WO2017135245A1 - スカンジウム回収方法 - Google Patents
スカンジウム回収方法 Download PDFInfo
- Publication number
- WO2017135245A1 WO2017135245A1 PCT/JP2017/003398 JP2017003398W WO2017135245A1 WO 2017135245 A1 WO2017135245 A1 WO 2017135245A1 JP 2017003398 W JP2017003398 W JP 2017003398W WO 2017135245 A1 WO2017135245 A1 WO 2017135245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scandium
- extraction
- solution
- impurity
- aqueous phase
- Prior art date
Links
- HMFCNOSAXCXHGV-UHFFFAOYSA-N CCCCC(CC)CN(CC(CC)CCCC)C(CNCC(O)=O)=O Chemical compound CCCCC(CC)CN(CC(CC)CCCC)C(CNCC(O)=O)=O HMFCNOSAXCXHGV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
- C22B3/08—Sulfuric acid, other sulfurated acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/32—Carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for recovering scandium, and more particularly, to a method for recovering scandium contained in nickel oxide ore easily and efficiently using a plurality of stages of solvent extraction.
- Scandium is extremely useful as an additive for high-strength alloys and as an electrode material for fuel cells. However, since the production amount is small and expensive, it has not been widely used.
- nickel oxide ores such as laterite or limonite ore contain a small amount of scandium.
- nickel oxide ore since nickel oxide ore has a low nickel-containing grade, it has not been industrially used as a nickel raw material for a long time. Therefore, there has been little research on industrially recovering scandium from nickel oxide ore.
- HPAL High Pressure Acid Leach
- nickel oxide ore is charged into a pressure vessel together with sulfuric acid and heated to a high temperature of about 240 ° C. to 260 ° C. to separate into solid and liquid leachate containing nickel and leach residue.
- the process is in practical use.
- impurities are separated by adding a neutralizing agent to the obtained leachate, and then nickel is recovered as nickel sulfide by adding a sulfiding agent to the leachate from which impurities have been separated.
- electric nickel and a nickel salt compound can be obtained.
- Patent Document 2 there is a method in which scandium is separated using a chelate resin (see Patent Document 2). Specifically, in the method disclosed in Patent Document 2, first, nickel and scandium are selectively leached into an acidic aqueous solution under high temperature and high pressure in an oxidizing atmosphere from a nickel-containing oxide ore to obtain an acidic solution. Then, after adjusting the pH of the acidic solution to a range of 2 to 4, nickel is selectively collected as a sulfide by using a sulfurizing agent.
- the obtained nickel-recovered solution is brought into contact with a chelate resin to adsorb scandium, the chelate resin is washed with dilute acid, and then the washed chelate resin is brought into contact with a strong acid to elute scandium from the chelate resin. It is to do.
- Patent Documents 3 and 4 As a method for recovering scandium from the above acidic solution, a method of recovering scandium using solvent extraction has also been proposed (see Patent Documents 3 and 4). Specifically, in the method described in Patent Document 3, first, in addition to scandium, an aqueous phase scandium-containing solution containing at least one of iron, aluminum, calcium, yttrium, manganese, chromium, and magnesium is used. An organic solvent obtained by diluting 2-ethylhexylsulfonic acid-mono-2-ethylhexyl with kerosene is added, and the scandium component is extracted into the organic solvent.
- Patent Document 4 describes a method of selectively separating and recovering scandium from a scandium-containing supply liquid by bringing the scandium-containing supply liquid into contact with an extractant at a constant rate by batch processing.
- the nickel oxide ore described above contains various other impurity elements such as manganese and magnesium in addition to iron and aluminum.
- impurity elements such as manganese and magnesium in addition to iron and aluminum.
- some impurity elements exhibit similar behavior to scandium, and it is difficult to effectively separate and recover from scandium.
- impurities such as iron and aluminum contained in the leachate of nickel oxide ore are much higher in concentration than scandium, and due to these large amounts of impurities, high purity scandium is produced from nickel oxide ore. No suitable method has been found for recovery.
- the present invention has been proposed in view of the above-described circumstances, and an object of the present invention is to provide a scandium recovery method capable of easily and efficiently recovering high-purity scandium from nickel oxide ore.
- the present inventors have made extensive studies to solve the above-described problems. As a result, by subjecting the acidic solution containing scandium to two-stage solvent extraction, extraction of impurities using an amine-based impurity extractant and extraction of scandium using a scandium extractant containing an amide derivative, It has been found that high-purity scandium can be easily and efficiently recovered from nickel oxide ore, and the present invention has been completed. That is, the present invention provides the following.
- the second invention of the present invention further includes a concentration step of concentrating the post-elution liquid after the elution step in the first invention, wherein the impurity extraction step is a step of the concentration step.
- concentration step of concentrating the post-elution liquid after the elution step in the first invention, wherein the impurity extraction step is a step of the concentration step. This is a scandium recovery method to be performed later.
- the aqueous phase containing scandium contains trivalent iron as an impurity, and after the impurity extraction step, the scandium
- the method further includes a reduction step of reducing the trivalent iron contained in the aqueous phase containing bismuth to divalent iron, and the scandium extraction step is a scandium recovery method performed after the reduction step.
- the scandium back extraction is obtained by subjecting the organic phase containing scandium to back extraction to obtain a scandium back extract. It is a scandium collection
- the sixth invention of the present invention is an adsorption step in which a solution containing scandium is passed through an ion exchange resin, and the scandium is adsorbed on the ion exchange resin, and a sulfuric acid solution is added to the ion exchange resin.
- a scandium extraction step for separating an aqueous phase containing impurities and an organic phase containing scandium and a scandium back extraction step for subjecting the organic phase containing scandium to back extraction to obtain a scandium back extract And subjecting the scandium back extract to solvent extraction using an amine-based impurity extractant to remove the scandium-containing aqueous phase and impurities.
- a impurity extraction step is separated into an organic phase having a scandium recovery method.
- the seventh invention of the present invention is a scandium recovery method according to any one of the first to sixth inventions, wherein the amide derivative is represented by the following general formula (I).
- R 1 and R 2 each represent the same or different alkyl group.
- the alkyl group may be linear or branched.
- R 3 represents a hydrogen atom or an alkyl group.
- R 4 represents A hydrogen atom or an arbitrary group other than an amino group bonded to the ⁇ -carbon as an amino acid is shown.
- the solution that is passed through the ion exchange resin in the adsorption step is nickel oxide ore under high temperature and high pressure.
- This is a scandium recovery method, which is an acid solution leached with sulfuric acid.
- high-purity scandium can be easily and efficiently recovered from nickel oxide ore.
- FIG. 1 is a flowchart showing an example of a scandium recovery method according to the first embodiment.
- scandium and impurities are separated from an acidic solution containing scandium and impurities, which is obtained by leaching nickel oxide ore with an acid such as sulfuric acid. It is efficiently recovered.
- an acidic solution (processed solution) containing scandium and impurities is subjected to a first solvent extraction treatment using an amine-based impurity extractant to remove impurities in the acidic solution as impurities. Extract into the extractant (first organic phase) and separate from scandium that will remain in the acidic solution (first aqueous phase) after extraction. Then, by subjecting the acidic solution (first aqueous phase) to second solvent extraction using a scandium extractant containing an amide derivative, scandium is extracted into the scandium extractant (second organic phase), and the acidic solution ( Separated from impurities remaining in the second aqueous phase).
- Scandium extracted by the scandium extractant (second organic phase) is subjected to back extraction and separated into an acidic solution (third aqueous phase) containing scandium and a third organic phase, and then into the third aqueous phase. It is recovered by adding oxalic acid and precipitating it as scandium oxalate.
- the scandium recovery method when separating and recovering scandium by solvent extraction, the scandium is subjected to the first solvent extraction process using an amine-based impurity extractant, and then the amide It is characterized by subjecting to a second solvent extraction using a scandium extractant containing a derivative.
- impurities can be separated more effectively, stable operation can be performed even from a raw material containing many impurities such as nickel oxide ore, and high purity. Can be efficiently recovered.
- nickel is obtained by leaching nickel oxide ore with an acid such as sulfuric acid to obtain an acidic solution containing scandium and impurities.
- the oxide ore hydrometallurgical treatment step S1, the scandium elution step S2 for obtaining a scandium eluate obtained by removing impurities from the acidic solution and concentrating scandium, and the scandium eluate were prepared using an amine-based impurity extractant.
- Impurity extraction step S3 in which impurities are extracted into an impurity extractant (first organic phase) and separated from scandium remaining in the acidic solution (first aqueous phase) after extraction by subjecting to 1 solvent extraction, and acidic solution (First aqueous phase) is subjected to a second solvent extraction using a scandium extractant containing an amide derivative, and scandium is converted to a scandium extractant (first The scandium extraction step S4 is extracted to the organic phase) and separated from other impurities remaining in the acidic solution (second aqueous phase), and the scandium extractant (second organic phase) is subjected to back extraction, and the reverse containing scandium And a scandium recovery step S5 for recovering scandium from the extract (third aqueous phase).
- Nickel oxide ore hydrometallurgical treatment process An acidic solution obtained by treating nickel oxide ore with sulfuric acid can be used as the acidic solution containing scandium to be processed for scandium recovery.
- a leaching step S11 in which nickel oxide ore is leached with an acid such as sulfuric acid at high temperature and high pressure to obtain a leachate, and a neutralizer is added to the leachate to remove impurities.
- the post-sulfurization solution obtained by the hydrometallurgical treatment step S1 can be used. Below, the flow of the hydrometallurgical treatment process S1 of nickel oxide ore will be described.
- Leaching step S11 In the leaching step S11, for example, sulfuric acid is added to a slurry of nickel oxide ore using a high-temperature pressurized container (autoclave) or the like, and the mixture is stirred at a temperature of 240 ° C. to 260 ° C., and consists of a leaching solution and a leaching residue. It is a process of forming a leaching slurry. In addition, what is necessary is just to perform the process in leaching process S11 according to the conventionally known HPAL process, for example, it describes in patent document 1. FIG.
- nickel oxide ore examples include so-called laterite ores such as limonite ore and saprolite ore.
- Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
- These nickel oxide ores contain scandium.
- the leaching slurry comprising the obtained leaching solution and the leaching residue is washed, and solid-liquid separation is performed into the leaching solution containing nickel, cobalt, scandium, and the like and the leaching residue that is hematite.
- the solid-liquid separation process for example, after the leaching slurry is mixed with a cleaning liquid, the solid-liquid separation process is performed by a solid-liquid separation facility such as a thickener using a flocculant supplied from a flocculant supply facility or the like. Specifically, the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the slurry is concentrated as a thickener sediment.
- solid-liquid separation tanks such as thickeners connected in multiple stages and perform solid-liquid separation while washing the leaching slurry in multiple stages.
- the neutralization step S12 is a step of adding a neutralizing agent to the leachate obtained in the above-described leaching step S11 to adjust pH to obtain a neutralized starch containing an impurity element and a post-neutralization solution.
- a neutralizing agent to adjust pH to obtain a neutralized starch containing an impurity element and a post-neutralization solution.
- neutralizing agent conventionally known neutralizing agents can be used, and examples thereof include calcium carbonate, slaked lime, and sodium hydroxide.
- the pH it is preferable to adjust the pH to a range of 1 to 4 while suppressing the oxidation of the separated leachate, and adjust the pH to a range of 1.5 to 2.5. More preferably. If the pH is less than 1, neutralization becomes insufficient, and there is a possibility that the neutralized starch and the liquid after neutralization cannot be separated. On the other hand, when the pH exceeds 4, not only impurities such as aluminum but also valuable metals such as scandium and nickel may be contained in the neutralized starch.
- the sulfidation step S13 is a step of obtaining a nickel sulfide and a post-sulfurization solution by adding a sulfiding agent to the post-neutralization solution obtained by the neutralization step S12 described above.
- a sulfiding agent to the post-neutralization solution obtained by the neutralization step S12 described above.
- a sulfurizing agent such as hydrogen sulfide gas, sodium sulfide, sodium hydrogen sulfide is blown into the obtained post-neutralized liquid, and sulfide containing nickel and cobalt having a small amount of impurity components.
- Product (nickel / cobalt mixed sulfide) and the nickel concentration are stabilized at a low level, and a post-sulfurization solution containing scandium or the like is produced.
- the nickel / cobalt mixed sulfide slurry is subjected to a settling separation process using a settling separator such as a thickener to separate and recover the nickel / cobalt mixed sulfide from the bottom of the thickener.
- a settling separator such as a thickener to separate and recover the nickel / cobalt mixed sulfide from the bottom of the thickener.
- the post-sulfurization solution that is an aqueous solution component is recovered by overflowing.
- the scandium recovery method according to the first embodiment contains scandium, which is the target of the scandium recovery process, after the sulfidized liquid obtained through each step in the hydrometallurgy process step S1 of nickel oxide ore as described above. It can be used as an acidic solution.
- a post-sulfurization solution that is an acidic solution containing scandium obtained by leaching nickel oxide ore with sulfuric acid can be applied as a target solution for scandium recovery treatment.
- the post-sulfurization solution that is an acidic solution containing scandium contains, in addition to scandium, for example, aluminum, chromium, and other impurities that remain in the solution without being sulfided by the sulfidation treatment in the above-described sulfidation step S13. ing.
- a scandium elution step S2 when subjecting this acidic solution to solvent extraction, as a scandium elution step S2, impurities contained in the acidic solution are removed in advance to concentrate scandium (Sc), and a scandium eluent (scandium-containing solution) is used. Preferably, it is generated.
- an ion exchange treatment method can be used to separate and remove impurities such as aluminum contained in the acidic solution to obtain a scandium-containing solution in which scandium is concentrated.
- the mode of the ion exchange reaction is not particularly limited.
- the adsorption step S21 in which the post-sulfurization solution is brought into contact with the chelate resin to adsorb scandium to the chelate resin, and the chelate resin having adsorbed scandium is 0.1N.
- An aluminum removal step S22 for removing aluminum adsorbed on the chelate resin by contacting with the following sulfuric acid, and a scandium elution step S23 for obtaining a scandium eluent by contacting the chelate resin with 0.3 to 3N sulfuric acid. can be illustrated.
- step S24 in order to make the chelate resin reusable, 3N or more sulfuric acid is brought into contact with the chelate resin that has undergone the scandium elution step S23, and the chromium removal that removes the chromium adsorbed on the chelate resin in the adsorption step S21 It is preferable to further include step S24.
- step S24 the outline of each process will be briefly described.
- the sulfurized solution is brought into contact with the chelate resin to adsorb scandium to the chelate resin.
- the type of chelate resin is not particularly limited, and for example, a resin having iminodiacetic acid as a functional group can be used.
- Al removal step S22 Although not essential, prior to elution of scandium from the chelate resin adsorbing scandium in the adsorption step S21, 0.1 N or less sulfuric acid was brought into contact with the chelate resin adsorbed scandium in the adsorption step S21 and adsorbed on the chelate resin. It is preferable to perform an aluminum removal step S22 for removing aluminum. By performing aluminum removal process S22, aluminum can be removed from chelate resin, making scandium adsorb
- the pH is preferably maintained in the range of 1 to 2.5, more preferably in the range of 1.5 to 2.0.
- 0.3 to 3N sulfuric acid is brought into contact with the chelate resin adsorbed with scandium to obtain a scandium eluent.
- the normality of sulfuric acid used in the eluent is preferably maintained in the range of 0.3N to 3N, and more preferably in the range of 0.5N to 2N.
- a chromium removal step S24 in which 3N or more sulfuric acid is brought into contact with the chelate resin that has undergone the scandium elution step S23, and the chromium adsorbed on the chelate resin in the adsorption step S21 is removed. It is preferable to carry out.
- 3N or more sulfuric acid is brought into contact with the chelate resin that has undergone the scandium elution step S23, and the chromium adsorbed on the chelate resin in the adsorption step S21 is removed.
- the chromium When removing the chromium, if the normality of the sulfuric acid used for the eluent is less than 3N, the chromium is not properly removed from the chelate resin, which may cause a problem when the chelate resin is reused.
- the scandium-containing solution obtained in the scandium elution step S2 that is, the acidic solution containing scandium and impurities is subjected to a first solvent extraction using an amine-based impurity extractant, It isolate
- the aspect in impurity extraction process S3 is not specifically limited.
- a scandium-containing solution and an organic solvent containing an amine-based impurity extractant are mixed to extract an organic phase after extraction (first organic phase) containing impurities and a slight amount of scandium; (1 aqueous phase) is separated into an impurity extraction step S32, and after the extraction, a slight amount of scandium extracted in the organic phase is separated into the aqueous phase by mixing the sulfuric acid solution with the organic phase, and the washed liquid (organic phase)
- a scrubbing step S33 for obtaining the above
- an impurity back extraction step S34 for back-extracting impurities from the washed solution by adding a back extractant to the washed solution.
- the scandium may be concentrated by neutralization with sodium hydroxide or dissolution with sulfuric acid.
- concentration step S31 the volume of the scandium-containing solution can be reduced, and as a result, the amount of the organic solvent containing the amine-based impurity extractant can be suppressed.
- the scandium-containing solution and the organic solvent containing the amine-based impurity extractant are mixed to selectively extract the impurities in the organic solvent, and the organic solvent containing the impurities (first organic phase) And a residual extraction liquid (first aqueous phase).
- the scandium recovery method according to the first embodiment is characterized in that a solvent extraction process using an amine-based impurity extractant is performed in the impurity extraction step S31.
- the amine-based impurity extractant has characteristics such as low selectivity with scandium and no need for a neutralizing agent during extraction.
- Primene JM-T which is a primary amine
- secondary Amine impurity extractants known by trade names such as amine LA-1, tertiary amine TNOA (Tri-n-octylamine), and TIOA (Tri-i-octylamine) can be used.
- the amine-based impurity extractant diluted with, for example, a hydrocarbon-based organic solvent.
- concentration of the amine type impurity extractant in an organic solvent In consideration of the phase-separation property at the time of extraction and the back extraction mentioned later, 1 volume% or more and 10 volume% with respect to 1 volume of organic solvents It is preferably about the following, more preferably about 5% by volume.
- the volume ratio between the organic solvent and the scandium-containing solution at the time of extraction is not particularly limited, but the organic solvent molar amount is about 0.01 to 0.1 times the metal molar amount in the scandium-containing solution. It is preferable to make it.
- impurity extraction step S32 Through the impurity extraction step S32, most impurity elements contained in the nickel oxide ore, specifically nickel, magnesium, chromium, manganese, calcium, cobalt, etc., as well as thorium, which is an actinide element, are used as impurities. Can be separated. In particular, through the impurity extraction step S3, thorium that cannot be separated only by the scandium extraction step S4 can be separated as impurities.
- the scandium recovery rate can be further increased.
- a solution (cleaning solution) used for scrubbing a sulfuric acid solution, a hydrochloric acid solution, or the like can be used. Moreover, what added the soluble chloride and sulfate to water can also be used. Specifically, when a sulfuric acid solution is used as the cleaning solution, it is preferable to use one having a concentration range of 1.0 mol / L or more and 3.0 mol / L or less.
- the back extraction solution includes carbonates such as sodium carbonate and potassium carbonate. It is preferable to use a solution containing
- the concentration of the carbonate-containing solution that is the back extraction solution is preferably about 0.5 mol / L or more and 2 mol / L or less, for example, from the viewpoint of suppressing excessive use.
- the back extraction solution is similarly added to the scrubbed amine-based impurity extractant.
- the back extraction process can be performed by mixing them.
- the extractant after separating impurities by adding a carbonate solution such as sodium carbonate to the extractant after extraction or the extractant after scrubbing in this way is separated again from the impurity extraction step S32.
- the extraction solution containing the scandium (first aqueous phase) obtained in the impurity extraction step S3 is subjected to a second solvent extraction with a scandium extractant containing an amide derivative, whereby the extraction is performed. Impurities in the remaining liquid are left in the liquid after extraction (second aqueous phase), and scandium is distributed to the extractant (second organic phase) to separate scandium and impurities, and further extract liquid containing scandium ( The second organic phase) is brought into contact with sulfuric acid to obtain a back extract (aqueous phase) containing scandium.
- the aspect of reduction process S41 is not specifically limited.
- hydrogen sulfide gas may be blown into the scandium-containing extraction residual liquid (first aqueous phase) obtained by the impurity extraction step S3.
- scandium extraction step S42 a scandium-containing solution and an organic solvent containing an extractant are mixed, scandium is selectively extracted into the organic solvent, an organic solvent containing scandium (second organic phase), and impurities are removed.
- the extracted residual liquid (second aqueous phase) is obtained.
- the scandium recovery method according to the first embodiment is characterized by performing solvent extraction using a scandium extractant containing an amide derivative in the scandium extraction step S42. By performing a solvent extraction process using a scandium extractant containing an amide derivative, the aluminum and iron still remaining in the scandium-containing solution even after the impurity extraction step S3 can be separated as impurities.
- the amide derivative constituting the scandium extractant has a feature of high selectivity with scandium.
- Examples of such amide derivatives include those represented by the following general formula (I).
- the substituents R 1 and R 2 each represent the same or different alkyl group.
- the alkyl group may be linear or branched, but the alkyl group is preferably branched because solubility in an organic solvent can be improved.
- the lipophilicity can be increased and used as an extractant.
- the carbon number of the alkyl group is not particularly limited, but is preferably 5 or more and 11 or less.
- the number of carbon atoms is 4 or less, the water solubility of the amide derivative increases, and the amide derivative may be contained in the aqueous phase.
- the number of carbon atoms is 12 or more, the surface activity is increased and an emulsion is easily formed.
- the third amide derivative layer can be formed separately from the aqueous phase containing the acidic solution and the organic phase containing the organic solvent.
- R 3 represents a hydrogen atom or an alkyl group.
- R 4 represents a hydrogen atom or an arbitrary group other than an amino group bonded to the ⁇ -carbon as an amino acid.
- the amide derivative is not particularly limited as long as it can selectively extract scandium, but is preferably a glycinamide derivative from the viewpoint of easy production.
- the amide derivative is a glycinamide derivative
- the above glycinamide derivative can be synthesized by the following method.
- 2-halogenated acetyl halide is added to an alkylamine having a structure represented by NHR 1 R 2 (R 1 and R 2 are the same as the above substituents R 1 and R 2 ), and an amine is obtained by nucleophilic substitution reaction. Is substituted with 2-halogenated acetyl to give 2-halogenated (N, N-di) alkylacetamide.
- histidine amide derivatives, lysine amide derivatives, and aspartic acid amide derivatives can be synthesized.
- the extraction behavior with glycine alkylamide derivatives, histidine amide derivatives, lysine amide derivatives, and aspartic acid amide derivatives is considered to fall within the range of results using glycine derivatives from the complex stability constants of manganese, cobalt, and the like.
- the histidine amide derivative is represented by the following general formula (II).
- the lysine amide derivative is represented by the following general formula (III).
- the aspartic acid amide derivative is represented by the following general formula (IV).
- the amide derivative may be a normal-methylglycine derivative.
- this acidic aqueous solution is added to and mixed with the organic solution containing the amide derivative while adjusting the acidic aqueous solution containing the target scandium ion. Thereby, the target scandium ion can be selectively extracted in the second organic phase.
- a scandium extractant containing an amide derivative diluted with, for example, a hydrocarbon-based organic solvent may be any solvent as long as the amide derivative and the metal extraction species are dissolved, for example, a chlorinated solvent such as chloroform and dichloromethane, and an aromatic hydrocarbon such as benzene, toluene and xylene. And aliphatic hydrocarbons such as hexane. These organic solvents may be used alone or in combination, and alcohols such as 1-octanol may be mixed.
- the concentration of the amide derivative can be appropriately set depending on the concentration of scandium, but considering phase separation during extraction and back-extraction described later, the concentration is about 10% by volume to 30% by volume with respect to 100% by volume of the organic solvent. It is preferable that there is about 20 volume% especially.
- the organic extractant is adjusted while adjusting the pH of the acidic aqueous solution containing scandium to 2.5 or lower. It is preferable to add a solution, and it is more preferable to add an organic solution of the extractant while adjusting the pH to 1.5 or lower. If the pH is too high, not only scandium but also impurities may be extracted into the second organic phase.
- the lower limit of the pH is not particularly limited, but it is more preferable to add the organic solution of the extractant while adjusting the pH to 1 or more. If the pH is too low, scandium cannot be sufficiently extracted, and scandium may remain in the second aqueous phase.
- the stirring time and extraction temperature may be appropriately set depending on the conditions of the acidic aqueous solution of scandium ion and the organic solution of the extractant.
- scandium back extraction step S43 scandium is back extracted from the organic solvent from which scandium was extracted in the scandium extraction step S42. Specifically, in the scandium back extraction step S43, a reverse extraction solution (back extraction start solution) is added to and mixed with an organic solvent containing an amide derivative, thereby causing a reaction reverse to the extraction process in the scandium extraction step S42. Thus, scandium is back-extracted to obtain a post-back-extraction solution (third aqueous phase) containing scandium.
- a reverse extraction solution back extraction start solution
- a sulfuric acid solution As a solution used for back extraction, a sulfuric acid solution, water, or the like can be used. Moreover, what added the soluble sulfate to water can also be used. Specifically, when a sulfuric acid solution is used as the back extraction solution, it is preferable to use a solution having a concentration range of 1.0 mol / L to 2.0 mol / L.
- the extraction agent (organic phase) after adding the sulfuric acid solution to the extraction agent after the extraction and recovering scandium is repeatedly used as the extraction agent in the scandium extraction step S42. can do.
- the scandium recovery method in the scandium recovery step S4 is not particularly limited, and a known method can be used.
- Known methods include adding alkali to the post-back extraction solution (third aqueous phase) to neutralize it and recovering it as scandium hydroxide starch, or adding oxalic acid to the back-extraction solution (third aqueous phase).
- a method of recovering as a scandium oxalate starch may be used.
- neutralizing agents In addition to sodium hydroxide, calcium carbonate, slaked lime, etc. are also known as neutralizing agents. However, the back-extracted solution (third aqueous phase) is a sulfuric acid solution. If the neutralizing agent contains Ca, gypsum is generated by the addition of the neutralizing agent, which is not preferable.
- the pH when the neutralizing agent is added is preferably 6.0 or more. If the pH is too low, neutralization is insufficient and Sc may not be sufficiently recovered.
- the upper limit of the pH when the neutralizing agent is added is not particularly limited, but from the viewpoint of suppressing the use amount of the neutralizing agent, the pH when the neutralizing agent is added is preferably 7.0 or less. .
- scandium Oxalate Precipitation Step S52 In the scandium oxalate precipitation step S52, a predetermined amount of oxalic acid is added to the liquid after back extraction (third aqueous phase) or the concentrate after the concentration step S51 to precipitate and precipitate as a scandium oxalate solid to form a liquid phase. This is a process of separating from.
- the pH when oxalic acid is added is preferably 0 or more and 1.0 or less, more preferably 0.5 or more and 1.0 or less, and further preferably 0.7 or more and 1.0 or less. preferable. If the pH is too low, the solubility of scandium oxalate will increase, and the scandium recovery rate can be reduced. If the pH is too high, not only scandium oxalate but also the oxalate of impurities contained in the back-extracted solution (third aqueous phase) or the concentrated solution after the concentration step S51 is precipitated, and the scandium purity of the precipitate is lowered. obtain.
- the invention described in the present embodiment since the original solution used in the scandium oxalate precipitation step S52 is purified, high-quality scandium can be recovered even if the pH when oxalic acid is added is close to 1. Therefore, the invention described in the present embodiment has a remarkable effect that both quality and yield can be achieved.
- the amount of oxalic acid added is not particularly limited, but may be 1.05 times or more and 3.0 times or less the equivalent amount required for precipitating scandium contained in the extracted residue as oxalate. Preferably, the amount is 1.5 times or more and 2.5 times or less, more preferably 1.7 times or more and 2.3 times or less. If the amount added is too small, there is a possibility that the entire amount of scandium cannot be recovered. On the other hand, if the amount added is too large, the solubility of the resulting scandium oxalate increases, so that scandium is redissolved and the recovery rate decreases, or excessive sodium chlorite is decomposed to decompose excess oxalic acid. The amount of the oxidizing agent used increases.
- the roasting step S53 is a step in which the scandium oxalate precipitate obtained in the scandium oxalate precipitation step S53 is washed with water and dried, and then roasted. By undergoing the roasting process in this roasting step S53, scandium can be recovered as extremely high-purity scandium oxide.
- the conditions for the roasting treatment are not particularly limited.
- the baking may be performed in a tubular furnace at about 900 ° C. for about 2 hours.
- a continuous furnace such as a rotary kiln because drying and roasting can be performed in the same apparatus.
- FIG. 2 is a flowchart showing an example of a scandium recovery method according to the second embodiment.
- the pre- and post-solvent extraction is not limited to the aspect of the first embodiment.
- the solvent extraction is reversed from the first embodiment. That is, in the second embodiment, after the hydrometallurgical treatment step S1 and the scandium elution step S2, first, solvent extraction using a scandium extractant containing an amide derivative (scandium extraction step S4) is performed, followed by amine The solvent extraction (impurity extraction step S3) using the system impurity extractant is performed, and the scandium recovery step S5 is performed.
- Example 1 Construction of scandium recovery process [Example 1] [Wet smelting treatment step S1] (Leaching step S11) First, nickel oxide ore was subjected to pressure acid leaching using sulfuric acid based on a known method such as the method described in Patent Document 1.
- an aqueous sodium hydroxide solution is added to the post-sulfurization solution obtained through the hydrometallurgical treatment step S1 until the pH becomes 6.8 to generate a hydroxide starch, and the scandium contained in the hydroxide starch is produced.
- the quality (purity) was measured, the quality (purity) of scandium was only about 0.1% by weight.
- an aqueous solution of sodium hydroxide is added to the scandium eluent obtained through the hydrometallurgical treatment step S1 and the scandium elution step S2 until the pH becomes 6.8 to generate a hydroxide starch,
- the quality (purity) of scandium was about 50% by weight. This grade is inappropriate when it is desired to provide high-purity scandium.
- “Others” in the component column in Table 2 and the subsequent tables is an element contained in nickel oxide ores such as nickel, magnesium, chromium, manganese, calcium, cobalt, etc., and is added when processing nickel oxide ores. It is a collective term for various elements such as elements derived from neutralizing agents and the like, and is described as the sum of analysis values of these detected components. In this embodiment, aluminum and iron (divalent and trivalent) are not included in “Others”.
- Table 3 calculates the percentage of the value obtained by dividing the amount of various elements contained in the extracted organic phase (first organic phase) by the amount of each element contained in the original liquid before extraction, and calculates the percentage of the extraction rate ( %).
- the mixture was stirred for 60 minutes and subjected to a back extraction treatment, and components (impurities and trace amounts of scandium remaining in the extracted organic phase) contained in the extracted organic phase after washing were back extracted into the aqueous phase.
- the composition of various elements contained in the solution after back extraction obtained by this back extraction treatment was analyzed.
- the upper part of Table 4 calculates the percentage of the value obtained by dividing the amount of various elements contained in the liquid after back extraction by the amount of various elements extracted in the organic phase in the impurity extraction step S32, and calculates the percentage (% ).
- the lower part of Table 4 calculates the percentage of the value obtained by dividing the amount of various elements contained in the solution after back extraction by the amount of each element contained in the original solution before extraction before performing the impurity extraction step S32. This is the value as the recovery rate (%).
- the scrubbing (washing) step S33 can effectively separate the scandium extracted into the organic solvent in the impurity extraction step S32 into an aqueous phase, and can prevent impurities from being mixed into the aqueous phase.
- an aqueous sodium hydroxide solution is added to the extraction residual liquid (first aqueous phase) obtained through the hydrometallurgical treatment step S1, the scandium elution step S2, and the impurity extraction step S3 until the pH becomes 6.8.
- Oxidized starch was produced, and the quality (purity) of scandium contained in the hydroxide starch was measured.
- the quality (purity) of scandium was about 50% by weight. This grade is inappropriate when it is desired to provide high-purity scandium.
- thorium that cannot be separated in the scandium extraction step S4 may be included as impurities.
- D2EHAG was synthesized as follows. First, as shown in the following reaction formula (V), 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then, 13.5 g (0.12 mol) of 2-chloroacetyl chloride was added dropwise, then washed once with 1 mol / l hydrochloric acid, then with ion-exchanged water, and the chloroform phase was separated. did. Next, an appropriate amount (about 10 to 20 g) of anhydrous sodium sulfate was added and dehydrated, followed by filtration to obtain 29.1 g of a yellow liquid.
- reaction formula (V) 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were separated into chloroform. Then, 13.5
- reaction formula (VI) methanol was added to and dissolved in 8.0 g (0.2 mol) of sodium hydroxide, and the solution in which 15.01 g (0.2 mol) of glycine was further added was stirred. Then, 12.72 g (0.04 mol) of the above CDEHAA was slowly added dropwise and stirred. After completion of the stirring, the solvent in the reaction solution was distilled off, and chloroform was added to the residue to dissolve it. The solution was acidified by adding 1 mol / l sulfuric acid, washed with ion-exchanged water, and the chloroform phase was separated.
- Table 5 calculates the percentage of the value obtained by dividing the amount of each element contained in the extracted organic phase by the amount of each element contained in the original solution before extraction, and shows the result as the extraction rate (%). .
- Table 6 calculates the percentage of the value obtained by dividing the amount of each element contained in the solution after back extraction by the amount of each element extracted in the organic phase in the scandium extraction step S42, and calculates the back extraction rate (%). Shows the result.
- composition of various elements contained in the starting liquid obtained in the concentration step S51 and the composition of various elements contained in scandium oxide obtained by roasting were analyzed by emission spectroscopic analysis.
- Table 7 shows the removal rate obtained by dividing the amounts of various components after roasting by the amounts of various components before the scandium oxalate precipitation step S52 (ie, included in the starting liquid obtained in the concentration step S51). %).
- the scandium eluent contains iron and aluminum in addition to scandium. Therefore, in the scandium recovery step S5 giving priority to the actual yield, when the addition amount of oxalic acid dihydrate and the pH of the solution after the addition of oxalic acid are set to the same conditions as in Example 1, a precipitate of scandium oxalate Iron and aluminum are also included. Therefore, the quality (purity) as high as Example 1 cannot be obtained.
- a normal dodecane solution containing 0.01 mol / l of D2EHAG and having the same volume as the above original solution was added to a test tube containing the original solution and placed in a thermostatic chamber at 25 ° C. and shaken for 24 hours.
- the pH of the sulfuric acid solution was adjusted to be constant using sulfuric acid, ammonium sulfate and ammonia having a concentration of 0.1 mol / l.
- the organic phase was back-extracted with 1 mol / l sulfuric acid.
- concentration of each component contained in the said original liquid in a back extraction phase was measured using the induction plasma emission spectroscopy analyzer (ICP-AES). From this measurement result, the extraction rate of each component was defined and determined by the amount in the organic phase / (the amount in the organic phase + the amount in the aqueous phase). The results are shown in FIG.
- the horizontal axis in FIG. 3 is the pH of the sulfuric acid acidic solution, and the vertical axis is the extraction rate (unit:%) of various components contained in the original solution.
- Fig. 3 shows that extraction behavior differs between divalent iron and trivalent iron.
- the organic phase containing scandium and divalent iron are contained by performing solvent extraction with D2EHAG while adjusting the pH to 1.2 to 4.5.
- the water phase can be separated.
- a reduction step S41 for reducing trivalent iron contained in the original solution to divalent iron is performed prior to performing the scandium extraction process S42 using D2EHAG. It is preferable.
- Scandium extraction step S42 using an organic solvent containing D2EHAG was performed on the original scandium extraction solution (extraction start solution) having the composition shown in Table 8.
- the organic solvent is SWAZOL 1800 manufactured by Maruzen Petroleum Corporation, and the concentration of D2EHAG is 20% by volume.
- FIG. 4 is a graph showing the results of the extraction rate (%) of Sc, Al, and Fe (II) contained in the organic solvent (second organic phase) after solvent extraction.
- the extraction rate was a percentage of a value obtained by dividing the amount of each element contained in the extracted organic phase by the amount of each element contained in the original solution before extraction.
- the pH of the acidic aqueous solution containing scandium is 2.5 or less, more preferably 1. It was confirmed that it is preferable to add the organic solution of the extractant while adjusting to 5 or less.
- Test Example 2-3 Optimal Concentration of Sulfuric Acid Used in Scandium Back Extraction Step S43
- the second organic phase obtained in Test Example 2-2-1 was mixed with sulfuric acid and subjected to the back extraction step S43.
- Table 10 shows the concentration conditions of sulfuric acid used for back extraction.
- FIG. 5 is a graph showing the relationship between scandium back-extraction rate and sulfuric acid concentration used for back-extraction.
- the back extraction rate refers to the proportion of the metal that has been separated from the organic solvent and contained in the sulfuric acid.
- the sulfuric acid concentration is preferably 1 mol / L or more in order to obtain a high yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
≪1.スカンジウムの回収方法≫
図1は、第1の実施形態に係るスカンジウムの回収方法の一例を示すフロー図である。このスカンジウムの回収方法は、ニッケル酸化鉱を硫酸等の酸により浸出して得られた、スカンジウム及び不純物を含有する酸性溶液から、スカンジウムと不純物とを分離して、高純度のスカンジウムを簡便に且つ効率よく回収するものである。
<2-1.ニッケル酸化鉱の湿式製錬処理工程>
スカンジウム回収の処理対象となるスカンジウムを含有する酸性溶液としては、ニッケル酸化鉱を硫酸により処理して得られる酸性溶液を用いることができる。
浸出工程S11は、例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱のスラリーに硫酸を添加して240℃~260℃の温度下で撹拌処理を施し、浸出液と浸出残渣とからなる浸出スラリーを形成する工程である。なお、浸出工程S11における処理は、従来知られているHPALプロセスに従って行えばよく、例えば特許文献1に記載されている。
中和工程S12は、上述した浸出工程S11により得られた浸出液に中和剤を添加してpHを調整し、不純物元素を含む中和澱物と中和後液とを得る工程である。この中和工程S12における中和処理により、ニッケルやコバルト、スカンジウム等の有価金属は中和後液に含まれるようになり、鉄、アルミニウムをはじめとした不純物の大部分が中和澱物となる。
硫化工程S13は、上述した中和工程S12により得られた中和後液に硫化剤を添加してニッケル硫化物と硫化後液とを得る工程である。この硫化工程S13における硫化処理により、ニッケル、コバルト、亜鉛等は硫化物となり、スカンジウム等は硫化後液に含まれることになる。
上述したように、ニッケル酸化鉱を硫酸により浸出して得られた、スカンジウムを含有する酸性溶液である硫化後液を、スカンジウム回収処理の対象溶液として適用することができる。ところが、スカンジウムを含有する酸性溶液である硫化後液には、スカンジウムの他に、例えば上述した硫化工程S13における硫化処理で硫化されずに溶液中に残留したアルミニウムやクロム、その他の不純物が含まれている。このことから、この酸性溶液を溶媒抽出に付すにあたり、スカンジウム溶離工程S2として、予め、酸性溶液中に含まれる不純物を除去してスカンジウム(Sc)を濃縮し、スカンジウム溶離液(スカンジウム含有溶液)を生成させることが好ましい。
吸着工程S21では、硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させる。キレート樹脂の種類は特に限定されず、例えばイミノジ酢酸を官能基とする樹脂を用いることができる。
必須ではないが、吸着工程S21でスカンジウムを吸着したキレート樹脂からスカンジウムを溶離するのに先立ち、吸着工程S21でスカンジウムを吸着したキレート樹脂に0.1N以下の硫酸を接触させ、キレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程S22を行うことが好ましい。アルミニウム除去工程S22を行うことで、スカンジウムをキレート樹脂に吸着させつつ、アルミニウムをキレート樹脂から除去できる。
スカンジウム溶離工程S23では、スカンジウムが吸着されたキレート樹脂に0.3N以上3N以下の硫酸を接触させ、スカンジウム溶離液を得る。スカンジウム溶離液を得るに際して、溶離液に用いる硫酸の規定度を0.3N以上3N以下の範囲に維持することが好ましく、0.5N以上2N以下の範囲に維持することがより好ましい。
必須ではないが、キレート樹脂を再利用できるようにするため、スカンジウム溶離工程S23を経たキレート樹脂に3N以上の硫酸を接触させ、吸着工程S21でキレート樹脂に吸着したクロムを除去するクロム除去工程S24を行うことが好ましい。クロム除去工程S24では、スカンジウム溶離工程S23を経たキレート樹脂に3N以上の硫酸を接触させ、吸着工程S21でキレート樹脂に吸着したクロムを除去する。クロムを除去する際に、溶離液に用いる硫酸の規定度が3Nを下回ると、クロムが適切にキレート樹脂から除去されず、キレート樹脂を再利用する際に支障を生じる可能性がある。
次に、不純物抽出工程S3では、スカンジウム溶離工程S2により得られたスカンジウム含有溶液、すなわち、スカンジウム及び不純物を含有する酸性溶液を、アミン系不純物抽出剤を用いた第1の溶媒抽出に付し、不純物を含有する抽出液(第1有機相)と、スカンジウムを含有する抽残液(第1水相)とに分離する。
必須ではないが、溶離液中スカンジウム濃度が著しく低い場合は、水酸化ナトリウムによる中和、硫酸による溶解を行い、スカンジウムの濃縮を行っても良い。濃縮工程S31を経ることで、スカンジウム含有溶液を減容化することができ、結果として、アミン系不純物抽出剤を含む有機溶媒の使用量を抑えることができる。
不純物抽出工程S32では、スカンジウム含有溶液と、アミン系不純物抽出剤を含む有機溶媒とを混合して、有機溶媒中に不純物を選択的に抽出し、不純物を含有する有機溶媒(第1有機相)と抽残液(第1水相)とを得る。第1の実施形態に係るスカンジウムの回収方法では、この不純物抽出工程S31において、アミン系不純物抽出剤を用いた溶媒抽出処理を行うことを特徴としている。アミン系不純物抽出剤を用いて溶媒抽出処理を行うことにより、より効率的に且つ効果的に不純物を抽出してスカンジウムと分離することができる。
必須ではないが、スカンジウムの回収率を高めるため、上述した不純物抽出工程S32においてスカンジウム含有溶液から不純物を抽出させた溶媒(第1有機相)中にスカンジウムが僅かに共存する場合、第1有機相に対してスクラビング(洗浄)処理を施し、スカンジウムを水相に分離して抽出剤中から回収することが好ましい(スクラビング工程S33)。
必須ではないが、スカンジウム含有溶液から不純物を抽出した有機溶媒(第1有機相)を不純物抽出工程S32における抽出剤として再利用できるようにするため、この有機溶媒から不純物を逆抽出することが好ましい。具体的に、不純物逆抽出工程S34では、アミン系不純物抽出剤を含む有機溶媒に逆抽出溶液(逆抽出始液)を添加して混合することによって、不純物抽出工程S32における抽出処理とは逆の反応を生じさせて不純物を逆抽出し、不純物を含む逆抽出後液(水相)を得る。
次に、スカンジウム抽出工程S4では、不純物抽出工程S3により得られたスカンジウム含有抽残液(第1水相)を、アミド誘導体を含むスカンジウム抽出剤による第2の溶媒抽出に付すことにより、その抽残液中の不純物を抽出後液(第2水相)中に残し、スカンジウムを抽出剤(第2有機相)に分配することで、スカンジウムと不純物とを分離し、さらにスカンジウムを含む抽出液(第2有機相)と硫酸とを接触させて、スカンジウムを含有する逆抽出液(水相)を得る。
必須ではないが、スカンジウム含有溶液と、抽出剤を含む有機溶媒とを混合する前に、不純物抽出工程S3により得られたスカンジウム含有抽残液(第1水相)に不純物として含まれる三価鉄を二価鉄に還元する還元処理S41を行うことが好ましい。この還元処理S41を行うことで、後のスカンジウム抽出工程S42において、不純物である鉄の抽残液(第2水相)への選択率が高まり、結果として、回収されるスカンジウムの品位(純度)を高めることができる。
スカンジウム抽出工程S42では、スカンジウム含有溶液と、抽出剤を含む有機溶媒とを混合して、有機溶媒中にスカンジウムを選択的に抽出し、スカンジウムを含む有機溶媒(第2有機相)と、不純物を含有する抽残液(第2水相)とを得る。第1の実施形態に係るスカンジウムの回収方法では、このスカンジウム抽出工程S42において、アミド誘導体を含むスカンジウム抽出剤を用いた溶媒抽出を行うことを特徴としている。アミド誘導体を含むスカンジウム抽出剤を用いて溶媒抽出処理を行うことにより、不純物抽出工程S3を経てもスカンジウム含有溶液に依然として残存するアルミニウムと鉄を、不純物として分離することができる。
スカンジウム抽出剤を構成するアミド誘導体は、スカンジウムとの選択性が高いという特徴を有する。このようなアミド誘導体として、下記一般式(I)で表される物が挙げられる。アミドの骨格にアルキル基を導入することによって、親油性を高め、抽出剤として用いることができる。
上記アミド誘導体を用いてスカンジウムイオンを抽出するには、目的のスカンジウムイオンを含む酸性水溶液を調整しながら、この酸性水溶液を、上記アミド誘導体を含む有機溶液に加えて混合する。これによって、第2有機相に目的のスカンジウムイオンを選択的に抽出することができる。
スカンジウム逆抽出工程S43では、スカンジウム抽出工程S42にてスカンジウムを抽出した有機溶媒から、スカンジウムを逆抽出する。具体的に、スカンジウム逆抽出工程S43では、アミド誘導体を含む有機溶媒に逆抽出溶液(逆抽出始液)を添加して混合することによって、スカンジウム抽出工程S42における抽出処理とは逆の反応を生じさせてスカンジウムを逆抽出し、スカンジウムを含む逆抽出後液(第3水相)を得る。
次に、スカンジウム回収工程S5では、スカンジウム抽出工程S4で得られた逆抽出液からスカンジウムを回収する。
スカンジウム抽出工程S4で得られた逆抽出液中のスカンジウム濃度が低い場合、逆抽出後液(第3水相)に対し、水酸化ナトリウムによる中和、硫酸による溶解を行い、スカンジウムの濃縮を行うことが好ましい。
シュウ酸スカンジウム析出工程S52は、逆抽出後液(第3水相)あるいは濃縮工程S51後の濃縮液に対して所定量のシュウ酸を加え、シュウ酸スカンジウムの固体として析出、沈殿させて液相から分離する工程である。
焙焼工程S53は、シュウ酸スカンジウム析出工程S53で得られたシュウ酸スカンジウムの沈殿物を水で洗浄し、乾燥させた後に、焙焼する工程である。この焙焼工程S53における焙焼処理を経ることで、スカンジウムを極めて高純度な酸化スカンジウムとして回収することができる。
図2は、第2の実施形態に係るスカンジウムの回収方法の一例を示すフロー図である。
[実施例1]
〔湿式製錬処理工程S1〕
(浸出工程S11)
まず、ニッケル酸化鉱を特許文献1に記載の方法等の公知の方法に基づき、硫酸を用いて加圧酸浸出した。
続いて、得られた浸出液のpHを調整して不純物を除去した。
その後、不純物除去後の浸出液に硫化剤を添加し、固体であるニッケル硫化物を除去して硫化後液を用意した。この硫化後液をスカンジウム含有溶液(抽出前元液)とする。なお、表1に硫化後液の組成を示す。
(吸着工程S21)
次に、得られた硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させた。本実施例では、キレート樹脂として、イミノジ酢酸を官能基とする樹脂を用いた。
次に、スカンジウムが吸着されたキレート樹脂に0.05Nの硫酸を接触させ、キレート樹脂に吸着したアルミニウムを除去した。
次に、スカンジウムが吸着されたキレート樹脂に0.5Nの硫酸を接触させ、スカンジウム溶離液を得た。
次に、表2に示す組成の溶解液100リットルを抽出始液とし、これに、アミン系不純物抽出剤(ダウケミカル社製,PrimeneJM-T)を、溶剤(シェルケミカルズジャパン社製,シェルゾールA150)を用いて5体積%に調整した有機溶媒50リットルを混合させて室温で60分間撹拌して第1溶媒抽出処理を施し、スカンジウムを含む抽残液(第1水相)を得た。
続いて、不純物抽出工程S32で得られた、スカンジウムを含む50リットルの有機溶媒(抽出有機相)に、濃度1mol/Lの硫酸溶液を、相比(O/A)が1の比率となるように50リットル混合し、60分間撹拌して洗浄した。その後、静置して水相を分離し、有機相は再び濃度1mol/Lの新たな硫酸溶液50リットルと混合して洗浄し、同様に水相を分離した。このような洗浄操作を合計5回繰り返した。
(還元工程S41)
不純物抽出工程S32で得られた抽残液と、スクラビング工程S33で得られた洗浄後液との混合液に硫化水素ガスを吹き込み、不純物として含有する鉄イオンの価数を3から2に還元した。
(1)アミド誘導体D2EHAGの合成
アミド誘導体の一例として、上記一般式(I)で表されるグリシンアミド誘導体、すなわち、2つの2-エチルヘキシル基を導入したN-[N,N-ビス(2-エチルヘキシル)アミノカルボニルメチル]グリシン(N-[N,N-Bis(2-ethylhexyl)aminocarbonylmethyl]glycine)(あるいはN,N-ジ(2-エチルヘキシル)アセトアミド-2-グリシン(N,N-di(2-ethylhexyl)acetamide-2-glycine)ともいい、以下「D2EHAG」という。)を合成した。
次に、無水硫酸ナトリウムを適量(約10~20g)加え、脱水した後、ろ過し、黄色液体29.1gを得た。この黄色液体(反応生成物)の構造を、核磁気共鳴分析装置(NMR)を用いて同定したところ、上記黄色液体は、2-クロロ-N,N-ジ(2-エチルヘキシル)アセトアミド(以下「CDEHAA」という。)の構造であることが確認された。なお、CDEHAAの収率は、原料であるジ(2-エチルヘキシル)アミンに対して90%であった。
還元工程S41を行った後の還元液50リットルを抽出始液とし、これに、D2EHAGに溶剤(丸善石油株式会社製,スワゾール1800)を加えてD2EHAGの濃度を20体積%に調整した有機溶媒100リットルを混合させて室温で60分間撹拌して溶媒抽出処理を施し、スカンジウムを含む有機溶媒(第2有機相)を得た。
続いて、抽出有機相に、濃度1mol/Lの硫酸溶液を、相比O/A=1/1の比率となるように混合して60分間撹拌して逆抽出処理S43を施し、スカンジウムを水相(第3水相)に逆抽出した。
〔濃縮工程S51〕
次に、得られた逆抽出液に、水酸化ナトリウム水溶液をpHが6.8になるまで加え、水酸化澱物を作製し、よく洗浄した後、硫酸で溶解することで、次工程の始液を得た。
次に、得られた始液に対して、その始液に含まれるスカンジウム量に対して計算量で2倍となる量のシュウ酸二水和物(三菱ガス化学株式会社製)の結晶を溶解し、60分撹拌混合してシュウ酸スカンジウムの白色結晶性沈殿を生成させた。このときの溶液のpHは、1.0であった。
次に、得られたシュウ酸スカンジウムの沈殿を吸引濾過し、純水を用いて洗浄し、105℃で8時間乾燥させた。続いて、乾燥させたシュウ酸スカンジウムを管状炉に入れて1100℃に維持して焙焼(焼成)させ、酸化スカンジウムを得た。
湿式製錬処理工程S1及びスカンジウム溶離工程S2を経て得られたスカンジウム溶離液に、シュウ酸二水和物の添加量が始液に含まれるスカンジウム量に対して計算量で1.2倍となる量であり、シュウ酸添加後の溶液のpHが0であったこと以外は実施例1と同様の手法でスカンジウム回収工程S5を行った。そして、焙焼(焼成)した後の酸化スカンジウムに含まれるスカンジウムの品位(純度)を測定した。
[試験例2-1]還元工程S41の効果
還元工程S41の効果を検証するため、D2EHAGを用いたときのスカンジウム、二価鉄及び三価鉄の抽出挙動を調べた。
実施例1と同様の手法にて湿式製錬処理工程S1、スカンジウム溶離工程S2、不純物抽出工程S3及び還元工程S41を行った。これらの工程を経て、表8に示す組成のスカンジウム抽出前元液を得た。
S2 スカンジウム溶離工程
S3 不純物抽出工程
S4 スカンジウム抽出工程
S5 スカンジウム回収工程
Claims (8)
- スカンジウムを含有する溶液をイオン交換樹脂に通液し、前記スカンジウムを前記イオン交換樹脂に吸着させる吸着工程と、
前記イオン交換樹脂に硫酸溶液を通液し、前記イオン交換樹脂から前記スカンジウムを溶離し、溶離後液を得る溶離工程と、
前記溶離工程の後、前記スカンジウムを含有する溶液を、アミン系不純物抽出剤を用いた溶媒抽出に付し、スカンジウムを含有する水相と不純物を含有する有機相とに分離する不純物抽出工程と、
前記スカンジウムを含有する水相を、アミド誘導体を含むスカンジウム抽出剤を用いた溶媒抽出に付し、不純物を含有する水相とスカンジウムを含有する有機相とに分離するスカンジウム抽出工程とを含む、スカンジウム回収方法。 - 前記溶離工程の後、前記溶離後液を濃縮する濃縮工程をさらに含み、
前記不純物抽出工程は、前記濃縮工程の後に行われる、請求項1に記載のスカンジウム回収方法。 - 前記スカンジウムを含有する水相は、不純物として三価鉄を含み、
前記不純物抽出工程の後、前記スカンジウムを含有する水相に含まれる前記三価鉄を二価鉄に還元する還元工程をさらに含み、
前記スカンジウム抽出工程は、前記還元工程の後に行われる、請求項1又は2に記載のスカンジウム回収方法。 - 前記スカンジウムを含有する有機相を逆抽出に付し、スカンジウム逆抽出液を得るスカンジウム逆抽出工程をさらに含む、請求項1から3のいずれかに記載のスカンジウム回収方法。
- 前記スカンジウム逆抽出液にシュウ酸を加えてシュウ酸スカンジウムを析出させる析出工程と、
前記シュウ酸スカンジウムを酸化して酸化スカンジウムを得る酸化工程とをさらに含む、請求項4に記載のスカンジウム回収方法。 - スカンジウムを含有する溶液をイオン交換樹脂に通液し、前記スカンジウムを前記イオン交換樹脂に吸着させる吸着工程と、
前記イオン交換樹脂に硫酸溶液を通液し、前記イオン交換樹脂から前記スカンジウムを溶離し、溶離後液を得る溶離工程と、
前記溶離工程の後、前記スカンジウムを含有する溶液を、アミド誘導体を含むスカンジウム抽出剤を用いた溶媒抽出に付し、不純物を含有する水相とスカンジウムを含有する有機相とに分離するスカンジウム抽出工程と、
前記スカンジウムを含有する有機相を逆抽出に付し、スカンジウム逆抽出液を得るスカンジウム逆抽出工程と、
前記スカンジウム逆抽出液を、アミン系不純物抽出剤を用いた溶媒抽出に付し、スカンジウムを含有する水相と不純物を含有する有機相とに分離する不純物抽出工程とを含む、スカンジウム回収方法。 - 前記吸着工程において前記イオン交換樹脂に通液される溶液は、ニッケル酸化鉱を高温高圧下で硫酸を用いて浸出した酸溶液である、請求項1から7のいずれかに記載のスカンジウム回収方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CU2018000080A CU24531B1 (es) | 2016-02-05 | 2017-01-31 | Método para recuperar escandio |
CA3013338A CA3013338A1 (en) | 2016-02-05 | 2017-01-31 | Method for recovering scandium |
US16/073,946 US10704120B2 (en) | 2016-02-05 | 2017-01-31 | Method for recovering scandium |
EP17747401.2A EP3412783B1 (en) | 2016-02-05 | 2017-01-31 | Method for recovering scandium |
AU2017213939A AU2017213939B2 (en) | 2016-02-05 | 2017-01-31 | Method for recovering scandium |
CN201780009549.9A CN108603246A (zh) | 2016-02-05 | 2017-01-31 | 钪回收方法 |
PH12018501703A PH12018501703B1 (en) | 2016-02-05 | 2018-08-10 | Method for recovering scandium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016021174A JP6409791B2 (ja) | 2016-02-05 | 2016-02-05 | スカンジウム回収方法 |
JP2016-021174 | 2016-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017135245A1 true WO2017135245A1 (ja) | 2017-08-10 |
Family
ID=59499595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003398 WO2017135245A1 (ja) | 2016-02-05 | 2017-01-31 | スカンジウム回収方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10704120B2 (ja) |
EP (1) | EP3412783B1 (ja) |
JP (1) | JP6409791B2 (ja) |
CN (1) | CN108603246A (ja) |
AU (1) | AU2017213939B2 (ja) |
CA (1) | CA3013338A1 (ja) |
CU (1) | CU24531B1 (ja) |
PH (1) | PH12018501703B1 (ja) |
WO (1) | WO2017135245A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019204554A1 (en) * | 2018-04-19 | 2019-10-24 | Warner Babcock Institute For Green Chemistry, Llc | Methods of rare earth metal recovery from electronic waste |
JP7338283B2 (ja) * | 2019-07-12 | 2023-09-05 | 住友金属鉱山株式会社 | スカンジウムの回収方法 |
CN110412640B (zh) * | 2019-08-05 | 2020-11-13 | 广东省稀有金属研究所 | 检测氯化镧中放射性分离程度的方法及其应用 |
CN110438351A (zh) * | 2019-08-29 | 2019-11-12 | 中稀(常州)稀土新材料有限公司 | 一种稀土杂质分离方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4626280A (en) * | 1986-01-24 | 1986-12-02 | Gte Products Corporation | Recovery of tungsten, scandium, iron, and manganese from tungsten bearing material |
JP2013189675A (ja) * | 2012-03-13 | 2013-09-26 | Kyushu Univ | スカンジウム抽出方法 |
WO2014118288A1 (fr) * | 2013-01-30 | 2014-08-07 | Eramet | Procede d'extraction selective du scandium |
JP2015163729A (ja) * | 2014-01-31 | 2015-09-10 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5019362A (en) * | 1989-10-18 | 1991-05-28 | Gte Laboratories Incorporated | Ion exchange method for the purification of scandium |
US4968504A (en) * | 1989-10-19 | 1990-11-06 | Gte Laboratories Incorporated | Recovery of scandium and uranium |
JPH03173725A (ja) | 1989-12-01 | 1991-07-29 | Univ Tohoku | 希土類元素の分別方法 |
JP3344194B2 (ja) | 1996-01-18 | 2002-11-11 | 大平洋金属株式会社 | 酸化鉱石からの高純度レアーアースメタル酸化物の製造方法 |
JP3428292B2 (ja) | 1996-04-26 | 2003-07-22 | 大平洋金属株式会社 | Sc金属の回収方法 |
TW201439331A (zh) * | 2013-01-10 | 2014-10-16 | Bloom Energy Corp | 自鈦殘餘物流回收鈧的方法 |
JP5595554B1 (ja) | 2013-03-18 | 2014-09-24 | 国立大学法人九州大学 | ニッケル、コバルト及び/又はスカンジウムを含有する酸性溶液から不純物を分離する方法 |
JP5652503B2 (ja) | 2013-05-10 | 2015-01-14 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
JP5619238B1 (ja) | 2013-08-22 | 2014-11-05 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
JP6053724B2 (ja) * | 2014-06-26 | 2016-12-27 | 国立大学法人九州大学 | イオン交換樹脂及び金属の吸着分離方法 |
CN104726724B (zh) | 2015-04-20 | 2017-07-04 | 中国恩菲工程技术有限公司 | 从红土镍矿中提取钪的方法 |
CN104862503B (zh) * | 2015-04-20 | 2017-07-04 | 中国恩菲工程技术有限公司 | 从红土镍矿中提取钪的方法 |
-
2016
- 2016-02-05 JP JP2016021174A patent/JP6409791B2/ja active Active
-
2017
- 2017-01-31 CA CA3013338A patent/CA3013338A1/en not_active Abandoned
- 2017-01-31 WO PCT/JP2017/003398 patent/WO2017135245A1/ja active Application Filing
- 2017-01-31 US US16/073,946 patent/US10704120B2/en not_active Expired - Fee Related
- 2017-01-31 CN CN201780009549.9A patent/CN108603246A/zh active Pending
- 2017-01-31 AU AU2017213939A patent/AU2017213939B2/en not_active Ceased
- 2017-01-31 EP EP17747401.2A patent/EP3412783B1/en not_active Not-in-force
- 2017-01-31 CU CU2018000080A patent/CU24531B1/es unknown
-
2018
- 2018-08-10 PH PH12018501703A patent/PH12018501703B1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4626280A (en) * | 1986-01-24 | 1986-12-02 | Gte Products Corporation | Recovery of tungsten, scandium, iron, and manganese from tungsten bearing material |
JP2013189675A (ja) * | 2012-03-13 | 2013-09-26 | Kyushu Univ | スカンジウム抽出方法 |
WO2014118288A1 (fr) * | 2013-01-30 | 2014-08-07 | Eramet | Procede d'extraction selective du scandium |
JP2015163729A (ja) * | 2014-01-31 | 2015-09-10 | 住友金属鉱山株式会社 | スカンジウム回収方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3412783A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3412783B1 (en) | 2020-05-13 |
PH12018501703A1 (en) | 2019-06-10 |
PH12018501703B1 (en) | 2019-06-10 |
AU2017213939B2 (en) | 2019-11-07 |
CU20180080A7 (es) | 2018-10-04 |
JP2017137552A (ja) | 2017-08-10 |
CN108603246A (zh) | 2018-09-28 |
US10704120B2 (en) | 2020-07-07 |
EP3412783A1 (en) | 2018-12-12 |
CU24531B1 (es) | 2021-07-02 |
CA3013338A1 (en) | 2017-08-10 |
JP6409791B2 (ja) | 2018-10-24 |
AU2017213939A1 (en) | 2018-08-16 |
US20190040492A1 (en) | 2019-02-07 |
EP3412783A4 (en) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967284B2 (ja) | 高純度スカンジウムの回収方法 | |
JP5652503B2 (ja) | スカンジウム回収方法 | |
JP6004023B2 (ja) | スカンジウムの回収方法 | |
JP6439530B2 (ja) | スカンジウムの回収方法 | |
WO2017135245A1 (ja) | スカンジウム回収方法 | |
JP6528707B2 (ja) | スカンジウム精製方法 | |
JP6798078B2 (ja) | イオン交換処理方法、スカンジウムの回収方法 | |
JP6172099B2 (ja) | スカンジウムの回収方法 | |
WO2017104629A1 (ja) | スカンジウムの回収方法 | |
JP2016065283A (ja) | スカンジウムの回収方法 | |
CN108463567B (zh) | 钪回收方法 | |
WO2016084830A1 (ja) | 高純度スカンジウムの回収方法 | |
JP6623803B2 (ja) | スカンジウム回収方法 | |
JP6922478B2 (ja) | スカンジウムの精製方法 | |
JP6206358B2 (ja) | スカンジウムの回収方法 | |
JP7327276B2 (ja) | スカンジウムの回収方法 | |
WO2021059942A1 (ja) | スカンジウムの回収方法 | |
WO2018097001A1 (ja) | スカンジウムの精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17747401 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3013338 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017213939 Country of ref document: AU Date of ref document: 20170131 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017747401 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017747401 Country of ref document: EP Effective date: 20180905 |