WO2014148431A1 - ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 - Google Patents
ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 Download PDFInfo
- Publication number
- WO2014148431A1 WO2014148431A1 PCT/JP2014/057133 JP2014057133W WO2014148431A1 WO 2014148431 A1 WO2014148431 A1 WO 2014148431A1 JP 2014057133 W JP2014057133 W JP 2014057133W WO 2014148431 A1 WO2014148431 A1 WO 2014148431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acidic solution
- ions
- cobalt
- nickel
- range
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
- C22B23/0461—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/381—Phosphines, e.g. compounds with the formula PRnH3-n, with n = 0-3
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for removing impurities from an acid leaching solution of nickel oxide ore containing valuable components such as nickel, cobalt and scandium and separating the valuable components and impurities.
- Nickel and cobalt are known as valuable metals and are used for various purposes in industry. In particular, it has recently been used in large quantities in positive electrode materials for secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
- Nickel and cobalt can be obtained by refining intermediate materials such as mats obtained using a dry process in which ores containing these materials are charged into a furnace and melted at a high temperature.
- high-grade ore has been depleted, and low-grade oxide ore, such as laterite ore, that has not been used so far, is placed in a pressure vessel with a sulfuric acid solution to bring it into a high-temperature and high-pressure state, and a leachate that has leached nickel and cobalt.
- a wet process called HPAL method for recovering nickel, cobalt, or intermediate raw materials containing these has been put into practical use.
- This HPAL method is characterized in that it can efficiently treat even low-grade nickel oxide ore having a nickel grade of 1 to 2% or less, which could not be treated on the profit side by the dry method.
- the above ores include manganese, aluminum, zinc, iron, chromium, magnesium, copper, lead, sodium, lanthanum, neodymium, molybdenum, in addition to valuable materials (valuable components) such as nickel, cobalt, and scandium.
- valuable materials such as nickel, cobalt, and scandium.
- impurities such as vanadium, tin, tungsten, samarium, rhenium, thallium, cerium, titanium, and lutetium. These impurities can be separated relatively easily as slag in the dry process described above, but are often contained in the leachate together with valuable components such as nickel, cobalt, and scandium in the wet process. For this reason, when nickel, cobalt, and scandium are obtained from nickel oxide ore, it is necessary to examine the separation of impurities.
- a precipitation method is widely known as a technique for removing manganese (see Patent Document 1).
- the precipitation method is a method of adjusting the pH of a solution containing nickel and / or cobalt and manganese, adding a sulfurizing agent to obtain a sulfide of nickel or cobalt, or adding an oxidizing agent to add manganese oxide starch. It is a technique for obtaining things.
- nickel oxide ore is known to contain trace amounts of valuable scandium, but scandium recovery was not easy.
- nickel oxide ore is leached with an acid and the solution after recovering nickel or the like is neutralized and recovered as a starch, or as in Patent Document 3
- a method is known in which a solution is extracted from a solvent, separated from other impurities, and concentrated.
- Patent Document 1 has problems such as the occurrence of coprecipitation, and it has been difficult to completely separate nickel, cobalt, and manganese. Furthermore, when impurities other than manganese, such as zinc, coexist in the sulfide starch together with nickel and cobalt, the purity as the sulfide decreases, making it difficult to use as a battery material, for example, and the cost required for repurification There was also a problem of raising
- An object of the present invention is to provide a method capable of efficiently separating valuable components such as nickel, cobalt and scandium and impurities from an acidic solution containing impurities such as manganese, iron, zinc and aluminum.
- the present invention provides the following.
- the present invention includes at least one valuable component selected from nickel, cobalt, and scandium, manganese, zinc, iron, aluminum, calcium, chromium, magnesium, copper, lead, sodium, lanthanum, neodymium, An acidic solution containing one or more impurities selected from molybdenum, vanadium, tin, tungsten, samarium, rhenium, thallium, cerium, titanium, and lutetium, an amide derivative represented by the following general formula (I)
- a method of separating the valuable component and the impurity from the acidic solution by subjecting to a solvent extraction with a valuable metal extractant comprising: (In the formula, R 1 and R 2 each represent the same or different alkyl group. The alkyl group may be linear or branched.
- R 3 represents a hydrogen atom or an alkyl group.
- R 4 represents a hydrogen atom, Or, any group other than an amino group bonded to the ⁇ -carbon as an amino acid is shown.
- the present invention provides the method according to (1), wherein the amide derivative is one or more of a glycinamide derivative, a histidine amide derivative, a lysine amide derivative, an aspartic acid amide derivative and a normal-methylglycine derivative. is there.
- the acidic solution contains nickel and zinc, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution to a range of 2.0 or more and 4.3 or less. , (1) or (2).
- the pH of the acidic solution is adjusted in the range of 1.0 or more and 3.2 or less.
- the acidic solution is subjected to the solvent extraction, and when the iron is divalent, the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.0 to 4.5. It is the method as described in (1) or (2).
- this invention is adjusting the pH of the said acidic solution in the range of 1.0 or more and 4.0 or less, when the said acidic solution contains cobalt and iron and the said iron is trivalent.
- the acidic solution is subjected to the solvent extraction, and when the iron is divalent, the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.0 to 4.5. It is the method as described in (1) or (2).
- the acidic solution contains nickel and aluminum, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution in a range of 2.0 to 4.5. , (1) or (2).
- the acidic solution contains nickel and / or cobalt and calcium, and the acidic solution is adjusted while adjusting the pH of the acidic solution to a range of 2.0 or more and 4.0 or less.
- the acidic solution contains cobalt and chromium, and the acidic solution is subjected to the solvent extraction while adjusting the pH of the acidic solution to a range of 2.8 to 3.5. , (1) or (2).
- the acidic solution contains nickel, cobalt and / or scandium and molybdenum, and the acidic solution is extracted with the solvent while adjusting the pH of the acidic solution to a range of 0 or more and 2 or less.
- the acidic solution contains scandium, divalent iron and / or aluminum, and the acidic solution is adjusted while adjusting the pH of the acidic solution to a range of 1.2 to 4.5.
- the acidic solution contains scandium and chromium, and the acidic solution is subjected to the solvent extraction while adjusting a pH of the acidic solution in a range of 1.2 to 3.5. , (1) or (2).
- nickel, cobalt and / or scandium can be recovered from nickel oxide ore containing a wide variety of impurities.
- FIG. 1 is a diagram showing a 1 H-NMR spectrum of a glycinamide derivative synthesized in an example.
- FIG. It is a figure which shows the 13 C-NMR spectrum of the glycinamide derivative synthesize
- the relationship between the pH of an acidic solution containing nickel, cobalt and / or scandium and impurities such as manganese and zinc when using the extractant of the examples and the extraction rate is shown.
- the relationship between the pH of an acidic solution containing nickel, cobalt and / or scandium and impurities such as lead and rubidium when using the extractant of the examples and the extraction rate thereof is shown.
- nickel (Ni), cobalt (Co), and scandium (Sc) are treated as valuable components, and manganese (Mn), zinc (Zn), iron (Fe), aluminum (Al), calcium (Ca), chromium (Cr), magnesium (Mg), copper (Cu), lead (Pb), sodium (Na), lanthanum (La), neodymium (Nd), molybdenum (Mo), vanadium (V), tin (Sn), tungsten (W), samarium (Sm), rhenium (Re), thallium (Tl), cerium (Ce), titanium (Ti), lutetium (Lu) were treated as impurity components. Needless to say, it is determined by whether it is an object of industrial recovery based on economic efficiency and demand, and it is not a uniform and universal distinction.
- the method of the present invention is subjected to solvent extraction with a valuable metal extractant comprising an amide derivative represented by the following general formula (I), nickel, cobalt and / or scandium, manganese, zinc, iron, aluminum, calcium, Nickel, cobalt and / or scandium and impurities are separated from an acidic solution containing one or more impurities selected from chromium or magnesium.
- a valuable metal extractant comprising an amide derivative represented by the following general formula (I)
- nickel, cobalt and / or scandium manganese, zinc, iron, aluminum, calcium, Nickel, cobalt and / or scandium and impurities are separated from an acidic solution containing one or more impurities selected from chromium or magnesium.
- R 1 and R 2 each represent the same or different alkyl group.
- the alkyl group may be linear or branched.
- R 3 represents a hydrogen atom or an alkyl group.
- R 4 represents a hydrogen atom or an arbitrary group other than an amino group bonded to the ⁇ -carbon as an amino acid.
- the lipophilicity can be increased and used as an extractant.
- the amide derivative is one or more of a glycinamide derivative, a histidine amide derivative, a lysine amide derivative, an aspartic acid amide derivative and a normal-methylglycine derivative.
- the amide derivative is a glycinamide derivative
- the above glycinamide derivative can be synthesized by the following method. First, 2-halogenated acetyl halide is added to an alkylamine having a structure represented by NHR 1 R 2 (R 1 and R 2 are the same as the above substituents R 1 and R 2 ), and an amine is obtained by nucleophilic substitution reaction. Is substituted with 2-halogenated acetyl to give 2-halogenated (N, N-di) alkylacetamide.
- the 2-halogenated (N, N-di) alkylacetamide is added to glycine or an N-alkylglycine derivative, and one of the hydrogen atoms of the glycine or N-alkylglycine derivative is replaced with (N, Substitution with an N-di) alkylacetamide group.
- a glycine alkylamide derivative can be synthesized by these two-step reactions.
- Replacing glycine with histidine, lysine, and aspartic acid can synthesize histidine amide derivatives, lysine amide derivatives, and aspartic acid amide derivatives. From the constant, it is considered to be within the range of the results using the glycine derivative and the histidine amide derivative.
- this acidic aqueous solution is added to and mixed with the organic solution of the extractant while adjusting the acidic aqueous solution containing the target valuable metal ions.
- the target valuable metal ions can be selectively extracted from the organic phase, or conversely, the impurities can be extracted.
- the valuables and the impurities can be separated.
- the target valuables or impurities can be recovered in the aqueous solution by back-extracting the target valuables or impurities from the organic solvent.
- the back extraction solution for example, an aqueous solution in which nitric acid, hydrochloric acid, or sulfuric acid is diluted is preferably used.
- the target valuables or impurities can also be concentrated by changing the ratio of the organic phase and the aqueous phase as appropriate.
- the organic solvent may be any solvent as long as the extractant and the metal extraction species are dissolved, for example, a chlorinated solvent such as chloroform and dichloromethane, an aromatic hydrocarbon such as benzene, toluene, and xylene, Examples thereof include aliphatic hydrocarbons such as hexane. These organic solvents may be used alone or in combination, and alcohols such as 1-octanol may be mixed.
- a chlorinated solvent such as chloroform and dichloromethane
- an aromatic hydrocarbon such as benzene, toluene, and xylene
- aliphatic hydrocarbons such as hexane.
- the concentration of the extractant can be appropriately set depending on the type and concentration of valuable metals.
- the stirring time and the extraction temperature vary depending on the type and concentration of the valuable metal and the amount of the extractant to be added, the acidic aqueous solution of the metal ions to be separated (valuable or impurities) and the extractant What is necessary is just to set suitably according to the conditions of an organic solution.
- the pH of the acidic aqueous solution containing metal ions can also be adjusted as appropriate depending on the type of valuable metal.
- any amino derivative may be used as an extractant as long as it is the above amino derivative.
- the pH of the acidic aqueous solution is adjusted to 2.0 or more and 4.3 or less, preferably 2.8 or more and 3.2 or less. Add an organic solution of extractant. If the pH is less than 2.0, nickel ions may not be sufficiently extracted. Moreover, when pH exceeds 4.3, zinc ion may also be extracted depending on the kind of extractant. In addition, since extraction of zinc ion and cobalt ion shows substantially the same behavior, it is difficult to separate cobalt from zinc in a single step, and a combination with other methods is necessary.
- the organic solution of the extractant is added while adjusting the pH of the acidic aqueous solution to 1.2 to 4.3, preferably 2.0 to 3.2. Therefore, scandium can be efficiently extracted and separated from zinc.
- the organic solution of the extractant is added to the acidic solution while adjusting the pH to 1.0 or more and 3.2 or less. Trivalent iron ions can be extracted and separated from unextracted nickel ions. In the case where trivalent iron ions and cobalt are contained, the extractant is added to the acidic solution while adjusting the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0. Can be extracted and trivalent iron ions can be extracted and separated from unextracted cobalt ions.
- the divalent iron When divalent iron ions are contained as impurities, the divalent iron is added to the acidic solution while adjusting the pH to 4.5 or lower, preferably 3.0 or lower. Nickel ions can be extracted and nickel and iron can be separated while suppressing ion extraction.
- the extractant is added to the acidic solution while adjusting the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0.
- the pH in the range of 1.0 to 4.0, preferably 2.0 to 3.0.
- trivalent iron ions can be extracted and separated from unextracted cobalt ions.
- cobalt ions are extracted and not extracted by maintaining the pH at 1.0 to 4.5, preferably 2.0 to 3.0. Separable from valent iron ions.
- the scandium ions can be separated and extracted from the divalent iron ions by maintaining the pH at 1.2 or more and 4.5 or less.
- the trivalent iron ions and scandium ions cannot be separated due to the extraction behavior of the extractant of the present invention.
- the pH of the acidic aqueous solution is adjusted to 2.0 to 4.5, preferably 2.5 to 3.5.
- nickel ions can be extracted and separated from aluminum ions.
- Cobalt ions cannot be separated because they have the same extraction behavior as aluminum ions.
- the extractant is added to the acidic aqueous solution while adjusting the pH to 1.2 to 4.5, preferably 2.0 to 3.5.
- the pH By adding an organic solution, scandium ions can be extracted and separated from aluminum ions.
- Magnesium ions are not extracted for a pH range of 0.8 to 7.8. Therefore, nickel ions, cobalt ions, and scandium ions can be effectively separated from magnesium by setting the pH to 2 or more, preferably 3.0 or more.
- the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to be in the range of 0 to 2, preferably 0 to 1.2. Can extract molybdenum ions and separate them from scandium ions.
- the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to a range of 0 to 2.2, preferably 0 to 2.
- the pH of the acidic solution is adjusted to 0 to 3.2, preferably 0 to 2.0.
- molybdenum ions can be extracted and separated from cobalt ions.
- lutetium ions, lanthanum ions, cerium ions, and neodymium ions are generally extracted in a region where the pH exceeds 3. In the case of sodium ions, it is extracted when the pH exceeds 5-6. For this reason, by setting the pH to 3 or less, only nickel ions, cobalt ions, and scandium ions can be selectively extracted and effectively separated therefrom.
- the organic solution of the extractant is added to the acidic aqueous solution while adjusting the pH of the acidic solution to a range of 1 to 3. By adding, titanium ions can be extracted and separated from cobalt ions.
- the extraction agent of the present invention substantially overlaps the extraction behavior of the above-described ions, effectively. Cannot be separated.
- a glycinamide derivative represented by the above general formula (I) that is, N- [N, N-bis (2-ethylhexyl) aminocarbonyl into which two 2-ethylhexyl groups are introduced Methyl] glycine (N- [N, N-Bis (2-ethylhexyl) aminocarbonylmethyl] glycine) (or N, N-di (2-ethylhexyl) acetamido-2-glycine (N, N-di (2-ethylhexyl) acetamide) -2-glycine), hereinafter referred to as “D2EHAG”).
- D2EHAG was synthesized as follows. First, as shown in the following reaction formula (II), 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then, 13.5 g (0.12 mol) of 2-chloroacetyl chloride was added dropwise, then washed once with 1 mol / l hydrochloric acid, then with ion-exchanged water, and the chloroform phase was separated. did. Next, an appropriate amount (about 10 to 20 g) of anhydrous sodium sulfate was added and dehydrated, followed by filtration to obtain 29.1 g of a yellow liquid.
- reaction formula (II) 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then,
- reaction formula (III) methanol is added to and dissolved in 8.0 g (0.2 mol) of sodium hydroxide, and the solution in which 15.01 g (0.2 mol) of glycine is further added is stirred. Then, 12.72 g (0.04 mol) of the above CDEHAA was slowly added dropwise and stirred. After completion of the stirring, the solvent in the reaction solution was distilled off, and chloroform was added to the residue to dissolve it. The solution was acidified by adding 1 mol / l sulfuric acid, washed with ion-exchanged water, and the chloroform phase was separated.
- Nickel, cobalt and / or scandium were separated and recovered.
- sulfuric acid acidic solutions each containing 1 ⁇ 10 ⁇ 4 mol / l of titanium and lutetium and having a pH adjusted to 1.1 to 7.9 were prepared and used as original solutions.
- the divalent iron was prepared using ferrous sulfate
- the trivalent iron was ferric sulfate
- the other components were prepared using commercially available special grade reagents of sulfate.
- a normal dodecane solution containing 0.01 mol / l of valuable metal extractant in the same volume as the above original solution was added to a test tube and placed in a thermostatic chamber at 25 ° C. and shaken for 24 hours. At this time, the pH of the sulfuric acid solution was adjusted to be constant using sulfuric acid, ammonium sulfate and ammonia having a concentration of 0.1 mol / l.
- the aqueous phase was fractionated and the cobalt concentration and manganese concentration were measured using an induction plasma emission spectroscopic analyzer (ICP-AES).
- ICP-AES induction plasma emission spectroscopic analyzer
- the organic phase was back extracted with 1 mol / l sulfuric acid.
- the concentration of each component contained in the original solution in the back extraction phase was measured using ICP-AES. From these measurement results, the extraction rate of each component was defined and determined by the quantity in the organic phase / (the quantity in the organic phase + the quantity in the aqueous phase).
- Table 1, Table 2, FIG. 3 and FIG. 3 and 4 the horizontal axis represents the pH of the sulfuric acid acidic solution, and the vertical axis represents the extraction rate (unit:%) of each component component containing nickel, cobalt, scandium and the like.
- the extraction rate of zinc exceeded 10%
- the extraction rate of zinc exceeded 20%
- nickel had an extraction rate of less than 10% at pH 2.0, but an extraction rate exceeding 70% at pH 2.8, and an extraction rate exceeding 80% at pH 3.2.
- the extraction rate of nickel was higher than the extraction rate of zinc, it could be separated from zinc by operating under conditions for extracting nickel. It should be noted that the extraction rate of cobalt almost overlaps with that of zinc and is difficult to separate.
- nickel and aluminum are separated by a method of extracting nickel ions when the pH of the acidic solution is in the range of 2.0 to 4.5, preferably 2.5 to 3.5. did it.
- cobalt ions have almost the same extraction behavior as aluminum ions, so cobalt and aluminum could not be separated.
- the scandium ions were extracted in the range of pH 1.2 to 4.5, preferably 2.0 to 3.5, and separated from aluminum.
- magnesium ions are not extracted from the extractant of the present invention, nickel ions, cobalt ions and scandium ions were extracted and separated from magnesium ions.
- Chromium ions are extracted when the pH exceeds 2.0. For this reason, it was separable from cobalt ion by making pH of an acidic solution into the range of 2.3 or more and 3.8 or less, Preferably it is the range of 2.8 or more and 3.5 or less.
- scandium ions scandium ions were extracted in a pH range of 1.2 to 3.5 and separated from chromium ions. Nickel ions and chromium ions could not be separated because of their extraction behavior.
- Molybdenum ions already have an extraction rate of 35% or more at a pH of 0, but the extraction rate further increases as the pH increases. It was separable from scandium ions when the pH was 2 or less, separated from nickel ions when the pH was 2.2 or less, and separated from cobalt ions when the pH was 3.2 or less.
- Lutetium ions, lanthanum ions, cerium ions, and neodymium ions were not extracted when the pH was maintained at 3 or less, and could be separated from the extracted nickel ions, cobalt ions, and scandium ions.
- Thallium has an extraction behavior similar to manganese at pH 5 or lower, and can be separated from thallium by extraction in a pH region where nickel ions, cobalt ions, and scandium ions are extracted by 80% or more.
- Sodium ions were not extracted when the pH was maintained at 5-6 or lower, and could be separated from the extracted nickel ions, cobalt ions, and scandium ions.
- Titanium ions, vanadium ions, tungsten ions, and tin ions could be extracted and separated while adjusting the pH to a range of 1 or more and 3 or less while keeping cobalt ions from being extracted.
- the behavior of the extractant almost overlapped with nickel ions and scandium ions, and could not be separated effectively.
- Rhenium ions and samarium ions were not extracted. Therefore, nickel ions, cobalt ions and scandium ions could be selectively extracted and separated from rhenium ions and samarium ions in any pH range.
- Copper ions could not be separated effectively due to almost the same extraction as scandium ions. With respect to nickel ions, copper ions could be selectively extracted in a pH range of 2 to 2.6. For cobalt ions, copper ions could be selectively extracted in the pH range of 2 to 3.5.
- Lead ions could be selectively extracted and separated from scandium ions within a pH range of 1.2 to 2.8.
- nickel ions could be extracted at a pH in the range of 2.5 to 3.5.
- cobalt ions the extraction behavior almost overlapped and could not be separated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明の方法は、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤による溶媒抽出に付し、ニッケル、コバルト及び/又はスカンジウムと、マンガン、亜鉛、鉄、アルミニウム、カルシウム、クロム又はマグネシウムの中から選択される1種類以上の不純物とを含有する酸性溶液からニッケル、コバルト及び/又はスカンジウムと不純物とを分離する。
有価物と不純物を含有する酸性水溶液から、有価物を効率的に分離・回収する際、上記のアミノ誘導体であれば、いずれのアミノ誘導体を抽出剤としてもよい。
目的とする有価物としてニッケルイオン、不純物として亜鉛イオンが含有される場合、酸性水溶液のpHを2.0以上4.3以下、好ましくは2.8以上3.2以下の範囲、に調整しながら抽出剤の有機溶液を加える。pHが2.0未満であると、ニッケルイオンを十分に抽出できない可能性がある。またpHが4.3を超えると、抽出剤の種類によっては亜鉛イオンも抽出されしまう可能性がある。なお、亜鉛イオンとコバルトイオンの抽出はほぼ同じ挙動を示すことから、コバルトを亜鉛と分離するのは単一の工程では困難であり、他の方法との組み合わせが必要である。
前記酸性水溶液に有価物としてニッケルイオン、不純物として3価の形態の鉄イオンが含有される場合、pHを1.0以上3.2以下に調整しながら酸性溶液に抽出剤の有機溶液を加えると、3価の鉄イオンを抽出し、抽出されないニッケルイオンと分離できる。
なお、3価鉄イオンとコバルトが含有されている場合は、pHを1.0以上4.0以下、好ましくは2.0以上3.0以下の範囲に調整しながら上記酸性溶液に上記抽出剤を加えることで、3価鉄イオンを抽出し、抽出されないコバルトイオンと分離できる。
同様に、2価鉄イオンが含有される場合は、pHを1.0以上4.5以下、好ましくは2.0以上3.0以下に維持することで、コバルトイオンを抽出し、抽出されない2価鉄イオンと分離できる。
なお、3価鉄イオンとスカンジウムイオンは本発明の抽出剤での抽出挙動は重なり分離できない。
また、前記酸性水溶液にアルミニウムイオンとニッケルイオンが含有されている場合、pHを2.0以上4.5以下、好ましくは2.5以上3.5以下、に調整しながら酸性水溶液に抽出剤の有機溶液を加えると、ニッケルイオンを抽出し、アルミニウムイオンから分離できる。なお、コバルトイオンは、アルミニウムイオンと同じ抽出挙動をとるため、分離はできない。
また、前記酸性水溶液にカルシウムイオンとニッケルイオン、コバルトイオン及び/又はスカンジウムイオンが含有される場合、前記酸性溶液のpHを4.0以下に調整して抽出することで、カルシウムイオンの抽出を抑制し、ニッケルやコバルトを抽出してカルシウムと分離できる。
なお、マグネシウムイオンはpH0.8から7.8の範囲に対して抽出されない。したがって、ニッケルイオン、コバルトイオン、スカンジウムイオンは、pHを2以上、好ましくは3.0以上とすることで、マグネシウムと効果的に分離できる。
また、前記酸性水溶液にモリブデンイオンとスカンジウムイオンが含有される場合、前記酸性溶液のpHを0以上2以下、好ましくは0以上1.2以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、モリブデンイオンを抽出し、スカンジウムイオンから分離できる。
また、前記酸性水溶液にスカンジウムイオンとクロムイオンが含有される場合、前記酸性溶液のpHを1.2以上3.5以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、スカンジウムイオンを抽出し、クロムイオンから分離できる。
また、ルテチウムイオン、ランタンイオン、セリウムイオン、ネオジムイオンは概ねpHが3を越える領域で抽出されてくる。また、ナトリウムイオンの場合にはpHが5~6を超えると抽出されてくる。このため、pHを3以下とすることで、ニッケルイオンやコバルトイオンやスカンジウムイオンのみを選択的に抽出し、これらと効果的に分離できる。
また、前記酸性水溶液にチタンイオンやバナジウムイオンやタングステンイオンやスズイオンとコバルトイオンが含有される場合、前記酸性溶液のpHを1以上3以下の範囲に調整しながら酸性水溶液に抽出剤の有機溶液を加えることで、チタンイオンを抽出し、コバルトイオンから分離できる。
また、レニウムイオンやサマリウムイオンは本抽出剤では抽出されないので、ニッケルイオン、コバルトイオン、スカンジウムイオンを抽出率の良好なpH領域で抽出してこれらと分離できる。
[アミド誘導体の合成]
抽出剤となるアミド誘導体の一例として、上記一般式(I)で表されるグリシンアミド誘導体、すなわち、2つの2-エチルヘキシル基を導入したN-[N,N-ビス(2-エチルヘキシル)アミノカルボニルメチル]グリシン(N-[N,N-Bis(2-ethylhexyl)aminocarbonylmethyl]glycine)(あるいはN,N-ジ(2-エチルヘキシル)アセトアミド-2-グリシン(N,N-di(2-ethylhexyl)acetamide-2-glycine)ともいい、以下「D2EHAG」という。)を合成した。
次に、無水硫酸ナトリウムを適量(約10~20g)加え、脱水した後、ろ過し、黄色液体29.1gを得た。この黄色液体(反応生成物)の構造を、核磁気共鳴分析装置(NMR)を用いて同定したところ、上記黄色液体は、2-クロロ-N,N-ジ(2-エチルヘキシル)アセトアミド(以下「CDEHAA」という。)の構造であることが確認された。なお、CDEHAAの収率は、原料であるジ(2-エチルヘキシル)アミンに対して90%であった。
実施例の有価金属抽出剤を用いて、ニッケル、コバルト及び/又はスカンジウムの分離・回収を行った。
ニッケル、コバルト、マンガン、2価鉄、3価鉄、亜鉛、アルミ、クロム、カルシウム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン及びルテチウムをそれぞれ1×10-4mol/l含み、pHを1.1~7.9に調整した数種類の硫酸酸性溶液を用意し、元液とした。なお、2価鉄は硫酸第1鉄、3価鉄は硫酸第2鉄、それ以外の成分はそれぞれ硫酸塩の市販特級試薬を用いて調製した。
Claims (11)
- ニッケル、コバルト、スカンジウムの中から選ばれる少なくとも1種以上の有価成分と、マンガン、亜鉛、鉄、アルミニウム、カルシウム、クロム、マグネシウム、銅、鉛、ナトリウム、ランタン、ネオジム、モリブデン、バナジウム、スズ、タングステン、サマリウム、レニウム、タリウム、セリウム、チタン、ルテチウムの中から選択される1種類以上の不純物とを含有する酸性溶液を、下記一般式(I)で表されるアミド誘導体からなる有価金属抽出剤による溶媒抽出に付し、前記酸性溶液から前記有価成分と前記不純物とを分離する方法。
- 前記アミド誘導体がグリシンアミド誘導体、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体及びノルマル-メチルグリシン誘導体のいずれか1以上である、請求項1に記載の方法。
- 前記酸性溶液は、ニッケルと亜鉛とを含有し、
前記酸性溶液のpHを2.0以上4.3以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、ニッケルと鉄とを含有し、
前記鉄が3価である場合は前記酸性溶液のpHを1.0以上3.2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、
前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、コバルトと鉄とを含有し、
前記鉄が3価である場合は前記酸性溶液のpHを1.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付し、
前記鉄が2価である場合は前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、ニッケルとアルミニウムとを含有し、
前記酸性溶液のpHを2.0以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、ニッケル及び/又はコバルトとカルシウムとを含有し、
前記酸性溶液のpHを2.0以上4.0以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、コバルトとクロムとを含有し、
前記酸性溶液のpHを2.8以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、ニッケル、コバルト及び/又はスカンジウムとモリブデンとを含有し、
前記酸性溶液のpHを0以上2以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、スカンジウムと、二価鉄及び/又はアルミニウムとを含有し、
前記酸性溶液のpHを1.2以上4.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。 - 前記酸性溶液は、スカンジウムとクロムとを含有し、
前記酸性溶液のpHを1.2以上3.5以下の範囲に調整しながら前記酸性溶液を前記溶媒抽出に付す、請求項1又は2に記載の方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480008628.4A CN105074022B (zh) | 2013-03-18 | 2014-03-17 | 从含有镍、钴和/或钪的酸性溶液中分离杂质的方法 |
US14/765,307 US9458526B2 (en) | 2013-03-18 | 2014-03-17 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
EP14770382.1A EP2977473B1 (en) | 2013-03-18 | 2014-03-17 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
CA2900945A CA2900945C (en) | 2013-03-18 | 2014-03-17 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
AU2014239481A AU2014239481B2 (en) | 2013-03-18 | 2014-03-17 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
PH12015501767A PH12015501767B1 (en) | 2013-03-18 | 2015-08-12 | Method for separating impurities from an acidic solution contaning nickel and cobalt and/or scandium |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013054944 | 2013-03-18 | ||
JP2013-054944 | 2013-03-18 | ||
JP2013098510A JP5595554B1 (ja) | 2013-03-18 | 2013-05-08 | ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 |
JP2013-098510 | 2013-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148431A1 true WO2014148431A1 (ja) | 2014-09-25 |
Family
ID=51580110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057133 WO2014148431A1 (ja) | 2013-03-18 | 2014-03-17 | ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9458526B2 (ja) |
EP (1) | EP2977473B1 (ja) |
JP (1) | JP5595554B1 (ja) |
CN (1) | CN105074022B (ja) |
AU (1) | AU2014239481B2 (ja) |
CA (1) | CA2900945C (ja) |
PH (1) | PH12015501767B1 (ja) |
WO (1) | WO2014148431A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015199224A1 (ja) * | 2014-06-26 | 2015-12-30 | 国立大学法人九州大学 | イオン交換樹脂及び金属の吸着分離方法 |
US9481638B2 (en) | 2012-03-13 | 2016-11-01 | Kyushu University, National University Corporation | Scandium extraction method |
US9725786B2 (en) | 2012-12-12 | 2017-08-08 | Kyushu University, National University Corporation | Nickel extraction method |
US9803262B2 (en) | 2012-08-20 | 2017-10-31 | Kyushu University, National University Corporation | Gallium extraction agent and gallium extraction method |
US10036082B2 (en) | 2015-01-20 | 2018-07-31 | Kyushu University, National University Corporation | Zirconium extractant and method for extracting zirconium |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3201859A1 (en) * | 2014-09-30 | 2017-08-09 | PCMS Holdings, Inc. | Reputation sharing system using augmented reality systems |
US20170169532A1 (en) * | 2015-12-14 | 2017-06-15 | International Business Machines Corporation | Dynamic estimation of geographical locations using multiple data sources |
JP6406234B2 (ja) * | 2015-12-16 | 2018-10-17 | 住友金属鉱山株式会社 | スカンジウムの回収方法 |
JP6256491B2 (ja) * | 2016-01-25 | 2018-01-10 | 住友金属鉱山株式会社 | スカンジウムの回収方法 |
JP6623803B2 (ja) * | 2016-02-05 | 2019-12-25 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
JP6409791B2 (ja) | 2016-02-05 | 2018-10-24 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
JP6528707B2 (ja) * | 2016-03-14 | 2019-06-12 | 住友金属鉱山株式会社 | スカンジウム精製方法 |
CN107447108B (zh) * | 2016-06-01 | 2020-08-07 | 中国科学院上海有机化学研究所 | 一种萃取组合物、萃取体系、萃取方法及反萃取方法 |
JP6863132B2 (ja) * | 2017-06-28 | 2021-04-21 | 住友金属鉱山株式会社 | 抽出剤の選択方法 |
CN107904400B (zh) * | 2017-12-13 | 2019-09-03 | 清远先导材料有限公司 | 一种硫酸镍钴溶液中铊的分离回收方法 |
KR102095495B1 (ko) | 2018-02-21 | 2020-05-27 | 주식회사 영풍 | 아연제련공정 중 탈륨제거 방법 |
CN113373304B (zh) * | 2021-06-09 | 2022-05-13 | 江西理工大学 | 一种从稀土料液中络合-浊点萃取除铝的方法 |
CN114014422B (zh) * | 2021-11-05 | 2023-09-26 | 济源职业技术学院 | 一种金属离子分离富集体系及分离富集钴(ii)的方法 |
CN115677528A (zh) * | 2022-11-03 | 2023-02-03 | 厦门稀土材料研究所 | 一种分离铼和锝的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143589A (ja) | 1995-11-22 | 1997-06-03 | Taiheiyo Kinzoku Kk | レアーアースメタルの濃縮分離回収方法 |
JPH09291320A (ja) | 1996-04-26 | 1997-11-11 | Taiheiyo Kinzoku Kk | レアアース金属の回収方法 |
EP0834581A1 (en) * | 1996-09-30 | 1998-04-08 | Basf Aktiengesellschaft | Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions |
JP2000234130A (ja) | 1999-02-12 | 2000-08-29 | Taiheiyo Kinzoku Kk | 酸化鉱石から有価金属を回収する方法 |
JP2007327085A (ja) * | 2006-06-06 | 2007-12-20 | Japan Atomic Energy Agency | 希土類金属の抽出剤と抽出方法 |
JP2010174366A (ja) * | 2009-02-02 | 2010-08-12 | Sumitomo Metal Mining Co Ltd | 使用済みニッケル水素電池からの金属の回収方法 |
JP2012102062A (ja) * | 2010-11-12 | 2012-05-31 | Univ Of Miyazaki | アルキルアミノリン化合物及び金属抽出剤 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2876152B2 (ja) | 1990-06-19 | 1999-03-31 | 三井サイテック株式会社 | 希土類金属の分離精製法 |
JP2514588B2 (ja) | 1992-10-05 | 1996-07-10 | 日本ポットクリーナー販売株式会社 | 換気用フィルタ |
JP3806258B2 (ja) | 1999-01-21 | 2006-08-09 | 同和鉱業株式会社 | Ga,Inの溶媒抽出方法 |
JP3430973B2 (ja) | 1999-04-26 | 2003-07-28 | 大平洋金属株式会社 | 酸化鉱石からニッケルとスカンジウムを回収する方法 |
US20050124765A1 (en) * | 2003-11-25 | 2005-06-09 | Japan Atomic Energy Research Institute | Adsorbent for recovering useful rare metals by adsorption |
CN101519427B (zh) | 2008-02-29 | 2015-02-25 | 中国人民解放军军事医学科学院毒物药物研究所 | 具有内皮素受体拮抗活性的肽类衍生物及其药物组合物和用途 |
JP5504575B2 (ja) | 2008-04-21 | 2014-05-28 | 国立大学法人 宮崎大学 | ホスフィン酸を配位子とするキレート抽出剤 |
JP5679159B2 (ja) | 2010-07-05 | 2015-03-04 | 信越化学工業株式会社 | 希土類金属抽出剤の合成方法、及び希土類金属の溶媒抽出用有機相 |
WO2013069563A1 (ja) | 2011-11-09 | 2013-05-16 | 国立大学法人九州大学 | コバルト抽出方法 |
JP5279938B1 (ja) | 2011-11-09 | 2013-09-04 | 国立大学法人九州大学 | 有価金属抽出剤及びこの抽出剤を用いた有価金属抽出方法 |
JP5279942B1 (ja) | 2011-11-09 | 2013-09-04 | 国立大学法人九州大学 | コバルト抽出方法 |
JP5367862B2 (ja) | 2012-03-13 | 2013-12-11 | 国立大学法人九州大学 | スカンジウム抽出剤およびこの抽出剤を用いたスカンジウム抽出方法 |
JP5734268B2 (ja) | 2012-12-12 | 2015-06-17 | 国立大学法人九州大学 | ニッケル抽出方法 |
-
2013
- 2013-05-08 JP JP2013098510A patent/JP5595554B1/ja active Active
-
2014
- 2014-03-17 AU AU2014239481A patent/AU2014239481B2/en active Active
- 2014-03-17 CN CN201480008628.4A patent/CN105074022B/zh active Active
- 2014-03-17 WO PCT/JP2014/057133 patent/WO2014148431A1/ja active Application Filing
- 2014-03-17 EP EP14770382.1A patent/EP2977473B1/en active Active
- 2014-03-17 CA CA2900945A patent/CA2900945C/en active Active
- 2014-03-17 US US14/765,307 patent/US9458526B2/en active Active
-
2015
- 2015-08-12 PH PH12015501767A patent/PH12015501767B1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143589A (ja) | 1995-11-22 | 1997-06-03 | Taiheiyo Kinzoku Kk | レアーアースメタルの濃縮分離回収方法 |
JPH09291320A (ja) | 1996-04-26 | 1997-11-11 | Taiheiyo Kinzoku Kk | レアアース金属の回収方法 |
EP0834581A1 (en) * | 1996-09-30 | 1998-04-08 | Basf Aktiengesellschaft | Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions |
JP2000234130A (ja) | 1999-02-12 | 2000-08-29 | Taiheiyo Kinzoku Kk | 酸化鉱石から有価金属を回収する方法 |
JP2007327085A (ja) * | 2006-06-06 | 2007-12-20 | Japan Atomic Energy Agency | 希土類金属の抽出剤と抽出方法 |
JP2010174366A (ja) * | 2009-02-02 | 2010-08-12 | Sumitomo Metal Mining Co Ltd | 使用済みニッケル水素電池からの金属の回収方法 |
JP2012102062A (ja) * | 2010-11-12 | 2012-05-31 | Univ Of Miyazaki | アルキルアミノリン化合物及び金属抽出剤 |
Non-Patent Citations (1)
Title |
---|
HIROFUMI MORIZONO ET AL.: "Liquid-liquid extraction of transition metal ions with an alkylhistidine extractant", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 80, no. 2, 29 July 2011 (2011-07-29), pages 390 - 395, XP028237907 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9481638B2 (en) | 2012-03-13 | 2016-11-01 | Kyushu University, National University Corporation | Scandium extraction method |
US9803262B2 (en) | 2012-08-20 | 2017-10-31 | Kyushu University, National University Corporation | Gallium extraction agent and gallium extraction method |
US9725786B2 (en) | 2012-12-12 | 2017-08-08 | Kyushu University, National University Corporation | Nickel extraction method |
WO2015199224A1 (ja) * | 2014-06-26 | 2015-12-30 | 国立大学法人九州大学 | イオン交換樹脂及び金属の吸着分離方法 |
US9863018B2 (en) | 2014-06-26 | 2018-01-09 | Kyushu University, National University Corporation | Ion exchange resin and method for adsorbing and separating metal |
US10036082B2 (en) | 2015-01-20 | 2018-07-31 | Kyushu University, National University Corporation | Zirconium extractant and method for extracting zirconium |
Also Published As
Publication number | Publication date |
---|---|
EP2977473A1 (en) | 2016-01-27 |
EP2977473B1 (en) | 2017-12-13 |
CN105074022A (zh) | 2015-11-18 |
AU2014239481B2 (en) | 2016-03-10 |
US20160010177A1 (en) | 2016-01-14 |
CA2900945A1 (en) | 2014-09-25 |
JP2014205900A (ja) | 2014-10-30 |
US9458526B2 (en) | 2016-10-04 |
EP2977473A4 (en) | 2016-03-16 |
JP5595554B1 (ja) | 2014-09-24 |
PH12015501767A1 (en) | 2015-11-09 |
AU2014239481A1 (en) | 2015-09-17 |
PH12015501767B1 (en) | 2015-11-09 |
CA2900945C (en) | 2016-08-09 |
CN105074022B (zh) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5595554B1 (ja) | ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 | |
JP5279942B1 (ja) | コバルト抽出方法 | |
JP6852599B2 (ja) | スカンジウムの精製方法 | |
JP6528707B2 (ja) | スカンジウム精製方法 | |
EP2902511B1 (en) | Nickel extraction method | |
US10704120B2 (en) | Method for recovering scandium | |
WO2013069563A1 (ja) | コバルト抽出方法 | |
JP2014037607A (ja) | インジウム抽出剤およびこの抽出剤を用いたインジウム抽出方法 | |
JP6922478B2 (ja) | スカンジウムの精製方法 | |
JP6623803B2 (ja) | スカンジウム回収方法 | |
US9493857B2 (en) | Valuable-metal extraction method | |
JP5442080B2 (ja) | 有価金属分離方法 | |
WO2018097001A1 (ja) | スカンジウムの精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480008628.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14770382 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14765307 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014770382 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2900945 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014239481 Country of ref document: AU Date of ref document: 20140317 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201506633 Country of ref document: ID |