WO2014148431A1 - ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 - Google Patents

ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 Download PDF

Info

Publication number
WO2014148431A1
WO2014148431A1 PCT/JP2014/057133 JP2014057133W WO2014148431A1 WO 2014148431 A1 WO2014148431 A1 WO 2014148431A1 JP 2014057133 W JP2014057133 W JP 2014057133W WO 2014148431 A1 WO2014148431 A1 WO 2014148431A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidic solution
ions
cobalt
nickel
range
Prior art date
Application number
PCT/JP2014/057133
Other languages
English (en)
French (fr)
Inventor
後藤 雅宏
富生子 久保田
雄三 馬場
佳智 尾崎
二郎 早田
達也 檜垣
俊彦 永倉
松本 伸也
Original Assignee
国立大学法人九州大学
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 住友金属鉱山株式会社 filed Critical 国立大学法人九州大学
Priority to CN201480008628.4A priority Critical patent/CN105074022B/zh
Priority to US14/765,307 priority patent/US9458526B2/en
Priority to EP14770382.1A priority patent/EP2977473B1/en
Priority to CA2900945A priority patent/CA2900945C/en
Priority to AU2014239481A priority patent/AU2014239481B2/en
Publication of WO2014148431A1 publication Critical patent/WO2014148431A1/ja
Priority to PH12015501767A priority patent/PH12015501767B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/381Phosphines, e.g. compounds with the formula PRnH3-n, with n = 0-3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for removing impurities from an acid leaching solution of nickel oxide ore containing valuable components such as nickel, cobalt and scandium and separating the valuable components and impurities.
  • Nickel and cobalt are known as valuable metals and are used for various purposes in industry. In particular, it has recently been used in large quantities in positive electrode materials for secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
  • Nickel and cobalt can be obtained by refining intermediate materials such as mats obtained using a dry process in which ores containing these materials are charged into a furnace and melted at a high temperature.
  • high-grade ore has been depleted, and low-grade oxide ore, such as laterite ore, that has not been used so far, is placed in a pressure vessel with a sulfuric acid solution to bring it into a high-temperature and high-pressure state, and a leachate that has leached nickel and cobalt.
  • a wet process called HPAL method for recovering nickel, cobalt, or intermediate raw materials containing these has been put into practical use.
  • This HPAL method is characterized in that it can efficiently treat even low-grade nickel oxide ore having a nickel grade of 1 to 2% or less, which could not be treated on the profit side by the dry method.
  • the above ores include manganese, aluminum, zinc, iron, chromium, magnesium, copper, lead, sodium, lanthanum, neodymium, molybdenum, in addition to valuable materials (valuable components) such as nickel, cobalt, and scandium.
  • valuable materials such as nickel, cobalt, and scandium.
  • impurities such as vanadium, tin, tungsten, samarium, rhenium, thallium, cerium, titanium, and lutetium. These impurities can be separated relatively easily as slag in the dry process described above, but are often contained in the leachate together with valuable components such as nickel, cobalt, and scandium in the wet process. For this reason, when nickel, cobalt, and scandium are obtained from nickel oxide ore, it is necessary to examine the separation of impurities.
  • a precipitation method is widely known as a technique for removing manganese (see Patent Document 1).
  • the precipitation method is a method of adjusting the pH of a solution containing nickel and / or cobalt and manganese, adding a sulfurizing agent to obtain a sulfide of nickel or cobalt, or adding an oxidizing agent to add manganese oxide starch. It is a technique for obtaining things.
  • nickel oxide ore is known to contain trace amounts of valuable scandium, but scandium recovery was not easy.
  • nickel oxide ore is leached with an acid and the solution after recovering nickel or the like is neutralized and recovered as a starch, or as in Patent Document 3
  • a method is known in which a solution is extracted from a solvent, separated from other impurities, and concentrated.
  • Patent Document 1 has problems such as the occurrence of coprecipitation, and it has been difficult to completely separate nickel, cobalt, and manganese. Furthermore, when impurities other than manganese, such as zinc, coexist in the sulfide starch together with nickel and cobalt, the purity as the sulfide decreases, making it difficult to use as a battery material, for example, and the cost required for repurification There was also a problem of raising
  • An object of the present invention is to provide a method capable of efficiently separating valuable components such as nickel, cobalt and scandium and impurities from an acidic solution containing impurities such as manganese, iron, zinc and aluminum.
  • the present invention provides the following.
  • the present invention includes at least one valuable component selected from nickel, cobalt, and scandium, manganese, zinc, iron, aluminum, calcium, chromium, magnesium, copper, lead, sodium, lanthanum, neodymium, An acidic solution containing one or more impurities selected from molybdenum, vanadium, tin, tungsten, samarium, rhenium, thallium, cerium, titanium, and lutetium, an amide derivative represented by the following general formula (I)
  • a method of separating the valuable component and the impurity from the acidic solution by subjecting to a solvent extraction with a valuable metal extractant comprising: (In the formula, R 1 and R 2 each represent the same or different alkyl group. The alkyl group may be linear or branched.
  • R 3 represents a hydrogen atom or an alkyl group.
  • R 4 represents a hydrogen atom, Or, any group other than an amino group bonded to the ⁇ -carbon as an amino acid is shown.
  • the present invention provides the method according to (1), wherein the amide derivative is one or more of a glycinamide derivative, a histidine amide derivative, a lysine amide derivative, an aspartic acid amide derivative and a normal-methylglycine derivative. is there.
  • the acidic solution contains nickel and zinc, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution to a range of 2.0 or more and 4.3 or less. , (1) or (2).
  • the pH of the acidic solution is adjusted in the range of 1.0 or more and 3.2 or less.
  • the acidic solution is subjected to the solvent extraction, and when the iron is divalent, the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.0 to 4.5. It is the method as described in (1) or (2).
  • this invention is adjusting the pH of the said acidic solution in the range of 1.0 or more and 4.0 or less, when the said acidic solution contains cobalt and iron and the said iron is trivalent.
  • the acidic solution is subjected to the solvent extraction, and when the iron is divalent, the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.0 to 4.5. It is the method as described in (1) or (2).
  • the acidic solution contains nickel and aluminum, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution in a range of 2.0 to 4.5. , (1) or (2).
  • the acidic solution contains nickel and / or cobalt and calcium, and the acidic solution is adjusted while adjusting the pH of the acidic solution to a range of 2.0 or more and 4.0 or less.
  • the acidic solution contains cobalt and chromium, and the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.8 to 3.5. , (1) or (2).
  • the acidic solution contains nickel, cobalt and / or scandium and molybdenum, and the acidic solution is extracted with the solvent while adjusting the pH of the acidic solution to a range of 0 or more and 2 or less.
  • the acidic solution contains scandium, divalent iron and / or aluminum, and the acidic solution is adjusted while adjusting the pH of the acidic solution to a range of 1.2 to 4.5.
  • the acidic solution contains scandium and chromium, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution in a range of 1.2 to 3.5. , (1) or (2).
  • nickel, cobalt and / or scandium can be recovered from nickel oxide ore containing a wide variety of impurities.
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum of a glycinamide derivative synthesized in an example.
  • FIG. It is a figure which shows the 13 C-NMR spectrum of the glycinamide derivative synthesize
  • the relationship between the pH of an acidic solution containing nickel, cobalt and / or scandium and impurities such as manganese and zinc when using the extractant of the examples and the extraction rate is shown.
  • the relationship between the pH of an acidic solution containing nickel, cobalt and / or scandium and impurities such as lead and rubidium when using the extractant of the examples and the extraction rate thereof is shown.
  • nickel (Ni), cobalt (Co), and scandium (Sc) are treated as valuable components, and manganese (Mn), zinc (Zn), iron (Fe), aluminum (Al), calcium (Ca), chromium (Cr), magnesium (Mg), copper (Cu), lead (Pb), sodium (Na), lanthanum (La), neodymium (Nd), molybdenum (Mo), vanadium (V), tin (Sn), tungsten (W), samarium (Sm), rhenium (Re), thallium (Tl), cerium (Ce), titanium (Ti), lutetium (Lu) were treated as impurity components. Needless to say, it is determined by whether it is an object of industrial recovery based on economic efficiency and demand, and it is not a uniform and universal distinction.
  • the method of the present invention is subjected to solvent extraction with a valuable metal extractant comprising an amide derivative represented by the following general formula (I), nickel, cobalt and / or scandium, manganese, zinc, iron, aluminum, calcium, Nickel, cobalt and / or scandium and impurities are separated from an acidic solution containing one or more impurities selected from chromium or magnesium.
  • a valuable metal extractant comprising an amide derivative represented by the following general formula (I)
  • nickel, cobalt and / or scandium manganese, zinc, iron, aluminum, calcium, Nickel, cobalt and / or scandium and impurities are separated from an acidic solution containing one or more impurities selected from chromium or magnesium.
  • R 1 and R 2 each represent the same or different alkyl group.
  • the alkyl group may be linear or branched.
  • R 3 represents a hydrogen atom or an alkyl group.
  • R 4 represents a hydrogen atom or an arbitrary group other than an amino group bonded to the ⁇ -carbon as an amino acid.
  • the lipophilicity can be increased and used as an extractant.
  • the amide derivative is one or more of a glycinamide derivative, a histidine amide derivative, a lysine amide derivative, an aspartic acid amide derivative and a normal-methylglycine derivative.
  • the amide derivative is a glycinamide derivative
  • the above glycinamide derivative can be synthesized by the following method. First, 2-halogenated acetyl halide is added to an alkylamine having a structure represented by NHR 1 R 2 (R 1 and R 2 are the same as the above substituents R 1 and R 2 ), and an amine is obtained by nucleophilic substitution reaction. Is substituted with 2-halogenated acetyl to give 2-halogenated (N, N-di) alkylacetamide.
  • the 2-halogenated (N, N-di) alkylacetamide is added to glycine or an N-alkylglycine derivative, and one of the hydrogen atoms of the glycine or N-alkylglycine derivative is replaced with (N, Substitution with an N-di) alkylacetamide group.
  • a glycine alkylamide derivative can be synthesized by these two-step reactions.
  • Replacing glycine with histidine, lysine, and aspartic acid can synthesize histidine amide derivatives, lysine amide derivatives, and aspartic acid amide derivatives. From the constant, it is considered to be within the range of the results using the glycine derivative and the histidine amide derivative.
  • this acidic aqueous solution is added to and mixed with the organic solution of the extractant while adjusting the acidic aqueous solution containing the target valuable metal ions.
  • the target valuable metal ions can be selectively extracted from the organic phase, or conversely, the impurities can be extracted.
  • the valuables and the impurities can be separated.
  • the target valuables or impurities can be recovered in the aqueous solution by back-extracting the target valuables or impurities from the organic solvent.
  • the back extraction solution for example, an aqueous solution in which nitric acid, hydrochloric acid, or sulfuric acid is diluted is preferably used.
  • the target valuables or impurities can also be concentrated by changing the ratio of the organic phase and the aqueous phase as appropriate.
  • the organic solvent may be any solvent as long as the extractant and the metal extraction species are dissolved, for example, a chlorinated solvent such as chloroform and dichloromethane, an aromatic hydrocarbon such as benzene, toluene, and xylene, Examples thereof include aliphatic hydrocarbons such as hexane. These organic solvents may be used alone or in combination, and alcohols such as 1-octanol may be mixed.
  • a chlorinated solvent such as chloroform and dichloromethane
  • an aromatic hydrocarbon such as benzene, toluene, and xylene
  • aliphatic hydrocarbons such as hexane.
  • the concentration of the extractant can be appropriately set depending on the type and concentration of valuable metals.
  • the stirring time and the extraction temperature vary depending on the type and concentration of the valuable metal and the amount of the extractant to be added, the acidic aqueous solution of the metal ions to be separated (valuable or impurities) and the extractant What is necessary is just to set suitably according to the conditions of an organic solution.
  • the pH of the acidic aqueous solution containing metal ions can also be adjusted as appropriate depending on the type of valuable metal.
  • any amino derivative may be used as an extractant as long as it is the above amino derivative.
  • the pH of the acidic aqueous solution is adjusted to 2.0 or more and 4.3 or less, preferably 2.8 or more and 3.2 or less. Add an organic solution of extractant. If the pH is less than 2.0, nickel ions may not be sufficiently extracted. Moreover, when pH exceeds 4.3, zinc ion may also be extracted depending on the kind of extractant. In addition, since extraction of zinc ion and cobalt ion shows substantially the same behavior, it is difficult to separate cobalt from zinc in a single step, and a combination with other methods is necessary.
  • the organic solution of the extractant is added while adjusting the pH of the acidic aqueous solution to 1.2 to 4.3, preferably 2.0 to 3.2. Therefore, scandium can be efficiently extracted and separated from zinc.
  • the organic solution of the extractant is added to the acidic solution while adjusting the pH to 1.0 or more and 3.2 or less. Trivalent iron ions can be extracted and separated from unextracted nickel ions. In the case where trivalent iron ions and cobalt are contained, the extractant is added to the acidic solution while adjusting the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0. Can be extracted and trivalent iron ions can be extracted and separated from unextracted cobalt ions.
  • the divalent iron When divalent iron ions are contained as impurities, the divalent iron is added to the acidic solution while adjusting the pH to 4.5 or lower, preferably 3.0 or lower. Nickel ions can be extracted and nickel and iron can be separated while suppressing ion extraction.
  • the extractant is added to the acidic solution while adjusting the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0.
  • the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0.
  • trivalent iron ions can be extracted and separated from unextracted cobalt ions.
  • cobalt ions are extracted and not extracted by maintaining the pH at 1.0 to 4.5, preferably 2.0 to 3.0. Separable from valent iron ions.
  • the scandium ions can be separated and extracted from the divalent iron ions by maintaining the pH at 1.2 or more and 4.5 or less.
  • the trivalent iron ions and scandium ions cannot be separated due to the extraction behavior of the extractant of the present invention.
  • the pH of the acidic aqueous solution is adjusted to 2.0 to 4.5, preferably 2.5 to 3.5.
  • nickel ions can be extracted and separated from aluminum ions.
  • Cobalt ions cannot be separated because they have the same extraction behavior as aluminum ions.
  • the extractant is added to the acidic aqueous solution while adjusting the pH to 1.2 to 4.5, preferably 2.0 to 3.5.
  • the pH By adding an organic solution, scandium ions can be extracted and separated from aluminum ions.
  • Magnesium ions are not extracted for a pH range of 0.8 to 7.8. Therefore, nickel ions, cobalt ions, and scandium ions can be effectively separated from magnesium by setting the pH to 2 or more, preferably 3.0 or more.
  • the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to be in the range of 0 to 2, preferably 0 to 1.2. Can extract molybdenum ions and separate them from scandium ions.
  • the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to a range of 0 to 2.2, preferably 0 to 2.
  • the pH of the acidic solution is adjusted to 0 to 3.2, preferably 0 to 2.0.
  • molybdenum ions can be extracted and separated from cobalt ions.
  • lutetium ions, lanthanum ions, cerium ions, and neodymium ions are generally extracted in a region where the pH exceeds 3. In the case of sodium ions, it is extracted when the pH exceeds 5-6. For this reason, by setting the pH to 3 or less, only nickel ions, cobalt ions, and scandium ions can be selectively extracted and effectively separated therefrom.
  • the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to a range of 1 to 3. By adding, titanium ions can be extracted and separated from cobalt ions.
  • the extraction agent of the present invention substantially overlaps the extraction behavior of the above-described ions, effectively. Cannot be separated.
  • a glycinamide derivative represented by the above general formula (I) that is, N- [N, N-bis (2-ethylhexyl) aminocarbonyl into which two 2-ethylhexyl groups are introduced Methyl] glycine (N- [N, N-Bis (2-ethylhexyl) aminocarbonylmethyl] glycine) (or N, N-di (2-ethylhexyl) acetamido-2-glycine (N, N-di (2-ethylhexyl) acetamide) -2-glycine), hereinafter referred to as “D2EHAG”).
  • D2EHAG was synthesized as follows. First, as shown in the following reaction formula (II), 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then, 13.5 g (0.12 mol) of 2-chloroacetyl chloride was added dropwise, then washed once with 1 mol / l hydrochloric acid, then with ion-exchanged water, and the chloroform phase was separated. did. Next, an appropriate amount (about 10 to 20 g) of anhydrous sodium sulfate was added and dehydrated, followed by filtration to obtain 29.1 g of a yellow liquid.
  • reaction formula (II) 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then,
  • reaction formula (III) methanol is added to and dissolved in 8.0 g (0.2 mol) of sodium hydroxide, and the solution in which 15.01 g (0.2 mol) of glycine is further added is stirred. Then, 12.72 g (0.04 mol) of the above CDEHAA was slowly added dropwise and stirred. After completion of the stirring, the solvent in the reaction solution was distilled off, and chloroform was added to the residue to dissolve it. The solution was acidified by adding 1 mol / l sulfuric acid, washed with ion-exchanged water, and the chloroform phase was separated.
  • Nickel, cobalt and / or scandium were separated and recovered.
  • sulfuric acid acidic solutions each containing 1 ⁇ 10 ⁇ 4 mol / l of titanium and lutetium and having a pH adjusted to 1.1 to 7.9 were prepared and used as original solutions.
  • the divalent iron was prepared using ferrous sulfate
  • the trivalent iron was ferric sulfate
  • the other components were prepared using commercially available special grade reagents of sulfate.
  • a normal dodecane solution containing 0.01 mol / l of valuable metal extractant in the same volume as the above original solution was added to a test tube and placed in a thermostatic chamber at 25 ° C. and shaken for 24 hours. At this time, the pH of the sulfuric acid solution was adjusted to be constant using sulfuric acid, ammonium sulfate and ammonia having a concentration of 0.1 mol / l.
  • the aqueous phase was fractionated and the cobalt concentration and manganese concentration were measured using an induction plasma emission spectroscopic analyzer (ICP-AES).
  • ICP-AES induction plasma emission spectroscopic analyzer
  • the organic phase was back extracted with 1 mol / l sulfuric acid.
  • the concentration of each component contained in the original solution in the back extraction phase was measured using ICP-AES. From these measurement results, the extraction rate of each component was defined and determined by the quantity in the organic phase / (the quantity in the organic phase + the quantity in the aqueous phase).
  • Table 1, Table 2, FIG. 3 and FIG. 3 and 4 the horizontal axis represents the pH of the sulfuric acid acidic solution, and the vertical axis represents the extraction rate (unit:%) of each component component containing nickel, cobalt, scandium and the like.
  • the extraction rate of zinc exceeded 10%
  • the extraction rate of zinc exceeded 20%
  • nickel had an extraction rate of less than 10% at pH 2.0, but an extraction rate exceeding 70% at pH 2.8, and an extraction rate exceeding 80% at pH 3.2.
  • the extraction rate of nickel was higher than the extraction rate of zinc, it could be separated from zinc by operating under conditions for extracting nickel. It should be noted that the extraction rate of cobalt almost overlaps with that of zinc and is difficult to separate.
  • nickel and aluminum are separated by a method of extracting nickel ions when the pH of the acidic solution is in the range of 2.0 to 4.5, preferably 2.5 to 3.5. did it.
  • cobalt ions have almost the same extraction behavior as aluminum ions, so cobalt and aluminum could not be separated.
  • the scandium ions were extracted in the range of pH 1.2 to 4.5, preferably 2.0 to 3.5, and separated from aluminum.
  • magnesium ions are not extracted from the extractant of the present invention, nickel ions, cobalt ions and scandium ions were extracted and separated from magnesium ions.
  • Chromium ions are extracted when the pH exceeds 2.0. For this reason, it was separable from cobalt ion by making pH of an acidic solution into the range of 2.3 or more and 3.8 or less, Preferably it is the range of 2.8 or more and 3.5 or less.
  • scandium ions scandium ions were extracted in a pH range of 1.2 to 3.5 and separated from chromium ions. Nickel ions and chromium ions could not be separated because of their extraction behavior.
  • Molybdenum ions already have an extraction rate of 35% or more at a pH of 0, but the extraction rate further increases as the pH increases. It was separable from scandium ions when the pH was 2 or less, separated from nickel ions when the pH was 2.2 or less, and separated from cobalt ions when the pH was 3.2 or less.
  • Lutetium ions, lanthanum ions, cerium ions, and neodymium ions were not extracted when the pH was maintained at 3 or less, and could be separated from the extracted nickel ions, cobalt ions, and scandium ions.
  • Thallium has an extraction behavior similar to manganese at pH 5 or lower, and can be separated from thallium by extraction in a pH region where nickel ions, cobalt ions, and scandium ions are extracted by 80% or more.
  • Sodium ions were not extracted when the pH was maintained at 5-6 or lower, and could be separated from the extracted nickel ions, cobalt ions, and scandium ions.
  • Titanium ions, vanadium ions, tungsten ions, and tin ions could be extracted and separated while adjusting the pH to a range of 1 or more and 3 or less while keeping cobalt ions from being extracted.
  • the behavior of the extractant almost overlapped with nickel ions and scandium ions, and could not be separated effectively.
  • Rhenium ions and samarium ions were not extracted. Therefore, nickel ions, cobalt ions and scandium ions could be selectively extracted and separated from rhenium ions and samarium ions in any pH range.
  • Copper ions could not be separated effectively due to almost the same extraction as scandium ions. With respect to nickel ions, copper ions could be selectively extracted in a pH range of 2 to 2.6. For cobalt ions, copper ions could be selectively extracted in the pH range of 2 to 3.5.
  • Lead ions could be selectively extracted and separated from scandium ions within a pH range of 1.2 to 2.8.
  • nickel ions could be extracted at a pH in the range of 2.5 to 3.5.
  • cobalt ions the extraction behavior almost overlapped and could not be separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 マンガン、鉄、亜鉛、アルミ等の不純物を含有する酸性溶液からニッケル、コバルト及び/又はスカンジウムと不純物とに効率よく分離できる方法を提供する。 本発明の有価金属抽出剤は下記一般式で表される。式中、R及びRは、それぞれ同一又は別異のアルキル基を示し、Rは水素原子又はアルキル基を示し、Rは水素原子、又はアミノ酸としてα炭素に結合される、アミノ基以外の任意の基を示す。下記一般式は、グリシン単位、ヒスチジン単位、リジン単位、アスパラギン酸単位又はノルマル-メチルグリシン単位を有することが好ましい。

Description

ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法
 本発明は、ニッケルやコバルトやスカンジウム等の有価成分を含むニッケル酸化鉱の酸浸出液から不純物を除去し、有価成分と不純物とを分離する方法に関する。
 ニッケルやコバルトは、有価金属として知られ、産業で様々な用途として用いられている。特に最近では、ニッケル水素電池やリチウムイオン電池等二次電池の正極材等で多量に用いられている。
 ニッケルやコバルトは、これらを含有する鉱石を炉に装入して高温で熔解する乾式プロセスを用い、得たマット等の中間原料を精製して得ることができる。しかしながら近年では、高品位な鉱石は枯渇しつつあり、ラテライト鉱等従来余り利用されていなかった低品位酸化鉱石を硫酸溶液とともに耐圧容器に入れて高温高圧の状態とし、ニッケルやコバルトを浸出した浸出液からニッケルやコバルトあるいはこれらを含有する中間原料を回収するHPAL法とよばれる湿式プロセスが実用化されてきた。このHPAL法は、乾式法では採算面で処理できなかったニッケル品位が1~2%以下の低品位なニッケル酸化鉱石でも効率よく処理できる特徴がある。
 上記の鉱石には、ニッケルやコバルト、スカンジウム等回収対象とする有価物(有価成分)の他にもマンガン、アルミ、亜鉛、鉄、クロム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン、ルテチウム等様々な不純物が存在する。これらの不純物は、上記の乾式プロセスにおいて、スラグとして比較的容易に分離することができるが、湿式法ではニッケルやコバルト、スカンジウム等の有価成分とともに浸出液に含有される場合が多い。このため、ニッケル酸化鉱からニッケル、コバルト、スカンジウムを得る際は、不純物の分離に関する検討が必要となる。
 また、ニッケルやコバルトは上記の使用済み二次電池や廃電子基板等からリサイクルして回収する方法もある。二次電池を構成する正極材には、ニッケルやコバルトの他にマンガンも使用されている。さらに容器や基材にはアルミニウムや鉄等が使われる等リサイクルであっても不純物と有価物の分離が課題であった。
 例えば、ニッケルを最終的に回収する形態として、電解採取によってメタルを得る方法が一般的であるが、マンガンがニッケルと共に存在すると、電解採取に用いる陽極の表面にマンガン酸化物が析出し、陽極の劣化が促進されることが知られている。また、着色した微細なマンガン酸化物が電解液中に浮遊し、電解採取で使用する濾布を目詰まらせたり、マンガン酸化物によるニッケルメタルの汚染を生じる等、品質や安定した操業を妨げる結果となる。このため、マンガンの除去は重要な課題となる。
 マンガンを除去する手法として、沈澱法が広く知られている(特許文献1参照)。沈澱法は、ニッケル及び/又はコバルトとマンガンとを含む溶液のpHを調整し、硫化剤を添加してニッケルやコバルトの硫化澱物を得る方法や酸化剤を添加することでマンガンの酸化物澱物を得る手法である。
 さらにニッケル酸化鉱には有価なスカンジウムも微量含有されていることが知られているが、スカンジウムの回収は容易でなかった。スカンジウムを回収するには、例えば特許文献2のように、ニッケル酸化鉱を酸で浸出しニッケル等を回収した後の溶液を中和して澱物として回収したり、あるいは特許文献3のように、溶液を溶媒抽出して他の不純物から分離し、濃縮する方法が知られている。
特開2000-234130号公報 特開平09-143589号公報 特開平09-291320号公報
 しかし、特許文献1に記載の方法では、少なからず共沈が発生する等の問題があり、ニッケルとコバルトとマンガンとをそれぞれ完全に分離することは難しかった。さらに、マンガン以外の亜鉛等の不純物がニッケルやコバルトとともに硫化澱物中に共存する場合、硫化物としての純度が低下し、例えば電池の材料として用いることが困難となって、再精製に要するコストを上昇させる課題もあった。
 また、溶媒抽出法を用いてニッケルやコバルトを回収しようとする場合、分離性のよさから酸性抽出剤が広く用いられている。しかし、前述したように、最近ではリチウムイオン電池の正極剤に多くのマンガンが使用されていることから、電池の溶解液は高濃度のマンガンが存在し、このような系からニッケルやコバルトを選択的かつ効果的に抽出する効果的な抽出剤は無い状況であった。
 そして、特許文献2及び3に記載の方法による場合、希薄な溶液から回収するために、中和に要する中和剤や、樹脂や溶媒抽出に付す前にpHを調整するための薬剤コスト等を無視できず、また他の元素との分離はそれほどシャープでない等、スカンジウムを効率的に回収できるとはいえない。
 そのほか、亜鉛やアルミニウム、鉄、クロム等様々な不純物を分離できる有効な方法は見られなかった。このように、ニッケル酸化鉱やリサイクルによってニッケルやコバルトさらにはスカンジウムを回収しようとする際に、工業的に利用できる効率的な方法はなかなか見られなかった。
 本発明は、マンガン、鉄、亜鉛、アルミ等の不純物を含有する酸性溶液からニッケル、コバルト、スカンジウム等の有価成分と不純物とに効率よく分離できる方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤を提供することで上記の目的を達成できることを見出し、本発明を完成するに至った。
 具体的には、本発明では、以下のようなものを提供する。
 (1)本発明は、ニッケル、コバルト、スカンジウムの中から選ばれる少なくとも1種以上の有価成分と、マンガン、亜鉛、鉄、アルミニウム、カルシウム、クロム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン、ルテチウムの中から選択される1種類以上の不純物とを含有する酸性溶液を、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤による溶媒抽出に付し、前記酸性溶液から前記有価成分と前記不純物とを分離する方法である。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ同一又は別異のアルキル基を示す。アルキル基は直鎖でも分鎖でも良い。Rは水素原子又はアルキル基を示す。Rは水素原子、又はアミノ酸としてα炭素に結合される、アミノ基以外の任意の基を示す。)
 (2)また、本発明は、前記アミド誘導体がグリシンアミド誘導体、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体及びノルマル-メチルグリシン誘導体のいずれか1以上である、(1)に記載の方法である。
 (3)また、本発明は、前記酸性溶液がニッケルと亜鉛とを含有し、前記酸性溶液のpHを2.0以上4.3以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (4)また、本発明は、前記酸性溶液がニッケルと鉄とを含有し、前記鉄が3価である場合は前記酸性溶液のpHを1.0以上3.2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (5)また、本発明は、前記酸性溶液がコバルトと鉄とを含有し、前記鉄が3価である場合は前記酸性溶液のpHを1.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (6)また、本発明は、前記酸性溶液がニッケルとアルミニウムとを含有し、前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (7)また、本発明は、前記酸性溶液がニッケル及び/又はコバルトとカルシウムとを含有し、前記酸性溶液のpHを2.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (8)また、本発明は、前記酸性溶液がコバルトとクロムとを含有し、前記酸性溶液のpHを2.8以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (9)また、本発明は、前記酸性溶液がニッケル、コバルト及び/又はスカンジウムとモリブデンとを含有し、前記酸性溶液のpHを0以上2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (10)また、本発明は、前記酸性溶液がスカンジウムと、二価鉄及び/又はアルミニウムとを含有し、前記酸性溶液のpHを1.2以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 (11)また、本発明は、前記酸性溶液がスカンジウムとクロムとを含有し、前記酸性溶液のpHを1.2以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、(1)又は(2)に記載の方法である。
 本発明によれば、多種多様な不純物を含有するニッケル酸化鉱からニッケル、コバルト及び/又はスカンジウムを回収できる。
実施例で合成されたグリシンアミド誘導体のH-NMRスペクトルを示す図である。 実施例で合成されたグリシンアミド誘導体の13C-NMRスペクトルを示す図である。 実施例の抽出剤を用いたときのニッケル、コバルト及び/又はスカンジウムと、マンガン、亜鉛等の不純物とを含む酸性溶液のpHとこれらの抽出率との関係を示す。 実施例の抽出剤を用いたときのニッケル、コバルト及び/又はスカンジウムと、鉛、ルビジウム等の不純物とを含む酸性溶液のpHとこれらの抽出率との関係を示す。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 また、本発明では前述したとおり、ニッケル(Ni)、コバルト(Co)、スカンジウム(Sc)を有価成分として扱い、マンガン(Mn)、亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、カルシウム(Ca)、クロム(Cr)、マグネシウム(Mg)、銅(Cu)、鉛(Pb)、ナトリウム(Na)、ランタン(La)、ネオジム(Nd)、モリブデン(Mo)、バナジウム(V)、スズ(Sn)、タングステン(W)、サマリウム(Sm)、レニウム(Re)、タリウム(Tl)、セリウム(Ce)、チタン(Ti)、ルテチウム(Lu)を不純物成分として扱ったが、有価物と不純物は経済性や需要から工業的な回収対象となるかどうかで決まるものであって、一律かつ普遍的に区別されものでないことはいうまでもない。
<ニッケル、コバルト及び/又はスカンジウムと不純物とを分離する方法>
 本発明の方法は、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤による溶媒抽出に付し、ニッケル、コバルト及び/又はスカンジウムと、マンガン、亜鉛、鉄、アルミニウム、カルシウム、クロム又はマグネシウムの中から選択される1種類以上の不純物とを含有する酸性溶液からニッケル、コバルト及び/又はスカンジウムと不純物とを分離する。
Figure JPOXMLDOC01-appb-C000003
 式中、R及びRは、それぞれ同一又は別異のアルキル基を示す。アルキル基は直鎖でも分鎖でも良い。Rは水素原子又はアルキル基を示す。Rは水素原子、又はアミノ酸としてα炭素に結合される、アミノ基以外の任意の基を示す。本発明ではアミドの骨格にアルキル基を導入することによって、親油性を高め、抽出剤として用いることができる。
 上記アミド誘導体は、グリシンアミド誘導体、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体及びノルマル-メチルグリシン誘導体のいずれか1以上である。アミド誘導体がグリシンアミド誘導体である場合、上記のグリシンアミド誘導体は、次の方法によって合成できる。まず、NHR(R,Rは、上記の置換基R,Rと同じ)で表される構造のアルキルアミンに2-ハロゲン化アセチルハライドを加え、求核置換反応によりアミンの水素原子を2-ハロゲン化アセチルに置換することによって、2-ハロゲン化(N,N-ジ)アルキルアセトアミドを得る。
 次に、グリシン又はN-アルキルグリシン誘導体に上記2-ハロゲン化(N,N-ジ)アルキルアセトアミドを加え、求核置換反応によりグリシン又はN-アルキルグリシン誘導体の水素原子の一つを(N,N-ジ)アルキルアセトアミド基に置換する。これら2段階の反応によってグリシンアルキルアミド誘導体を合成できる。
 なお、グリシンをヒスチジン、リジン、アスパラギン酸に置き換えれば、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体を合成できるが、リジンやアスパラギン酸誘導体による抽出挙動は、対象とするマンガンやコバルト等の錯安定定数から、グリシン誘導体及びヒスチジンアミド誘導体を用いた結果の範囲内に収まると考えられる。
 上記方法によって合成した抽出剤を用いて有価金属イオンを分離するには、目的の有価金属イオンを含む酸性水溶液を調整しながら、この酸性水溶液を、上記抽出剤の有機溶液に加えて混合する。これによって、有機相に目的の有価金属イオンを選択的に抽出、あるいは逆に不純物を抽出することができ、その結果、有価物と不純物とを分離できる。
 有価物又は不純物を抽出した後の有機溶媒を分取し、これに上記酸性水溶液よりpHを低く調整した逆抽出始液を加えて撹拌することにより、目的の有価物又は不純物を有機溶媒に抽出して分離し、さらに、有機溶媒から目的の有価物又は不純物を逆抽出することで目的の有価物又は不純物を水溶液中に回収することができる。逆抽出溶液としては、例えば、硝酸、塩酸、硫酸を希釈した水溶液が好適に用いられる。また、有機相と水相の比率を適宜変更することによって、目的の有価物又は不純物を濃縮することもできる。
 pHを適宜調整することによって、抽出すべき金属イオンと抽出せずに残すべき金属イオンを選定することができ、この組み合わせによりニッケル酸化鉱石等ニッケルやコバルトを含有する原料からニッケルやコバルト等の有価物を回収できる。
 有機溶媒は、抽出剤及び金属抽出種が溶解する溶媒であればどのようなものであってもよく、例えば、クロロホルム、ジクロロメタン等の塩素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素等が挙げられる。これらの有機溶媒は、単独でも複数混合しても良く、1-オクタノールのようなアルコール類を混合しても良い。
 抽出剤の濃度は、有価金属の種類及び濃度によって適宜設定できる。また、撹拌時間及び抽出温度は、平衡到達時間が有価金属の種類、濃度のほか、加える抽出剤の量によって変化するため、分離対象金属イオン(有価物あるいは不純物)の酸性水溶液、及び抽出剤の有機溶液の条件によって適宜設定すればよい。金属イオンを含む酸性水溶液のpHも、有価金属の種類によって適宜調整できる。
〔有価物(金属イオン)の分離・回収〕
 有価物と不純物を含有する酸性水溶液から、有価物を効率的に分離・回収する際、上記のアミノ誘導体であれば、いずれのアミノ誘導体を抽出剤としてもよい。
(Zn)
 目的とする有価物としてニッケルイオン、不純物として亜鉛イオンが含有される場合、酸性水溶液のpHを2.0以上4.3以下、好ましくは2.8以上3.2以下の範囲、に調整しながら抽出剤の有機溶液を加える。pHが2.0未満であると、ニッケルイオンを十分に抽出できない可能性がある。またpHが4.3を超えると、抽出剤の種類によっては亜鉛イオンも抽出されしまう可能性がある。なお、亜鉛イオンとコバルトイオンの抽出はほぼ同じ挙動を示すことから、コバルトを亜鉛と分離するのは単一の工程では困難であり、他の方法との組み合わせが必要である。
 また、有価物としてスカンジウムイオンを含有する場合、酸性水溶液のpHは1.2以上4.3以下、好ましくは2.0以上3.2以下の範囲、に調整しながら抽出剤の有機溶液を加えることでスカンジウムを効率よく抽出し亜鉛と分離できる。
(Fe)
 前記酸性水溶液に有価物としてニッケルイオン、不純物として3価の形態の鉄イオンが含有される場合、pHを1.0以上3.2以下に調整しながら酸性溶液に抽出剤の有機溶液を加えると、3価の鉄イオンを抽出し、抽出されないニッケルイオンと分離できる。
 なお、3価鉄イオンとコバルトが含有されている場合は、pHを1.0以上4.0以下、好ましくは2.0以上3.0以下の範囲に調整しながら上記酸性溶液に上記抽出剤を加えることで、3価鉄イオンを抽出し、抽出されないコバルトイオンと分離できる。
 また、不純物として2価の形態の鉄イオンが含有される場合、pHを4.5以下、好ましくは3.0以下に調整しながら酸性溶液に抽出剤の有機溶液を加えると、2価の鉄イオンの抽出を抑制しながらニッケルイオンを抽出し、ニッケルと鉄を分離できる。
 なお、3価鉄イオンとコバルトが含有されている場合は、pHを1.0以上4.0以下、好ましくは2.0以上3.0以下の範囲に調整しながら上記酸性溶液に上記抽出剤を加えることで、3価鉄イオンを抽出し、抽出されないコバルトイオンと分離できる。
 同様に、2価鉄イオンが含有される場合は、pHを1.0以上4.5以下、好ましくは2.0以上3.0以下に維持することで、コバルトイオンを抽出し、抽出されない2価鉄イオンと分離できる。
 また、2価鉄イオンとスカンジウムイオンが含有されている場合は、pHを1.2以上4.5以下に維持することで、スカンジウムイオンを2価鉄イオンと分離して抽出できる。
 なお、3価鉄イオンとスカンジウムイオンは本発明の抽出剤での抽出挙動は重なり分離できない。
(Al)
 また、前記酸性水溶液にアルミニウムイオンとニッケルイオンが含有されている場合、pHを2.0以上4.5以下、好ましくは2.5以上3.5以下、に調整しながら酸性水溶液に抽出剤の有機溶液を加えると、ニッケルイオンを抽出し、アルミニウムイオンから分離できる。なお、コバルトイオンは、アルミニウムイオンと同じ抽出挙動をとるため、分離はできない。
 また、前記酸性溶液にアルミニウムイオンとスカンジウムイオンが含有されている場合、pHを1.2以上4.5以下、好ましくは2.0以上3.5以下、に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、スカンジウムイオンを抽出し、アルミニウムイオンから分離できる。
(Ca)
 また、前記酸性水溶液にカルシウムイオンとニッケルイオン、コバルトイオン及び/又はスカンジウムイオンが含有される場合、前記酸性溶液のpHを4.0以下に調整して抽出することで、カルシウムイオンの抽出を抑制し、ニッケルやコバルトを抽出してカルシウムと分離できる。
(Mg)
 なお、マグネシウムイオンはpH0.8から7.8の範囲に対して抽出されない。したがって、ニッケルイオン、コバルトイオン、スカンジウムイオンは、pHを2以上、好ましくは3.0以上とすることで、マグネシウムと効果的に分離できる。
(Mo)
 また、前記酸性水溶液にモリブデンイオンとスカンジウムイオンが含有される場合、前記酸性溶液のpHを0以上2以下、好ましくは0以上1.2以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、モリブデンイオンを抽出し、スカンジウムイオンから分離できる。
 また、前記酸性水溶液にモリブデンイオンとニッケルイオンが含有される場合、前記酸性溶液のpHを0以上2.2以下、好ましくは0以上2以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、モリブデンイオンを抽出し、ニッケルイオンから分離できる。
 また、前記酸性水溶液にモリブデンイオンとコバルトイオンが含有される場合、前記酸性溶液のpHを0以上3.2以下、好ましくは0以上2.0以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、モリブデンイオンを抽出し、コバルトイオンから分離できる。
(Cr)
 また、前記酸性水溶液にスカンジウムイオンとクロムイオンが含有される場合、前記酸性溶液のpHを1.2以上3.5以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、スカンジウムイオンを抽出し、クロムイオンから分離できる。
(Na・Lu・La・Ce・Nd)
 また、ルテチウムイオン、ランタンイオン、セリウムイオン、ネオジムイオンは概ねpHが3を越える領域で抽出されてくる。また、ナトリウムイオンの場合にはpHが5~6を超えると抽出されてくる。このため、pHを3以下とすることで、ニッケルイオンやコバルトイオンやスカンジウムイオンのみを選択的に抽出し、これらと効果的に分離できる。
(Ti・V・W・Sn)
 また、前記酸性水溶液にチタンイオンやバナジウムイオンやタングステンイオンやスズイオンとコバルトイオンが含有される場合、前記酸性溶液のpHを1以上3以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、チタンイオンを抽出し、コバルトイオンから分離できる。
 一方、前記酸性水溶液に上記のチタン・バナジウム・タングステン・スズの各イオンとニッケルイオンやスカンジウムイオンが含有される場合、本発明の抽出剤では上記の各イオンと抽出挙動がほぼ重なり、効果的に分離することができない。
(Re・Sm)
 また、レニウムイオンやサマリウムイオンは本抽出剤では抽出されないので、ニッケルイオン、コバルトイオン、スカンジウムイオンを抽出率の良好なpH領域で抽出してこれらと分離できる。
 上記一般式(I)で表されるアミド誘導体からなる抽出剤が従来の抽出剤と異なる抽出挙動をとるメカニズムは正確にはわからないが、本発明の抽出剤の構造上の特徴によって従来なかった効果が得られたと考えられる。また、上述したような本発明の抽出剤の特徴を組み合わせることで複数の種類の不純物を含有する酸性水溶液から、ニッケル、コバルト、スカンジウム等の有価物を抽出し不純物と分離して回収できる。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
 <実施例>
[アミド誘導体の合成]
 抽出剤となるアミド誘導体の一例として、上記一般式(I)で表されるグリシンアミド誘導体、すなわち、2つの2-エチルヘキシル基を導入したN-[N,N-ビス(2-エチルヘキシル)アミノカルボニルメチル]グリシン(N-[N,N-Bis(2-ethylhexyl)aminocarbonylmethyl]glycine)(あるいはN,N-ジ(2-エチルヘキシル)アセトアミド-2-グリシン(N,N-di(2-ethylhexyl)acetamide-2-glycine)ともいい、以下「D2EHAG」という。)を合成した。
 D2EHAGの合成は、次のようにして行った。まず、下記反応式(II)に示すように、市販のジ(2-エチルヘキシル)アミン23.1g(0.1mol)と、トリエチルアミン10.1g(0.1mol)とを分取し、これにクロロホルムを加えて溶解し、次いで2-クロロアセチルクロリド13.5g(0.12mol)を滴下した後、1mol/lの塩酸で1回洗浄し、その後、イオン交換水で洗浄し、クロロホルム相を分取した。
 次に、無水硫酸ナトリウムを適量(約10~20g)加え、脱水した後、ろ過し、黄色液体29.1gを得た。この黄色液体(反応生成物)の構造を、核磁気共鳴分析装置(NMR)を用いて同定したところ、上記黄色液体は、2-クロロ-N,N-ジ(2-エチルヘキシル)アセトアミド(以下「CDEHAA」という。)の構造であることが確認された。なお、CDEHAAの収率は、原料であるジ(2-エチルヘキシル)アミンに対して90%であった。
Figure JPOXMLDOC01-appb-C000004
 次に、下記反応式(III)に示すように、水酸化ナトリウム8.0g(0.2mol)にメタノールを加えて溶解し、さらにグリシン15.01g(0.2mol)を加えた溶液を撹拌しながら、上記CDEHAA12.72g(0.04mol)をゆっくりと滴下し、撹拌した。撹拌を終えた後、反応液中の溶媒を留去し、残留物にクロロホルムを加えて溶解した。この溶液に1mol/lの硫酸を添加して酸性にした後、イオン交換水で洗浄し、クロロホルム相を分取した。
 このクロロホルム相に無水硫酸マグネシウム適量を加え脱水し、ろ過した。再び溶媒を減圧除去し、12.5gの黄色糊状体を得た。上記のCDEHAA量を基準とした収率は87%であった。黄色糊状体の構造をNMR及び元素分析により同定したところ、図1及び図2に示すように、D2EHAGの構造を持つことが確認された。上記の工程を経て、実施例の有価金属抽出剤を得た。
Figure JPOXMLDOC01-appb-C000005
[ニッケル、コバルト及び/又はスカンジウムの分離・回収]
 実施例の有価金属抽出剤を用いて、ニッケル、コバルト及び/又はスカンジウムの分離・回収を行った。
 ニッケル、コバルト、マンガン、2価鉄、3価鉄、亜鉛、アルミ、クロム、カルシウム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン及びルテチウムをそれぞれ1×10-4mol/l含み、pHを1.1~7.9に調整した数種類の硫酸酸性溶液を用意し、元液とした。なお、2価鉄は硫酸第1鉄、3価鉄は硫酸第2鉄、それ以外の成分はそれぞれ硫酸塩の市販特級試薬を用いて調製した。
 上記の元液と同体積の0.01mol/lの有価金属抽出剤を含むノルマルドデカン溶液を試験管に加えて25℃恒温庫内に入れ、24時間振とうした。このとき、硫酸溶液のpHは、濃度0.1mol/lの硫酸、硫酸アンモニウム及びアンモニアを用いて一定となるように調整した。
 振とう後、水相を分取し、誘導プラズマ発光分光分析装置(ICP-AES)を用いてコバルト濃度及びマンガン濃度を測定した。また、有機相について、1mol/lの硫酸を用いて逆抽出した。そして、逆抽出相中の上記元液に含有させた各成分の濃度を、ICP-AESを用いて測定した。これらの測定結果から、それぞれの含有成分の抽出率を、有機相中の物量/(有機相中の物量+水相中の物量)で定義し、求めた。結果を表1、表2、図3及び図4に示す。図3及び図4の横軸は、硫酸酸性溶液のpHであり、縦軸は、ニッケル、コバルト、スカンジウム等各元液含有成分の抽出率(単位:%)である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例の有価金属抽出剤を用いると、酸性溶液のpHが3を超えると亜鉛の抽出率は10%を超え、3.2を超えると20%を超える抽出率となった。これに対して、ニッケルはpH2.0では10%未満の抽出率であったが、pHが2.8では70%を超える抽出率となり、pH3.2では80%を超える抽出率となった。このようにニッケルの抽出率の方が亜鉛の抽出率よりも高かったので、ニッケルを抽出する条件で操業することによって亜鉛と分離できた。なお、コバルトは、亜鉛と抽出率がほぼ重なり、分離することは困難である。
 また、鉄の場合は3価の形態と2価の形態では抽出挙動が異なった。3価の鉄イオンを含有する場合、酸性溶液のpHが1.0を超えた領域では、鉄イオンの方が抽出されやすく、pH2.0では90%を超える抽出率となった。このため鉄を抽出してニッケルと分離できた。コバルトについても同様であった。しかし、3価の鉄イオンとスカンジウムイオンは抽出挙動が重なり分離できなかった。
 一方、2価の鉄イオンを含有する場合、酸性溶液のpHが3.0を超えるまでは鉄イオンは抽出されず、超えると抽出が進んだ。このため、最大でpH4.5以下、好ましくは2.0以上3.0以下の範囲でニッケルイオンを抽出し、コバルトイオンを抽出する方法で、2価鉄イオンと分離することができた。スカンジウムイオンに対しては、pHを1.2以上4.5以下の範囲でスカンジウムイオンを抽出し2価鉄イオンと分離できた。
 アルミニウムイオンを含有する場合、酸性溶液のpHが2.0以上4.5以下の範囲、好ましくは2.5以上3.5以下の範囲ではニッケルイオンを抽出する方法で、ニッケルとアルミニウムとを分離できた。これに対して、コバルトイオンはアルミイオンと抽出挙動がほぼ重なるので、コバルトとアルミを分離することはできなかった。なお、スカンジウムイオンは、pHを1.2以上4.5以下、好ましくは2.0以上3.5以下の範囲で、スカンジウムを抽出し、アルミニウムと分離できた。
 マグネシウムイオンは、本発明の抽出剤に対し抽出されることは無いので、ニッケルイオン、コバルトイオン及びスカンジウムイオンを抽出してマグネシウムイオンと分離できた。
 カルシウムイオンは、酸性溶液のpHが4.0を超えると抽出率が上昇傾向となる。このため、pH4.0以下の領域で前記酸性溶液と接触することにより、ニッケルイオン、コバルトイオン及びスカンジウムイオンと分離できた。
 クロムイオンは、pHが2.0を超えると抽出される。このため、酸性溶液のpHを2.3以上3.8以下の範囲、好ましくは2.8以上3.5以下の範囲、とすることで、コバルトイオンと分離できた。スカンジウムイオンに対しては、pHが1.2から3.5以下の範囲でスカンジウムイオンを抽出し、クロムイオンと分離できた。なお、ニッケルイオンとクロムイオンとは抽出挙動が重なり分離はできなかった。
 モリブデンイオンは、pHが0で既に35%以上の抽出率が得られるが、pHが上昇するとさらに抽出率が増す。pHを2以下とすることでスカンジウムイオンと分離でき、pHを2.2以下とすることでニッケルイオンと分離でき、pHを3.2以下とすることでコバルトイオンと分離できた。
 ルテチウムイオン、ランタンイオン、セリウムイオンやネオジムイオンは、pHを3以下に維持すると抽出されず、抽出されたニッケルイオン、コバルトイオン及びスカンジウムイオンと分離できた。
 タリウムはpH5以下ではマンガンと類似した抽出挙動であり、ニッケルイオンやコバルトイオンやスカンジウムイオンが80%以上抽出されるpHの領域で抽出することによりタリウムと分離できた。
 ナトリウムイオンはpHを5~6以下に維持すると抽出されず、抽出されたニッケルイオン、コバルトイオン及びスカンジウムイオンと分離できた。
 チタンイオンやバナジウムイオンやタングステンイオンやスズイオンは、pHを1以上3以下の範囲に調整することで、コバルトイオンを抽出させない状態に維持しつつこれらのイオンを抽出し分離できた。なお、ニッケルイオンやスカンジウムイオンに対しては抽出剤の挙動がほぼ重なり、効果的に分離できなかった。
 レニウムイオンやサマリウムイオンは抽出されなかった。このため、ニッケルイオン、コバルトイオン、スカンジウムイオンはどのpH範囲でも選択的に抽出してレニウムイオンやサマリウムイオンと分離できた。
 銅イオンは、スカンジウムイオンとほぼ抽出が重なり効果的には分離できなかった。ニッケルイオンに対してはpHが2~2.6の範囲で銅イオンを選択的に抽出できた。コバルトイオンに対しては、pHが2~3.5の範囲で銅イオンを選択的に抽出できた。
 鉛イオンは、スカンジウムイオンとpHが1.2~2.8の範囲でスカンジウムイオンを選択的に抽出し分離できた。ニッケルイオンに対してはpHが2.5~3.5の範囲でニッケルイオンを抽出できた。一方、コバルトイオンに対しては、ほとんど抽出挙動が重なり分離できなかった。

Claims (11)

  1.  ニッケル、コバルト、スカンジウムの中から選ばれる少なくとも1種以上の有価成分と、マンガン、亜鉛、鉄、アルミニウム、カルシウム、クロム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン、ルテチウムの中から選択される1種類以上の不純物とを含有する酸性溶液を、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤による溶媒抽出に付し、前記酸性溶液から前記有価成分と前記不純物とを分離する方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ同一又は別異のアルキル基を示す。アルキル基は直鎖でも分鎖でも良い。Rは水素原子又はアルキル基を示す。Rは水素原子、又はアミノ酸としてα炭素に結合される、アミノ基以外の任意の基を示す。)
  2.  前記アミド誘導体がグリシンアミド誘導体、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体及びノルマル-メチルグリシン誘導体のいずれか1以上である、請求項1に記載の方法。
  3.  前記酸性溶液は、ニッケルと亜鉛とを含有し、
     前記酸性溶液のpHを2.0以上4.3以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  4.  前記酸性溶液は、ニッケルと鉄とを含有し、
     前記鉄が3価である場合は前記酸性溶液のpHを1.0以上3.2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、
     前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  5.  前記酸性溶液は、コバルトと鉄とを含有し、
     前記鉄が3価である場合は前記酸性溶液のpHを1.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、
     前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  6.  前記酸性溶液は、ニッケルとアルミニウムとを含有し、
     前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  7.  前記酸性溶液は、ニッケル及び/又はコバルトとカルシウムとを含有し、
     前記酸性溶液のpHを2.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  8.  前記酸性溶液は、コバルトとクロムとを含有し、
     前記酸性溶液のpHを2.8以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  9.  前記酸性溶液は、ニッケル、コバルト及び/又はスカンジウムとモリブデンとを含有し、
     前記酸性溶液のpHを0以上2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  10.  前記酸性溶液は、スカンジウムと、二価鉄及び/又はアルミニウムとを含有し、
     前記酸性溶液のpHを1.2以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
  11.  前記酸性溶液は、スカンジウムとクロムとを含有し、
     前記酸性溶液のpHを1.2以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
PCT/JP2014/057133 2013-03-18 2014-03-17 ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 WO2014148431A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480008628.4A CN105074022B (zh) 2013-03-18 2014-03-17 从含有镍、钴和/或钪的酸性溶液中分离杂质的方法
US14/765,307 US9458526B2 (en) 2013-03-18 2014-03-17 Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium
EP14770382.1A EP2977473B1 (en) 2013-03-18 2014-03-17 Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium
CA2900945A CA2900945C (en) 2013-03-18 2014-03-17 Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium
AU2014239481A AU2014239481B2 (en) 2013-03-18 2014-03-17 Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium
PH12015501767A PH12015501767B1 (en) 2013-03-18 2015-08-12 Method for separating impurities from an acidic solution contaning nickel and cobalt and/or scandium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013054944 2013-03-18
JP2013-054944 2013-03-18
JP2013098510A JP5595554B1 (ja) 2013-03-18 2013-05-08 ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法
JP2013-098510 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014148431A1 true WO2014148431A1 (ja) 2014-09-25

Family

ID=51580110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057133 WO2014148431A1 (ja) 2013-03-18 2014-03-17 ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法

Country Status (8)

Country Link
US (1) US9458526B2 (ja)
EP (1) EP2977473B1 (ja)
JP (1) JP5595554B1 (ja)
CN (1) CN105074022B (ja)
AU (1) AU2014239481B2 (ja)
CA (1) CA2900945C (ja)
PH (1) PH12015501767B1 (ja)
WO (1) WO2014148431A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199224A1 (ja) * 2014-06-26 2015-12-30 国立大学法人九州大学 イオン交換樹脂及び金属の吸着分離方法
US9481638B2 (en) 2012-03-13 2016-11-01 Kyushu University, National University Corporation Scandium extraction method
US9725786B2 (en) 2012-12-12 2017-08-08 Kyushu University, National University Corporation Nickel extraction method
US9803262B2 (en) 2012-08-20 2017-10-31 Kyushu University, National University Corporation Gallium extraction agent and gallium extraction method
US10036082B2 (en) 2015-01-20 2018-07-31 Kyushu University, National University Corporation Zirconium extractant and method for extracting zirconium

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3201859A1 (en) * 2014-09-30 2017-08-09 PCMS Holdings, Inc. Reputation sharing system using augmented reality systems
US20170169532A1 (en) * 2015-12-14 2017-06-15 International Business Machines Corporation Dynamic estimation of geographical locations using multiple data sources
JP6406234B2 (ja) * 2015-12-16 2018-10-17 住友金属鉱山株式会社 スカンジウムの回収方法
JP6256491B2 (ja) * 2016-01-25 2018-01-10 住友金属鉱山株式会社 スカンジウムの回収方法
JP6623803B2 (ja) * 2016-02-05 2019-12-25 住友金属鉱山株式会社 スカンジウム回収方法
JP6409791B2 (ja) 2016-02-05 2018-10-24 住友金属鉱山株式会社 スカンジウム回収方法
JP6528707B2 (ja) * 2016-03-14 2019-06-12 住友金属鉱山株式会社 スカンジウム精製方法
CN107447108B (zh) * 2016-06-01 2020-08-07 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
JP6863132B2 (ja) * 2017-06-28 2021-04-21 住友金属鉱山株式会社 抽出剤の選択方法
CN107904400B (zh) * 2017-12-13 2019-09-03 清远先导材料有限公司 一种硫酸镍钴溶液中铊的分离回收方法
KR102095495B1 (ko) 2018-02-21 2020-05-27 주식회사 영풍 아연제련공정 중 탈륨제거 방법
CN113373304B (zh) * 2021-06-09 2022-05-13 江西理工大学 一种从稀土料液中络合-浊点萃取除铝的方法
CN114014422B (zh) * 2021-11-05 2023-09-26 济源职业技术学院 一种金属离子分离富集体系及分离富集钴(ii)的方法
CN115677528A (zh) * 2022-11-03 2023-02-03 厦门稀土材料研究所 一种分离铼和锝的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143589A (ja) 1995-11-22 1997-06-03 Taiheiyo Kinzoku Kk レアーアースメタルの濃縮分離回収方法
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
EP0834581A1 (en) * 1996-09-30 1998-04-08 Basf Aktiengesellschaft Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions
JP2000234130A (ja) 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk 酸化鉱石から有価金属を回収する方法
JP2007327085A (ja) * 2006-06-06 2007-12-20 Japan Atomic Energy Agency 希土類金属の抽出剤と抽出方法
JP2010174366A (ja) * 2009-02-02 2010-08-12 Sumitomo Metal Mining Co Ltd 使用済みニッケル水素電池からの金属の回収方法
JP2012102062A (ja) * 2010-11-12 2012-05-31 Univ Of Miyazaki アルキルアミノリン化合物及び金属抽出剤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876152B2 (ja) 1990-06-19 1999-03-31 三井サイテック株式会社 希土類金属の分離精製法
JP2514588B2 (ja) 1992-10-05 1996-07-10 日本ポットクリーナー販売株式会社 換気用フィルタ
JP3806258B2 (ja) 1999-01-21 2006-08-09 同和鉱業株式会社 Ga,Inの溶媒抽出方法
JP3430973B2 (ja) 1999-04-26 2003-07-28 大平洋金属株式会社 酸化鉱石からニッケルとスカンジウムを回収する方法
US20050124765A1 (en) * 2003-11-25 2005-06-09 Japan Atomic Energy Research Institute Adsorbent for recovering useful rare metals by adsorption
CN101519427B (zh) 2008-02-29 2015-02-25 中国人民解放军军事医学科学院毒物药物研究所 具有内皮素受体拮抗活性的肽类衍生物及其药物组合物和用途
JP5504575B2 (ja) 2008-04-21 2014-05-28 国立大学法人 宮崎大学 ホスフィン酸を配位子とするキレート抽出剤
JP5679159B2 (ja) 2010-07-05 2015-03-04 信越化学工業株式会社 希土類金属抽出剤の合成方法、及び希土類金属の溶媒抽出用有機相
WO2013069563A1 (ja) 2011-11-09 2013-05-16 国立大学法人九州大学 コバルト抽出方法
JP5279938B1 (ja) 2011-11-09 2013-09-04 国立大学法人九州大学 有価金属抽出剤及びこの抽出剤を用いた有価金属抽出方法
JP5279942B1 (ja) 2011-11-09 2013-09-04 国立大学法人九州大学 コバルト抽出方法
JP5367862B2 (ja) 2012-03-13 2013-12-11 国立大学法人九州大学 スカンジウム抽出剤およびこの抽出剤を用いたスカンジウム抽出方法
JP5734268B2 (ja) 2012-12-12 2015-06-17 国立大学法人九州大学 ニッケル抽出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143589A (ja) 1995-11-22 1997-06-03 Taiheiyo Kinzoku Kk レアーアースメタルの濃縮分離回収方法
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
EP0834581A1 (en) * 1996-09-30 1998-04-08 Basf Aktiengesellschaft Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions
JP2000234130A (ja) 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk 酸化鉱石から有価金属を回収する方法
JP2007327085A (ja) * 2006-06-06 2007-12-20 Japan Atomic Energy Agency 希土類金属の抽出剤と抽出方法
JP2010174366A (ja) * 2009-02-02 2010-08-12 Sumitomo Metal Mining Co Ltd 使用済みニッケル水素電池からの金属の回収方法
JP2012102062A (ja) * 2010-11-12 2012-05-31 Univ Of Miyazaki アルキルアミノリン化合物及び金属抽出剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROFUMI MORIZONO ET AL.: "Liquid-liquid extraction of transition metal ions with an alkylhistidine extractant", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 80, no. 2, 29 July 2011 (2011-07-29), pages 390 - 395, XP028237907 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481638B2 (en) 2012-03-13 2016-11-01 Kyushu University, National University Corporation Scandium extraction method
US9803262B2 (en) 2012-08-20 2017-10-31 Kyushu University, National University Corporation Gallium extraction agent and gallium extraction method
US9725786B2 (en) 2012-12-12 2017-08-08 Kyushu University, National University Corporation Nickel extraction method
WO2015199224A1 (ja) * 2014-06-26 2015-12-30 国立大学法人九州大学 イオン交換樹脂及び金属の吸着分離方法
US9863018B2 (en) 2014-06-26 2018-01-09 Kyushu University, National University Corporation Ion exchange resin and method for adsorbing and separating metal
US10036082B2 (en) 2015-01-20 2018-07-31 Kyushu University, National University Corporation Zirconium extractant and method for extracting zirconium

Also Published As

Publication number Publication date
EP2977473A1 (en) 2016-01-27
EP2977473B1 (en) 2017-12-13
CN105074022A (zh) 2015-11-18
AU2014239481B2 (en) 2016-03-10
US20160010177A1 (en) 2016-01-14
CA2900945A1 (en) 2014-09-25
JP2014205900A (ja) 2014-10-30
US9458526B2 (en) 2016-10-04
EP2977473A4 (en) 2016-03-16
JP5595554B1 (ja) 2014-09-24
PH12015501767A1 (en) 2015-11-09
AU2014239481A1 (en) 2015-09-17
PH12015501767B1 (en) 2015-11-09
CA2900945C (en) 2016-08-09
CN105074022B (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5595554B1 (ja) ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法
JP5279942B1 (ja) コバルト抽出方法
JP6852599B2 (ja) スカンジウムの精製方法
JP6528707B2 (ja) スカンジウム精製方法
EP2902511B1 (en) Nickel extraction method
US10704120B2 (en) Method for recovering scandium
WO2013069563A1 (ja) コバルト抽出方法
JP2014037607A (ja) インジウム抽出剤およびこの抽出剤を用いたインジウム抽出方法
JP6922478B2 (ja) スカンジウムの精製方法
JP6623803B2 (ja) スカンジウム回収方法
US9493857B2 (en) Valuable-metal extraction method
JP5442080B2 (ja) 有価金属分離方法
WO2018097001A1 (ja) スカンジウムの精製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008628.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014770382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2900945

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014239481

Country of ref document: AU

Date of ref document: 20140317

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506633

Country of ref document: ID