WO2020022251A1 - 塩素化ポリオレフィン樹脂及びその製造方法 - Google Patents

塩素化ポリオレフィン樹脂及びその製造方法 Download PDF

Info

Publication number
WO2020022251A1
WO2020022251A1 PCT/JP2019/028616 JP2019028616W WO2020022251A1 WO 2020022251 A1 WO2020022251 A1 WO 2020022251A1 JP 2019028616 W JP2019028616 W JP 2019028616W WO 2020022251 A1 WO2020022251 A1 WO 2020022251A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
acid
polyolefin resin
chlorinated
chlorinated polyolefin
Prior art date
Application number
PCT/JP2019/028616
Other languages
English (en)
French (fr)
Inventor
実 矢田
高本 直輔
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to CN201980049377.7A priority Critical patent/CN112437778B/zh
Priority to US17/261,698 priority patent/US11970603B2/en
Priority to JP2019563633A priority patent/JP6660517B1/ja
Publication of WO2020022251A1 publication Critical patent/WO2020022251A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/30Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a chlorinated polyolefin resin and a method for producing the same.
  • Chlorinated polyolefins are generally produced by dissolving a polyolefin in an organic solvent and then performing a chlorine addition reaction (for example, see Patent Document 1). During the chlorination reaction, the chlorination of the organic solvent also occurs, producing a large amount of by-products. For this reason, in this step, a chlorine-based solvent such as chloroform, which is particularly difficult to cause a chlorine addition reaction among organic solvents, is used. The chlorine-based solvent used in the chlorine addition reaction step is effectively removed and recovered from the chlorinated polyolefin by distillation under reduced pressure or the like. Therefore, the chlorinated polyolefin, which is a product, hardly contains a chlorinated solvent.
  • An object of the present invention is to provide a chlorinated polyolefin resin having excellent adhesiveness, which can be produced through a series of production steps without using a chlorine-based solvent and without producing by-products.
  • the present inventors have conducted intensive studies on the above problems and found that polyolefin A or an acid-modified product thereof having excellent fluidity, polyolefin B or an acid-modified product thereof having a relatively high molecular weight and capable of exhibiting cohesive force, and two or more polyolefins It has been found that the above problem can be solved by combining the above, and the present invention has been completed. That is, the present inventors provide the following [1] to [7]. [1] A raw material composition containing at least polyolefin A or an acid-modified product thereof having a fluidity of 40 ° C. or less and polyolefin B or an acid-modified product thereof having a melting point of more than 40 ° C. and 150 ° C.
  • the raw material composition contains at least the polyolefin A and an acid-modified polyolefin B, or contains at least the acid-modified polyolefin A and the acid-modified polyolefin B.
  • the chlorinated polyolefin resin according to any one of [1] to [3].
  • a resin composition containing the chlorinated polyolefin resin according to any one of [1] to [4] and an organic solvent.
  • the chlorinated polyolefin according to any one of [1] to [4] including a step of chlorinating the raw material composition containing at least the polyolefin A and the polyolefin B in the absence of an organic solvent. Method of manufacturing resin.
  • the chlorinated polyolefin resin of the present invention is a raw material composition comprising at least polyolefin A or an acid-modified product thereof having fluidity at 40 ° C. or lower, and a polyolefin B or an acid-modified product thereof having a melting point of more than 40 ° C. and 150 ° C. or less Is obtained by chlorination in the absence of an organic solvent. Further, its chlorine content is 1 to 45% by weight.
  • the chlorinated polyolefin resin of the present invention can be chlorinated in the absence of an organic solvent since the raw material composition before chlorination contains polyolefin A or an acid-modified product thereof.
  • chlorinated polyolefin resin of the present invention can be a chlorinated polyolefin resin that can be used for ink applications and the like because the raw material composition before chlorination contains polyolefin B or an acid-modified product thereof.
  • the chlorinated polyolefin resin of the present invention may be a chlorinated polyolefin resin obtained through an acid modification treatment (hereinafter, referred to as “acid-modified chlorinated polyolefin resin” for convenience).
  • acid-modified chlorinated polyolefin resin obtained through an acid modification treatment
  • the polarity of the obtained chlorinated polyolefin resin can be adjusted by the amount of acid modification (hereinafter also referred to as “graft weight”). Therefore, the chlorinated polyolefin resin of the present invention is applicable to deposits having various polarities.
  • the acid modification treatment may be performed on (1) polyolefin A and / or polyolefin B, and (2) a mixture of polyolefin A and polyolefin B before chlorination treatment (hereinafter, referred to as “polyolefin mixture” for convenience). Or (3) chlorinated polyolefin resin after chlorination treatment.
  • the acid modification treatment may be any one of the treatments (1) to (3), or may be a combination of (1) and (2) or a combination of (1) and (3). Among them, the acid modification treatment is preferably the treatment (1) or (2), that is, the treatment performed on the polyolefin B or the polyolefin mixture.
  • the raw material composition containing the polyolefin mixture that has been subjected to the acid modification treatment or the polyolefin B that has been subjected to the acid modification treatment is also referred to as “acid-modified raw material composition”.
  • acid modification treatment will be described.
  • the method of the acid modification treatment is not particularly limited and can be performed by a known method.
  • a solution method in which polyolefin B or a polyolefin mixture, an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof is heated and dissolved in a solvent such as toluene, and a radical generator is added;
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, aconitic anhydride, Examples include hymic anhydride, (meth) acrylic acid, and (meth) acrylate. Among them, maleic anhydride is preferred.
  • the ⁇ , ⁇ -unsaturated carboxylic acid or its derivative may be at least one compound selected from ⁇ , ⁇ -unsaturated carboxylic acid and its derivative, and may be at least one ⁇ , ⁇ -unsaturated carboxylic acid. And combinations of at least one derivative thereof, combinations of two or more ⁇ , ⁇ -unsaturated carboxylic acids, and combinations of two or more derivatives of ⁇ , ⁇ -unsaturated carboxylic acids.
  • the introduction amount (graft weight) of the ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof is preferably from 0.1 to 10% by weight, and preferably from 0.5 to 5% by weight, based on 100% by weight of the acid-modified raw material composition. % Is more preferred.
  • the graft weight is 0.1% by weight or more, the adhesiveness of the obtained acid-modified chlorinated polyolefin resin to a material such as a metal adherend can be maintained.
  • the graft weight is 10% by weight or less, the generation of unreacted products of the graft can be prevented, and sufficient adhesiveness to the resin adherend can be obtained.
  • the amount (graft weight) of the ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof is a value measured by an alkali titration method.
  • the radical generator can be appropriately selected from known radical generators.
  • organic peroxide compounds are preferable.
  • the amount of the radical generator to be added is preferably 1 to 100% by weight, preferably 10 to 100% by weight, based on the total (weight) of the amount of the ⁇ , ⁇ -unsaturated carboxylic acid or its derivative and the amount of the (meth) acrylate ester added. 50% by weight is more preferred.
  • the content is 1% by weight or more, sufficient graft efficiency can be maintained.
  • the content is 100% by weight or less, a decrease in the weight average molecular weight of the acid-modified raw material composition can be prevented.
  • the chlorinated polyolefin resin of the present invention is obtained by chlorinating the raw material composition. Thereby, the adhesion to the nonpolar resin base material and the compatibility with other components can be improved.
  • Examples of the chlorination method include a method in which chlorine gas is blown into the raw material composition to introduce chlorine atoms into the raw material composition.
  • a chlorinated solvent such as chloroform or methylene chloride or another organic solvent when blowing chlorine gas. This is because the raw material composition contains polyolefin A or its acid-modified product having fluidity at 40 ° C. or lower, so that polyolefin A or its acid-modified product dissolves chlorine gas, and polyolefin B or its acid-modified product and chlorine gas Can react.
  • Blowing of chlorine gas can be performed under irradiation of ultraviolet rays, and can be performed in the presence or absence of a radical reaction initiator.
  • the pressure at which chlorine gas is blown is not limited, and may be normal pressure or under pressure.
  • the temperature at which chlorine gas is blown is not particularly limited, but is usually 50 to 140 ° C.
  • the radical reaction initiator an organic peroxide compound or an azonitrile such as 2,2-azobisisobutyronitrile can be used. The details of the organic peroxide compound will be described later.
  • the chlorinated polyolefin resin of the present invention is obtained by introducing a chlorine atom into a polyolefin mixture or an acid modified product thereof, a mixture of an acid modified product of polyolefin A and polyolefin B, or a mixture of an acid modified product of polyolefin A and polyolefin B. Can be.
  • the chlorinated polyolefin resin of the present invention has a chlorine content of 1 to 45% by mass, preferably 10 to 45% by mass, and more preferably 20 to 45% by mass.
  • the polarity of the chlorinated polyolefin resin can be adjusted to a certain range. For this reason, compatibility with other resins in the coating material is improved, and sufficient adhesiveness to a non-polar substrate such as a polyolefin substrate can be obtained.
  • the chlorine content of the chlorinated polyolefin resin is a value measured based on JIS-K7229.
  • the chlorine content varies depending on the type of polyolefin resin, reaction scale, reaction equipment and other factors. Therefore, the adjustment of the chlorine content can be performed while monitoring the blowing amount and time of chlorine.
  • organic peroxide compound examples include di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide.
  • the radical generator may be a single type of radical generator or a combination of a plurality of types of radical generators.
  • the lower limit of the weight average molecular weight of the chlorinated polyolefin resin is preferably 5,000 or more, more preferably 7,000 or more, and even more preferably 8,000 or more. When the molecular weight is 5,000 or more, the resin has cohesive force and can exhibit adhesiveness to an adherend.
  • the upper limit is preferably 100,000 or less, more preferably 60,000 or less, and even more preferably 40,000 or less. When it is less than 100,000, it has compatibility with other resins and solubility in a solvent, and can be applied to paints and inks.
  • the weight average molecular weight of the chlorinated polyolefin resin is preferably from 5,000 to 100,000, more preferably from 7,000 to 60,000, even more preferably from 8,000 to 40,000.
  • the weight average molecular weight is a value determined from a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • Polyolefin A is a polyolefin having fluidity at 40 ° C. or lower. By including polyolefin A, the melt viscosity during the chlorination reaction can be reduced, and chlorination can be performed without using an organic solvent.
  • a polyolefin having a viscosity at 40 ° C. of 100,000 mPa ⁇ s or less is preferable, and a polyolefin of 60,000 mPa ⁇ s or less is more preferable.
  • the lower limit of the viscosity is not particularly limited, but is usually 100 mPa ⁇ s or more.
  • the viscosity at 40 ° C. is a value measured by a cone plate type viscometer (manufactured by BROOKFIELD, model: CAP200H).
  • the polyolefin A only needs to satisfy the above physical properties. Examples include ethylene-propylene copolymer, hydrogenated polybutadiene, ethylene-butene copolymer, ethylene-octene copolymer, propylene-butene copolymer, and ⁇ -olefin derivative. These may be commercially available products. Polyolefin A may be used alone or in combination of two or more.
  • Polyolefin B is a polyolefin having a melting point of more than 40 ° C. and 150 ° C. or less. By containing polyolefin B, a chlorinated polyolefin resin that can be used for ink applications and the like can be obtained.
  • the melting point is a value measured using a DSC measurement device (eg, “DISCOVERY DSC2500”, manufactured by TA Instruments Japan, Inc.) in accordance with JIS K7121 (1987). More specifically, about 5 mg of the sample is heated and melted at 200 ° C. for 10 minutes. The temperature is lowered at a rate of 10 ° C./min. Thereafter, it is a melting peak temperature when the temperature is raised to 200 ° C. at a rate of 10 ° C./min to be melted.
  • a DSC measurement device eg, “DISCOVERY DSC2500”, manufactured by TA Instruments Japan, Inc.
  • the polyolefin B is preferably a polyolefin having a weight average molecular weight of 8,000 or more and less than 250,000, more preferably a polyolefin of 8,000 or more and less than 200,000, and more preferably a polyolefin of 10,000 or more and less than 100,000. Is more preferred.
  • the weight average molecular weight is a value determined from a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • Polyolefin B should just satisfy the above-mentioned physical properties.
  • a polyolefin using a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst is preferable, and a polypropylene resin or propylene and an ⁇ -olefin (eg, ethylene, butene, -Methyl-1-butene, 3-methyl-1-heptene) is more preferable, and a propylene-based random copolymer using a metallocene catalyst as the polymerization catalyst is more preferable, and a metallocene catalyst as the polymerization catalyst
  • the resulting polyolefin has a narrow molecular weight distribution, excellent random copolymerizability, a narrow composition distribution, and a wide range of copolymerizable comonomers. These may be commercially available products.
  • the propylene-based random copolymer refers to polypropylene or a polyolefin obtained by random copolymerization of propylene and ⁇ -olefin, such as polypropylene, ethylene-propylene copolymer, propylene-butene copolymer, and ethylene.
  • ⁇ -olefin such as polypropylene, ethylene-propylene copolymer, propylene-butene copolymer, and ethylene.
  • -Propylene-diene copolymer and ethylene-propylene-butene copolymer ethylene-propylene-butene copolymer.
  • the (co) polymer constituting the polyolefin B may be a single type or a combination of a plurality of (co) polymers.
  • metallocene catalysts can be used.
  • a catalyst obtained by combining the following component (1) and component (2), and if necessary, component (3) may be mentioned.
  • the metallocene catalyst is preferably a catalyst obtained by combining the following components (1) and (2), and if necessary, component (3).
  • Component (1) a metallocene complex that is a transition metal compound belonging to Groups 4 to 6 of the periodic table having at least one conjugated five-membered ring ligand.
  • Component (2) ion-exchange layered silicate.
  • Component (3) an organoaluminum compound.
  • the structure of the polyolefin may be any of an isotactic structure, an atactic structure, a syndiotactic structure, and the like that can be taken by a general polymer compound.
  • an isotactic polyolefin which can be obtained when a metallocene catalyst is used, is preferable in consideration of the adhesion to a polyolefin substrate, particularly the adhesion at low-temperature drying.
  • the propylene constituent unit content is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more.
  • the adhesion (adhesion) to the polypropylene substrate may be better.
  • the propylene constituent unit content of the polyolefin may be a use ratio of a raw material or a value calculated by NMR analysis.
  • an acid-modified product obtained by subjecting the above-mentioned polyolefin B to acid modification may be used instead of polyolefin B.
  • the polarity of the chlorinated polyolefin resin can be adjusted by adjusting the graft weight. Therefore, the chlorinated polyolefin resin can be applied to deposits having various polarities.
  • the details of the acid modification treatment are as described above.
  • the ratio (A / B) of the polyolefin A or the acid-modified product thereof to the polyolefin B or the acid-modified product thereof in the raw material composition or the acid-modified raw material composition is not particularly limited, and is usually 10/90. 9090/10. If the polyolefin A or its acid-modified product is less than 10, and the polyolefin B or its acid-modified product is more than 90, the polyolefin B or its acid-modified product will not completely dissolve in the polyolefin A or its acid-modified product, and chlorination will occur. It may be uneven.
  • the obtained chlorinated polyolefin resin has insufficient cohesive force and has poor adhesion to the polyolefin base material. May not be obtained.
  • the melt viscosity at 80 ° C. of the chlorinated polyolefin resin is preferably less than 100,000 mPa ⁇ s, and more preferably less than 70,000 mPa ⁇ s.
  • the viscosity of the chlorinated polyolefin resin of the present invention is higher as the chlorine content is higher, and the viscosity increases in the reactor with the progress of chlorination. If the melt viscosity at 80 ° C. is 100,000 mPa ⁇ s or more, it will not flow at the end of the chlorination reaction, the shear by the stirrer will increase, the dehydrochlorination reaction proceeds, and the coloring of the chlorinated polyolefin resin will be remarkable.
  • the lower limit of the melt viscosity is preferably more than 1,000 mPa ⁇ s, more preferably 1,500 mPa ⁇ s or more, and still more preferably 1,800 mPa ⁇ s or more.
  • the melt viscosity is 1,000 mPa ⁇ s or less
  • a chlorinated polyolefin resin when used, physical properties such as a low molecular weight and a low melting point are relatively exhibited, which adversely affects the adhesiveness.
  • the melt viscosity at 80 ° C. can be measured with a cone plate type viscometer (manufactured by BROOKFIELD, model: CAP200H).
  • a chlorinated polypropylene resin obtained using a conventionally known chlorinated solvent does not melt sufficiently at 80 ° C. and does not show a melt viscosity.
  • the raw material composition may contain other optional components other than polyolefin A or its acid-modified product and polyolefin B or its acid-modified product.
  • Water is an example of the optional component, and in some cases, it is possible to prevent resin coloring during the chlorination reaction and to reduce the melt viscosity.
  • the resin composition of the present invention contains the chlorinated polyolefin resin described above and an organic solvent.
  • the resin composition of the present invention may contain a stabilizer in order to suppress the release of chlorine.
  • organic solvent examples include aromatic solvents such as toluene and xylene; alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; hydrocarbon solvents such as hexane, heptane and octane; acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Ketone solvents such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate and n-butyl acetate; and glycol solvents such as ethylene glycol, ethyl cellosolve and butyl cellosolve.
  • toluene, methylcyclohexane, ethyl acetate, propyl acetate, and butyl acetate are preferred.
  • the concentration of the resin composition may be appropriately selected depending on the application. However, if the concentration of the resin composition is too high or too low, the coating workability is impaired, so the content is preferably 15 to 70% by weight.
  • Epoxy compounds are preferred as stabilizers.
  • the epoxy compound is preferably compatible with the chlorinated polyolefin resin.
  • Examples of the epoxy compound include an epoxy compound having an epoxy equivalent of about 100 to 500 and containing one or more epoxy groups in one molecule. More specifically, the following compounds are mentioned.
  • Epoxidized soybean oil or epoxidized linseed oil obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid such as peracetic acid; epoxidation obtained by epoxidizing unsaturated fatty acids such as oleic acid, tall oil fatty acid, and soybean oil fatty acid Fatty acid esters; Epoxidized alicyclic compounds represented by epoxidized tetrahydrophthalate; Bisphenol A or polyhydric alcohol condensed with epichlorohydrin, for example, bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerol Polyglycidyl ether, sorbitol polyglycidyl ether; butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl
  • the aqueous dispersion of the present invention contains the chlorinated polyolefin resin described above and water.
  • the aqueous dispersion of the present invention may contain an amphiphilic solvent such as an emulsifier or butyl cellosolve for the purpose of improving dispersion stability.
  • the concentration of the aqueous dispersion may be appropriately selected depending on the application. However, if the concentration of the aqueous dispersion is too high or too low, the coating workability is impaired. Therefore, the solid concentration is preferably 15 to 50% by weight.
  • the pH of the aqueous dispersion is preferably 5 or more, more preferably 7 to 12.
  • the pH is 5 or more, sufficient neutralization is performed, and the modified polyolefin resin is prevented from dispersing in other components, or even if dispersed, sedimentation and separation are liable to occur over time, preventing storage stability from being deteriorated. I can do it.
  • the pH is 12 or less, compatibility with other components and operational safety can be ensured.
  • the viscosity of the aqueous dispersion at 25 ° C. measured by a B-type viscometer is preferably from 0.1 to 1000 mPa ⁇ s, more preferably from 1 to 700 mPa ⁇ s, still more preferably from 2 to 400 mPa ⁇ s.
  • the viscosity can be measured using a B-type viscometer and the rotation speed at 60 rpm using a # 1 or # 2 rotor.
  • the viscosity is measured using an aqueous dispersion having a solid content of 10 to 60% by mass.
  • the method for producing a chlorinated polyolefin resin of the present invention is a method comprising a step of chlorinating a raw material composition containing at least polyolefin A or an acid-modified product thereof and polyolefin B or an acid-modified product thereof in the absence of an organic solvent. is there.
  • the polyolefin A, the polyolefin B, the raw material composition, and the step of chlorination are as described above. “In the absence of an organic solvent” means that an organic solvent that is inevitably mixed is excluded.
  • the organic solvent unavoidably mixed is a trace amount of an organic solvent remaining after removing (for example, distilling off) polyolefin A, polyolefin B, a solvent at the time of acid treatment, and the like; an organic peroxide compound Organic solvents contained in organic peroxides; organic solvents generated by the decomposition of organic peroxides.
  • the present invention will be described in detail with reference to examples.
  • the following examples are provided for better illustration of the present invention and do not limit the present invention.
  • the measuring method of a physical property value etc. is the measuring method described above, unless otherwise described.
  • “parts” means “parts by mass” unless otherwise specified.
  • Example 1 As polyolefin A, 5 kg of a liquid ethylene-propylene copolymer (viscosity at 40 ° C. is 340 mPa ⁇ s) at room temperature, and as polyolefin B, the polyolefin obtained in Production Example 1 (weight average molecular weight: 20,000, melting point: 5 kg (about 60 ° C.) was charged into a glass-lined reaction vessel, and after sufficiently melting at a temperature of 95 ° C., stirring was started.
  • polyolefin A 5 kg of a liquid ethylene-propylene copolymer (viscosity at 40 ° C. is 340 mPa ⁇ s) at room temperature
  • polyolefin B the polyolefin obtained in Production Example 1 (weight average molecular weight: 20,000, melting point: 5 kg (about 60 ° C.) was charged into a glass-lined reaction vessel, and after sufficiently melting at a temperature of 95 ° C., stirring was started.
  • Example 2 As polyolefin A, 1 kg of an ethylene-propylene copolymer liquid at room temperature (viscosity at 40 ° C. is 1,100 mPa ⁇ s), and as polyolefin B, an ethylene content of about 12% by weight produced using a metallocene catalyst as a polymerization catalyst. 9 kg of the ethylene-propylene copolymer (weight average molecular weight: 12,000, melting point: about 60 ° C.) was charged into a glass-lined reaction vessel, and after sufficiently melting at a temperature of 95 ° C., stirring was started.
  • Example 3 9 kg of ethylene-propylene copolymer liquid at room temperature (viscosity at 40 ° C. is 150 mPa ⁇ s) as polyolefin A, and maleic anhydride-modified polyolefin obtained in Production Example 2 as acid-modified polyolefin B (weight average)
  • An acid-modified chlorinated polyolefin resin having a chlorine content of 43% (melting at 80 ° C.) was prepared in the same manner as in Example 2 except that 1 kg of a molecular weight of 50,000 and a melting point of about 125 ° C. was used. The viscosity was 93,000 mPa ⁇ s) and its composition was obtained.
  • Example 4 As polyolefin A, 7 kg of hydrogenated polybutadiene (having a viscosity at 40 ° C. of 8,000 mPa ⁇ s), and as polyolefin B, an ethylene-propylene copolymer having an ethylene content of about 12% by weight produced using a metallocene catalyst as a polymerization catalyst (Weight average molecular weight: 60,000, melting point: about 60 ° C.) Except for using 3 kg, a chlorinated polyolefin resin having a chlorine content of 22% (80 ° C. The melt viscosity was 40,000 mPa ⁇ s) and the composition was obtained.
  • Example 5 As polyolefin A, 8 kg of an ethylene-propylene copolymer (viscosity at 40 ° C. is 3,500 mPa ⁇ s), and as polyolefin B, ethylene-propylene having an ethylene content of about 12% by weight produced using a metallocene catalyst as a polymerization catalyst 2 kg of the copolymer (weight average molecular weight: 12,000, melting point: about 60 ° C.) was charged into a glass-lined reaction vessel, and after sufficiently melting at a temperature of 130 ° C., stirring was started.
  • polyolefin A 8 kg of an ethylene-propylene copolymer (viscosity at 40 ° C. is 3,500 mPa ⁇ s)
  • polyolefin B ethylene-propylene having an ethylene content of about 12% by weight produced using a metallocene catalyst as a polymerization catalyst 2 kg of the copolymer (weight average molecular weight: 12,000,
  • Example 1 The same operation as in Example 2 was performed except that 10 kg of an ethylene-propylene copolymer liquid at room temperature (viscosity at 40 ° C. was 150 mPa ⁇ s) was used as polyolefin A, and nothing was used as polyolefin B. Thus, a chlorinated polyolefin resin having a chlorine content of 22% (melt viscosity at 80 ° C. of 1,000 mPa ⁇ s) and a composition thereof were obtained.
  • Example 2 As polyolefin A, 1 kg of an ethylene-propylene copolymer liquid at room temperature (viscosity at 40 ° C. is 1,100 mPa ⁇ s), and as polyolefin B, an ethylene content of about 12% by weight produced using a metallocene catalyst as a polymerization catalyst. The same operation as in Example 2 was performed using 9 kg of the ethylene-propylene copolymer (weight average molecular weight: 12,000, melting point: about 60 ° C.). Although remarkable coloring occurred at the end of the chlorination reaction, a chlorinated polyolefin resin having a chlorine content of 46% (melt viscosity at 80 ° C. of 124,000 mPa ⁇ s) and a composition thereof were obtained.
  • Example 6 As polyolefin A, 9 kg of a liquid ethylene-propylene copolymer (viscosity at 40 ° C. is 150 mPa ⁇ s) at room temperature, and as polyolefin B, ethylene having a content of about 11% by weight produced by using a metallocene catalyst as a polymerization catalyst. A chlorinated polyolefin resin having a chlorine content of 32% was obtained by performing the same operation as in Example 2 except that 1 kg of a propylene copolymer (weight average molecular weight: 220,000, melting point: about 65 ° C.) was used. (The melt viscosity at 80 ° C. was 78,000 mPa ⁇ s) and the composition was obtained.
  • a chlorinated polyolefin resin could be produced from the raw material composition containing polyolefin A and polyolefin B in the absence of an organic solvent (Examples 1 to 6).
  • the polyolefin A alone was inferior in the adhesion of the chlorinated polyolefin resin (Comparative Example 1).
  • Comparative Example 2 Comparative Example 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一連の製造工程を通じて塩素系溶剤を使用せず、かつ副生せずに製造できる、付着性に優れる塩素化ポリオレフィン樹脂を提供することを課題とし、40℃以下で流動性を有するポリオレフィンA又はその酸変性物と、融点が40℃超150℃以下のポリオレフィンB又はその酸変性物と、を少なくとも含む原料組成物を、有機溶剤の非存在下で塩素化して得られる、塩素含有量が、1~45重量%である塩素化ポリオレフィン樹脂である。

Description

塩素化ポリオレフィン樹脂及びその製造方法
 本発明は、塩素化ポリオレフィン樹脂及びその製造方法に関する。
 近年、食品包装フィルムの印刷に用いられるインキ中の化学物質の規制が強化されている。例えば、日本国内では、インキ中に含まれる化学物質のネガティブリストが制定されている。また、EU圏では、食品包装用インキに使用可能な化学物質をポジティブリスト化した規制が導入されている。今後も本分野における化学物質規制はさらに強化されると考えられる。特に、人体への影響の大きいハロゲン系溶剤に対する規制は厳しくなると考えられる。
 塩素化ポリオレフィンは、一般に、有機溶剤にポリオレフィンを溶解した後、塩素付加反応を行って製造される(例えば、特許文献1参照)。塩素付加反応中では有機溶剤の塩素化も起こり、多量の副生成物を生じる。そのため、本工程では、有機溶剤の中でも特に塩素付加反応が起こり難いクロロホルム等の塩素系溶剤が用いられる。塩素付加反応工程で用いた塩素系溶剤は、減圧蒸留等により塩素化ポリオレフィンから効果的に除去及び回収される。そのため、製品である塩素化ポリオレフィンに、塩素系溶剤はほとんど含まれていない。
特開2015-209450号公報
 しかしながら、塩素付加反応工程で塩素系溶剤を使用することは否定できない。近年の化学物質規制強化を鑑みると、塩素化ポリオレフィンの製造工程で塩素系溶剤を全く用いない塩素化ポリオレフィンの開発が求められている。
 塩素系溶剤の代わりに有機溶剤を使用しても、上記した通り塩素化工程で塩素付加反応が生じ、ハロゲン系溶剤である塩素系溶剤を副生するという問題がある。
 本発明の課題は、一連の製造工程を通じて塩素系溶剤を使用せず、かつ、副生せずに製造できる、付着性に優れる塩素化ポリオレフィン樹脂を提供することである。
 本発明者らは、上記課題について鋭意検討した結果、流動性に優れるポリオレフィンA又はその酸変性物と、分子量が比較的高く凝集力を発揮できるポリオレフィンB又はその酸変性物、2種以上のポリオレフィンを組み合わせることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明者らは、下記の〔1〕~〔7〕を提供する。
〔1〕40℃以下で流動性を有するポリオレフィンA又はその酸変性物と、融点が40℃超150℃以下のポリオレフィンB又はその酸変性物と、を少なくとも含む原料組成物を、有機溶剤の非存在下で塩素化して得られる、塩素含有量が、1~45重量%である塩素化ポリオレフィン樹脂。
〔2〕80℃での溶融粘度が、100,000mPa・s未満である上記〔1〕に記載の塩素化ポリオレフィン樹脂。
〔3〕前記ポリオレフィンBの重量平均分子量が、250,000未満である上記〔1〕又は〔2〕に記載の塩素化ポリオレフィン樹脂。
〔4〕前記原料組成物が、前記ポリオレフィンAと、前記ポリオレフィンBの酸変性物と、を少なくとも含む、或いは前記ポリオレフィンAの酸変性物と、前記ポリオレフィンBの酸変性物と、を少なくとも含む上記〔1〕~〔3〕のいずれかに記載の塩素化ポリオレフィン樹脂。
〔5〕上記〔1〕~〔4〕のいずれかに記載の塩素化ポリオレフィン樹脂と、有機溶剤と、を含有する樹脂組成物。
〔6〕上記〔1〕~〔4〕のいずれかに記載の塩素化ポリオレフィン樹脂と、水と、を含有する水性分散体。
〔7〕前記ポリオレフィンAと前記ポリオレフィンBを少なくとも含む前記原料組成物を、有機溶剤の非存在下で塩素化する工程を含む、上記〔1〕~〔4〕のいずれかに記載の塩素化ポリオレフィン樹脂の製造方法。
 本発明によれば、一連の製造工程を通じて塩素系溶剤を使用せず、かつ、副生せずに製造できる、付着性に優れる塩素化ポリオレフィン樹脂を提供することができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 なお、本明細書中、「40℃以下で流動性を有する」とは、円筒型回転式粘度計又はコーンプレート型の粘度計で測定される40℃での粘度が100,000mPa以下であることをいう。また、「AA~BB%」という表記は、AA%以上BB%以下を示す。
[1.塩素化ポリオレフィン樹脂]
 本発明の塩素化ポリオレフィン樹脂は、40℃以下で流動性を有するポリオレフィンA又はその酸変性物と、融点が40℃超150℃以下のポリオレフィンB又はその酸変性物と、を少なくとも含む原料組成物を、有機溶剤の非存在下で塩素化して得られる。また、その塩素含有量は、1~45重量%である。
 本発明の塩素化ポリオレフィン樹脂は、塩素化前の原料組成物がポリオレフィンA又はその酸変性物を含むので、有機溶剤の非存在下で塩素化を行い得る。また、本発明の塩素化ポリオレフィン樹脂は、塩素化前の原料組成物がポリオレフィンB又はその酸変性物を含むので、インキ用途等に利用し得る塩素化ポリオレフィン樹脂とし得る。
 本発明の塩素化ポリオレフィン樹脂は、酸変性処理を経て得られる塩素化ポリオレフィン樹脂(以下、便宜上「酸変性塩素化ポリオレフィン樹脂」と記載する)であってもよい。酸変性塩素化ポリオレフィン樹脂であると、酸変性量(以下、「グラフト重量」とも記載する)により得られる塩素化ポリオレフィン樹脂の極性を調整し得る。そのため、本発明の塩素化ポリオレフィン樹脂は、様々な極性の被付着物に適用可能である。
 酸変性処理は、(1)ポリオレフィンA及び/又はポリオレフィンBに対して行ってもよく、(2)塩素化処理前のポリオレフィンA及びポリオレフィンBの混合物(以下、便宜上「ポリオレフィン混合物」と記載する)に対して行ってもよく、(3)塩素化処理後の塩素化ポリオレフィン樹脂に対して行ってもよい。なお、酸変性処理は、(1)~(3)のいずれか1つの処理でもよく、(1)と(2)の組合せ又は(1)と(3)の組合せであってもよい。中でも、酸変性処理は、(1)又は(2)の処理であること、即ち、ポリオレフィンB又はポリオレフィン混合物に対して行う処理であることが好ましい。
 なお、本明細書中、酸変性処理を行ったポリオレフィン混合物又は酸変性処理を行ったポリオレフィンBを含む原料組成物を、「酸変性原料組成物」とも称する。
 以下、酸変性処理について説明する。
 酸変性処理の方法は特に限定されなく、公知の方法で行い得る。例えば、ポリオレフィンB又はポリオレフィン混合物、α,β-不飽和カルボン酸又はその誘導体をトルエン等の溶剤に加熱溶解し、ラジカル発生剤を添加する溶液法;バンバリーミキサー、ニーダー、押出機等を使用して、ポリオレフィンB又はポリオレフィン混合物、α,β-不飽和カルボン酸又はその誘導体、及びラジカル発生剤を添加して混練する溶融混練法が挙げられる。
 α,β-不飽和カルボン酸又はその誘導体としては、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、無水アコニット酸、無水ハイミック酸、(メタ)アクリル酸、(メタ)アクリル酸エステルが挙げられる。中でも、無水マレイン酸が好ましい。
 なお、α,β-不飽和カルボン酸又はその誘導体は、α,β-不飽和カルボン酸及びその誘導体から選ばれる1種以上の化合物であればよく、α,β-不飽和カルボン酸1種以上とその誘導体1種以上の組み合わせ、α,β-不飽和カルボン酸2種以上の組み合わせ、α,β-不飽和カルボン酸の誘導体2種以上の組み合わせであってもよい。
 α,β-不飽和カルボン酸又はその誘導体の導入量(グラフト重量)は、酸変性原料組成物を100重量%とした場合に、0.1~10重量%が好ましく、0.5~5重量%がより好ましい。グラフト重量が0.1重量%以上であることにより、得られる酸変性塩素化ポリオレフィン樹脂の、金属被着体などの材料に対する接着性を保ち得る。グラフト重量が10重量%以下であることにより、グラフト未反応物の発生を防止することができ、樹脂被着体に対する十分な接着性を得ることができる。
 なお、α,β-不飽和カルボン酸又はその誘導体の導入量(グラフト重量)は、アルカリ滴定法で測定した値である。
 ラジカル発生剤は、公知のラジカル発生剤の中より適宜選択し得る。中でも、有機過酸化物系化合物が好ましい。例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンが挙げられる。このうち、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジラウリルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンが好ましい。
 ラジカル発生剤の添加量は、α,β-不飽和カルボン酸又はその誘導体の添加量及び(メタ)アクリル酸エステルの添加量の合計(重量)に対し、1~100重量%が好ましく、10~50重量%がより好ましい。1重量%以上であることにより、十分なグラフト効率を保持し得る。100重量%以下であることにより、酸変性原料組成物の重量平均分子量の低下を防止し得る。
 本発明の塩素化ポリオレフィン樹脂は、原料組成物を塩素化したものである。これにより、非極性樹脂基材に対する付着性や、他成分との相溶性を向上し得る。
 塩素化する方法としては、原料組成物に、塩素ガスを吹き込み、原料組成物に塩素原子を導入する方法が挙げられる。
 なお、本発明においては、塩素ガスの吹き込み時にクロロホルムや塩化メチレンといった塩素化溶剤や他の有機溶剤を使用する必要はない。これは、原料組成物が40℃以下で流動性を有するポリオレフィンA又はその酸変性物を含むので、ポリオレフィンA又はその酸変性物が塩素ガスを溶解し、ポリオレフィンB又はその酸変性物と塩素ガスが反応し得るからである。
 塩素ガスの吹き込みは、紫外線の照射下で行うことができ、ラジカル反応開始剤の存在下及び不存在下のいずれにおいても行い得る。塩素ガスの吹き込みを行う際の圧力は制限されず、常圧であってもよいし、加圧下であってもよい。塩素ガスの吹き込みを行う際の温度も特に制限されないが、通常、50~140℃である。
 ラジカル反応開始剤としては、有機過酸化物系化合物や2,2-アゾビスイソブチロニトリル等のアゾニトリル類を使用し得る。なお、有機過酸化物系化合物の詳細は後述する。
 本発明の塩素化ポリオレフィン樹脂は、ポリオレフィン混合物又はその酸変性物、ポリオレフィンAとポリオレフィンBの酸変性物の混合物、或いはポリオレフィンAの酸変性物とポリオレフィンBの混合物に塩素原子を導入して得ることができる。
 本発明の塩素化ポリオレフィン樹脂の塩素含有量は、1~45質量%であり、10~45質量%が好ましく、20~45重量%がより好ましい。塩素含有量を上記範囲にすることで、塩素化ポリオレフィン樹脂の極性を一定範囲に調整し得る。そのため、塗料中の他樹脂との相溶性が良くなり、さらにはポリオレフィン基材等の非極性基材に対する十分な接着性を得ることができる。
 なお、塩素化ポリオレフィン樹脂の塩素含有量は、JIS-K7229に基づいて測定した値である。
 塩素含有量は、ポリオレフィン樹脂の種類、反応スケール、反応装置等の要素の違いにより変化する。そのため、塩素含有量の調節は、塩素の吹き込み量や時間をモニタリングしながら行い得る。
 有機過酸化物系化合物としては、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエートが挙げられる。中でも、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウリルパーオキサイドが好ましい。
 ラジカル発生剤は、1種単独のラジカル発生剤でもよいし、複数種のラジカル発生剤の組み合わせであってもよい。
 塩素化ポリオレフィン樹脂の重量平均分子量の下限値は、5,000以上が好ましく、7,000以上がより好ましく、8,000以上がさらに好ましい。5,000以上であると、樹脂の凝集力があり、被付着物への付着性を発現し得る。また、その上限値は、100,000以下が好ましく、60,000以下がより好ましく、40,000以下がさらに好ましい。100,000以下であると、他樹脂との相溶性や溶剤への溶解性があり、塗料及びインキ等に適用し得る。
 塩素化ポリオレフィン樹脂の重量平均分子量は、5,000~100,000が好ましく、7,000~60,000がより好ましく、8,000~40,000がさらに好ましい。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン検量線から求めた値である。
[1-1.ポリオレフィンA]
 ポリオレフィンAは、40℃以下で流動性を有するポリオレフィンである。ポリオレフィンAを含むことで、塩素化反応中の溶融粘度を低下でき、有機溶剤を用いずに塩素化を行い得る。
 ポリオレフィンAとして、より詳細には、40℃での粘度が、100,000mPa・s以下のポリオレフィンが好ましく、60,000mPa・s以下のポリオレフィンがより好ましい。なお、粘度の下限値は特に限定されないが、通常、100mPa・s以上である。
 なお、40℃での粘度は、コーンプレート型の粘度計(BROOKFIELD社製、機種:CAP200H)で測定される値である。
 ポリオレフィンAは、上記の物性を満たすものであればよい。例えば、エチレン-プロピレン共重合体、水素化ポリブタジエン、エチレン-ブテン共重合体、エチレン-オクテン共重合体、プロピレン-ブテン共重合体、α-オレフィン誘導体が挙げられる。
 なお、これらは市販品であってもよい。
 また、ポリオレフィンAは、1種単独であってもよく、2種以上を併用してもよい。
[1-2.ポリオレフィンB]
 ポリオレフィンBは、融点が40℃超150℃以下のポリオレフィンである。ポリオレフィンBを含むことで、インキ用途等に利用し得る塩素化ポリオレフィン樹脂とし得る。
 なお、融点は、JIS K7121(1987)に準拠し、DSC測定装置(例、「DISCOVERY DSC2500」、ティー・エイ・インスツルメント・ジャパン社製)を用いて測定した値である。より詳細には、約5mgの試料を200℃で10分間加熱融解状態を保持する。10℃/分の速度で降温し、-50℃まで至った後、5分間安定保持する。その後、10℃/分で200℃まで昇温して融解した時の融解ピーク温度である。
 ポリオレフィンBとして、より詳細には、重量平均分子量が8,000以上250,000未満のポリオレフィンが好ましく、8,000以上200,000未満のポリオレフィンがより好ましく、10,000以上100,000未満のポリオレフィンがさらに好ましい。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン検量線から求めた値である。
 ポリオレフィンBは、上記の物性を満たすものであればよい。中でも、重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いたポリオレフィンが好ましく、重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いた、ポリプロピレン樹脂、又はプロピレンとα-オレフィン(例、エチレン、ブテン、3-メチル-1-ブテン、3-メチル-1-ヘプテン)を共重合して得られるポリオレフィンがより好ましく、重合触媒としてメタロセン触媒を用いたプロピレン系ランダム共重合体がさらに好ましく、重合触媒としてメタロセン触媒を用いた、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、又はエチレン-プロピレン-ブテン共重合体がさらにより好ましい。なお、メタロセン触媒を用いると、得られるポリオレフィンは、分子量分布が狭く、ランダム共重合性に優れ、組成分布が狭く、共重合しうるコモノマーの範囲が広いという特徴を有する。
 なお、これらは市販品であってもよい。
 ここで、プロピレン系ランダム共重合体とは、ポリプロピレンやプロピレン及びα-オレフィンをランダム共重合して得られるポリオレフィンをいい、例えば、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-プロピレン-ブテン共重合体が挙げられる。
 なお、ポリオレフィンBを構成する(共)重合体は、1種単独であってもよく、複数の(共)重合体の組み合わせであってもよい。
 メタロセン触媒は、公知のものを使用し得る。例えば、下記成分(1)及び成分(2)、さらに必要に応じて成分(3)を組み合わせて得られる触媒が挙げられる。中でも、メタロセン触媒は、下記成分(1)及び成分(2)、さらに必要に応じて成分(3)を組み合わせて得られる触媒が好ましい。
成分(1):共役五員環配位子を少なくとも1つ有する周期律表4~6族の遷移金属化合物であるメタロセン錯体。
成分(2):イオン交換性層状ケイ酸塩。
成分(3):有機アルミニウム化合物。
 ポリオレフィンの構造は、通常の高分子化合物が取り得るアイソタクチック構造、アタクチック構造、シンジオタクチック構造等のいずれであってもよい。これらの構造の中でも、ポリオレフィン基材への付着性、特に低温乾燥での付着性を考慮すると、メタロセン触媒を用いた場合にとり得る、アイソタクチック構造のポリオレフィンが好ましい。
 ポリオレフィンの成分組成として、プロピレン構成単位含有率は、30重量%以上が好ましく、40重量%以上がより好ましく、50重量%以上がさらに好ましい。プロピレン成分が30重量%以上であると、ポリプロピレン基材に対する付着性(接着性)がより良好となり得る。
 なお、ポリオレフィンのプロピレン構成単位含有率は、原料の使用割合であってもよく、NMR解析で算出した値であってもよい。
 また、ポリオレフィンBの代わりに、上記のポリオレフィンBに対して酸変性処理を経た酸変性物を用いてもよい。酸変性処理を行うことにより、グラフト重量を調整することで塩素化ポリオレフィン樹脂の極性を調整し得る。そのため、塩素化ポリオレフィン樹脂を、様々な極性の被付着物に適用することができる。
 なお、酸変性処理の詳細は、上記した通りである。
[1-3.比率]
 原料組成物中又は酸変性原料組成物中の、ポリオレフィンA又はその酸変性物とポリオレフィンB又はその酸変性物の比率(A/B)は、特に限定されるものではなく、通常、10/90~90/10である。ポリオレフィンA又はその酸変性物が10未満、ポリオレフィンB又はその酸変性物が90超であると、ポリオレフィンB又はその酸変性物がポリオレフィンA又はその酸変性物に完全に溶解せず、塩素化が不均一になる場合がある。一方、ポリオレフィンA又はその酸変性物が90超、ポリオレフィンB又はその酸変性物が10未満であると、得られる塩素化ポリオレフィン樹脂は凝集力が不十分であり、ポリオレフィン基材への付着性が得られない場合がある。
[1-4.溶融粘度]
 塩素化ポリオレフィン樹脂の80℃での溶融粘度は、100,000mPa・s未満が好ましく、70,000mPa・s未満がより好ましい。本発明の塩素化ポリオレフィン樹脂は、塩素含有量が高いほど粘度が高く、塩素化の進行に伴い反応釜内で粘度が上昇する。80℃での溶融粘度が100,000mPa・s以上であると、塩素化反応終盤で流動しなくなり、撹拌機によるシェアが大きくなり、脱塩化水素反応が進行して塩素化ポリオレフィン樹脂の着色が顕著となる。溶融粘度の下限としては、1,000mPa・s超が好ましく、1,500mPa・s以上がより好ましく、1,800mPa・s以上がさらに好ましい。溶融粘度が1,000mPa・s以下であると、塩素化ポリオレフィン樹脂とした際に、低分子量・低融点などの物性を相対的に示して付着性が劣る方向に影響するため、好ましくない。
 なお、80℃での溶融粘度は、コーンプレート型の粘度計(BROOKFIELD社製、機種:CAP200H)で測定することができる。従前知られた塩素系溶剤を用いて得られる塩素化ポリプロピレン樹脂では、80℃で十分に溶融せず、溶融粘度を示さない。
[1-5.任意成分]
 原料組成物は、ポリオレフィンA又はその酸変性物及びポリオレフィンB又はその酸変性物以外の他の任意成分を含むものであってもよい。任意成分としては、水が挙げられ、塩素化反応時の樹脂着色の防止や、溶融粘度の低減が可能な場合がある。
[2-1.樹脂組成物]
 本発明の樹脂組成物は、上記の塩素化ポリオレフィン樹脂と、有機溶剤と、を含有する。本発明の樹脂組成物は、塩素の離脱を抑制するために、安定化剤を含有してもよい。
 有機溶剤としては、例えば、トルエン、キシレン等の芳香族系溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶剤;ヘキサン、ヘプタン、オクタン等の炭化水素系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル等のエステル系溶剤;エチレングリコール、エチルセロソルブ、ブチルセロソルブ等のグリコール系溶剤が挙げられる。これらの中でも、トルエン、メチルシクロヘキサン、酢酸エチル、酢酸プロピル、酢酸ブチルが好ましい。
 樹脂組成物の濃度(樹脂固形分濃度)は、用途により適宜選択すればよい。但し、樹脂組成物の濃度は高すぎても低すぎても塗工作業性が損なわれるため、15~70重量%とすることが好ましい。
 安定化剤として、エポキシ化合物が好ましい。エポキシ化合物は、塩素化ポリオレフィン樹脂と相溶するものが好ましい。
 エポキシ化合物として、例えば、エポキシ当量が100から500程度であり、一分子中にエポキシ基を1個以上含むエポキシ化合物が挙げられる。より詳細には、以下の化合物が挙げられる。
 天然の不飽和基を有する植物油を過酢酸等の過酸でエポキシ化したエポキシ化大豆油やエポキシ化アマニ油;オレイン酸、トール油脂肪酸、大豆油脂肪酸等の不飽和脂肪酸をエポキシ化したエポキシ化脂肪酸エステル類;エポキシ化テトラヒドロフタレートに代表されるエポキシ化脂環式化合物;ビスフェノールAや多価アルコールとエピクロルヒドリンとを縮合した、例えば、ビスフェノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル;ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表されるモノエポキシ化合物類;ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類;ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類;ハイドロタルサイト類化合物。
 なお、安定化剤として、これらのうち1種のみを用いてもよく、2種以上を併用してもよい。
[2-2.水性分散体]
 本発明の水性分散体は、上記の塩素化ポリオレフィン樹脂と、水と、を含有する。本発明の水性分散体は、分散安定性の向上を目的として、乳化剤やブチルセロソルブ等の両親媒性溶剤を含有してもよい。
 水性分散体の濃度(樹脂固形分濃度)は、用途により適宜選択すればよい。但し、水性分散体の濃度は高すぎても低すぎても塗工作業性が損なわれるため、固形分濃度は、15~50重量%が好ましい。
 水性分散体のpHは、5以上が好ましく、7~12がより好ましい。pH5以上であると、中和が十分に行われ、変性ポリオレフィン樹脂が他の成分に分散しないこと、或いは分散しても経時的に沈殿、分離が生じ易く、貯蔵安定性が悪化することを防止し得る。また、pH12以下であると、他成分との相溶性や作業上の安全性を確保し得る。
 水性分散体の25℃におけるB型粘度計による粘度は、0.1~1000mPa・sが好ましく、1~700mPa・sがより好ましく、2~400mPa・sがさらに好ましい。
 なお、粘度は、B型粘度計を用い、回転数は60rpm、#1又は#2ローターを使用して測定することができる。また、粘度測定は、その固形分の濃度が10~60質量%である水性分散体を用いて行う。
[3.塩素化ポリオレフィン樹脂の製造方法]
 本発明の塩素化ポリオレフィン樹脂の製造方法は、ポリオレフィンA又はその酸変性物とポリオレフィンB又はその酸変性物を少なくとも含む原料組成物を、有機溶剤の非存在下で塩素化する工程を含む方法である。ポリオレフィンA、ポリオレフィンB、原料組成物、塩素化する工程については上記した通りである。
 「有機溶剤の非存在下」とは、不可避的に混入する有機溶剤は除いてという意味である。不可避的に混入する有機溶剤とは、ポリオレフィンAやポリオレフィンB、酸処理時の溶媒等を通常の方法で除去(例えば、溜去)した後に残存する極微量の有機溶剤;有機過酸化物系化合物に含まれている有機溶剤;有機過酸化物の分解によって生じる有機溶剤をいう。
 以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。また、「部」とは、特に断りがない限り、質量部を意味する。
(製造例1)
 メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が60,000、融点が約60℃)100部に、ジクミルパーオキサイド2部を加え、反応ゾーン温度を300℃に設定した二軸押出機に供給することで熱減成を行い、重量平均分子量が20,000、融点が約60℃のポリオレフィンBを得た。
(製造例2)
 メタロセン触媒を重合触媒として製造したエチレン含有量が約3重量%のエチレン-プロピレン共重合体(融点が約125℃)100部に、無水マレイン酸4部、ジクミルパーオキサイド2部を加え、反応ゾーン温度を250℃に設定した二軸押出機に供給することで、重量平均分子量が50,000、融点が約125℃の無水マレイン酸変性ポリオレフィンであるポリオレフィンBの酸変性物を得た。
(実施例1)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が340mPa・s)5kgと、ポリオレフィンBとして、製造例1で得たポリオレフィン(重量平均分子量が20,000、融点が約60℃)5kgを、グラスライニングされた反応釜に投入し、温度95℃にて十分に溶融した後に攪拌を開始した。2,2-アゾビスイソブチロニトリル5gを加え、上記釜内圧を常圧以上0.2MPa以下に制御しながら塩素ガスを吹き込んだ後、窒素ガスを吹きこみ、副生した塩化水素を除去して塩素化ポリオレフィン樹脂を得た。得られた塩素化ポリオレフィン樹脂の80℃での溶融粘度は2,000mPa・sであった。釜内を常圧にした後、エポキシ化大豆油400gとトルエン24kgを添加して室温まで冷却することで、塩素含有量が4%の塩素化ポリオレフィン樹脂組成物を得た。
(実施例2)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が1,100mPa・s)1kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が12,000、融点が約60℃)9kgを、グラスライニングされた反応釜に投入し、温度95℃にて十分に溶融した後に攪拌を開始した。2,2-アゾビスイソブチロニトリル5gを加え、上記釜内圧を常圧以上0.2MPa以下に制御しながら塩素ガスを吹き込んだ後、窒素ガスを吹きこみ、副生した塩化水素を除去して塩素化ポリオレフィン樹脂を得た。得られた塩素化ポリオレフィン樹脂の80℃での溶融粘度は67,000mPa・sであった。釜内を常圧にした後、エポキシ化大豆油400gと酢酸n-プロピル24kgを添加して室温まで冷却することで、塩素含有量が28%の塩素化ポリオレフィン樹脂組成物を得た。
(実施例3)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が150mPa・s)9kgと、ポリオレフィンBの酸変性物として、製造例2で得た無水マレイン酸変性ポリオレフィン(重量平均分子量が50,000、融点が約125℃)1kgを使用した以外は、実施例2と同様の操作を行うことで、塩素含有量が43%の酸変性塩素化ポリオレフィン樹脂(80℃での溶融粘度は93,000mPa・s)及びその組成物を得た。
(実施例4)
 ポリオレフィンAとして、水素化ポリブタジエン(40℃での粘度が8,000mPa・s)7kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が60,000、融点が約60℃)3kgを使用した以外は、実施例2と同様の操作を行うことで、塩素含有量が22%の塩素化ポリオレフィン樹脂(80℃での溶融粘度は40,000mPa・s)及びその組成物を得た。
(実施例5)
 ポリオレフィンAとして、エチレン-プロピレン共重合体(40℃での粘度が3,500mPa・s)8kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が12,000、融点が約60℃)2kgを、グラスライニングされた反応釜に投入し、温度130℃にて十分に溶融した後に攪拌を開始した。無水マレイン酸100gを加えた後、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを30g添加して、4時間反応を行った。その後、温度を低下して95℃に調整後、2,2-アゾビスイソブチロニトリル5gを加え、上記釜内圧を常圧以上0.2MPa以下に制御しながら塩素ガスを吹き込んだ後、窒素ガスを吹きこみ、副生した塩化水素を除去して酸変性塩素化ポリオレフィン樹脂を得た。得られた塩素化ポリオレフィン樹脂の80℃での溶融粘度は3,000mPa・sであった。エポキシ化大豆油400gとトルエン24kgを添加して室温まで冷却することで、塩素含有量が22%の酸変性塩素化ポリオレフィン樹脂組成物を得た。
(比較例1)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が150mPa・s)10kgを用い、ポリオレフィンBとして何も用いなかった以外は、実施例2と同様の操作を行うことで、塩素含有量が22%の塩素化ポリオレフィン樹脂(80℃での溶融粘度は1,000mPa・s)及びその組成物を得た。
(比較例2)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が1,100mPa・s)1kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が12,000、融点が約60℃)9kgを用い、実施例2と同様の操作を行った。塩素化反応の終盤で顕著な着色が発生したが、塩素含有量が46%の塩素化ポリオレフィン樹脂(80℃での溶融粘度は124,000mPa・s)及びその組成物を得た。
(比較例3)
 ポリオレフィンAとして何も用いず、ポリオレフィンBとして、製造例1で得たポリオレフィン(重量平均分子量が20,000、融点が約60℃)5kgを、グラスライニングされた反応釜に投入し、温度95℃にて十分に溶融した後に攪拌を開始した。2,2-アゾビスイソブチロニトリル5gを加え、上記釜内圧を常圧以上0.2MPa以下に制御しながら塩素ガスを吹き込んだが、粘度が高いため塩素付加率の著しい低下が観測され、また、反応が不均一になったため、反応を継続することができなかった。
(比較例4)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が150mPa・s)9kgと、ポリオレフィンBの代替として、熱分解ポリプロピレン(重量平均分子量が5,000、融点が約160℃)1kgを、グラスライニングされた反応釜に投入し、温度95℃にて加温を継続したが、十分な溶融状態が得られず、塩素化反応を行うことができなかった。
(実施例6)
 ポリオレフィンAとして、常温で液状のエチレン-プロピレン共重合体(40℃での粘度が150mPa・s)9kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約11重量%のエチレン-プロピレン共重合体(重量平均分子量が220,000、融点が約65℃)1kgを使用した以外は、実施例2と同様の操作を行うことで、塩素含有量が32%の塩素化ポリオレフィン樹脂(80℃での溶融粘度は78,000mPa・s)とその組成物を得た。
(比較例5)
 ポリオレフィンAの代替として、エチレン-プロピレン共重合体(40℃での流動性がなく、40℃での粘度測定不可。100℃での粘度が3,000mPa・s)8kgと、ポリオレフィンBとして、メタロセン触媒を重合触媒として製造したエチレン含有量が約12重量%のエチレン-プロピレン共重合体(重量平均分子量が12,000、融点が約60℃)2kgを、グラスライニングされた反応釜に投入し、温度95℃にて十分に溶融した後に攪拌を開始した。2,2-アゾビスイソブチロニトリル5gを加え、上記釜内圧を常圧以上0.2MPa以下に制御しながら塩素ガスを吹き込んだが、粘度が高いため塩素付加率の著しい低下が観測され、また、反応が不均一になったため、反応を継続することができなかった。
 [付着試験]:
 市販のグラビア印刷用樹脂(三洋化成製、固形分30重量%)120gと二酸化チタン(石原産業製、ルチル型)160gを、酢酸エチル/イソプロピルアルコール(重量比67/33)の混合液120gで希釈した後、サンドミルで1時間混練し、インキを調整した。
 インキ100部に対して、実施例1~5又は比較例1、2で得られた(酸変性)塩素化ポリオレフィン樹脂組成物を20部加え、よく振り混ぜた後、マイヤーバー#5にてOPPフィルムコロナ処理面(フタムラ化学、80μm)にインキを塗工し、ドライヤーで乾燥した。室温にて1日静置した後、セロハンテープ(ニチバン製24mm)をインキ塗工面に貼り付け、一気に剥がした時の塗工面の剥離状態を調べた。剥離状態を下記の如く評価した。評価結果を表1に記す。
A:剥離なし
B:剥離面積が50%未満
C:剥離面積が50%以上
D:ほぼ全面剥離
 [40℃での流動性]:
 ポリオレフィンAを、コーンプレート型の粘度計(BROOKFIELD社製、機種:CAP200H)で測定し、下記評価基準で評価した。
○:40℃で液状であり、40℃での粘度を測定できる
×:40℃で溶融しないため40℃での溶融粘度を測定できないか、又は40℃での溶融粘度が100,000mPa・sを超える
Figure JPOXMLDOC01-appb-T000001
 表1から、ポリオレフィンAとポリオレフィンBを含む原料組成物からは、有機溶媒の非存在下で塩素化ポリオレフィン樹脂を製造できた(実施例1~6)。
 ポリオレフィンAだけでは、塩素化ポリオレフィン樹脂の付着性が劣っていた(比較例1)。また、ポリオレフィンAとポリオレフィンBを含む原料組成物からは、有機溶媒の非存在下で塩素化しても、塩素含有量が45重量%超であると、付着性が劣っていた(比較例2)。
 ポリオレフィンBだけを塩素化した場合、ポリオレフィンAとポリオレフィンBを含む原料組成物であっても、ポリオレフィンBの融点が150°超であるか、ポリオレフィンAに40℃で流動性がない場合、塩素化ポリオレフィン樹脂が調製できなかった(比較例3~5)。

Claims (7)

  1.  40℃以下で流動性を有するポリオレフィンA又はその酸変性物と、融点が40℃超150℃以下のポリオレフィンB又はその酸変性物と、を少なくとも含む原料組成物を、有機溶剤の非存在下で塩素化して得られる、塩素含有量が、1~45重量%である塩素化ポリオレフィン樹脂。
  2.  80℃での溶融粘度が、100,000mPa・s未満である請求項1に記載の塩素化ポリオレフィン樹脂。
  3.  前記ポリオレフィンBの重量平均分子量が、250,000未満である請求項1又は2に記載の塩素化ポリオレフィン樹脂。
  4.  前記原料組成物が、前記ポリオレフィンAと、前記ポリオレフィンBの酸変性物と、を少なくとも含む、或いは前記ポリオレフィンAの酸変性物と、前記ポリオレフィンBの酸変性物と、を少なくとも含む請求項1~3のいずれか1項に記載の塩素化ポリオレフィン樹脂。
  5.  請求項1~4のいずれか1項に記載の塩素化ポリオレフィン樹脂と、
     有機溶剤と、を含有する樹脂組成物。
  6.  請求項1~4のいずれか1項に記載の塩素化ポリオレフィン樹脂と、
     水と、を含有する水性分散体。
  7.  前記ポリオレフィンA又はその酸変性物と前記ポリオレフィンB又はその酸変性物を少なくとも含む前記原料組成物を、有機溶剤の非存在下で塩素化する工程を含む、請求項1~4のいずれか1項に記載の塩素化ポリオレフィン樹脂の製造方法。
PCT/JP2019/028616 2018-07-25 2019-07-22 塩素化ポリオレフィン樹脂及びその製造方法 WO2020022251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980049377.7A CN112437778B (zh) 2018-07-25 2019-07-22 氯化聚烯烃树脂及其制造方法
US17/261,698 US11970603B2 (en) 2018-07-25 2019-07-22 Chlorinated polyolefin resin and method for producing the same
JP2019563633A JP6660517B1 (ja) 2018-07-25 2019-07-22 塩素化ポリオレフィン樹脂の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139831 2018-07-25
JP2018-139831 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022251A1 true WO2020022251A1 (ja) 2020-01-30

Family

ID=69181417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028616 WO2020022251A1 (ja) 2018-07-25 2019-07-22 塩素化ポリオレフィン樹脂及びその製造方法

Country Status (5)

Country Link
US (1) US11970603B2 (ja)
JP (2) JP6660517B1 (ja)
CN (1) CN112437778B (ja)
TW (1) TWI798469B (ja)
WO (1) WO2020022251A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145253A1 (ja) * 2020-01-17 2021-07-22 日本製紙株式会社 塩素化ポリオレフィン樹脂及び、それを用いたプライマー、バインダー、接着剤、積層体、食品包装材と、その製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022251A1 (ja) * 2018-07-25 2020-01-30 日本製紙株式会社 塩素化ポリオレフィン樹脂及びその製造方法
CN116234836A (zh) 2020-10-06 2023-06-06 三井化学株式会社 树脂组合物
WO2022244879A1 (ja) 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199206A (ja) * 1989-12-27 1991-08-30 Sanyo Kokusaku Pulp Co Ltd 塩素化ポリオレフィンの製造方法
JPH05222117A (ja) * 1992-02-12 1993-08-31 Daiso Co Ltd 塩素化ポリオレフィンの製造法
JP2000119591A (ja) * 1998-10-12 2000-04-25 Nippon Paper Industries Co Ltd ポリオレフィン系樹脂用プライマー組成物及びその製造方法
JP2006104431A (ja) * 2004-10-08 2006-04-20 Toyo Kasei Kogyo Co Ltd バインダー樹脂組成物
WO2007113922A1 (ja) * 2006-04-05 2007-10-11 Toyo Kasei Kogyo Company Limited バインダー樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961007B (zh) * 2004-05-31 2012-08-15 日本制纸化学株式会社 氯化丙烯系无规共聚物以及含有该共聚物的组合物
JP2007091933A (ja) 2005-09-29 2007-04-12 Nippon Paper Chemicals Co Ltd 低温焼付け対応型塩素化酸変性ポリオレフィン、それを含む組成物、及びそれらの用途
JP2015209450A (ja) * 2014-04-24 2015-11-24 日本製紙株式会社 塩素化ポリオレフィン樹脂組成物
CN110461934A (zh) * 2017-03-17 2019-11-15 日本制纸株式会社 氯化聚烯烃系树脂组合物
WO2020022251A1 (ja) 2018-07-25 2020-01-30 日本製紙株式会社 塩素化ポリオレフィン樹脂及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199206A (ja) * 1989-12-27 1991-08-30 Sanyo Kokusaku Pulp Co Ltd 塩素化ポリオレフィンの製造方法
JPH05222117A (ja) * 1992-02-12 1993-08-31 Daiso Co Ltd 塩素化ポリオレフィンの製造法
JP2000119591A (ja) * 1998-10-12 2000-04-25 Nippon Paper Industries Co Ltd ポリオレフィン系樹脂用プライマー組成物及びその製造方法
JP2006104431A (ja) * 2004-10-08 2006-04-20 Toyo Kasei Kogyo Co Ltd バインダー樹脂組成物
WO2007113922A1 (ja) * 2006-04-05 2007-10-11 Toyo Kasei Kogyo Company Limited バインダー樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145253A1 (ja) * 2020-01-17 2021-07-22 日本製紙株式会社 塩素化ポリオレフィン樹脂及び、それを用いたプライマー、バインダー、接着剤、積層体、食品包装材と、その製造方法
JP6940722B1 (ja) * 2020-01-17 2021-09-29 日本製紙株式会社 塩素化ポリオレフィン樹脂及び、それを用いたプライマー、バインダー、接着剤、積層体、食品包装材と、その製造方法

Also Published As

Publication number Publication date
TWI798469B (zh) 2023-04-11
TW202010786A (zh) 2020-03-16
JP6660517B1 (ja) 2020-03-11
JP2020097743A (ja) 2020-06-25
JPWO2020022251A1 (ja) 2020-08-06
JP7368245B2 (ja) 2023-10-24
CN112437778B (zh) 2023-06-20
CN112437778A (zh) 2021-03-02
US20210292530A1 (en) 2021-09-23
US11970603B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
JP6660517B1 (ja) 塩素化ポリオレフィン樹脂の製造方法
JP4987473B2 (ja) 塩素化プロピレン系ランダム共重合体及びこれを含む組成物
JP4055995B2 (ja) 水性分散液、その製造方法及び用途
JP6943882B2 (ja) 変性ポリオレフィン系樹脂
JP6976260B2 (ja) 変性ポリオレフィン系樹脂
WO2000026310A1 (fr) Resine de liaison pour resine polyolefinique, son procede de production et ses utilisations
KR100656110B1 (ko) 결합제 수지 조성물, 이의 제조방법 및 이의 용도
JP3898636B2 (ja) バインダー樹脂組成物と製造方法及びその用途
WO2003074606A1 (fr) Dispersion aqueuse, son procede de production et utilisation
JP6166564B2 (ja) 塩素化ポリオレフィン樹脂組成物
JP6940722B1 (ja) 塩素化ポリオレフィン樹脂及び、それを用いたプライマー、バインダー、接着剤、積層体、食品包装材と、その製造方法
JP4473500B2 (ja) バインダー樹脂組成物及びその用途
JP3045498B2 (ja) バインダ―樹脂組成物及びその製造方法
WO2000042103A1 (fr) Composition de resine liante et son procede de production
JP3965697B2 (ja) 耐溶剤性良好な塩素化ポリオレフィン系バインダー樹脂組成物
JP2001114961A (ja) バインダー樹脂組成物及びその製造方法
JP2001114843A (ja) 耐溶剤性良好な酸変性塩素化ポリオレフィン
CN111770962B (zh) 树脂组合物
JPWO2013121871A1 (ja) 酸化変性塩素化プロピレン含有重合体組成物およびその製造方法
WO2020213528A1 (ja) 変性ポリオレフィン樹脂組成物
JP2022117819A (ja) 酸変性塩素化ポリオレフィン樹脂の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563633

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842009

Country of ref document: EP

Kind code of ref document: A1