WO2018097001A1 - スカンジウムの精製方法 - Google Patents

スカンジウムの精製方法 Download PDF

Info

Publication number
WO2018097001A1
WO2018097001A1 PCT/JP2017/041068 JP2017041068W WO2018097001A1 WO 2018097001 A1 WO2018097001 A1 WO 2018097001A1 JP 2017041068 W JP2017041068 W JP 2017041068W WO 2018097001 A1 WO2018097001 A1 WO 2018097001A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
extraction
extractant
solution
post
Prior art date
Application number
PCT/JP2017/041068
Other languages
English (en)
French (fr)
Inventor
浩史 庄司
達也 檜垣
小林 宙
小原 剛
中井 修
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017128029A external-priority patent/JP6922478B2/ja
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2017365489A priority Critical patent/AU2017365489A1/en
Priority to EP17873473.7A priority patent/EP3546604A4/en
Publication of WO2018097001A1 publication Critical patent/WO2018097001A1/ja
Priority to PH12019501149A priority patent/PH12019501149A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Definitions

  • the present invention relates to a method for purifying scandium, and relates to a method for purifying scandium that can efficiently separate a plurality of impurities from an acidic solution containing scandium.
  • Scandium is extremely useful as an additive for high-strength alloys and as an electrode material for fuel cells. However, since the production amount is small and expensive, it has not been widely used.
  • HPAL high pressure acid leaching
  • Patent Documents 2 and 3 describe a method of extracting scandium into an organic solvent using an organic solvent obtained by diluting 2-ethylhexylsulfonic acid-mono-2-ethylhexyl with kerosene.
  • Patent Document 3 describes a method of selectively separating and recovering scandium from a scandium-containing supply liquid by bringing the scandium-containing supply liquid into contact with an extractant at a constant rate by batch processing.
  • Impurities contained in nickel oxide ore vary in size and quantity depending on the region where they are produced, but in addition to iron and aluminum, elements such as manganese and magnesium, and in some cases, trace amounts of thorium and uranium, etc. It contains various impurity elements including the actinoid elements.
  • Patent Document 4 proposes a method for purifying scandium, in which thorium is separated from a solution containing scandium by solvent extraction using an amine-based extractant and then separated from uranium by an oxidation treatment with oxalic acid. Yes. By using the method of Patent Document 4, it is possible to recover 99.9% of highly pure scandium oxide.
  • JP-A-3-173725 Japanese Patent Laid-Open No. 9-291320 International Publication No. 2014/110216 JP 2016-108664 A
  • the present invention has been proposed in view of the above-described circumstances, and provides a simple and economical method for purifying scandium that can separate both thorium and uranium elements from an acidic solution containing scandium in one step.
  • the purpose is to provide.
  • (1) 1st invention of this invention attaches
  • the mixed extractant contains the tertiary amine in a proportion of 20% by volume or more and less than 100% by volume with respect to the primary amine. This is a method for purifying scandium.
  • the primary amine is represented by the general formula NH 2 R, and R is a branched alkyl group having 16 to 22 carbon atoms. This is a method for purifying scandium.
  • a fourth invention of the present invention is a method for purifying scandium according to any one of the first to third inventions, wherein the tertiary amine is tri-normal-octyl-amine.
  • the method further comprises a scrubbing step for washing the post-extraction extractant, and in the scrubbing step, the extraction for the cleaning liquid (As) is performed.
  • This is a method for purifying scandium, wherein the volume ratio (Os / As) of the post-extractant (Os) is 2 or more and 10 or less.
  • the sixth aspect of the present invention includes a cleaning step of cleaning the extractant after the back extraction process with respect to the post-extraction extractant.
  • This is a method for purifying scandium, in which the washed solution is used as a washing solution, and the extraction agent after the washing treatment in the washing step is reused as the mixed extraction agent used in the solvent extraction.
  • the acidic solution is obtained by passing a solution containing scandium through an ion exchange resin, and then from the ion exchange resin to scandium.
  • This is a method for purifying scandium, which is an eluent from which eluate is eluted.
  • oxalic acid is added to the extraction residue to generate a precipitate containing scandium oxalate, and then the precipitate Is a method for purifying scandium, further comprising a step of roasting to obtain scandium oxide.
  • present embodiments specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail.
  • the present invention is not limited to the following embodiments, and the gist of the present invention is changed. In the range which does not carry out, it can implement by adding a change suitably.
  • the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
  • the method for purifying scandium according to the present embodiment is a method for purifying scandium by subjecting an acidic solution containing scandium to a specific solvent extraction treatment. Specifically, in this scandium purification method, an acidic solution containing scandium is subjected to solvent extraction using an extractant (hereinafter referred to as “mixed extractant”) in which a primary amine and a tertiary amine are mixed. In addition, it is characterized in that it is separated into an extractant containing scandium and an extractant after extraction.
  • the extraction ratio of thorium and uranium can be increased by setting the mixing ratio of the tertiary amine to the primary amine to 20 volume% or more and less than 100 volume%, and the scandium purification efficiency. Can be improved.
  • the acidic solution containing scandium to be used for solvent extraction is not particularly limited.
  • a nickel oxide ore hydrometallurgical process a nickel oxide ore slurry is leached with an acid such as sulfuric acid. And the resulting solution.
  • This solution includes a leachate obtained through a leaching process in a hydrometallurgical process, or a neutralization treatment for removing impurity components from the leachate, and a sulfidizing agent is added to the resulting neutralized liquid to obtain nickel. Examples thereof include a post-sulfurization solution after recovering a sulfide containing selenium.
  • These solutions are acidic solutions configured to contain an acid such as sulfuric acid, and are acidic solutions containing scandium derived from nickel oxide ore.
  • FIG. 1 is a process diagram showing an application example of a method for purifying scandium according to the present embodiment, and a process for concentrating scandium based on a post-sulfurization solution obtained through a hydrometallurgical process of nickel oxide ore. It is a figure of an example of the process which performs a solvent extraction process with respect to the acidic solution obtained through this, and collect
  • the scandium recovery process shown in FIG. 1 includes a hydrometallurgical treatment step S1 to obtain an acidic solution containing scandium by leaching nickel oxide ore with an acid such as sulfuric acid, and impurities from the obtained acidic solution.
  • the scandium elution step S2 to obtain a scandium eluate enriched with scandium
  • a solvent extraction step S4 for subjecting the acidic solution containing scandium to solvent extraction using a specific extractant
  • scandium from the extract And a scandium recovery step S5 for recovery.
  • a treatment neutralization step S3
  • impurities are back-extracted from the obtained post-extraction extractant (back-extraction step S43). After the back-extractant is washed (acid wash step S6), the extraction step S41 It can be reused.
  • a leaching step S11 in which nickel oxide ore is leached with sulfuric acid under high temperature and high pressure to obtain a leachate, and a neutralized starch containing impurities by adding a neutralizing agent to the leachate
  • a neutralization step S12 for obtaining a post-neutralization solution
  • a smelting step S1 for obtaining a nickel sulfide and a post-sulfurization solution by adding a sulfiding agent to the post-neutralization solution.
  • a solution after sulfiding can be used.
  • Leaching step In the leaching step S11, for example, using a high-temperature pressurized container (autoclave) or the like, sulfuric acid is added to the slurry of nickel oxide ore, and the mixture is stirred at a temperature of 240 ° C to 260 ° C. It is a step of forming a leaching slurry comprising leaching residues.
  • the process in leaching process S11 according to the conventionally known HPAL process, for example, it describes in patent document 1.
  • nickel oxide ore examples include so-called laterite ores such as limonite ore and saprolite ore.
  • Laterite ore usually has a nickel content of 0.8 to 2.5% by weight, and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
  • These nickel oxide ores contain scandium.
  • the leaching slurry comprising the obtained leaching solution and the leaching residue is washed, and solid-liquid separation is performed into the leaching solution containing nickel, cobalt, scandium, and the like and the leaching residue that is hematite.
  • This solid-liquid separation treatment can be performed, for example, using a solid-liquid separation facility such as a thickener using a flocculant supplied from a flocculant supply facility after the leaching slurry is mixed with a cleaning liquid.
  • the neutralization step S12 is a step of adding a neutralizing agent to the obtained leachate and adjusting the pH to obtain a neutralized starch containing an impurity element and a post-neutralization solution.
  • a neutralizing agent such as nickel, cobalt, and scandium
  • valuable metals such as nickel, cobalt, and scandium are included in the post-neutralization solution, and most of impurities such as iron and aluminum become neutralized starch. .
  • neutralizing agent conventionally known neutralizing agents can be used, and examples thereof include calcium carbonate, slaked lime, and sodium hydroxide.
  • Sulfurization step Sulfurization step S13 is a step of obtaining a nickel sulfide and a post-sulfurization solution by adding a sulfiding agent to the post-neutralization solution obtained by the above-described neutralization step S12.
  • a sulfiding agent to the post-neutralization solution obtained by the above-described neutralization step S12.
  • a sulfide containing nickel and cobalt with a small amount of impurity components is added to the obtained post-neutralization solution by adding a sulfiding agent such as hydrogen sulfide gas, sodium sulfide, sodium hydrogen sulfide. (Nickel / cobalt mixed sulfide) and nickel concentration are stabilized at a low level, and a post-sulfurization solution containing scandium is generated.
  • a sulfiding agent such as hydrogen sulfide gas, sodium sulfide, sodium hydrogen sulfide.
  • the nickel / cobalt mixed sulfide slurry is subjected to a settling separation process using a settling separator such as a thickener to separate and recover the nickel / cobalt mixed sulfide from the bottom of the thickener.
  • a settling separator such as a thickener to separate and recover the nickel / cobalt mixed sulfide from the bottom of the thickener.
  • the post-sulfurization solution that is an aqueous solution component is recovered by overflowing.
  • the post-sulfurization solution obtained through each step of the hydrometallurgy treatment step S1 of nickel oxide ore as described above is the target of scandium purification treatment, scandium and other It can be used as an acidic solution containing impurities.
  • a post-sulfurization solution that is an acidic solution containing scandium obtained by leaching nickel oxide ore with sulfuric acid can be applied as a target solution for scandium purification treatment.
  • the post-sulfurization solution that is an acidic solution containing scandium in addition to scandium, for example, aluminum, chromium, and other various impurities that remain in the solution without being sulfided by the sulfurization treatment in the above-described sulfurization step S13. It is included. Therefore, when the acidic solution is subjected to solvent extraction, it is preferable to remove the impurities contained in the acidic solution and concentrate the scandium in advance as the scandium elution step S2.
  • the sulfidized solution obtained in the sulfidation step S13 in the hydrometallurgical treatment step S1 is passed through, for example, an ion exchange resin using a chelate resin, so After adsorbing the above impurities on the ion exchange resin, only scandium is eluted from the ion exchange resin with a strong acid such as sulfuric acid, whereby a scandium eluent enriched with scandium can be obtained.
  • the type of chelate resin to be used is not particularly limited, and for example, a resin having iminodiacetic acid as a functional group can be used.
  • a resin having iminodiacetic acid as a functional group can be used.
  • the scandium eluate recovered in the scandium elution step S2 is used as an extraction starting solution in the solvent extraction process (solvent extraction step S4 described later), and is subjected to solvent extraction, thereby allowing scandium and impurities to be extracted. Can be further separated.
  • the higher the concentration of the target component in the extraction start liquid to be processed the better the separation performance from undesired impurities.
  • the higher the concentration of scandium the smaller the amount of solution used for solvent extraction, and as a result, the amount of extractant to be used is also reduced. Less is enough.
  • there are various merits such as improvement in operational efficiency such that the equipment required for the solvent extraction process is more compact.
  • a neutralizing agent is added to the scandium eluate eluted from, for example, the chelate resin in the scandium elution step S2. It is preferable to neutralize by adjusting the pH (neutralization step S3).
  • a neutralizing agent is added to the scandium eluent to adjust the pH within a predetermined range to form a scandium hydroxide precipitate. Thereafter, an acid is added to the obtained scandium hydroxide precipitate and dissolved again, thereby obtaining a solution having a high scandium concentration.
  • the processing efficiency of the solvent extraction can be improved by performing the neutralization step S3 in which the scandium eluent is neutralized to concentrate scandium.
  • separates the impurity which did not become a precipitate can also be anticipated by forming the precipitate containing scandium once from a scandium eluent, and carrying out solid-liquid separation.
  • the neutralizing agent is not particularly limited, and for example, sodium hydroxide can be used.
  • the acid for dissolving the neutralized starch is not particularly limited, but sulfuric acid is preferably used. When sulfuric acid is used, the redissolved solution becomes a scandium sulfate solution.
  • solvent extraction process S4 after extracting the scandium containing solution to solvent extraction using a specific extractant, and extracting impurities and slight scandium
  • An extraction step S41 that separates the extractant from the extracted liquid that leaves scandium, and a small amount of scandium extracted by the extractant after the extraction by mixing the extractant after the extraction with the extractant is separated into a wash liquid (aqueous phase). It is preferable to perform a solvent extraction process including a scrubbing step S42 for obtaining a post-washing solution, and a back extraction step S43 for back-extracting impurities from the post-extraction extractant by adding a back-extractant to the post-extraction extractant.
  • the extraction step S41 is characterized by using an extractant containing a mixture of primary amine and tertiary amine (hereinafter referred to as “mixed extractant”).
  • mixed extractant an extractant containing a mixture of primary amine and tertiary amine
  • an extractant using a primary amine alone has a high thorium extraction rate, but hardly extracts uranium.
  • an extractant using a tertiary amine alone has a high uranium extraction rate and good separability from scandium, but a thorium extraction rate is low.
  • primary and tertiary amines are used alone, it becomes difficult to extract impurities such as thorium and uranium at the same time in one step and efficiently separate them from scandium.
  • an amine extractant represented by the general formula NH 2 R, wherein R is a branched alkyl group having 16 to 22 carbon atoms can be preferably used.
  • trade name: Primene JM-T (manufactured by Dow Chemical Co., Ltd.) and the like can be suitably used.
  • TNOA tri-normal-octyl-amine
  • trade name: Farmin T-08 manufactured by Kao Corporation
  • the mixed extractant is preferably configured by mixing a primary amine and a tertiary amine at a specific ratio, whereby thorium and uranium can be extracted more effectively.
  • the content ratio of the mixed extractant when the content of the tertiary amine relative to the primary amine is less than 20% by volume, the uranium extraction rate tends to decrease. Moreover, when the content of the tertiary amine with respect to the primary amine is 100% by volume or more, the thorium extraction rate tends to be small.
  • the mixed extractant for solvent extraction, as described above, it is preferable to use the mixed extractant diluted with, for example, a hydrocarbon-based organic solvent.
  • a product obtained by diluting the mixed extractant with an organic solvent is referred to as an “extraction solvent”.
  • the concentration of the mixed extractant in the extraction solvent may be diluted so as to be about 1% by volume or more and 10% by volume or less.
  • the ratio of the extraction solvent (O) to the scandium-containing solution (A) is not particularly limited, but the volume ratio O / A is preferably 0.5 or less.
  • the volume ratio O / A is brought into contact with each other at a ratio exceeding 0.5, scandium is easily extracted into the mixed extractant, and the separation between thorium and uranium may be reduced.
  • the scrubbing step S42 is provided to wash the extractant after extraction, and a slight amount of scandium extracted by the mixed extractant is separated into a washing solution, whereby the scandium recovery rate can be further increased.
  • a sulfuric acid solution As the cleaning liquid used for scrubbing, a sulfuric acid solution, a hydrochloric acid solution, or the like can be used. Moreover, what added the soluble chloride and sulfate to water can also be used. Specifically, when a sulfuric acid solution is used as the cleaning liquid, it is preferable to use one having a concentration range of 0.1 mol / L to 3.0 mol / L.
  • the number of washing steps can be changed as appropriate depending on the type of extraction agent used, which includes primary amine and tertiary amine, extraction conditions, etc., since it depends on the type and concentration of the impurity element. .
  • the volume ratio Os / As of the extraction agent after extraction (referred to as “Os”) to the cleaning liquid (referred to as “As”) is 1 (1/1)
  • the number of cleaning stages is about 3 to 5 stages.
  • volume ratio Os / As is smaller than 1, thorium and uranium are extracted in the post-cleaning solution, making it impossible to recover only scandium.
  • volume ratio Os / As is set to 1 or more, thorium and uranium extracted in the liquid after washing can be reduced, and scandium can be selectively recovered, and the volume ratio Os / As is further reduced.
  • it is possible to reduce the uranium recovery rate to less than 10% and the thorium recovery rate to less than 1%.
  • the extractant after extraction is washed with a washing liquid so that the volume ratio Os / As is preferably 2 to 10, more preferably 2 to 4.
  • back extraction process S43 an impurity is back-extracted from the extraction agent after extraction which extracted the impurity in extraction process S41.
  • a reaction reverse to the extraction process in the extraction step S41 is performed by adding a back extraction solution (back extraction start solution) to the post-extraction extractant containing the mixed extractant and mixing them. Then, impurities are back-extracted to obtain a back-extracted liquid containing impurities.
  • impurities such as thorium and uranium are selectively extracted using a mixed extractant.
  • a solution containing a carbonate such as sodium carbonate or potassium carbonate as the back extraction solution.
  • the concentration of the carbonate-containing solution that is the back extraction solution is preferably about 0.5 mol / L or more and 2 mol / L or less, for example, from the viewpoint of suppressing excessive use.
  • the scandium recovery method is not particularly limited, and a known method can be used.
  • a method of recovering as a scandium hydroxide starch by neutralization by adding an alkali, or precipitation of oxalate with an oxalic acid solution The method (oxalate treatment) etc. which collect
  • precipitates of scandium oxalate are generated by adding oxalic acid to the extraction residue and the post-washing solution, and then the generated scandium oxalate is dried and roasted. May be recovered as scandium oxide.
  • the amount of oxalic acid added in the oxalate treatment is, for example, 1.05 times or more and 1.2 times or less the equivalent amount required for precipitating scandium contained in the extracted residue as oxalate. It is preferable.
  • the amount of oxalic acid ((COOH) 2 ) necessary to convert scandium into scandium oxalate (Sc 2 (C 2 O 4 ) 3 ) is defined as 1 equivalent.
  • roasting treatment for the obtained scandium oxalate for example, it may be placed in a tubular furnace and heated at about 900 ° C. for about 2 hours.
  • a continuous kiln such as a rotary kiln because drying and roasting can be performed in the same apparatus.
  • the extractant obtained through the back extraction step S43 is acid washed with an acid washing solution before being reused in the extraction step S41.
  • an acidic solution such as a sulfuric acid solution or a hydrochloric acid solution can be used.
  • Na entrained in the extractant can be removed and the extractant can be regenerated.
  • the liquid after recovering the extractant through the acid washing step S6 is a sulfuric acid acidic solution or the like, for example, it can be used as a neutralizer for the back extraction solution described above, and a new neutralizer This eliminates the need to input power and enables efficient operation.
  • the post-cleaning liquid discharged in the scrubbing step S42 described above may be used as the acid cleaning liquid used for cleaning the extractant in the acid cleaning step S6, the post-cleaning liquid discharged in the scrubbing step S42 described above may be used.
  • the cleaning liquid used in the scrubbing step S42 is an acid solution such as a sulfuric acid solution or a hydrochloric acid solution, and the post-cleaning liquid discharged after scrubbing is also derived from these acid solutions.
  • the post-cleaning liquid discharged in the scrubbing step S42 is obtained by washing and recovering scandium co-extracted with the post-extraction extractant obtained through the extraction step S41, and contains scandium. Therefore, the recovery rate of scandium can be improved by using such a post-cleaning solution containing scandium as a cleaning solution for the extractant after back extraction in the acid cleaning step S6.
  • the post-cleaning solution discharged in the scrubbing step S42 is used as a cleaning solution to perform acid cleaning on the extractant after back extraction, for example, the back extraction solution (alkaline in the back extraction step S43). Impurities caused by back extraction using the solution are removed and purified, and scandium contained in the washed liquid used as the washing liquid is extracted from the washed extractant. Then, by reusing the extractant that has been washed by such an acid cleaning process and from which scandium has been extracted as the extractant in the extraction step S41, compared with the case where an acidic solution such as a new sulfuric acid solution is used as the cleaning liquid.
  • the scandium recovery rate in the extraction residual liquid obtained through the extraction process in the extraction step S41 can be increased. Specifically, the recovery rate can be increased by the amount of scandium contained in the post-cleaning liquid used as the cleaning liquid.
  • the post-cleaning liquid discharged in the scrubbing step S42 may contain a small amount of impurity components such as uranium and thorium. Therefore, when the entire amount of such washed liquid is transferred to the scandium recovery step S5 and scandium is to be recovered, impurity components may be mixed in the solution to be recovered, leading to a decrease in scandium purity. .
  • impurity components such as uranium and thorium contained are also extracted into the extractant and appropriately separated in the extraction step S41 repeated for reuse. Thereby, while improving the recovery rate of a scandium, the fall of the purity of the scandium collect
  • scandium can be efficiently recovered without sending the entire amount of the post-cleaning liquid discharged from the scrubbing step S42 to the scandium recovery step S5. Since the impurity concentration can be adjusted as described above, scandium can be recovered economically without much trouble.
  • the obtained post-sulfurized solution was subjected to ion exchange treatment using a chelate resin by a known method to separate impurities, and at the same time, scandium concentration treatment was performed.
  • scandium concentration treatment was performed.
  • Extraction solvents used in Examples and Comparative Examples were prepared with the formulations shown in Table 2 below.
  • Primene JM-T (manufactured by Dow Chemical Co., Ltd.) is used as the primary amine constituting the mixed extractant
  • TNOA Flumin T-08, manufactured by Kao Corporation
  • an extraction solvent was prepared by diluting the mixed extractant with an organic solvent (diluent).
  • SWAZOL 1800 (manufactured by Maruzen Petrochemical Co., Ltd.) was used.
  • the extractant and the extracted liquid were transferred to a graduated cylinder, and the liquid volume was confirmed.
  • the recovered post-extraction extractant and extracted residue are each naturally filtered with a qualitative filter paper (extracted extraction solvent: 1PS, extracted solution: 5C), and the main component concentrations of the extracted agent and extracted solution are emitted.
  • the concentration of scandium (Sc), uranium (U), and thorium (Th) in the extraction residual liquid and the extraction ratio thereof were confirmed by measuring with a spectroscopic analysis method. Tables 4 to 6 show the results.
  • Comparative Example 1 using the primary amine alone Extraction rate of scandium (Sc), uranium (uranium), and thorium (Th) is the same as that of Comparative Example 1 although it is the same amount of extractant as Comparative Example 2 using tertiary amine alone. It was confirmed that it was not the simple sum of Comparative Example 2.
  • the volume ratio O / A of the amount of the extraction solvent to the scandium-containing solution is preferably 1 ⁇ 2 or less in terms of scandium separability. However, it was confirmed that when the volume ratio O / A is small, the extraction rate of thorium (Th) tends to decrease.
  • the mixing ratio of the tertiary amine is 2% by volume with respect to the entire mixed extractant. It can be seen that it is.
  • the tertiary amine can be extracted efficiently by mixing at a ratio of 20% by volume with respect to 100% by volume of the primary amine. .
  • the mixing ratio of the tertiary amine is preferably 1% by volume or more with respect to the entire mixed extractant.
  • the tertiary amine can be efficiently separated from scandium by mixing at a ratio of 10% by volume or more with respect to 100% by volume of the primary amine.
  • the separation factor from scandium is 37 to 61, which is a level that can be separated effectively from scandium and recovered.
  • the extraction ability can be increased by increasing the mixing ratio of the tertiary amine.
  • O / A 1/1
  • the number of extraction stages is preferably 2 or more.
  • O / A 1.
  • uranium and thorium can be efficiently extracted from a sulfuric acid solution containing scandium and separated from scandium by using three or more stages.
  • uranium and thorium can be efficiently extracted simultaneously by solvent extraction using a mixed extractant containing a mixture of primary amine and tertiary amine. It was found that it can be separated effectively from scandium in acidic solution.
  • the mixing ratio of the tertiary amine to the primary amine is 20 volume% or more and less than 100 volume%, more preferably 20 volume% or more and 40 volume% or less. It was found that thorium extraction ability can be enhanced.
  • ⁇ Scrubbing process> In the scrubbing step, the number of washing stages was 3, and the extraction agent was subjected to washing after extraction using a 1 mol / L sulfuric acid solution as a washing liquid. Further, the volume ratio Os / As of the extraction agent (Os) after extraction with respect to the cleaning liquid (As) is changed in the range of 0.5 to 5.5, and the volume ratio Os / As is the separation behavior of scandium, thorium, and uranium. The effects on the The result is shown in FIG. The recovery rate was calculated from the amount of element in the liquid after washing / the amount of element in the liquid treated in the extraction step (S41).
  • the recovery rate of scandium, thorium, and uranium in the liquid after washing depends on the volume ratio Os / As in the scrubbing process. That is, when the volume ratio Os / As is 0.5, uranium and thorium are also recovered in the post-cleaning solution in addition to scandium. In particular, the recovery rate of uranium is 40% or more. And the recovery rate of uranium and thorium falls by increasing volume ratio Os / As.
  • the volume ratio Os / As ratio is 2 or more, the uranium recovery rate decreases to less than 10% and the thorium recovery rate decreases to less than 1%. Further, the scandium recovery rate remains constant around 3.5% when the volume ratio Os / As is 2 or more. From this, it can be seen that the volume ratio Os / As in the scrubbing step is preferably 2 or more.
  • the post-cleaning solution was used as the acid cleaning solution in the acid cleaning step, and then the extraction treatment was performed using the acid-washed extractant as the extractant (mixed extractant) in the extraction step. Thereafter, the scrubbing process and the back extraction process were also performed. And the recovery rate of scandium was investigated from the amount of scandium discharged from each step.
  • the recovery rate of scandium can be effectively increased by using the post-cleaning solution recovered in the scrubbing step as the acid cleaning solution in the acid cleaning step.
  • the post-cleaning liquid is used as a cleaning liquid for the treatment in the acid cleaning process, so that it is less time-consuming. It was found that scandium can be recovered economically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

スカンジウムを含有する酸性溶液から一工程でトリウム、ウランの両元素を分離することができる、簡易なスカンジウムの精製方法を提供する。 本発明に係るスカンジウムの精製方法は、スカンジウムを含有する酸性溶液を、1級アミンと3級アミンとを含有する混合抽出剤を用いた溶媒抽出に付し、スカンジウムを含有する抽残液と抽出後抽出剤とに分離することを特徴とする。混合抽出剤としては、1級アミンに対して3級アミンを20体積%以上100体積%未満の割合で含有するものであることが特に好ましい。

Description

スカンジウムの精製方法
 本発明は、スカンジウムの精製方法に関し、スカンジウムを含有する酸性溶液から複数の不純物を効率的に分離することができるスカンジウムの精製方法に関する。
 スカンジウムは、高強度合金の添加剤や燃料電池の電極材料として極めて有用である。しかしながら、生産量が少なく、高価であるため、広く用いられるには至っていない。
 ところで、近年、特許文献1に記載されるように、ラテライト鉱やリモナイト鉱等のニッケル酸化鉱石に含まれる微量のスカンジウムを回収する高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスが提案されている。このHPALプロセスでは、ニッケル酸化鉱石を硫酸と共に加圧容器に装入し、240℃~260℃程度の高温に加熱してニッケルを含有する浸出液と浸出残渣とに固液分離する。そして、得られた浸出液に対して中和剤を添加して不純物を分離し、次いで硫化剤を添加すると、ニッケルはニッケル硫化物として回収される一方で、スカンジウムは硫化剤添加後の酸性溶液中に含まれるようになる。このように、HPALプロセスを使用することによって、ニッケルとスカンジウムとを効果的に分離することができる。
 また、上述した酸性溶液からスカンジウムを回収する方法として、溶媒抽出を用いてスカンジウムを回収する方法も提案されている(特許文献2及び3参照)。例えば、特許文献2には、2-エチルヘキシルスルホン酸-モノ-2-エチルヘキシルをケロシンで希釈した有機溶媒を用いて、スカンジウムを有機溶媒中に抽出する方法が記載されている。また、特許文献3には、スカンジウム含有供給液をバッチ処理によって一定の割合で抽出剤に接触させることにより、スカンジウム含有供給液からスカンジウムを選択的に分離回収する方法が記載されている。
 これらの方法で回収されるスカンジウムの品位は、酸化スカンジウムに換算して95%~98%程度の純度が得られることが知られている。ところが、合金への添加等の用途に対しては十分な品位であるものの、近年需要が高まっている燃料電池の電解質等の用途に対しては、特性を発揮するために、さらに高純度な、例えば99.9%程度の品位が必要とされる。また、特定の元素によっては、許容できる上限の品位があり、スカンジウムの純度にとどまらず、元素個々に許容限度以下まで精製する必要がある。
 ニッケル酸化鉱石中に含まれる不純物は、産出する地域によって種類や量の大小にバラツキはあるものの、鉄やアルミニウムの他に、マンガンやマグネシウム等の元素や、さらに場合によっては微量のトリウムやウラン等のアクチノイド元素も含め、様々な不純物元素が含有されている。
 しかしながら、特許文献2及び3に開示される溶媒抽出法を用いた場合、いくつかの上述した不純物元素、特にトリウムやウラン等のアクチノイド元素は、スカンジウムと類似の挙動を示すため、ニッケル酸化鉱石から高純度なスカンジウムを工業的に回収することは困難であった。
 特許文献4には、スカンジウムを含有する溶液から、アミン系抽出剤を用いた溶媒抽出でトリウムを分離し、その後にシュウ酸化処理を行うことでウランと分離する、スカンジウムの精製方法が提案されている。この特許文献4の方法を用いることにより、99.9%の高純度な酸化スカンジウムの回収が可能とされている。
 しかしながら、特許文献4に開示される方法においては、トリウムやウラン等の不純物の種類に応じて、別々の工程で各不純物成分とスカンジウムとの分離を行う処理が必要なこともあり、設備やコスト面での負担が大きかった。
特開平3-173725号公報 特開平9-291320号公報 国際公開第2014/110216号 特開2016-108664号公報
 本発明は、上述した事情に鑑みて提案されたものであり、スカンジウムを含有する酸性溶液から一工程でトリウム、ウランの両元素を分離することができる、簡易で経済的なスカンジウムの精製方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、1級アミンと3級アミンとを混合した抽出剤を用いることにより、スカンジウムを含有する酸性溶液から一工程でトリウム、ウランの両元素を抽出して、スカンジウムと分離できることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、スカンジウムを含有する酸性溶液を、1級アミンと3級アミンとを含有する混合抽出剤を用いた溶媒抽出に付し、スカンジウムを含有する抽残液と抽出後抽出剤とに分離する、スカンジウムの精製方法である。
 (2)本発明の第2の発明は、第1の発明において、前記混合抽出剤は、前記1級アミンに対して前記3級アミンを20体積%以上100体積%未満の割合で含有する、スカンジウムの精製方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記1級アミンは、一般式NHRで表され、Rは、炭素数16~22の分岐アルキル基である、スカンジウムの精製方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記3級アミンは、トリ-ノルマル-オクチル-アミンである、スカンジウムの精製方法である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記抽出後抽出剤を洗浄するスクラビング工程を有し、前記スクラビング工程では、洗浄液(As)に対する前記抽出後抽出剤(Os)の体積比(Os/As)を2以上10以下とする、スカンジウムの精製方法である。
 (6)本発明の第6の発明は、第5の発明において、前記抽出後抽出剤に対する逆抽出処理後の抽出剤を洗浄する洗浄工程を有し、前記洗浄工程では、前記スクラビング工程で排出された洗浄後液を洗浄液として使用して洗浄処理を施し、前記洗浄工程での洗浄処理後の抽出剤を、前記溶媒抽出に用いる前記混合抽出剤として再使用する、スカンジウムの精製方法である。
 (7)本発明の第7の発明は、第1乃至第6のいずれかの発明において、前記酸性溶液は、スカンジウムを含有する溶液をイオン交換樹脂に通液し、次いで該イオン交換樹脂からスカンジウムを溶離させた溶離液である、スカンジウムの精製方法である。
 (8)本発明の第8の発明は、第1乃至第7のいずれかの発明において、前記抽残液にシュウ酸を添加してシュウ酸スカンジウムを含む沈殿物を生成させ、次いで該沈殿物を焙焼して酸化スカンジウムを得る工程をさらに有する、スカンジウムの精製方法である。
 本発明によれば、スカンジウムを含有する酸性溶液から一工程でトリウム、ウランの両元素を分離することができる、簡易で経済的なスカンジウムの精製方法を提供することができる。
スカンジウムの精製方法の適用例の一例を示す工程図である。 3級アミンの混合量に対する、ウランの分離係数αと抽残液中のウラン濃度との推移を示すグラフである。 3級アミンの混合量に対する、トリウムの分離係数αと抽残液中のトリウム濃度との推移を示すグラフである。 ウランの抽出挙動に、マッケーブ・シール法による作図を行った一例を示すグラフである。 トリウムの抽出挙動に、マッケーブ・シール法による作図を行った一例を示すグラフである。 洗浄液(As)/抽出後抽出剤(Os)に対する、スカンジウム、トリウム、ウランの回収率を示すグラフである。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.スカンジウムの精製方法≫
 本実施の形態に係るスカンジウムの精製方法は、スカンジウムを含有する酸性溶液を、特定の溶媒抽出処理に付して、スカンジウムを精製する方法である。具体的に、このスカンジウムの精製方法においては、スカンジウムを含有する酸性溶液を、1級アミンと3級アミンとを混合した抽出剤(以下、「混合抽出剤」という)を用いた溶媒抽出に付し、スカンジウムを含有する抽残液と抽出後抽出剤とに分離することを特徴としている。
 このような溶媒抽出の処理により、その酸性溶液中に含まれる不純物、特にアクチノイド元素であるトリウム(Th)とウラン(U)とを混合抽出剤中に抽出させ、抽出後に酸性溶液に残留することになるスカンジウムと効果的に分離することができる。つまり、一工程での簡便な操作で、トリウムとウランとの両成分を抽出してスカンジウムと分離することができ、高純度のスカンジウムを効率よく精製することができる。
 また、好ましくは、混合抽出剤において、1級アミンに対する3級アミンの混合割合を20体積%以上100体積%未満とすることによって、トリウムとウランの抽出効率を高めることができ、スカンジウムの精製効率を向上させることができる。
 ここで、溶媒抽出に供するスカンジウムを含有する酸性溶液としては、特に限定されないが、例えば、ニッケル酸化鉱石の湿式製錬プロセスにおいて、ニッケル酸化鉱石のスラリーに対して硫酸等の酸により浸出処理を施して得られる溶液を挙げることができる。なお、この溶液としては、湿式製錬プロセスの浸出処理を経て得られる浸出液や、その浸出液から不純物成分を除去する中和処理を施し、得られた中和後液に硫化剤を添加してニッケルを含む硫化物を回収した後の硫化後液等を挙げることができる。これらの溶液は、硫酸等の酸を含んで構成される酸性溶液であり、ニッケル酸化鉱石に由来するスカンジウムを含有する酸性溶液である。
 ≪2.スカンジウムの精製方法の適用例について≫
 図1は、本実施の形態に係るスカンジウムの精製方法の適用例を示した工程図であり、ニッケル酸化鉱石の湿式製錬プロセスを経て得られた硫化後液に基づいて、スカンジウムを濃縮させる処理を経て得られる酸性溶液に対して溶媒抽出処理を施し、その溶媒抽出により得られた抽残液からスカンジウムを回収するプロセスの一例の図である。
 具体的に、図1に示すスカンジウムの回収プロセスは、ニッケル酸化鉱石を硫酸等の酸で浸出することでスカンジウムを含有する酸性溶液を得る湿式製錬処理工程S1と、得られた酸性溶液から不純物を除去してスカンジウムを濃縮させたスカンジウム溶離液を得るスカンジウム溶離工程S2と、スカンジウムを含有する酸性溶液に特定の抽出剤を用いて溶媒抽出に付す溶媒抽出工程S4と、抽残液からスカンジウムを回収するスカンジウム回収工程S5とを有する。なお、溶媒抽出工程S4に先立ち、スカンジウム溶離液に対して中和剤を添加して中和処理を施すことでスカンジウムを高濃度化する処理(中和工程S3)を有するようにすることもできる。また、溶媒抽出工程S4では、得られた抽出後抽出剤から不純物を逆抽出し(逆抽出工程S43)、この逆抽出後の抽出剤を洗浄した後(酸洗浄工程S6)、抽出工程S41で再使用することもできる。
  <2-1.湿式製錬処理工程>
 スカンジウム精製の処理対象となるスカンジウムを含有する酸性溶液としては、上述したように、ニッケル酸化鉱石に対して硫酸を用いて浸出して得られる硫酸酸性溶液等の、ニッケル酸化鉱石の湿式製錬プロセスを経て得られる溶液を用いることができる。
 具体的に、スカンジウムを含有する酸性溶液としては、ニッケル酸化鉱石を高温高圧下で硫酸により浸出して浸出液を得る浸出工程S11と、浸出液に中和剤を添加して不純物を含む中和澱物と中和後液とを得る中和工程S12と、中和後液に硫化剤を添加してニッケル硫化物と硫化後液とを得る硫化工程S13とを有する湿式製錬処理工程S1により得られる硫化後液を用いることができる。以下では、湿式製錬処理工程S1の流れを簡単に説明する。
 (1)浸出工程
 浸出工程S11は、例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸を添加して240℃~260℃の温度下で撹拌処理を施し、浸出液と浸出残渣とからなる浸出スラリーを形成する工程である。なお、浸出工程S11における処理は、従来知られているHPALプロセスに従って行えばよく、例えば特許文献1に記載されている。
 ここで、ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、これらのニッケル酸化鉱石には、スカンジウムが含まれている。
 浸出工程S11では、得られた浸出液と浸出残渣とからなる浸出スラリーを洗浄しながら、ニッケルやコバルト、スカンジウム等を含む浸出液と、ヘマタイトである浸出残渣とに固液分離する。この固液分離処理では、例えば、浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用いて、シックナー等の固液分離設備を利用して行うことができる。
 (2)中和工程
 中和工程S12は、得られた浸出液に中和剤を添加してpH調整し、不純物元素を含む中和澱物と中和後液とを得る工程である。この中和工程S12における中和処理により、ニッケルやコバルト、スカンジウム等の有価金属は中和後液に含まれるようになり、鉄、アルミニウムをはじめとした不純物の大部分が中和澱物となる。
 中和剤としては、従来公知のもの使用することができ、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられる。
 (3)硫化工程
 硫化工程S13は、上述した中和工程S12により得られた中和後液に硫化剤を添加してニッケル硫化物と硫化後液とを得る工程である。この硫化工程S13における硫化処理により、ニッケル、コバルト、亜鉛等は硫化物となり、スカンジウムは硫化後液に含まれることになる。
 具体的に、硫化工程S13では、得られた中和後液に対して、硫化水素ガス、硫化ナトリウム、水素化硫化ナトリウム等の硫化剤を添加し、不純物成分の少ないニッケル及びコバルトを含む硫化物(ニッケル・コバルト混合硫化物)と、ニッケル濃度を低い水準で安定させ、スカンジウムを含有させた硫化後液とを生成させる。
 硫化工程S13における硫化処理では、ニッケル・コバルト混合硫化物のスラリーに対してシックナー等の沈降分離装置を用いた沈降分離処理を施し、ニッケル・コバルト混合硫化物をシックナーの底部より分離回収する。一方で、水溶液成分である硫化後液についてはオーバーフローさせて回収する。
 本実施の形態に係るスカンジウムの精製方法では、以上のようなニッケル酸化鉱石の湿式製錬処理工程S1の各工程を経て得られる硫化後液を、スカンジウム精製処理の対象となる、スカンジウムとその他の不純物とを含有する酸性溶液として用いることができる。
  <2-2.スカンジウム溶離工程>
 上述したように、ニッケル酸化鉱石を硫酸により浸出して得られた、スカンジウムを含有する酸性溶液である硫化後液を、スカンジウム精製処理の対象溶液として適用することができる。ところが、スカンジウムを含有する酸性溶液である硫化後液には、スカンジウムの他に、例えば上述した硫化工程S13における硫化処理で硫化されずに溶液中に残留したアルミニウムやクロム、その他の多種多様な不純物が含まれている。このことから、この酸性溶液を溶媒抽出に付すにあたり、スカンジウム溶離工程S2として、予め、酸性溶液中に含まれる不純物を除去してスカンジウムを濃縮させることが好ましい。
 例えば、スカンジウム溶離工程S2では、湿式製錬処理工程S1における硫化工程S13にて得られた硫化後液を、例えばキレート樹脂を使用したイオン交換樹脂に通液し、硫化後液中のスカンジウムや他の不純物をイオン交換樹脂に吸着させた後、イオン交換樹脂からスカンジウムのみを硫酸等の強酸により溶離させることによって、スカンジウムを濃縮させたスカンジウム溶離液を得ることができる。
 このようなイオン交換処理において、使用するキレート樹脂の種類としては特に限定されず、例えばイミノジ酢酸を官能基とする樹脂を用いることができる。また、スカンジウム溶離液を得るに際しては、溶離液に用いる硫酸の規定度を0.3N以上3N未満の範囲に維持することが好ましい。
  <2-3.中和工程>
 上述したスカンジウム溶離工程S2では、キレート樹脂の選択性によってスカンジウムと不純物との分離が行われ、不純物と分離したスカンジウムが溶離液として回収されるが、使用するキレート樹脂の特性上、すべての不純物を完全にスカンジウムと分離できるわけではない。特に、トリウムやウラン等のアクチノイド元素は、スカンジウムと挙動が同一であり、分離が困難となる。
 そこで、本実施の形態においては、スカンジウム溶離工程S2で回収したスカンジウム溶離液を、溶媒抽出処理(後述する溶媒抽出工程S4)での抽出始液として用いて溶媒抽出に付すことで、スカンジウムと不純物との分離をさらに進めることができる。
 さて、一般的に、溶媒抽出処理においては、処理対象の抽出始液中の目的成分の濃度が高い方が目的外の不純物との分離性能が向上する。また、処理するスカンジウムの物量が同じであるならば、スカンジウムを高濃度に含有する抽出始液であるほど、溶媒抽出に供する液量が少なくて済み、その結果として、使用する抽出剤の物量も少なくて済む。さらに、溶媒抽出処理に必要な設備がよりコンパクトで済むといったような操業効率が向上する等の様々なメリットもある。
 このことから、スカンジウム溶離液中のスカンジウム濃度を上昇させるために、すなわちスカンジウムを濃縮させるために、スカンジウム溶離工程S2において例えばキレート樹脂から溶離させたスカンジウム溶離液に対して中和剤を添加してpHを調整して中和処理を施すことが好ましい(中和工程S3)。
 具体的に、中和工程S3では、スカンジウム溶離液に中和剤を添加して所定の範囲にpHを調整することによって水酸化スカンジウムの沈殿物を形成させる。その後、得られた水酸化スカンジウムの沈殿物に酸を添加して再度溶解することによって、高いスカンジウム濃度をもった溶液を得ることができる。このように、溶媒抽出工程S4に先立って、スカンジウム溶離液に対し中和処理を施してスカンジウムを濃縮させる中和工程S3を経ることで、溶媒抽出の処理効率を向上させることができる。なお、このような中和工程S3では、スカンジウム溶離液から一旦スカンジウムを含有する沈殿物を形成させて固液分離することで、沈殿物とならなかった不純物を分離する効果も期待できる。
 中和剤としては、特に限定されず、例えば水酸化ナトリウム等を用いることができる。中和澱物を溶解させるための酸としては、特に限定されないが、硫酸を用いるのが好ましい。なお、硫酸を用いた場合、その再溶解液は硫酸スカンジウム溶液となる。
  <2-4.溶媒抽出工程>
 次に、溶媒抽出工程S4では、スカンジウム溶離工程S2により得られたスカンジウム溶離液、又は、スカンジウム溶離液に対して中和処理を施す中和工程S3を経て得られた再溶解液を、特定の抽出剤に接触させて溶媒抽出処理を行う。なお、溶媒抽出に供するスカンジウム溶離液や再溶解液は、上述したように、スカンジウムの他に、トリウムやウラン等の不純物元素を含有する酸性溶液であり、これらを以下では「スカンジウム含有溶液」と称する。
 溶媒抽出工程S4における態様としては、特に限定されないが、例えば図1に示すように、スカンジウム含有溶液を、特定の抽出剤を用いた溶媒抽出に付し、不純物と僅かなスカンジウムを抽出した抽出後抽出剤と、スカンジウムを残した抽残液とに分離する抽出工程S41と、抽出後抽出剤に洗浄液を混合して抽出後抽出剤に抽出された僅かなスカンジウムを洗浄液(水相)に分離させて洗浄後液を得るスクラビング工程S42と、抽出後抽出剤に逆抽出剤を添加して抽出後抽出剤から不純物を逆抽出する逆抽出工程S43とを有する溶媒抽出処理を行うことが好ましい。
 (1)抽出工程
 抽出工程S41では、スカンジウム含有溶液と、特定の抽出剤を含む有機溶媒(抽出溶媒)とを混合して、不純物、特にトリウム(Th)やウラン(U)を選択的に抽出した抽出後抽出剤と、スカンジウムを含有する抽残液とを得る。
  [混合抽出剤]
 抽出工程S41では、1級アミンと3級アミンとを混合して含有させた抽出剤(以下では「混合抽出剤」という)を用いることを特徴としている。このように、混合抽出剤を用いて溶媒抽出処理を行うことにより、一工程で、効率的に且つ効果的にトリウムやウラン等の不純物を同時に抽出して、スカンジウムと分離することができる。
 具体的には、例えば、1級アミンを単独で用いた抽出剤では、トリウムの抽出率は高いものの、ウランはほとんど抽出することができない。一方で、3級アミンを単独で用いた抽出剤では、ウランの抽出率は高く、スカンジウムとの分離性も良好であるものの、トリウムの抽出率が低い。このように、1級アミンと3級アミンとを単独で用いる場合には、一工程でトリウムやウラン等の不純物を同時に抽出して、スカンジウムから効率よく分離するのは困難となる。これに対して、1級アミンと3級アミンとを混合した混合抽出剤を用いることによって、一工程でトリウムやウラン等の不純物を抽出剤に抽出させることができ、抽残液に移行することになるスカンジウムと効率よく分離することができる。
 混合抽出剤に用いる1級アミンとしては、例えば、一般式NHRで表され、Rが、炭素数16~22の分岐アルキル基であるアミン系抽出剤を好ましく用いることができる。具体的には、商品名:PrimeneJM-T(ダウ・ケミカル(株)社製)等を好適に用いることができる。
 また、混合抽出剤に用いる3級アミンとしては、例えば、トリ-ノルマル-オクチル-アミン(以下、「TNOA」ともいう)を好ましく用いることができる。具体的には、商品名:ファーミン T-08(花王(株)社製)等を好適に用いることができる。
 ここで、1級アミンを抽出剤として単独で用いた場合と、3級アミンを抽出剤として単独で用いた場合とでは抽出挙動が変わるため、1級アミンと3級アミンとの混合抽出剤を用いた溶媒抽出では、単純和となる抽出挙動が得られるわけではない。このことは、後述する実施例及び比較例の結果からも明確に分かる。
 このことから、混合抽出剤としては、特定の割合で1級アミンと3級アミンとを混合して構成することが好ましく、これにより、より効果的にトリウムとウランとを抽出することができる。具体的には、1級アミンに対して3級アミンを20体積%以上100体積%未満の割合で含有させて混合抽出剤を構成することが好ましく、20体積%以上60体積%以下の割合で含有させて混合抽出剤を構成することがより好ましい。
 混合抽出剤の含有割合に関して、1級アミンに対する3級アミンの含有量が20体積%未満であると、ウラン抽出率が小さくなる傾向となる。また、1級アミンに対する3級アミンの含有量が100体積%以上となると、トリウム抽出率が小さくなる傾向となる。
 混合抽出剤を溶媒抽出に使用するにあたっては、上述したように、その混合抽出剤を、例えば、炭化水素系の有機溶媒等で希釈して使用することが好ましい。なお、以下では、混合抽出剤を有機溶媒により希釈して得られたものを「抽出溶媒」という。具体的には、抽出時及び後述する逆抽出時における相分離性等を考慮すると、抽出溶媒中の混合抽出剤の濃度が、1体積%以上10体積%以下程度となるように希釈することが好ましく、5体積%以上9体積%以下程度となるように希釈することがより好ましい。
 また、抽出時において、スカンジウム含有溶液(A)に対する抽出溶媒(O)の割合としては、特に限定されないが、体積比O/Aとして、0.5以下であることが好ましい。体積比O/Aが0.5を超える割合でそれぞれを接触させると、混合抽出剤中にスカンジウムが抽出されやすくなってしまい、トリウムとウランとの分離性が低下する可能性がある。
 (2)スクラビング(洗浄)工程
 上述した抽出工程S41において、スカンジウム含有溶液から不純物を抽出させた抽出後抽出剤中にスカンジウムが僅かに共存する場合には、抽出工程S41における抽出処理を経て得られた抽出後抽出剤を逆抽出する前に、その抽出後抽出剤に対してスクラビング(洗浄)処理を施し、スカンジウムを洗浄液に分離して洗浄後液中に回収することが好ましい(スクラビング工程S42)。
 このようにスクラビング工程S42を設けて抽出後抽出剤を洗浄し、混合抽出剤により抽出された僅かなスカンジウムを洗浄液に分離させることで、スカンジウムの回収率をより一層に高めることができる。
 スクラビングに用いる洗浄液としては、硫酸溶液や塩酸溶液等を使用することができる。また、水に可溶性の塩化物や硫酸塩を添加したものを使用することもできる。具体的に、洗浄液として硫酸溶液を用いる場合には、0.1mol/L以上3.0mol/L以下の濃度範囲のものを使用することが好ましい。
 洗浄段数(回数)としては、不純物元素の種類、濃度にも依存することから使用した、1級アミンと3級アミンとを含有する混合抽出剤の種類や抽出条件等によって適宜変更することができる。例えば、洗浄液(「As」とする)に対する抽出後抽出剤(「Os」とする)の体積比Os/Asを1(1/1)とした場合には、3~5段程度の洗浄段数とすることで、抽出後抽出剤中に抽出されたスカンジウムを分析装置の検出下限未満まで分離することができる。
 このとき、後述する実施例からも明らかなように、体積比Os/Asを1よりも小さくすると、洗浄後液にトリウムとウランとが抽出されてスカンジウムのみの回収が不可能となる。これに対し、体積比Os/Asを1以上にすることで、洗浄後液中に抽出されるトリウムやウランは減少してスカンジウムを選択的に回収することができ、さらに体積比Os/Asを2以上にすることで、ウランの回収率を10%未満、トリウムの回収率を1%未満までに減少させることができる。一方、体積比Os/Asが大きくなると、その分だけ、必要な有機溶媒量が増加する等、コストや設備規模等の点で好ましくない。このことから、スクラビング工程S42では、体積比Os/Asが好ましくは2~10となるように、より好ましくは2~4となるようにして、抽出後抽出剤を洗浄液により洗浄する。
 (3)逆抽出工程
 逆抽出工程S43では、抽出工程S41にて不純物を抽出した抽出後抽出剤から、不純物を逆抽出する。具体的に、逆抽出工程S43では、混合抽出剤を含む抽出後抽出剤に逆抽出溶液(逆抽出始液)を添加して混合することによって、抽出工程S41における抽出処理とは逆の反応を生じさせて不純物を逆抽出し、不純物を含む逆抽出後液を得る。
 上述したように、抽出工程S41での抽出処理においては、混合抽出剤を用いてトリウムやウラン等の不純物を選択的に抽出するようにしている。ウランやトリウム等の不純物を効果的に分離させ抽出剤を再生する観点から、逆抽出溶液としては、炭酸ナトリウム、炭酸カリウム等の炭酸塩を含有する溶液を用いることが好ましい。
 逆抽出溶液である炭酸塩を含有する溶液の濃度としては、過剰な使用を抑制する観点から、例えば0.5mol/L以上2mol/L以下程度とすることが好ましい。
 なお、上述したスクラビング工程S42において抽出後抽出剤に対してスクラビング処理を施した場合には、同様に、スクラビング後の抽出後抽出剤に対して逆抽出溶液を添加して混合することによって逆抽出処理を行うことができる。
  <2-5.スカンジウム回収工程>
 次に、スカンジウム回収工程S5では、溶媒抽出工程S4における抽出工程S41にて得られた抽残液、及び、スクラビング工程S42にてスクラビングを行った場合にはそのスクラビング後の洗浄後液から、スカンジウムを回収する。
 スカンジウム回収方法としては、特に限定されず公知の方法を用いることができるが、例えばアルカリを加えて中和して水酸化スカンジウムの澱物として回収する方法や、シュウ酸溶液によってシュウ酸塩の沈澱物として回収する方法(シュウ酸塩化処理)等が挙げられる。
 シュウ酸塩化処理を用いた回収方法では、抽残液及び洗浄後液にシュウ酸を加えることでシュウ酸スカンジウムの沈殿物を生成させ、その後、生成したシュウ酸スカンジウムを乾燥し、焙焼することによって酸化スカンジウムとして回収するとよい。
 シュウ酸塩化処理におけるシュウ酸の添加量としては、例えば、抽残液等に含まれるスカンジウムをシュウ酸塩として析出させるのに必要な当量の1.05倍以上1.2倍以下の量とすることが好ましい。なお、スカンジウムをシュウ酸スカンジウム(Sc(C)とするのに必要なシュウ酸((COOH))の量を1当量と定義する。
 また、得られたシュウ酸スカンジウムに対する焙焼処理の条件としては、例えば、管状炉に入れて約900℃で2時間程度加熱すればよい。なお、工業的には、ロータリーキルン等の連続炉を用いることで、乾燥と焙焼とを同じ装置で行うことができ好ましい。
 <2-6.酸洗浄工程>
 上述した逆抽出工程S43を経て得られる抽出剤は、再び、抽出工程S41において抽出剤(混合抽出剤)として繰り返し使用することができる。
 酸洗浄工程S6では、逆抽出工程S43を経て得られた抽出剤を、抽出工程S41で再使用する前に酸洗浄液を用いて酸洗浄する。酸洗浄液としては、硫酸溶液や塩酸溶液等の酸性溶液を用いることができる。これにより、抽出剤に巻き込んだNaを除去し、抽出剤を再生することができる。なお、この酸洗浄工程S6を経て抽出剤を回収した後の液は、硫酸酸性溶液等であることから、例えば上述した逆抽出溶液の中和剤として利用することができ、新たな中和剤を投入する必要がなくなり、効率的な操業が可能になる。
 ここで、酸洗浄工程S6において抽出剤の洗浄に使用する酸洗浄液としては、上述したスクラビング工程S42で排出された洗浄後液を使用するとよい。スクラビング工程S42にて用いられる洗浄液は、硫酸溶液や塩酸溶液等の酸溶液であり、スクラビング後に排出される洗浄後液もそれら酸溶液に由来するものである。
 そして、そのスクラビング工程S42で排出された洗浄後液は、抽出工程S41を経て得られる抽出後抽出剤に共抽出されたスカンジウムを洗浄回収して得られたものであり、スカンジウムを含有する。したがって、このようなスカンジウムを含有する洗浄後液を、酸洗浄工程S6での逆抽出後の抽出剤に対する洗浄液として使用することにより、スカンジウムの回収率を向上させることができる。
 すなわち、酸洗浄工程S6において、スクラビング工程S42で排出された洗浄後液を洗浄液として使用して逆抽出後の抽出剤に対する酸洗浄を行うことで、例えば逆抽出工程S43での逆抽出溶液(アルカリ溶液)を用いた逆抽出に起因する不純物が除去されて精製されるとともに、その洗浄された抽出剤に、洗浄液として使用した洗浄後液に含まれるスカンジウムが抽出されることになる。そして、このような酸洗浄処理により洗浄され、スカンジウムが抽出された抽出剤を、抽出工程S41における抽出剤として再利用することにより、新規の硫酸溶液等の酸性溶液を洗浄液として使用した場合と比べて、その抽出工程S41での抽出処理を経て得られる抽残液中のスカンジウム回収率を高めることができる。具体的には、洗浄液として用いた洗浄後液中に含まれていたスカンジウムの分、回収率を高めることができる。
 また、スクラビング工程S42で排出された洗浄後液には、ウランやトリウム等の不純物成分が少量含まれている可能性がある。そのため、そのような洗浄後液の全量をスカンジウム回収工程S5に移送してスカンジウムを回収しようとした場合、回収対象の溶液中に不純物成分が混入し、スカンジウムの純度の低下をもたらす可能性もある。これに対して、スクラビング工程S42で排出された洗浄後液の少なくとも一部(全量であってもよい)を、酸洗浄工程S6における酸洗浄処理の洗浄液として使用することにより、洗浄後液に微量含まれていたウランやトリウム等の不純物成分も抽出剤に抽出され、再利用のために繰り返される抽出工程S41にて適切に分離されることになる。これにより、スカンジウムの回収率を高めるとともに、回収されるスカンジウムの純度の低下をより効果的に抑えることができる。
 さらに、酸洗浄工程S6における洗浄液として洗浄後液を使用することにより、スクラビング工程S42から排出された洗浄後液をスカンジウム回収工程S5に全量を送液せずともスカンジウムを効率的に回収でき、また上述のように不純物濃度の調整を行うことができることから、手間がかからず経済的にスカンジウムを回収できることになる。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 <スカンジウム含有溶液(抽出始液)の調製>
 特許文献1に記載の方法等の公知の方法に基づき、ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理を施し、得られた浸出液のpHを調整して不純物を除去した。その後、硫化剤を添加してニッケルを硫化物として沈殿させ、その硫化物を分離することにより硫化後液を得た。
 次に、得られた硫化後液に対し、キレート樹脂を用いて公知の方法によりイオン交換処理を行って不純物を分離し、同時にスカンジウムの濃縮処理を施した。なお、本実施例での精製効果を確認する点から、十分な量が含まれていない成分は、試薬等を添加することで下記の表1に示す組成の抽出始液を調製し用意した。
Figure JPOXMLDOC01-appb-T000001
 <抽出溶媒の調製>
 実施例及び比較例にて用いる抽出溶媒を、下記表2に示す配合で調製した。なお、混合抽出剤を構成する1級アミンとして、PrimeneJM-T(ダウ・ケミカル(株)社製)を用い、3級アミンとして、TNOA(ファーミン T-08,花王(株)社製)を用いた。そして、この混合抽出剤を有機溶媒(希釈剤)で希釈することによって抽出溶媒を調製した。なお、有機溶媒としては、スワゾール1800(丸善石油化学(株)社製)を用いた。
Figure JPOXMLDOC01-appb-T000002
 <抽出工程>
 表1に示す抽出始液(A)と表2に示す各実施例及び比較例の抽出溶媒(O)とを、下記表3に示す体積比O/Aで、それぞれ容量100mLの分液ロートに分取した。これらを、振とう器を用いて10分間の振とう(混合)を行い、振とう後に10分間静置した。
Figure JPOXMLDOC01-appb-T000003
 その後、抽出後抽出剤と抽残液とをそれぞれメスシリンダーに移し取り、液量を確認した。回収した抽出後抽出剤と抽残液について、それぞれ定性ろ紙(抽出後抽出溶媒:1PS、抽残液:5C)にて自然ろ過を行い、抽出後抽出剤及び抽残液の主要成分濃度を発光分光分析法にて測定することによって抽残液中のスカンジウム(Sc)、ウラン(U)、トリウム(Th)の濃度及びこれらの抽出率を確認した。表4~表6に、その結果を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <抽出率について>
 まず、比較例1の抽出結果(表6参照)からわかるように、1級アミンのみからなる抽出剤では、トリウムの抽出率が高いが、ウランをほとんど抽出できない。一方、比較例2の抽出結果(表6参照)からわかるように、3級アミンのみからなる抽出剤では、ウランの抽出率が高く、スカンジウムとの分離性が高いが、トリウムの抽出率が低い。また、スカンジウム含有溶液に対する抽出溶媒の体積比O/Aを4/1に上げても、トリウムの抽出率は17%程度で留まってしまう上に、スカンジウムの抽出が始まってしまう。このことから、1級アミン又は3級アミンを抽出剤として単独で用いても、スカンジウムからウランとトリウムの両者を効率よく分離するのは難しいことがわかる。
 一方、表4と表6との比較から、1級アミンと3級アミンとを1:1で混合した混合抽出剤を用いた実施例1では、1級アミンを単独で用いた比較例1、3級アミンを単独で用いた3級アミンを用いた比較例2と同量の抽出剤であるものの、スカンジウム(Sc)、ウラン(ウラン)、トリウム(Th)の抽出率は、比較例1と比較例2の単純和とはならないことが確認された。実施例1及び実施例2の抽出結果では、スカンジウムの分離性の点では、スカンジウム含有溶液に対する抽出溶媒の量の体積比O/Aは1/2以下であることが好ましいことがわかる。ただし、体積比O/Aが小さくなると、トリウム(Th)の抽出率が低下する傾向にあることが確認された。
 これに対し、1級アミンと3級アミンとを5:2又は5:1で混合した混合抽出剤を用いた実施例3、4(表5参照)では、スカンジウム含有溶液に対する抽出溶媒の体積比O/Aが1/2以下であっても、実施例1、2に比べてトリウムの抽出率の低下が小さかった。これらのことから、3級アミンの混合比を低下させることによって、ウラン、トリウムの両方を抽出しやすくなることがわかる。
 <分配係数及び分離係数について>
 下記表7に、各実施例及び比較例において、スカンジウムの分離性が高く、ウラン、トリウムの抽出率が高く得られた抽出4(O/A=1/2)による抽出結果をまとめる。また、この表7に示す結果から、スカンジウム、ウラン、トリウムのそれぞれの分配係数Dと分離係数αを下記の式により算出した。下記表8に、その結果を示す。
 分配係数D=抽出後抽出溶媒中の成分(x)濃度/抽残液中の成分(x)濃度
 分離係数α=分配係数(Dx)/分配係数(DSc)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表8に示す結果に基づいて、1級アミンの混合割合を5体積%として固定し、3級アミンの配合率を変化させた場合(比較例1、実施例1、3、4)における、ウラン、トリウムのそれぞれの分離係数αと、抽残液中のウラン濃度、トリウム濃度の推移を調べた。図2及び図3に、それぞれの結果を示す。
 図2の結果から、抽残液中のウラン濃度を低減させて、ウランを効率よく抽出するためには、3級アミンの混合割合としては混合抽出剤全体に対して2体積%もあれば十分であることがわかる。また、1級アミンとの関係でいうと、3級アミンとしては、100体積%の1級アミンに対して20体積%の割合で混合することで、ウランを効率よく抽出することができることがわかる。
 また、スカンジウムの分離係数αが1を超えるには、3級アミンの混合割合としては、混合抽出剤全体に対して1体積%以上とすることが好ましいことがわかる。また、1級アミンとの関係でいうと、3級アミンとしては、100体積%の1級アミンに対して10体積%以上の割合で混合することで、スカンジウムと効率よく分離できることがわかる。
 一方、図3の結果から、抽残液中のトリウム濃度は、3級アミンの混合比の増加に伴って増えていき、トリウムの抽出能が低下することがわかるが、3級アミンの混合割合が混合抽出剤全体に対して1体積%~5体積%である場合には、スカンジウムとの分離係数が37~61であり、スカンジウムと有効に分離させて回収できるレベルとなった。
 <抽出溶媒の段数について>
 下記の表9にまとめて示す実施例1、3、4の抽出結果に基づき、マッケーブ・シール法による作図を行った。図4、5に、その一例を示す。図4及び図5の結果から溶媒抽出に必要な段数を検討した。
Figure JPOXMLDOC01-appb-T000009
 図4の結果から、ウランを溶媒抽出するにあたっては、3級アミンの混合比を上げた方が抽出能力を高めることができ、必要な溶媒抽出の段数としては、例えばO/A=1/1である場合には2段以上とすることで、スカンジウムを含有した硫酸溶液からウランやトリウムを効率的に抽出し、スカンジウムから分離できることがわかる。なお、抽出段数に関して、O/A=1/2である場合には2段以上とすることが好ましいことがわかる。
 また、図5の結果から、トリウムを溶媒抽出するにあたっては、3級アミンの混合比を下げた方が抽出能力を高めることができ、必要な溶媒抽出の段数としては、例えばO/A=1である場合には3段以上とすることで、スカンジウムを含有した硫酸溶液からウランやトリウムを効率的に抽出し、スカンジウムから分離できることがわかる。なお、抽出段数に関して、O/A=1/2である場合には4段以上とすることが好ましいことがわかる。
 以上の結果から、1級アミンと3級アミンとを混合させて含有させた混合抽出剤を用いて溶媒抽出することにより、ウランとトリウムとを同時に効率的に抽出することができ、処理対象の酸性溶液中のスカンジウムと効果的に分離できることがわかった。
 また、特に、混合抽出剤として、1級アミンに対して3級アミンの混合比を、20体積%以上100体積%未満、より好ましくは20体積%以上40体積%以下含有することによって、ウランやトリウムの抽出能力を高めることができることがわかった。
 <スクラビング工程>
 スクラビング工程において、洗浄段数は3段とし、洗浄液として1mol/L硫酸溶液を用いて、抽出後抽出剤を洗浄に付した。また、洗浄液(As)に対する抽出後抽出剤(Os)の体積比Os/Asを0.5~5.5の範囲で変化させ、その体積比Os/Asが、スカンジウム、トリウム、ウランの分離挙動に及ぼす影響を調べた。図6にその結果を示す。なお、回収率は、洗浄後液中の元素量/抽出工程(S41)で処理する液中の元素量から計算した。
 図6の結果から、洗浄後液中のスカンジウム、トリウム、ウランの回収率は、スクラビング工程での体積比Os/Asに依存することが分かる。すなわち、体積比Os/Asが0.5の場合には、洗浄後液にスカンジウムの他に、ウラン、トリウムも回収される。特にウランの回収率は40%以上となる。そして、体積比Os/Asを増加させることで、ウランやトリウムの回収率は低下する。
 一方、体積比Os/As比が2以上であると、ウラン回収率は10%未満、トリウム回収率は1%未満まで減少する。また、スカンジウムの回収率は、体積比Os/Asが2以上では3.5%付近で一定で推移する。このことから、スクラビング工程での体積比Os/Asは、2以上で行うことが好ましいことがわかる。
 <酸洗浄工程>
 スクラビング工程を経た抽出後抽出剤に対して逆抽出処理を施した後、回収された抽出剤(逆抽出後抽出剤)に対して酸洗浄を施す酸洗浄工程を行った(実施例5)。酸洗浄処理に用いる酸洗浄液として、スクラビング工程で回収された硫酸溶液(洗浄後液)を用い、洗浄した抽出剤を抽出工程にて繰り返し使用したときのスカンジウムの回収率を調べた。
 具体的には、酸洗浄工程における酸洗浄液として洗浄後液を用いた処理を行い、その後、酸洗浄された抽出剤を抽出工程における抽出剤(混合抽出剤)として用いて抽出処理を施した。またその後、スクラビング工程、逆抽出工程における処理も実行した。そして、各工程から排出されたスカンジウムの量から、スカンジウムの回収率を調べた。
 なお、比較のため、酸洗浄工程における洗浄液として、新規の硫酸溶液を用いて同様の操作を行った例(参照例1)も実行し、スカンジウム回収率の違いの有無を確認した。
 下記表10に、各工程にて排出されたスカンジウムの回収率の測定結果を示す。なお、スカンジウムの回収率は、下記の式から計算した。
 スカンジウム回収率(%)=(各工程の溶液中スカンジウム排出量-投入量)/抽出工程へのスカンジウム投入量×100
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、実施例5では、酸洗浄工程において酸洗浄液としてスクラビング工程で回収された洗浄後液を用いたため、抽出剤へスカンジウムが3%抽出されている(スカンジウム回収率=-3%)ことがわかった。そして、そのような酸洗浄工程での処理を経て回収された抽出剤を抽出工程へ繰り返し、混合抽出剤として再利用したところ、新規の硫酸溶液を用いた参照例1よりも、抽出工程でのスカンジウム回収率が3%程度上昇する結果となった。
 このように、スクラビング工程で回収された洗浄後液を、酸洗浄工程における酸洗浄液として使用することにより、スカンジウムの回収率を有効に高められることがわかった。また、スクラビング工程から排出された洗浄後液を、例えばスカンジウム回収工程へ送液する場合に比べて、その洗浄後液を酸洗浄工程における処理の洗浄液として使用することにより、手間がかからずより経済的にスカンジウムを回収できることがわかった。

Claims (8)

  1.  スカンジウムを含有する酸性溶液を、1級アミンと3級アミンとを含有する混合抽出剤を用いた溶媒抽出に付し、スカンジウムを含有する抽残液と抽出後抽出剤とに分離する
     スカンジウムの精製方法。
  2.  前記混合抽出剤は、前記1級アミンに対して前記3級アミンを20体積%以上100体積%未満の割合で含有する
     請求項1に記載のスカンジウムの精製方法。
  3.  前記1級アミンは、一般式NHRで表され、Rは、炭素数16~22の分岐アルキル基である
     請求項1又は2に記載のスカンジウムの精製方法。
  4.  前記3級アミンは、トリ-ノルマル-オクチル-アミンである
     請求項1乃至3のいずれか1項に記載のスカンジウムの精製方法。
  5.  前記抽出後抽出剤を洗浄するスクラビング工程を有し、
     前記スクラビング工程では、洗浄液(As)に対する前記抽出後抽出剤(Os)の体積比(Os/As)を2以上10以下とする
     請求項1乃至4のいずれか1項に記載のスカンジウムの精製方法。
  6.  前記抽出後抽出剤に対する逆抽出処理後の抽出剤を洗浄する洗浄工程を有し、
     前記洗浄工程では、前記スクラビング工程で排出された洗浄後液を洗浄液として使用して洗浄処理を施し、
     前記洗浄工程での洗浄処理後の抽出剤を、前記溶媒抽出に用いる前記混合抽出剤として再使用する
     請求項5に記載のスカンジウムの精製方法。
  7.  前記酸性溶液は、スカンジウムを含有する溶液をイオン交換樹脂に通液し、次いで該イオン交換樹脂からスカンジウムを溶離させた溶離液である
     請求項1乃至6のいずれか1項に記載のスカンジウムの精製方法。
  8.  前記抽残液にシュウ酸を添加してシュウ酸スカンジウムを含む沈殿物を生成させ、次いで該沈殿物を焙焼して酸化スカンジウムを得る工程をさらに有する
     請求項1乃至7のいずれか1項に記載のスカンジウムの精製方法。
PCT/JP2017/041068 2016-11-24 2017-11-15 スカンジウムの精製方法 WO2018097001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017365489A AU2017365489A1 (en) 2016-11-24 2017-11-15 Scandium purification method
EP17873473.7A EP3546604A4 (en) 2016-11-24 2017-11-15 SCANDIUM CLEANING PROCESS
PH12019501149A PH12019501149A1 (en) 2016-11-24 2019-05-23 Scandium purification method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016227844 2016-11-24
JP2016-227844 2016-11-24
JP2017-098807 2017-05-18
JP2017098807 2017-05-18
JP2017128029A JP6922478B2 (ja) 2016-11-24 2017-06-29 スカンジウムの精製方法
JP2017-128029 2017-06-29

Publications (1)

Publication Number Publication Date
WO2018097001A1 true WO2018097001A1 (ja) 2018-05-31

Family

ID=62195966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041068 WO2018097001A1 (ja) 2016-11-24 2017-11-15 スカンジウムの精製方法

Country Status (1)

Country Link
WO (1) WO2018097001A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173725A (ja) 1989-12-01 1991-07-29 Univ Tohoku 希土類元素の分別方法
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
JPH10212532A (ja) * 1996-09-26 1998-08-11 Fansteel Inc 各種金属化合物を含む複合体からタンタル化合物及び/又はニオブ化合物を回収する方法
JP2000507308A (ja) * 1996-03-26 2000-06-13 キャボット コーポレイション 金属価の回収
WO2014110216A1 (en) 2013-01-10 2014-07-17 Bloom Energy Corporation Methods of recovering scandium from titanium residue streams
JP2016065273A (ja) * 2014-09-24 2016-04-28 住友金属鉱山株式会社 スカンジウムの回収方法
JP2016108664A (ja) 2014-11-26 2016-06-20 住友金属鉱山株式会社 高純度スカンジウムの回収方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173725A (ja) 1989-12-01 1991-07-29 Univ Tohoku 希土類元素の分別方法
JP2000507308A (ja) * 1996-03-26 2000-06-13 キャボット コーポレイション 金属価の回収
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
JPH10212532A (ja) * 1996-09-26 1998-08-11 Fansteel Inc 各種金属化合物を含む複合体からタンタル化合物及び/又はニオブ化合物を回収する方法
WO2014110216A1 (en) 2013-01-10 2014-07-17 Bloom Energy Corporation Methods of recovering scandium from titanium residue streams
JP2016065273A (ja) * 2014-09-24 2016-04-28 住友金属鉱山株式会社 スカンジウムの回収方法
JP2016108664A (ja) 2014-11-26 2016-06-20 住友金属鉱山株式会社 高純度スカンジウムの回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546604A4 *

Similar Documents

Publication Publication Date Title
JP5967284B2 (ja) 高純度スカンジウムの回収方法
JP6852599B2 (ja) スカンジウムの精製方法
JP6439530B2 (ja) スカンジウムの回収方法
JP6528707B2 (ja) スカンジウム精製方法
WO2018101039A1 (ja) イオン交換処理方法、スカンジウムの回収方法
JP6172099B2 (ja) スカンジウムの回収方法
CA3007373C (en) Method for recovering scandium
WO2017135245A1 (ja) スカンジウム回収方法
WO2017130692A1 (ja) スカンジウムの回収方法
WO2018043183A1 (ja) スカンジウムの回収方法
WO2016084830A1 (ja) 高純度スカンジウムの回収方法
JP6922478B2 (ja) スカンジウムの精製方法
WO2018097001A1 (ja) スカンジウムの精製方法
JP6623803B2 (ja) スカンジウム回収方法
JP6206358B2 (ja) スカンジウムの回収方法
JP7338283B2 (ja) スカンジウムの回収方法
WO2021059942A1 (ja) スカンジウムの回収方法
JP7327276B2 (ja) スカンジウムの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017365489

Country of ref document: AU

Date of ref document: 20171115

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017873473

Country of ref document: EP

Effective date: 20190624