of the obtained chlorinated polyolefin composition was 10,000. .
  • the obtained chlorinated polyolefin resin had a chlorine content of 34.0%.
  • KK) of the obtained chlorinated polyolefin resin was 10,000.
  • a chlorinated polyolefin resin was produced in the same manner as in Production Example 1 except that the oxygen blowing time during the chlorination reaction was changed.
  • the reaction solution does not contain solidified before the stabilizer is coated and dried on a KBr board infrared spectrometer infrared 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) Absorption spectra were collected and similarly analyzed by the attached software (Spectro Manager, JASCO Corporation).
  • the area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 peak derived from hydroxyl group
  • the obtained chlorinated polyolefin composition had a chlorine content of 34.0%.
  • KK) of the obtained chlorinated polyolefin resin was 10,000.
  • the obtained chlorinated polyolefin resin had a chlorine content of 30.0%.
  • KK) of the obtained chlorinated polyolefin resin was 10,000.
  • the obtained chlorinated polyolefin composition had a chlorine content of 40.0%.
  • KK) of the obtained chlorinated polyolefin resin was 10,000.
  • the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) taken As a result of analysis using the attached software (Spectro Manager, JASCO Corporation), an area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 (peak derived from a hydroxyl group) was found to be an area of A, 1400 cm ⁇ 1 to 1500 cm ⁇ 1 (methylene).
  • KK) of the obtained chlorinated polyolefin resin was 70,000.
  • the resultant reaction liquid was coated and dried on a KBr board infrared spectrophotometer infrared absorption spectrum of 400cm -1 ⁇ 4000cm -1 by (FT-IR-4100, manufactured by JASCO Corporation) taken Similarly, as a result of analysis using the attached software (Spectro Manager, JASCO Corporation), the area of 3265 cm ⁇ 1 to 3616 cm ⁇ 1 (peak derived from hydroxyl group) was A, and the area of 1400 cm ⁇ 1 to 1500 cm ⁇ 1 .
  • the obtained chlorinated polyolefin resin had a chlorine content of 36.0%. Moreover, the weight average molecular weight (Mw) computed by the standard polystyrene conversion method using the gel permeation chromatography (GPC; HLC8320GPC, the Tosoh Corporation make) of the obtained chlorinated polyolefin resin was 30,000.
  • Example 1 15 g of the chlorinated polyolefin resin (solid material) obtained in Production Example 1 was dissolved in 15 g of ethyl acetate to prepare a 50 wt% ethyl acetate solution, and 30 g of this solution was placed in a 100 mL glass sample bottle. To this was added 3 g of isopropyl alcohol (IPA), and after stirring sufficiently, the solution was allowed to stand for 1 hour or longer to confirm the state of the solution. Thereafter, isopropyl alcohol was added in an amount of 3 g, and the solution state was confirmed and evaluated in the same manner. All the above operations were performed in a room kept at 25 ° C.
  • IPA isopropyl alcohol
  • Example 2 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 2.
  • Example 3 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 3.
  • Example 4 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 4.
  • Example 5 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 5.
  • Example 6 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 6.
  • Example 7 Evaluation was performed in the same manner as in Example 1 except that the chlorinated polyolefin resin obtained in Production Example 1 was changed to the chlorinated polyolefin resin obtained in Production Example 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

 本発明は、ポリオレフィン樹脂への付着性が良好であるとともに、アルコール系溶剤を含む組成物への溶解性に優れた塩素化ポリオレフィン樹脂を提供することを目的とする。本発明は、赤外分光スペクトル測定において、ピーク面積比A/B×100が10%以上であり、ピーク面積比C/B×100が30~80%であり、かつピーク面積比A/C×100が30%以上である(但しAは水酸基由来のピーク面積であり、Bはメチレン基由来のピーク面積であり、Cはカルボニル基由来のピーク面積である。)塩素化ポリオレフィン樹脂、該塩素化ポリオレフィン樹脂を含有するグラビア印刷用又はフレキソ印刷用インキ組成物、前記組成物を使用して得られる印刷物及び前記組成物を用いる印刷法を提供する。

Description

塩素化ポリオレフィン樹脂
 本発明は、塩素化ポリオレフィン樹脂に関する。詳細にはアルコール系溶剤を含む溶剤組成物への溶解性に優れた塩素化ポリオレフィン樹脂に関する。
 熱可塑性樹脂は、熱により変形する性質を利用して、シート、フィルムなど平面形状のみならず、球状、円筒状、箱状など一定の形状に成形して各種形態の商品として利用されている。しかし、熱可塑性樹脂は基本的に透明で、比較的柔らかく、傷が付きやすいので、保護又は美観の改善を目的として、その表面に印刷及び塗装が行われる。
 熱可塑性樹脂には、極性を有する樹脂と非極性の樹脂とがある。非極性樹脂の中でも、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂は、安価で成形性、耐薬品性、耐水性、電気特性、安全性など多くの優れた性質を有するため、近年広く採用されている。
 しかし、ポリオレフィン系樹脂は、アクリル系樹脂、ポリエステル系樹脂等の極性樹脂とは異なり、非極性でかつ結晶性を有しているため、インキ、塗料、あるいは接着剤などが付着し難い問題があった。
 付着性に関する上記の問題を改善する方法としては、インキ、塗料、あるいは接着剤などにポリオレフィン系樹脂を含ませる方法が提案されている。なお、塩素化ポリオレフィン樹脂は、芳香族以外の溶剤への溶解性が低いため、通常、トルエン等の芳香族溶剤に溶解して使用されることが一般的であった。
 しかしながら、近年、環境問題の観点から、塗装現場及び印刷現場においてトルエン等の芳香族溶剤を含有しない溶剤を用いた塩素化ポリオレフィン樹脂組成物が要求されるようになっている。この要求に対しては、塩素化ポリオレフィン樹脂に対して酸化処理することで、あるいは塩素化ポリオレフィン樹脂にアクリル系単量体を反応させグラフト共重合体とすることで、樹脂の極性を高め、エステル系溶剤、ケトン系溶剤などの非芳香族系溶剤への溶解性を向上させることが提案されている(特許文献1参照)。
特開平11-323236号公報
 しかしながら、近年、特にポリオレフィン系樹脂フィルムに対するグラビア印刷用インキあるいはフレキソ印刷用インキには、エステル系溶剤及びケトン系溶剤よりも更に高極性なアルコール系溶剤を併用することが増加してきている。特許文献1に開示されているような酸化処理塩素化ポリオレフィン樹脂はアルコール系溶剤を含む溶剤組成物への溶解性が不十分であり、改善が求められている。
 そこで、本発明は、ポリオレフィン樹脂への付着性が良好であるとともに、アルコール系溶剤を含む溶剤組成物への溶解性に優れた塩素化ポリオレフィン樹脂を提供することを目的とする。
 本発明は、以下の[1]~[8]を提供する。
[1]赤外分光スペクトル測定において、ピーク面積比A/B×100が10%以上であり、ピーク面積比C/B×100が30~80%であり、かつピーク面積比A/C×100が30%以上である(但しAは水酸基由来のピーク面積であり、Bはメチレン基由来のピーク面積であり、Cはカルボニル基由来のピーク面積である。)塩素化ポリオレフィン樹脂。
[2]塩素含有率が10~50重量%である上記[1]に記載の塩素化ポリオレフィン樹脂。
[3]上記[1]又は[2]に記載の塩素化ポリオレフィン樹脂を含有するグラビア印刷用インキ組成物。
[4]上記[1]又は[2]に記載の塩素化ポリオレフィン樹脂を含有するフレキソ印刷用インキ組成物。
[5]上記[3]に記載のグラビア印刷用インキ組成物を使用したグラビア印刷法により得られる印刷物。
[6]上記[4]に記載のフレキソ印刷用インキ組成物を使用したフレキソ印刷法により得られる印刷物。
[7]上記[3]に記載のグラビア印刷用インキ組成物を用いるグラビア印刷法。
[8]上記[4]に記載のフレキソ印刷用インキ組成物を用いるフレキソ印刷法。
 本発明によれば、ポリオレフィン樹脂への付着性が良好であるとともに、アルコール系溶剤を含む溶剤組成物への溶解性に優れた塩素化ポリオレフィン樹脂を提供することができる。
 本発明の塩素化ポリオレフィン樹脂は、水酸基、カルボニル基及びメチレン基を少なくとも有する。すなわち、本発明の塩素化ポリオレフィン樹脂は、赤外分光スペクトル測定において、ピーク面積比A/B×100が10%以上であり、ピーク面積比C/B×100が30~80%であり、ピーク面積比A/C×100が30%以上である。更に好ましくは、ピーク面積比A/B×100が20%以上であり、ピーク面積比C/B×100が40~70%であり、ピーク面積比A/C×100が40%以上である。
 Aは水酸基由来のピーク面積であり、通常は波長3265cm-1~3616cm-1のピーク面積である。Bはメチレン基由来のピーク面積であり、通常は波長1400cm-1~1500cm-1のピーク面積である。Cはカルボニル基由来のピーク面積であり、通常は波長1657cm-1~1845cm-1のピーク面積である。
 ピーク面積比A/B×100は10%以上であり、20%以上であることが好ましい。ピーク面積比A/B×100の上限は、通常50%以下である。
 ピーク面積比C/B×100は30~80%である。下限は40%以上であることが好ましい。ピーク面積比C/B×100の上限は、70%以下であることが好ましい。
 ピーク面積比A/C×100は30%以上である。ピーク面積比A/C×100の下限は40%以上であることが好ましい。ピーク面積比A/C×100の上限は特になく、100%以上であってもよい。
 A/B×100、C/B×100かつA/C×100が上記値であることにより、アルコール系溶剤を含む溶剤組成物への溶解性が十分となる。また、C/B×100が上記値であることにより塩素化ポリオレフィン樹脂の脱塩酸に起因する弊害が防止される。
 本発明の塩素化ポリオレフィン樹脂が優れた効果を発現する理由は次のように推測される。塩素化ポリオレフィン樹脂がA/B×100、C/B×100及びA/C×100が上記の範囲を満たしていることにより、アルコール系溶剤と該塩素化ポリオレフィン樹脂との間に水素結合がより多く形成され、これによりアルコール系溶剤と塩素化ポリオレフィン樹脂の親和性が向上する。よって、本発明の塩素化ポリオレフィン樹脂はアルコール等の極性溶媒を含む溶剤組成物への溶解性が良好となる。なお、本発明の塩素化ポリオレフィン樹脂において、水酸基及びメチレン基は炭素骨格中、カルボニル基は炭素骨格末端に存在すると推定される。
 本発明の塩素化ポリオレフィン樹脂の製造方法は特に限定されないが、次のような製造方法を例示することができる。
 第1の例は、以下のとおりである。まず、ポリオレフィン樹脂を水又は四塩化炭素、クロロホルム等の媒体に分散又は溶解する。続いて、触媒の存在下あるいは紫外線の照射下において加圧又は常圧下に50~120℃の温度範囲で通常の塩素化反応中もしくはその前後に、空気、酸素並びにオゾンより選ばれた少なくとも1種類以上の気体を吹き込む。これにより水酸基及びカルボニル基を導入した塩素化ポリオレフィン樹脂を得ることができる。なお、気体(例えば、酸素)の吹き込み時の反応温度を高く設定すると高分子鎖の切断による分子量低下(減成)が速やかに進行する。従って、従来よりある主に減成を目的とした気体の吹き込みの場合には、反応温度が高めであることが好ましい。一方、反応温度を低く設定することにより、ピーク面積比A/C×100が増大する傾向がある。
 第2の例は、以下のとおりである。まず、熱減成処理、空気中での紫外線照射によって、水酸基、カルボニル基を導入したポリオレフィン樹脂を水又は四塩化炭素、クロロホルム等の媒体に分散又は溶解する。続いて、触媒の存在下あるいは紫外線の照射下において加圧又は常圧下に50~120℃の温度範囲でガス状の塩素を吹き込む。これにより水酸基及びカルボニル基を導入した塩素化ポリオレフィン樹脂を得ることができる。
 また、上記2つの方法を組み合わせることによっても水酸基及びカルボニル基を導入した塩素化ポリオレフィン樹脂を得ることができる。
 なお、塩素化ポリオレフィン樹脂への水酸基及びカルボニル基の導入量は、反応温度及び反応時間などの条件を適宜調整することでコントロールすることができる。
 本発明の塩素化ポリオレフィン樹脂の原料として使用されるポリオレフィン樹脂は、特に限定されないが、結晶性ポリプロピレン、非晶質ポリプロピレン、エチレン-プロピレン共重合物、エチレン-プロピレン-ジエン共重合物、エチレン-プロピレン-α-オレフィン共重合物、プロピレン-α-オレフィン共重合物、エチレン-酢酸ビニル共重合物などを例示することができる。
 エチレン-プロピレン-α-オレフィン共重合物、プロピレン-α-オレフィン共重合物は、それぞれ、主体としてのエチレン-プロピレン、プロピレンと、α-オレフィンとが共重合して得られる樹脂である。共重合物の形態に特に制限はなく、ブロック共重合物及びランダム共重合物などを例示することができる。α-オレフィン成分としては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテンなどを例示することができる。なお、プロピレン-α-オレフィン共重合物を原料として用いた場合、プロピレン成分の含有量は50モル%以上であることがポリオレフィン樹脂に対する接着性の点から好ましい。
 エチレン-酢酸ビニル共重合物は、エチレンと酢酸ビニルモノマーを共重合して得られる樹脂である。エチレン-酢酸ビニル共重合物のエチレンと酢酸ビニルとのモル比は特に限定されないが、酢酸ビニル成分が5~45モル%であることが、極性物質との接着性、塗膜強度の点から好ましい。
 本発明の塩素化ポリオレフィン樹脂の原料として使用されるポリオレフィン樹脂は、1種類単独であってもよいし、2種類以上の組み合わせであってもよい。また、ポリオレフィン樹脂の融点は、100~180℃であることが好ましく、120~170℃であることがより好ましい。
 本発明の塩素化ポリオレフィン樹脂の塩素含有率は、通常、10~50重量%であり、好ましくは15~40重量%、より好ましくは30~40重量%、更に好ましくは32~40重量%である。塩素含有率が10重量%以上であることによりアルコール系溶剤を含む組成物に対して十分な溶解性を発現することができる。一方、塩素含有率が50重量%以下であることによりポリオレフィン系基材との付着性を良好に保つことができる。塩素含有率はJIS-K7229に準じて測定した値である。アルコール系溶剤としてはエタノール、1-プロパノール、2-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール又はシクロヘキサノールを例示できる。
 本発明の塩素化ポリオレフィン樹脂の重量平均分子量は特に限定されないが、3,000~200,000であることが好ましい。重量平均分子量が3,000以上であることにより、樹脂の凝集力及び基材への付着性を良好に保つことができる。200,000以下であることにより他樹脂との相溶性を良好に保つことができる。
 尚、本発明の塩素化ポリオレフィン樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定されたポリスチレン樹脂を標準とした値である。
 塩素化ポリオレフィン樹脂には、通常、安定剤が添加される。安定剤としてはエポキシ化合物が例示される。エポキシ化合物は、特に限定されないが、塩素化樹脂と相溶するエポキシ化合物が好ましい。エポキシ化合物としては、エポキシ当量が100から500程度で、一分子当たり1個以上のエポキシ基を有する化合物が例示できる。エポキシ化合物としては例えば、以下の化合物が挙げられる:天然の不飽和基を有する植物油を、過酢酸などの過酸でエポキシ化して得られるエポキシ化植物油(エポキシ化大豆油、エポキシ化アマニ油など);オレイン酸、トール油脂肪酸、大豆油脂肪酸等の、不飽和脂肪酸をエポキシ化したエポキシ化脂肪酸エステル類;エポキシ化テトラヒドロフタレートなどのエポキシ化脂環化合物;ビスフェノールA又は多価アルコールとエピクロルヒドリンとを縮合して得られる、例えば、ビスフェノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等のエーテル類;及び、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表される、モノエポキシ化合物類。安定剤としては、ポリ塩化ビニル樹脂の安定剤として使用されている安定剤も例示される。該安定剤としては、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類、ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類、ハイドロタルサイト類化合物が挙げられる。安定剤は、1種単独でもよいし、2種以上の組み合わせであってもよい。安定剤を添加する場合の添加量は、塩素化ポリオレフィン樹脂に対し1~20重量%(固形分換算)であることが好ましい。
 本発明において塩素化ポリオレフィン樹脂の赤外分光スペクトルの測定及びピーク面積の測定は、安定剤を含まない塩素化ポリオレフィン樹脂に対して行うことができる。すなわち、本発明における塩素化ポリオレフィン樹脂の赤外分光スペクトル及びピーク面積は、通常、安定剤が添加されていない塩素化ポリオレフィン樹脂の赤外分光スペクトル及びピーク面積を意味する。例えば、樹脂のクロロホルム溶液をKBr板に塗布し乾燥させて赤外分光光度計によって赤外吸光スペクトルを測定し、各ピークの面積を解析して行うことができる。赤外分光光度計としてはFT-IR-4100(日本分光(株))を用いることができる。この装置を用いる場合のピーク面積の算出は、付属ソフトウェア(Spectro Manager 日本分光(株))による解析によることができ、横軸を波数(cm-1)、縦軸を吸光度としたスペクトルチャート上において、目的とする官能基由来のピーク範囲にベースラインを引き、そのベースラインとスペクトル曲線とで囲まれる面積をピーク面積とすることができる。
 本発明の塩素化ポリオレフィン樹脂は、α,β-不飽和カルボン酸及び/又はその誘導体が導入されている酸変性塩素化ポリオレフィン樹脂であってもよい。α,β-不飽和カルボン酸及びその誘導体としては、例えばマレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、無水アコニット酸、無水ハイミック酸、(メタ)アクリル酸、(メタ)アクリル酸エステルなどが挙げられる。α,β-不飽和カルボン酸及び/又はその誘導体の導入量は特に制限されないが、塩素化ポリオレフィン樹脂100重量%に対し0~20重量%が好ましく、0~10重量%であることがより好ましい。
 本発明の塩素化ポリオレフィン樹脂はインキ組成物の成分として有用である。インキ組成物は、グラビア印刷用インキ組成物又はフレキソ印刷用インキ組成物であることが好ましい。オフセット印刷用インキ組成物あるいはフレキソ印刷用インキ組成物における塩素化ポリオレフィン樹脂の含有量は、1~30重量%であることが好ましい。インキ組成物はアルコール系溶剤を更に含むことが、本発明の目的から見て好ましい。インキ組成物がアルコール系溶剤を含む場合、アルコール系溶剤の含有量は、通常、インキ組成物における全溶剤中1~30重量%程度であるが、本発明の塩素化ポリオレフィン樹脂を用いることにより50重量%程度まで含有することが可能である。インキ組成物は、塩素化ポリオレフィン樹脂及びアルコール系溶剤のほかに、必要に応じて、インキ組成物が通常含む成分を含んでいてもよい。
 本発明のグラビア印刷用インキ組成物は、グラビア印刷法により各種の被印刷体に印刷することができる。本発明のフレキソ印刷用インキ組成物は、フレキソ印刷法により各種の被印刷体に印刷することができる。被印刷体としては紙、樹脂フィルムなどが例示される。グラビア印刷法、フレキソ印刷法はそれぞれ情報に従って行えばよい。
<製造例1>
 チーグラー・ナッタ触媒を重合触媒として製造した結晶性ポリプロピレン(融点:145℃)5.0kgをグラスライニングされた反応釜に投入し、33L(リットル、以下同)のクロロホルムを加え、0.2MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル5.0gを加え、上記釜内圧力を0.2MPaに制御しながら塩素化反応を行い、塩素含有率37.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを測定し、付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、水酸基由来である3265cm-1~3616cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をA、メチレン基由来である1400cm-1~1500cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をB、カルボニル基由来である1657cm-1~1845cm-1のスペクトル曲線とベースラインとで囲まれる部分の面積をCとしたときに、A/B×100が19%、C/B×100が37%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン樹脂をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例2>
 塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が47%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂をゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例3>
 塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100 日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager 日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が22%、C/B×100が65%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン組成物のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例4>
 塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が26%、C/B×100が53%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例5>
 塩素化反応中の酸素の吹き込み時間を変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が43%、C/B×100が41%であった。また、得られた塩素化ポリオレフィン組成物は塩素含有率34.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例6>
 塩素ガスと酸素の吹き込み時間を各々変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が65%であった。また、得られた塩素化ポリオレフィン樹脂は塩素含有率30.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例7>
 塩素ガスと酸素の吹き込み時間を各々変更した以外は、製造例1と同様にして塩素化ポリオレフィン樹脂を製造した。固形化前の安定剤の入っていない反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が20%、C/B×100が50%であった。また、得られた塩素化ポリオレフィン組成物は塩素含有率40.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は10,000であった。
<製造例8>
 メタロセン触媒を重合触媒として製造した結晶性ポリプロピレン(融点125℃)3.0kgをグラスライニングされた反応釜に投入し、33Lのクロロホルムを加え、0.20MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル3.0gを加え、上記釜内圧力を0.20MPaに制御しながら塩素反応を行い、塩素含有率33.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が9%、C/B×100が5%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン組成物をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率30.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は70,000であった。
<製造例9>
 チーグラー・ナッタ触媒を重合触媒として製造した結晶性ポリプロピレン(融点145℃)2.0kgをグラスライニングされた反応釜に投入し、20Lのクロロホルムを加え、0.2MPaの圧力の下、温度97℃で充分に溶解させた後、2,2-アゾビスイソブチロニトリル2.0gを加え、上記釜内圧力を0.2MPaに制御しながら塩素化反応を行い、塩素含有率37.0重量%の反応液を得た。塩素化反応中、酸素の吹き込みを行った。ここで、得られた反応液をKBr板に塗布し乾燥させて赤外分光光度計(FT-IR-4100、日本分光(株))によって400cm-1~4000cm-1の赤外吸光スペクトルを採取し、同様に付属ソフトウェア(Spectro Manager、日本分光(株))によって解析を行った結果、3265cm-1~3616cm-1の面積(水酸基由来のピーク)をA、1400cm-1~1500cm-1の面積(メチレン基由来のピーク)をB、1657cm-1~1845cm-1の面積(カルボニル基由来のピーク)をCとしたときに、A/B×100が18%、C/B×100が25%であった。次に得られた反応液にエポキシ化合物を安定剤として加え、反応溶媒を減圧留去するためのベント口を設置したベント付2軸押出機でクロロホルムを除去し、塩素化ポリオレフィン樹脂をストランド状に押出して水で冷却した。その後、水冷式ペレタイザーでペレット化し、塩素化ポリオレフィン樹脂の固形物を得た。得られた塩素化ポリオレフィン樹脂は塩素含有率36.0%であった。また、得られた塩素化ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィー(GPC;HLC8320GPC、東ソー(株)製)を用いた標準ポリスチレン換算法により算出した重量平均分子量(Mw)は30,000であった。
(実施例1)
 製造例1で得られた塩素化ポリオレフィン樹脂(固形物)15gを15gの酢酸エチルに溶解し50重量%酢酸エチル溶液とし、この溶液30gを100mL容ガラスサンプル瓶に取った。これにイソプロピルアルコール(IPA)を3g添加して十分に撹拌後、1時間以上静置し溶液の状態を確認した。以下、3gずつイソプロピルアルコールを添加し同様に溶液状態を確認、評価した。尚、上記全ての操作は25℃で保たれた室内で行った。
(実施例2)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例2で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(実施例3)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例3で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(実施例4)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例4で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(実施例5)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例5で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(実施例6)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例6で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(実施例7)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例7で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(比較例1)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例8で得られた塩素化ポリオレフィン樹脂に変更した以外は実施例1と同様に評価を行った。
(比較例2)
 製造例1で得られた塩素化ポリオレフィン樹脂を製造例9で得られた塩素化ポリオレフィン樹脂に変更した以外は、実施例1と同様に評価を行った。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  赤外分光スペクトル測定において、
     ピーク面積比A/B×100が10%以上であり、
     ピーク面積比C/B×100が30~80%であり、かつ
     ピーク面積比A/C×100が30%以上である、
     (但しAは水酸基由来のピーク面積であり、Bはメチレン基由来のピーク面積であり、Cはカルボニル基由来のピーク面積である。)
     塩素化ポリオレフィン樹脂。
  2.  塩素含有率が10~50重量%である請求項1に記載の塩素化ポリオレフィン樹脂。
  3.  請求項1又は2に記載の塩素化ポリオレフィン樹脂を含有するグラビア印刷用インキ組成物。
  4.  請求項1又は2に記載の塩素化ポリオレフィン樹脂を含有するフレキソ印刷用インキ組成物。
  5.  請求項3に記載のグラビア印刷用インキ組成物を使用したグラビア印刷法により得られる印刷物。
  6.  請求項4に記載のフレキソ印刷用インキ組成物を使用したフレキソ印刷法により得られる印刷物。
  7.  請求項3に記載のグラビア印刷用インキ組成物を用いるグラビア印刷法。
  8.  請求項4に記載のフレキソ印刷用インキ組成物を用いるフレキソ印刷法。
PCT/JP2014/057608 2013-03-22 2014-03-19 塩素化ポリオレフィン樹脂 WO2014148576A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014538015A JP5703423B2 (ja) 2013-03-22 2014-03-19 塩素化ポリオレフィン樹脂
KR1020157025794A KR101650295B1 (ko) 2013-03-22 2014-03-19 염소화 폴리올레핀 수지
EP14768351.0A EP2975070B1 (en) 2013-03-22 2014-03-19 Chlorinated polyolefin resin
CN201480017283.9A CN105263970B (zh) 2013-03-22 2014-03-19 氯化聚烯烃树脂
US14/779,097 US9458267B2 (en) 2013-03-22 2014-03-19 Chlorinated polyolefin resin
HK16102483.2A HK1214616A1 (zh) 2013-03-22 2016-03-04 氯化聚烯烴樹脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013061052 2013-03-22
JP2013-061052 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148576A1 true WO2014148576A1 (ja) 2014-09-25

Family

ID=51580248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057608 WO2014148576A1 (ja) 2013-03-22 2014-03-19 塩素化ポリオレフィン樹脂

Country Status (7)

Country Link
US (1) US9458267B2 (ja)
EP (1) EP2975070B1 (ja)
JP (1) JP5703423B2 (ja)
KR (1) KR101650295B1 (ja)
CN (1) CN105263970B (ja)
HK (1) HK1214616A1 (ja)
WO (1) WO2014148576A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062182A1 (ja) * 2016-09-28 2018-04-05 日本製紙株式会社 変性ポリオレフィン系樹脂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068689B1 (ko) 2016-07-25 2020-01-23 정민호 O2o와 사물인터넷을 결합한 나만의 가격 결정방법과 핀-코인 생성 시스템 및 핀테크 시스템
WO2019142749A1 (ja) * 2018-01-16 2019-07-25 日本製紙株式会社 塩素化ポリオレフィン樹脂及びその用途
CN115232237B (zh) * 2022-06-24 2023-11-03 瑞易德新材料股份有限公司 一种高氯低粘度的氯化聚丙烯的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174275A (ja) * 1985-01-23 1986-08-05 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー フレキソ印刷用インキ組成物
JPH01301703A (ja) * 1988-05-31 1989-12-05 Sanyo Kokusaku Pulp Co Ltd 新規なヒドロキシル基含有塩素化ポリオレフィンおよびその製法と組成物
JPH05271590A (ja) * 1992-03-30 1993-10-19 Nippon Paper Ind Co Ltd インキ用組成物
JPH05271323A (ja) * 1992-03-27 1993-10-19 Nippon Paper Ind Co Ltd 酸化変性塩素化ポリオレフィンの架橋方法及びその用途
JPH07258335A (ja) * 1994-03-22 1995-10-09 Nippon Paper Ind Co Ltd インキ用組成物
JPH11323236A (ja) 1998-05-22 1999-11-26 Nippon Paper Industries Co Ltd 印刷インキ用樹脂組成物及びその製造方法
JP2002317137A (ja) * 2001-02-16 2002-10-31 Nippon Paper Industries Co Ltd 印刷インキ用樹脂組成物およびその製造方法
JP2005132991A (ja) * 2003-10-31 2005-05-26 Tonen Chem Corp 塩素化ポリプロピレンおよび変性塩素化ポリプロピレン
WO2013121871A1 (ja) * 2012-02-17 2013-08-22 東洋紡株式会社 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310816A (en) * 1987-09-28 1994-05-10 The Dow Chemical Company Oxidation of halogenated polymers and anticaking halogenated polymers
CN1036017A (zh) * 1988-03-23 1989-10-04 王利生 由废塑料制备含氧氯化聚烯烃的方法
JP2790621B2 (ja) 1996-03-21 1998-08-27 日本製紙株式会社 バインダー樹脂組成物
JP4168228B2 (ja) * 2001-06-29 2008-10-22 東洋化成工業株式会社 低温流動性が良好なバインダー樹脂溶液組成物
CA2478301C (en) 2002-03-05 2009-07-07 Kenichi Fujino Aqueous dispersion, process for producing the same, and use
CN100562528C (zh) * 2002-09-18 2009-11-25 昭和电工株式会社 氯化聚烯烃及其生产方法
CN101333266B (zh) * 2008-07-25 2010-09-15 北京化工大学 非均相混合溶剂法制备氯化聚丙烯的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174275A (ja) * 1985-01-23 1986-08-05 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー フレキソ印刷用インキ組成物
JPH01301703A (ja) * 1988-05-31 1989-12-05 Sanyo Kokusaku Pulp Co Ltd 新規なヒドロキシル基含有塩素化ポリオレフィンおよびその製法と組成物
JPH05271323A (ja) * 1992-03-27 1993-10-19 Nippon Paper Ind Co Ltd 酸化変性塩素化ポリオレフィンの架橋方法及びその用途
JPH05271590A (ja) * 1992-03-30 1993-10-19 Nippon Paper Ind Co Ltd インキ用組成物
JPH07258335A (ja) * 1994-03-22 1995-10-09 Nippon Paper Ind Co Ltd インキ用組成物
JPH11323236A (ja) 1998-05-22 1999-11-26 Nippon Paper Industries Co Ltd 印刷インキ用樹脂組成物及びその製造方法
JP2002317137A (ja) * 2001-02-16 2002-10-31 Nippon Paper Industries Co Ltd 印刷インキ用樹脂組成物およびその製造方法
JP2005132991A (ja) * 2003-10-31 2005-05-26 Tonen Chem Corp 塩素化ポリプロピレンおよび変性塩素化ポリプロピレン
WO2013121871A1 (ja) * 2012-02-17 2013-08-22 東洋紡株式会社 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975070A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062182A1 (ja) * 2016-09-28 2018-04-05 日本製紙株式会社 変性ポリオレフィン系樹脂
JPWO2018062182A1 (ja) * 2016-09-28 2019-07-11 日本製紙株式会社 変性ポリオレフィン系樹脂
US11046844B2 (en) 2016-09-28 2021-06-29 Nippon Paper Industries Co., Ltd. Modified polyolefin resin

Also Published As

Publication number Publication date
CN105263970A (zh) 2016-01-20
EP2975070A1 (en) 2016-01-20
CN105263970B (zh) 2017-05-31
EP2975070A4 (en) 2016-03-02
HK1214616A1 (zh) 2016-07-29
KR20150119422A (ko) 2015-10-23
JPWO2014148576A1 (ja) 2017-02-16
KR101650295B1 (ko) 2016-08-23
JP5703423B2 (ja) 2015-04-22
EP2975070B1 (en) 2017-05-17
US20160046741A1 (en) 2016-02-18
US9458267B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
JP5703423B2 (ja) 塩素化ポリオレフィン樹脂
JP5484642B2 (ja) 塩素化ポリオレフィン系樹脂組成物
US10800890B2 (en) Aqueous resin dispersion, paint, adhesive, and laminate
US6586525B1 (en) Binder resin for polyolefin resin, process for producing the same, and uses thereof
WO2020022251A1 (ja) 塩素化ポリオレフィン樹脂及びその製造方法
CN110023356B (zh) 改性聚烯烃系树脂
KR100656110B1 (ko) 결합제 수지 조성물, 이의 제조방법 및 이의 용도
WO2018128111A1 (ja) 変性ポリオレフィン系樹脂
KR100328378B1 (ko) 안정성이뛰어난염소화폴리올레핀조성물
JP6166564B2 (ja) 塩素化ポリオレフィン樹脂組成物
JP3318925B2 (ja) バインダー樹脂組成物及びその製造方法と用途
JP3898636B2 (ja) バインダー樹脂組成物と製造方法及びその用途
JP6780314B2 (ja) 低温衝撃性が良好な樹脂組成物
JP2002317137A (ja) 印刷インキ用樹脂組成物およびその製造方法
JP2001114961A (ja) バインダー樹脂組成物及びその製造方法
JP3965697B2 (ja) 耐溶剤性良好な塩素化ポリオレフィン系バインダー樹脂組成物
JP2001064396A (ja) ポリオレフィン系樹脂用コーティング樹脂組成物
WO2000042103A1 (fr) Composition de resine liante et son procede de production
JP2015209450A (ja) 塩素化ポリオレフィン樹脂組成物
JP2015067719A (ja) 塩素化ポリオレフィン樹脂組成物
WO2020213528A1 (ja) 変性ポリオレフィン樹脂組成物
WO2013121871A1 (ja) 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法
JP2000119591A (ja) ポリオレフィン系樹脂用プライマー組成物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017283.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014538015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025794

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14779097

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014768351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014768351

Country of ref document: EP