WO2014148416A1 - 炭化水素油の接触分解触媒の製造方法 - Google Patents

炭化水素油の接触分解触媒の製造方法 Download PDF

Info

Publication number
WO2014148416A1
WO2014148416A1 PCT/JP2014/057074 JP2014057074W WO2014148416A1 WO 2014148416 A1 WO2014148416 A1 WO 2014148416A1 JP 2014057074 W JP2014057074 W JP 2014057074W WO 2014148416 A1 WO2014148416 A1 WO 2014148416A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic cracking
mass
catalyst
zeolite
cracking catalyst
Prior art date
Application number
PCT/JP2014/057074
Other languages
English (en)
French (fr)
Inventor
祐司 坂
Original Assignee
コスモ石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモ石油株式会社 filed Critical コスモ石油株式会社
Priority to KR1020157027538A priority Critical patent/KR102089608B1/ko
Priority to EP14770804.4A priority patent/EP2977104B1/en
Priority to AU2014239739A priority patent/AU2014239739B2/en
Priority to BR112015024069-0A priority patent/BR112015024069B1/pt
Priority to CN201480017516.5A priority patent/CN105050715B/zh
Priority to US14/772,165 priority patent/US9415380B2/en
Priority to CA2907716A priority patent/CA2907716C/en
Publication of WO2014148416A1 publication Critical patent/WO2014148416A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a catalytic cracking catalyst for hydrocarbon oil.
  • Gasoline is manufactured by mixing a plurality of gasoline base materials obtained in the crude oil refining process.
  • a gasoline fraction obtained by fluid catalytic cracking reaction of heavy hydrocarbon oil hereinafter referred to as FCC gasoline as appropriate
  • FCC gasoline has a large blending amount in gasoline and has a great influence on the quality of gasoline.
  • the catalytic cracking reaction of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking.
  • FCC gasoline When producing FCC gasoline, In addition, as by-products, hydrogen coke, liquefied petroleum gas (Liquid Petroleum Gas (LPG)), middle distillate light cracked light oil (Light Cycle Oil (LCO)), heavy cracked heavy cracked light oil Fractions such as (Heavy Cycle Oil (HCO)) and cracked bottom oil (Slury Oil (SLO)) are also produced.
  • a fluid catalytic cracking catalyst that can produce FCC gasoline efficiently (high catalytic activity for heavy hydrocarbon oil, high yield of FCC gasoline, and high-quality FCC gasoline with high octane number)
  • FCC catalyst as appropriate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-247146
  • a catalytic cracking catalyst a catalyst capable of producing a gasoline fraction having a higher cracking activity for heavy hydrocarbon oil and a higher octane number at a higher yield is required.
  • the present invention is a method for simply producing a catalytic cracking catalyst for hydrocarbon oil that can produce a gasoline fraction having a high cracking activity for heavy hydrocarbon oil and a high octane number at a high yield. Is intended to provide.
  • an aqueous slurry containing a predetermined amount of the raw material component of the catalytic cracking catalyst was prepared, then aged for 5 to 200 minutes, and then spray dried. It has been found that a catalytic cracking catalyst having desired properties can be easily produced by processing, and the present invention has been completed based on this finding.
  • the present invention is a method for producing a catalytic cracking catalyst for hydrocarbon oil, which is 20 to 50% by mass of zeolite having a sodalite cage structure and 10 to 10% silica sol in terms of SiO 2 when converted to solid content. After preparing an aqueous slurry containing 30% by mass, primary aluminum phosphate 0.1 to 21% by mass in terms of Al 2 O 3 .3P 2 O 5 and 5 to 65% by mass of clay mineral, 5 to 200 minutes The present invention provides a method for producing a catalytic cracking catalyst for hydrocarbon oil, characterized by aging and then spray drying.
  • a method for easily producing a hydrocarbon oil catalytic cracking catalyst capable of producing a gasoline fraction having a high cracking activity for heavy hydrocarbon oil and a high octane number with a high yield. Can do.
  • Method of manufacturing a catalytic cracking catalyst of hydrocarbon oil according to the present invention (on a dry basis) when converted solids, a zeolite having a sodalite cage structure 20 to 50 mass%, 10 to a silica sol in terms of SiO 2
  • a zeolite having a sodalite cage structure 20 to 50 mass% 10 to a silica sol in terms of SiO 2
  • a zeolite having a sodalite cage structure is a sodalite cage structure, that is, a three-dimensional regular octahedron formed by aluminum and silicon sharing the apex oxygen with a basic unit of aluminum and silicon tetrahedron.
  • Examples of the zeolite having the sodalite cage structure include one or more selected from sodalite, A-type zeolite, EMT, X-type zeolite, Y-type zeolite, and stabilized Y-type zeolite. It is preferable that
  • Stabilized Y-type zeolite is synthesized using Y-type zeolite as a starting material, and is more resistant to deterioration of crystallinity than Y-type zeolite. It is prepared by treating with a mineral acid such as hydrochloric acid, a base such as sodium hydroxide, a salt such as calcium fluoride, a chelating agent such as ethylenediaminetetraacetic acid, etc. It will be.
  • the stabilized Y-type zeolite obtained by the above method can be used in a form ion-exchanged with a cation selected from hydrogen, ammonium or a polyvalent metal. Further, as the stabilized Y-type zeolite, a heat shock crystalline aluminosilicate zeolite (see Japanese Patent No. 2544317) having superior stability can also be used.
  • the bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4-15, preferably 5-10,
  • the unit cell size is 24.35 to 24.65 mm, preferably 24.40 to 24.60 mm;
  • the ratio (molar ratio) of the number of Al atoms forming the zeolite skeleton to the total number of Al atoms in the zeolite is 0.3 to 1.0, preferably 0.4 to 1.0.
  • This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition formula as an oxide.
  • R 2 / m O ⁇ Al 2 O 3 ⁇ (5 to 11) SiO 2 ⁇ (5 to 8) H 2 O (In the above compositional formula, R represents Na, K or other alkali metal ions or alkaline earth metal ions, and m represents the valence of R).
  • the SiO 2 / Al 2 O 3 molar ratio of the bulk zeolite by chemical composition analysis indicates the acid strength of the obtained catalytic cracking catalyst, and the larger the molar ratio, the stronger the acidic strength of the catalytic cracking catalyst obtained. Becomes stronger.
  • the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction can be suitably performed.
  • the SiO 2 / Al 2 O 3 molar ratio is 15 or less, the acid strength of the obtained catalytic cracking catalyst is increased, the necessary number of acids can be secured, and the cracking activity of heavy hydrocarbon oil can be ensured. It becomes easy to secure.
  • the SiO 2 / Al 2 O 3 molar ratio of bulk zeolite by the chemical composition analysis (I) can be measured by inductively coupled plasma (ICP).
  • the unit cell dimension of the above (II) zeolite indicates the size of the unit unit constituting the zeolite, but when the unit cell dimension is 24.35 mm or more, Al atoms necessary for the decomposition of heavy oil As a result, the decomposition reaction can be suitably performed. Further, when the unit cell size is 24.65 mm or less, it becomes easy to suppress the deterioration of the zeolite crystals and to easily suppress the decrease in the decomposition activity of the catalyst.
  • the unit cell size in the above (II) stabilized Y-type zeolite can be measured by an X-ray diffractometer (XRD).
  • the ratio (molar ratio) of the number of Al atoms forming the zeolite skeleton to the total number of Al atoms in the zeolite (III) if the amount of Al constituting the zeolite crystal is too large, the Al 2 that has fallen from the skeleton of the zeolite Although the O 3 particles increase and the strong acid point is not expressed, the catalytic cracking reaction may not proceed, but the ratio (molar ratio) of the number of Al atoms forming the zeolite skeleton to the total number of Al atoms in the zeolite is 0.
  • the above phenomenon can be avoided by being 3 or more.
  • the ratio is close to 1.0, it means that most of Al in the zeolite is taken into the zeolite unit cell, and Al in the zeolite effectively contributes to the expression of a strong acid point. preferable.
  • the ratio (molar ratio) of the number of Al atoms forming the zeolite skeleton to the total number of Al atoms in the zeolite is (I) the bulk SiO 2 / Al 2 O 3 ratio (I) and ( II) It can be calculated from the unit cell dimensions using the following mathematical formulas (A) to (C) (note that the mathematical formula (A) is derived from HK Beyer et al., J. Chem. Soc., Faraday). Trans. 1, (81), 2899 (1985).
  • N Al (a0-2.425) /0.000868
  • N Al is the number of Al atoms per unit cell (pieces)
  • a0 is the unit cell size (nm)
  • 2.425 is when all Al atoms in the unit cell skeleton are desorbed outside the skeleton.
  • desired high decomposition activity can be exhibited by using the zeolite having the sodalite cage structure.
  • the aqueous slurry contains 20 to 50% by mass of zeolite having a sodalite cage structure, preferably 30 to 45% by mass, in terms of solid content, preferably 35 to 45%. It is more preferable that the content is 1% by mass.
  • the obtained catalytic cracking catalyst can obtain a desired cracking activity, and the content of the zeolite having a sodalite cage structure is 50. Since the obtained catalytic cracking catalyst can be easily contained in a desired amount of a binder mineral component such as clay mineral, silicon derived from silica sol, phosphorus / aluminum derived from primary aluminum phosphate, etc.
  • the catalytic cracking apparatus can be suitably operated while imparting desired strength and bulk density to the obtained catalytic cracking catalyst.
  • the aqueous slurry contains 10 to 30% by mass of silica sol in terms of SiO 2 when converted to solid content.
  • the silica sol is preferably a water-soluble silica sol.
  • silica sols are known. Examples of colloidal silica include sodium type, lithium type, and acid type, but any type of silica sol is used in the production method of the present invention. May be.
  • the silica hydrosol etc. which are obtained by making the diluted water glass aqueous solution and the sulfuric acid aqueous solution react can also be used.
  • the SiO 2 equivalent concentration is not particularly limited, and can be widely used, for example, from about 10% by mass to about 50% by mass.
  • the aqueous slurry contains 10 to 30% by mass of silica sol in terms of SiO 2 when converted to solid content, preferably 15 to 30% by mass, and preferably 15 to 25% by mass. % Content is more preferable.
  • the silica sol when the aqueous slurry is converted to a solid content, contains 10% by mass or more in terms of SiO 2 , whereby a desired strength can be imparted to the obtained catalytic cracking catalyst.
  • the silica sol contains 30% by mass or less in terms of SiO 2
  • an improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.
  • the catalytic cracking catalyst obtained by the production method of the present invention usually, silicon derived from the silica sol is contained in an oxide state.
  • Silica sol functions as a binder during the production of the catalytic cracking catalyst and is heated and oxidized during the preparation of the catalytic cracking catalyst.
  • the formability when granulating (finely pulverizing) minerals can be improved and can be easily spheroidized, and the fluidity and wear resistance of the resulting catalytic cracking catalyst can be easily improved.
  • the aqueous slurry contains 0.1 to 21% by mass of phosphorus / aluminum derived from primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 when converted to solid content.
  • Primary aluminum phosphate is a water-soluble acidic phosphate represented by the general formula [Al (H 2 PO 4 ) 3 ], and is also referred to as primary aluminum phosphate, aluminum monophosphate or aluminum biphosphate. .
  • the primary aluminum phosphate is dehydrated by heating, and when it loses moisture, it becomes oxide form (aluminum phosphate oxide (AlPO 4 )) and stabilizes.
  • primary aluminum phosphate is present as a polymer of a polynuclear complex in an aqueous solution compared to other aluminum sources, and has a large amount of hydroxyl groups on its surface, so it exhibits a strong binding force. Therefore, it functions suitably as a binder during the production of the catalytic cracking catalyst.
  • the catalytic cracking catalyst obtained by the production method of the present invention contains phosphorus-aluminum derived from primary aluminum phosphate, so that the acid properties are changed and the acid sites are increased, and the cracking activity is improved accordingly. To do. Therefore, the catalytic cracking catalyst obtained by the production method of the present invention contains phosphorus-aluminum derived from primary aluminum phosphate, thereby exhibiting high expected decomposition activity and high quality with high octane number. Can produce a simple gasoline fraction.
  • the primary aluminum phosphate is not particularly limited and may be appropriately selected from those having an Al 2 O 3 .3P 2 O 5 equivalent concentration of, for example, 30% to 95% by mass.
  • the Al 2 O 3 ⁇ 3P 2 O 5 equivalent concentration of primary aluminum phosphate can be calculated from the weight reduction rate when the primary aluminum phosphate is heat-treated in a high-temperature furnace at 800 ° C. for 3 hours.
  • the primary aluminum phosphate may contain impurities in a range that does not affect the performance of the catalytic cracking catalyst obtained by the production method of the present invention.
  • the content of boron is 10% by mass or less. It may contain a metal component such as magnesium or an organic compound such as lactic acid.
  • the aqueous slurry contains 0.1 to 21% by mass of primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 in terms of solid content, The content is preferably 10% by mass, more preferably 0.5 to 10% by mass, and still more preferably 0.5 to 5% by mass.
  • the aqueous slurry contains 0.1 mass% or more of primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 when converted to solid content, hydrocarbon oil is decomposed in the resulting catalytic cracking catalyst.
  • the activity is improved, and by containing 21 mass% or less of primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 , an improvement in catalyst performance commensurate with the amount used is recognized, and the octane number is High gasoline fraction can be produced.
  • the silica sol and the primary aluminum phosphate are contained as oxides in the catalytic cracking catalyst by heat treatment during catalyst preparation.
  • another binder such as alumina sol may be included as a binder during the preparation of the aqueous slurry.
  • the alumina sol is contained as an oxide in the catalyst granulated product. .
  • alumina sol examples include basic aluminum chloride [Al 2 (OH) n Cl 6-n ] m (where 0 ⁇ n ⁇ 6, m ⁇ 10), amorphous alumina sol, pseudoboehmite type alumina sol, commercially available alumina sol Furthermore, dibsite, bayerite, boehmite, bentonite, particles in which crystalline alumina is dissolved in an acid solution can be used, and basic aluminum chloride is preferred. Alumina sol is also dehydrated by heating, and when it loses moisture, it becomes oxide form and stabilizes.
  • the molar ratio of phosphorus atoms derived from primary aluminum phosphate to silicon atoms derived from silica sol in the aqueous slurry is preferably 0.
  • the range is preferably from 0.01 to 0.75, more preferably from 0.01 to 0.35.
  • a catalytic cracking catalyst having higher decomposition activity can be obtained, and the phosphorus / silicon molar ratio in the aqueous slurry is 0.75 or less. It is preferable because a catalyst capable of producing FCC gasoline having a higher octane number can be obtained.
  • the phosphorus / silicon molar ratio can be controlled by adjusting the blending amounts of primary aluminum phosphate and silica sol.
  • the aqueous slurry contains 5 to 65% by mass of clay mineral when converted to solid content.
  • the clay mineral examples include montmorillonite, kaolinite, halloysite, bentonite, attapulgite, bauxite and the like. Further, in the production method of the present invention, it is used for usual catalytic cracking catalysts such as silica, silica-alumina, alumina, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina. Known inorganic oxide fine particles may be used in combination with the clay mineral.
  • the aqueous slurry contains 5 to 65% by mass of clay mineral, preferably 5 to 60% by mass, and preferably 10 to 60% by mass when converted to solid content. Is more preferable.
  • the content ratio of the clay mineral in the aqueous slurry is 5% by mass or more when converted to solid content, the catalytic strength of the obtained catalytic cracking catalyst is improved and the catalytic cracking apparatus is maintained while maintaining the bulk density of the catalyst. It can drive suitably.
  • a catalyst when the content ratio of the clay mineral in the aqueous slurry is 65% by mass or less when converted to a solid content, a fixed ratio of a zeolite having a sodalite cage structure, a binder such as silica sol or primary aluminum phosphate
  • a catalyst can be easily prepared in the presence of a desired amount of a binder, and a catalytic cracking catalyst having the desired cracking activity can be easily prepared.
  • a catalytic cracking catalyst containing a rare earth metal may be obtained by further adding a rare earth metal during preparation of the catalytic cracking catalyst.
  • the rare earth metal examples include one or more selected from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, holmium, and among these, lanthanum or cerium is preferable.
  • the collapse of the zeolite crystals can be suppressed and the durability of the catalyst can be improved.
  • the obtained catalytic cracking catalyst is provided so that the rare earth metal is contained in an amount of 0 to 2% by mass in terms of oxide, and is provided so as to contain 0 to 1.5% by mass. More preferably, it is more preferably added so as to contain 0.1 to 1.2% by mass.
  • the obtained catalytic cracking catalyst contains the rare earth metal in the above-mentioned ratio in terms of oxide, so that it can easily exhibit high cracking activity and easily produce a gasoline fraction having a high octane number. Can be manufactured.
  • a rare earth metal is supported in advance on a zeolite having a sodalite cage structure to obtain a zeolite having a so-called metal modified sodalite cage structure, and the metal modification
  • An embodiment in which an aqueous slurry is prepared using a zeolite having a sodalite cage structure of the type is mentioned. Specifically, ion exchange of an aqueous solution containing a rare earth metal chloride, nitrate, sulfate, acetate or the like alone or in combination with a zeolite having a sodalite cage structure in a dry or wet state.
  • a method of impregnating and supporting rare earth metal by heating as necessary to prepare a zeolite having a metal-modified sodalite cage structure, mixing in an aqueous slurry, and subjecting to subsequent treatments. Can be mentioned.
  • the microspheres are ion-exchanged or impregnated with an aqueous solution containing a rare earth metal chloride, nitrate, sulfate, acetate or the like alone or in combination of two or more kinds.
  • a method of preparing the microspheres carrying the rare earth metal by heating in accordance with the subsequent treatment can be mentioned.
  • a catalytic cracking catalyst containing a metal other than the rare earth metal may be prepared by further adding a metal other than the rare earth metal during the preparation of the catalytic cracking catalyst.
  • the method for preparing the aqueous slurry is not particularly limited as long as the above components can be mixed at a predetermined ratio and uniformly dispersed.
  • the aqueous solvent used in preparing the aqueous slurry include water and a mixed solvent of water and a hydrophilic solvent, and water is preferable.
  • silica sol is added to water and stirred to prepare a uniform aqueous binder solution, and then primary aluminum phosphate, zeolite having a sodalite cage structure, and clay mineral
  • the method of obtaining the target uniform aqueous slurry by adding and mixing can be mentioned.
  • silica sol and primary aluminum phosphate are added to water and mixed to prepare a uniform aqueous binder solution, and then a zeolite having a sodalite cage structure and The method of obtaining the target uniform aqueous slurry can also be mentioned by adding and mixing clay minerals.
  • the primary aluminum phosphate may be added at the preparation stage of the aqueous binder solution, or may be added at the addition stage of the zeolite and clay mineral having a sodalite cage structure.
  • the effect of the present invention can be exhibited by adding at any stage.
  • a method for preparing an aqueous slurry a method of obtaining a desired uniform aqueous slurry by simultaneously adding and mixing zeolite having a sodalite cage structure, silica sol, primary aluminum phosphate and clay mineral in water. It can also be mentioned.
  • any method for preparing an aqueous slurry it is preferable to add all the components used for the preparation in an aqueous solvent and then stir and mix.
  • the stirring and mixing time is not particularly limited as long as each component can be uniformly dispersed. Is preferably 2 minutes or more, more preferably 5 minutes or more, and even more preferably 10 minutes or more.
  • the upper limit of the stirring and mixing time is not particularly limited, but the stirring effect will be saturated even if stirring for a long time. Considering the stirring effect, the stirring time is preferably 60 minutes or less, more preferably 45 minutes or less, More preferably, it is 30 minutes or less.
  • the primary aluminum phosphate and the zeolite can be brought into sufficient contact by stirring and mixing for 2 minutes or more, details are unknown, It is considered that the zeolite framework structure can be stabilized by the presence of primary aluminum phosphate around the zeolite.
  • the stirring and mixing device used in preparing the aqueous slurry is not particularly limited as long as each component can be uniformly dispersed, and examples thereof include a propeller stirrer, a heating type stirrer, and a disperser.
  • the primary aluminum phosphate and the zeolite can be sufficiently brought into contact by stirring and mixing, although details are unknown, It is considered that the zeolite framework structure can be stabilized by the presence of primary aluminum phosphate.
  • the stirring speed, the stirring time, and the like are appropriately adjusted so as to obtain an aqueous slurry in which the above components are uniformly dispersed.
  • the aqueous slurry is preferably prepared in a temperature atmosphere of 10 to 80 ° C., more preferably in a temperature atmosphere of 20 to 70 ° C., and further preferably in a temperature atmosphere of 25 to 65 ° C.
  • the content of the solid content in the aqueous slurry is preferably 5 to 60% by mass, more preferably 10 to 50% by mass.
  • the content ratio of the solid content in the aqueous slurry is within the above range, the amount of water to be evaporated at the time of drying the aqueous slurry becomes an appropriate amount, and the drying can be easily performed, and the viscosity of the slurry is increased. And can be easily transported.
  • the aqueous slurry is prepared and then aged for 5 to 200 minutes.
  • aging means maintaining the state of the aqueous slurry for a certain period of time after the aqueous slurry is prepared and before the spray drying treatment is performed.
  • the aging is performed for 5 to 200 minutes, preferably for 10 to 100 minutes, and more preferably for 15 to 60 minutes.
  • the aging time is 5 minutes or more, the interaction between the catalyst components contained in the aqueous slurry sufficiently proceeds, and when the aging time is within 200 minutes, the mutual interaction between the catalyst components. It is considered that the catalytic cracking catalyst having a desired structure can be suitably produced, and the action can proceed efficiently.
  • the aging temperature is not particularly limited, but is preferably 10 to 80 ° C, more preferably 20 to 70 ° C, and further preferably 25 to 65 ° C.
  • either a batch method or a continuous preparation method can be adopted as a method for preparing the catalytic cracking catalyst.
  • the aging can be carried out, for example, by allowing the aqueous slurry prepared in the mixing tank to stand for a predetermined time while being taken out of the tank or outside the tank.
  • the aging is delivered to the spray drying process, which is an aqueous slurry prepared by extracting the aqueous slurry prepared in the mixing tank from the lower part of the mixing tank through a pipe. It can be controlled by adjusting the length and thickness of the pipe or the conveying speed of the aqueous slurry so that the predetermined time becomes a predetermined time.
  • the catalyst composition exhibits excellent catalytic performance, such as having a high cracking activity for heavy hydrocarbon oils, just by performing spray drying immediately after preparation of the aqueous slurry, without performing the aging treatment.
  • a catalytic cracking catalyst can be obtained, surprisingly, according to the study by the present inventors, after the aqueous slurry is prepared, it is aged for a predetermined time and then spray-dried to obtain a higher cracking activity. It has been found that a catalytic cracking catalyst exhibiting further excellent catalytic performance, such as having, can be obtained, and the present invention has been completed.
  • the aqueous slurry is aged and then spray-dried.
  • Microspheres (catalysts or catalyst precursors) can be obtained by spray drying the aged aqueous slurry.
  • the spray drying is preferably performed by a spray drying apparatus under conditions of a gas inlet temperature of 200 to 600 ° C. and a gas outlet temperature of 100 to 300 ° C.
  • the microspheres obtained by spray drying suitably contain 20 to 150 ⁇ m particle size and 5 to 30% by mass of water.
  • the target catalytic cracking catalyst can be used as it is.
  • the particle diameter of the microsphere means a value measured according to JIS Z 8815, and the moisture content of the microsphere is a heat treatment at 800 ° C. for 3 hours in a heating furnace. This is a value calculated by regarding the amount of mass change before and after heating as the amount of moisture desorption.
  • the microspheres obtained by the above drying treatment are further subjected to washing treatment and ion exchange treatment by a known method, and excessive alkali metals brought in from various raw materials or Soluble impurities and the like may be removed.
  • the above washing treatment can be performed with water or ammonia water, and the content of soluble impurities can be reduced by washing with water or ammonia water.
  • the ion exchange treatment includes ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, ammonium phosphate, ammonium hydrogen phosphate, phosphoric acid.
  • Ammonium dihydrogen, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate and other aqueous solutions of ammonium salts can be carried out, and this ion exchange results in microspheres Residual alkali metals such as sodium and potassium can be reduced.
  • the cleaning process is usually performed prior to the ion exchange process, but may be performed first as long as the cleaning process and the ion exchange process are suitably performed.
  • the washing treatment and the ion exchange treatment are preferably performed until the content of alkali metal and the content of soluble impurities are below the desired amount, and the content of alkali metal and the content of soluble impurities are below the desired amount.
  • the catalytic activity can be preferably increased.
  • the microsphere has an alkali metal content of preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on a dry catalyst, and soluble impurities.
  • the content of is preferably 2.0% by mass or less, and more preferably 1.5% by mass or less.
  • the microspheres that have been subjected to the above washing treatment and ion exchange treatment are preferably dried again.
  • This drying treatment is preferably performed under a temperature condition of 100 to 500 ° C. until the water content of the microspheres becomes 1 to 25% by mass.
  • the target catalytic cracking catalyst can be prepared in this manner.
  • a method for simply producing a hydrocarbon oil catalytic cracking catalyst capable of producing a gasoline fraction having a high cracking activity for heavy hydrocarbon oil and a high octane number with a high yield can be provided.
  • the catalytic cracking catalyst obtained by the production method of the present invention is derived from the raw materials of the respective components used at the time of preparation, and 20 to 50% by mass of zeolite having a sodalite cage structure, and silicon derived from silica sol in terms of SiO 2 is 10 30 to 30% by mass, phosphorus-aluminum derived from primary aluminum phosphate, 0.1 to 21% by mass in terms of Al 2 O 3 .3P 2 O 5 , and 5 to 65% by mass of clay mineral.
  • the catalytic cracking catalyst obtained by the production method of the present invention contains 20 to 50% by mass of zeolite having a sodalite cage structure, preferably 30 to 45% by mass, and preferably 35 to 45% by mass. Is more preferable.
  • the content of the zeolite having a sodalite cage structure is 20% by mass or more, a desired decomposition activity can be obtained, and the content of the zeolite having a sodalite cage structure is 50% by mass or less.
  • the catalytic cracking apparatus can be suitably operated while maintaining it.
  • the catalytic cracking catalyst obtained by the production method of the present invention contains 10-30% by mass of silicon derived from silica sol in terms of SiO 2 , preferably 15-30% by mass, preferably 15-25% by mass More preferably.
  • the content of silicon derived from silica sol is 10% by mass or more in terms of SiO 2 , the strength of the obtained catalytic cracking catalyst is maintained, which is not preferable, such as scattering of the catalyst and mixing in the produced oil. Phenomenon can be avoided, and when the content of silicon derived from silica sol is 30% by mass or less in terms of SiO 2 , an improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.
  • the catalytic cracking catalyst obtained by the production method of the present invention usually contains silicon derived from silica sol in an oxide state.
  • the catalytic cracking catalyst obtained by the production method of the present invention contains 0.1 to 21% by mass of phosphorus / aluminum derived from primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 ,
  • the content is preferably 10% by mass, more preferably 0.5 to 10% by mass, and still more preferably 0.5 to 5% by mass.
  • Decomposition activity of hydrocarbon oil is improved by the content of phosphorus / aluminum derived from primary aluminum phosphate being 0.1% by mass or more, and the content of phosphorus / aluminum derived from primary aluminum phosphate is increased.
  • the improvement of the catalyst performance corresponding to the usage-amount is recognized, and the gasoline fraction with a high octane number can be manufactured.
  • the primary aluminum phosphate is dehydrated by heating, and when water is lost, it is stabilized in the form of an oxide (aluminum phosphate oxide (AlPO 4 )), which is obtained by the production method of the present invention. Even in the catalytic cracking catalyst, the primary aluminum phosphate is considered to be contained in the form of an oxide.
  • AlPO 4 aluminum phosphate oxide
  • the catalytic cracking catalyst obtained by the production method of the present invention contains 5 to 65% by mass of clay mineral, preferably 5 to 60% by mass, and more preferably 10 to 60% by mass.
  • the content ratio of the clay mineral is 5% by mass or more, the catalytic strength of the obtained catalytic cracking catalyst can be improved, and the catalytic cracking apparatus can be suitably operated while maintaining the bulk density of the catalyst.
  • the clay mineral content is 65% by mass or less, a certain proportion of binder-derived components such as zeolite having a sodalite cage structure, silica sol-derived silicon, and phosphorus / aluminum derived from primary aluminum phosphate.
  • binder-derived components such as zeolite having a sodalite cage structure, silica sol-derived silicon, and phosphorus / aluminum derived from primary aluminum phosphate.
  • the catalytic cracking catalyst obtained by the production method of the present invention contains a rare earth metal as an optional component, and preferably contains 0 to 2% by mass of the rare earth metal in terms of oxide. More preferably, the content is more preferably 0.1 to 1.2% by mass.
  • the catalytic cracking catalyst according to the present invention can exhibit a high cracking activity and produce a gasoline fraction having a high octane number. Can do.
  • the catalytic cracking catalyst obtained by the production method of the present invention has a molar ratio of phosphorus atoms derived from primary aluminum phosphate to silicon atoms derived from silica sol (phosphorus / silicon molar ratio) of 0.01 to 0.75. And more preferably 0.01 to 0.35.
  • phosphorus / silicon molar ratio of the catalytic cracking catalyst is 0.01 or more, a catalytic cracking catalyst having higher cracking activity can be easily obtained, and the phosphorus / silicon molar ratio of the catalytic cracking catalyst is 0.
  • FCC gasoline having a higher octane number can be easily obtained.
  • the catalytic cracking catalyst obtained by the production method of the present invention further contains a component such as an oxide of alumina sol as a component derived from the binder when a binder such as alumina sol is further used as a binder when preparing the catalyst. To do.
  • Content of zeolite having sodalite cage structure constituting the catalytic cracking catalyst obtained by the production method of the present invention content of silicon derived from silica sol in terms of SiO 2 , phosphorus / aluminum derived from primary aluminum phosphate is Al
  • the content in terms of 2 O 3 .3P 2 O 5 , the content of clay minerals, and the content in terms of rare earth metal oxides can be calculated from the amounts of raw materials added during catalyst preparation.
  • the catalytic cracking catalyst obtained by the method of the present invention can be suitably used in either a fluidized bed type catalytic cracking apparatus or a batch type catalytic cracking apparatus. In the fluidized bed type catalytic cracking apparatus, It can be preferably used.
  • the catalytic cracking catalyst obtained by the production method of the present invention is capable of producing a gasoline fraction having a high cracking activity for heavy hydrocarbon oils and a high octane number with a high yield.
  • fluid catalytic cracking of hydrocarbon oils can reduce the equipment and operating costs required for fluid catalytic cracking when the cracking activity is improved by a small amount. Stable operation becomes possible.
  • FCC gasoline has a large amount of blended with commercially available gasoline (gasoline to be shipped to the market), and therefore the profit generated by the improvement of the octane number of FCC gasoline is very large.
  • the catalytic cracking catalyst obtained in the present invention has a high cracking activity for heavy hydrocarbon oils and can produce a gasoline fraction (FCC gasoline) having a high octane number. It is.
  • the catalytic cracking using the catalytic cracking catalyst obtained by the production method of the present invention is carried out by bringing the catalytic cracking catalyst obtained by the production method of the present invention into contact with a hydrocarbon oil (hydrocarbon mixed oil). Can do.
  • a hydrocarbon oil hydrocarbon mixed oil
  • hydrocarbon oils hydrocarbon mixture
  • hydrocarbon oil boiling at a temperature equal to or higher than the boiling point of gasoline examples include one or more selected from light oil fractions obtained by atmospheric or vacuum distillation of crude oil, atmospheric distillation residue oil, and vacuum distillation residue oil.
  • light oil fractions obtained by atmospheric or vacuum distillation of crude oil, atmospheric distillation residue oil, and vacuum distillation residue oil.
  • GTL Gas to Liquids
  • the hydrocarbon oil the above-mentioned raw material oils are hydrotreated by those skilled in the art, that is, Ni—Mo based catalyst, Co—Mo based catalyst, Ni—Co—Mo based catalyst, Ni—W based catalyst, etc.
  • a hydrotreated oil hydrodesulfurized at a high temperature and high pressure in the presence of a hydrotreating catalyst can also be mentioned.
  • the deactivated catalytic cracking catalyst supplied to the catalyst regenerator is recirculated to the cracking reactor after removing and regenerating the coke on the catalyst by air combustion.
  • the cracked product in the cracking reactor obtained by catalytic cracking reaction is separated into one or more fractions such as dry gas, LPG, gasoline fraction, LCO, HCO or slurry oil.
  • fractions such as dry gas, LPG, gasoline fraction, LCO, HCO or slurry oil.
  • LCO, HCO, slurry oil, etc. separated from the decomposition product may be recycled in the cracking reactor to further proceed the decomposition reaction.
  • the operating conditions of the cracking reactor are preferably a reaction temperature of 400 to 600 ° C., more preferably 450 to 550 ° C., and a reaction pressure of normal pressure to 0.49 MPa (5 kg / cm 2 ).
  • the pressure is from normal pressure to 0.29 MPa (3 kg / cm 2 ), and the mass ratio (g / g) expressed by the mass of the catalytic cracking catalyst / the mass of the hydrocarbon oil is 2-20.
  • it is preferably 4-15.
  • the reaction temperature in the cracking reactor is 400 ° C. or higher, the decomposition reaction of the hydrocarbon oil proceeds, and the decomposition product can be suitably obtained.
  • the reaction temperature in the cracking reactor is 600 ° C. or lower, the amount of light gas such as dry gas and LPG produced by decomposition can be reduced, and the yield of the target gasoline fraction is relatively increased. It is economical because it can be increased.
  • the reaction pressure in the cracking reactor is 0.49 MPa or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited.
  • the ratio represented by the mass of the catalytic cracking catalyst in the cracking reactor / the mass of the raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the raw hydrocarbon oil Decomposition proceeds favorably. Even when the mass ratio (g / g) of the catalytic cracking catalyst / raw hydrocarbon oil according to the present invention in the cracking reactor is 20 or less, the cracking reaction of the hydrocarbon oil effectively proceeds and the catalyst concentration increases. Proper decomposition reaction can be advanced.
  • a hydrocarbon oil catalytic cracking catalyst capable of producing a gasoline fraction having a high octane number at a high yield and producing LPG having a high propylene content at a high yield.
  • a method for catalytic cracking of hydrocarbon oils can be provided.
  • the catalytic cracking method of hydrocarbon oil of the present invention can be suitably implemented as a fluid catalytic cracking method of hydrocarbon oil.
  • a method for easily producing a hydrocarbon oil catalytic cracking catalyst capable of producing a gasoline fraction having a high cracking activity for heavy hydrocarbon oil and a high octane number with a high yield. can do.
  • the fluid catalytic cracking method of hydrocarbon oil can be suitably implemented by the catalytic cracking catalyst obtained by the production method of the present invention.
  • a stabilized Y-type zeolite having the characteristics shown in Table 1 is used as a zeolite having a sodalite cage structure, and a silica sol having a SiO 2 concentration of 29.0% by mass, As the aluminum phosphate, Al 2 O 3 .3P 2 O 5 equivalent concentration of 46.2% by mass was used, and kaolinite was used as the clay mineral.
  • Example 1 The silica sol 42.0 g (dry basis, SiO 2 equivalent) was diluted with 25% sulfuric acid and stirred to obtain an aqueous solution of silica sol.
  • distilled water was added to 80.0 g of a stabilized Y-type zeolite having the characteristics shown in Table 1 (dry basis) to prepare a zeolite slurry. 76.0 g of the kaolinite (dry basis) and the zeolite slurry are added to the silica sol aqueous solution, and 2.0 g of the first aluminum phosphate (dry basis, converted to Al 2 O 3 .3P 2 O 5).
  • the aqueous slurry having a total water content of 714.3 ml and a solid content of 200 g was prepared by stirring and mixing for 10 minutes using a disperser. After preparing the aqueous slurry, it was transferred to a spray dryer tank and aged for 6 minutes at room temperature in an air atmosphere. Next, the aging-treated aqueous slurry was spray-dried for 3 minutes in a spray dryer under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C. to obtain microspheres as catalyst precursors. The obtained microspheres were heat-treated at 200 ° C.
  • the target catalyst A was obtained by ion exchange, washing with 3 L of distilled water, and drying overnight at 110 ° C. in a dryer.
  • Example 2 After preparing the aqueous slurry, catalyst B was prepared in the same manner as in Example 1 except that the aging time was changed to 195 minutes.
  • Example 3 After preparing the aqueous slurry, Catalyst C was prepared in the same manner as in Example 1 except that the aging time was changed to 12 minutes.
  • Example 4 After preparing the aqueous slurry, catalyst D was prepared in the same manner as in Example 1 except that the aging time was changed to 95 minutes.
  • Example 5 After preparing the aqueous slurry, catalyst E was prepared in the same manner as in Example 1 except that the aging time was changed to 17 minutes.
  • Example 6 After preparing the aqueous slurry, Catalyst F was prepared in the same manner as in Example 1 except that the aging time was changed to 55 minutes.
  • Example 7 Catalyst G was prepared in the same manner as in Example 1 except that the stirring time at the time of preparing the aqueous slurry was changed to 5 minutes, and after preparing the aqueous slurry, the aging time was changed to 17 minutes.
  • Example 8 Catalyst H was prepared in the same manner as in Example 1 except that the stirring time at the time of preparing the aqueous slurry was changed to 2 minutes, and after preparing the aqueous slurry, the aging time was changed to 17 minutes.
  • Example 9 The amount of the stabilized Y-type zeolite used was changed from 80.0 g (dry basis) to 60.0 g (dry basis), and the amount of kaolinite used was 76.0 g (dry basis) to 96.0 g (dry basis).
  • the catalyst I was prepared in the same manner as in Example 6 except that it was changed to
  • Example 10 The amount of the first aluminum phosphate used is changed from 2.0 g (dry basis, equivalent amount of Al 2 O 3 .3P 2 O 5 ) to 4.0 g (dry basis, equivalent amount of Al 2 O 3 .3P 2 O 5 ).
  • a catalyst J was prepared in the same manner as in Example 6 except that the amount of kaolinite was changed from 76.0 g (dry basis) to 74.0 g (dry basis).
  • Comparative Example 1 After preparing the aqueous slurry, Comparative Catalyst 1 was prepared in the same manner as in Example 1 except that the aging time was changed to 2 minutes.
  • Comparative Example 2 After preparing the aqueous slurry, Comparative Catalyst 2 was prepared in the same manner as in Example 1 except that the aging time was changed to 250 minutes.
  • Comparative Example 3 After preparing the aqueous slurry, Comparative Catalyst 3 was prepared in the same manner as in Example 9 except that the aging time was changed to 2 minutes.
  • Comparative Example 4 After preparing the aqueous slurry, Comparative Catalyst 4 was prepared in the same manner as in Example 10 except that the aging time was changed to 2 minutes.
  • Table 2 shows the conditions for preparing Catalyst A to Catalyst J and Comparative Catalyst 1 to Comparative Catalyst 4.
  • Y zeolite indicates the content of the stabilized Y-type zeolite on a dry basis
  • sica sol indicates the content when the silica sol is converted to SiO 2 on a dry basis
  • No. Al 2 O 3 .3P 2 O 5 on a dry basis
  • clay mineral refers to the dry basis of clay mineral (kaolinite). The content of is shown.
  • VGO desulfurized vacuum gas oil
  • DDSP desulfurized residual oil
  • the aging time is as short as 2 minutes, and in Comparative Example 2, the aging time is as long as 250 minutes.
  • the conversion rate shows a decreasing trend of 60.0 to 65.4 (mass%), and the yield of gasoline fraction is as low as 42.8 to 47.8% by volume.
  • the octane number is as low as 89.8-90.2.
  • a hydrocarbon oil catalytic cracking catalyst that can produce a gasoline fraction with high cracking activity for heavy hydrocarbon oils and a high octane number at a high yield can be easily obtained. It can be seen that it can be manufactured.
  • a method for easily producing a hydrocarbon oil catalytic cracking catalyst capable of producing a gasoline fraction having a high cracking activity for heavy hydrocarbon oil and a high octane number with a high yield. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供する。 炭化水素油の接触分解触媒を製造する方法であって、固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾルをSiO換算で10~30質量%、第一リン酸アルミニウムをAl・3P換算で0.1~21質量%および粘土鉱物を5~65質量%含有する水性スラリーを調製した後、5~200分間熟成し、次いで噴霧乾燥処理することを特徴とする炭化水素油の接触分解触媒の製造方法である。

Description

炭化水素油の接触分解触媒の製造方法
 本発明は、炭化水素油の接触分解触媒の製造方法に関する。
 近年、地球環境意識の高まりや温暖化への対策が重要視されるようになり、自動車の排気ガスについても、環境に与える影響を考慮して、そのクリーン化が望まれるようになっている。自動車の排気ガスのクリーン化は、自動車の排気ガス浄化性能とガソリンの燃料組成に影響を受けることが一般的に知られており、特に石油精製産業においては、高品質なガソリンを提供することが求められている。
 ガソリンは、原油の精製工程で得られる複数のガソリン基材を混合することによって製造されている。特に、重質炭化水素油の流動接触分解反応によって得られるガソリン留分(以下、適宜FCCガソリンと称する)は、ガソリンへの配合量が多く、ガソリンの品質に与える影響が非常に大きい。
 重質炭化水素油の接触分解反応は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、水素・コーク、液化石油ガス(Liquid Petroleum Gas(LPG))、中間留分である軽質分解軽油(Light Cycle Oil(LCO))、重質留分である重質分解軽油(Heavy Cycle Oil(HCO))や分解ボトム油(Slurry Oil(SLO))等の留分も生産される。
 このため、重質炭化水素油に対する分解活性が高く、FCCガソリンの収率が高く、更にはオクタン価の高い高品質なFCCガソリンが得られる、FCCガソリンを効率的に製造し得る流動接触分解触媒(以下、適宜FCC触媒と称する)が求められるようになっている。
 ところで、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の含有量が高い重質炭化水素油を流動接触分解処理せざるを得なくなっている。
 バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分であるゼオライトの構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性(FCCガソリンの収率)を低下させる等の技術課題が存在することが知られている。
 また、ニッケルも、FCC触媒表面に沈着堆積し、脱水素反応を促進するため、水素・コークの生成量を増加させ、ガソリンの選択性(FCCガソリンの収率)を低下させる等の技術課題が存在している。
 このような原油の重質化・低品位化に対応するために、分解活性に優れた触媒の開発が望まれており、本願出願人等は、先にリンを含有させたFCC触媒を提案するに至っている(例えば、特許文献1(特開2010-247146号公報)参照)。
特開2010-247146号公報
 上記技術課題を解決するため、本発明者等が鋭意検討した結果、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾル由来のケイ素をSiO換算で10~30質量%、第一リン酸アルミニウム由来のリン・アルミニウムをAl・3P換算で0.1~21質量%および粘土鉱物を5~65質量%含有する接触分解触媒により、重質炭化水素油を高度に分解し得るとともに、オクタン価が高いガソリン留分を高い得率で生産し得ることを見出した。
 一方、接触分解触媒としては、重質炭化水素油に対する分解活性がさらに高く、よりオクタン価が高いガソリン留分を一層高い得率で生産し得るものが求められている。
 このような状況下、本発明は、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供することを目的とするものである。
 上記技術課題を解決するために、本発明者等がさらに検討を加えた結果、上記接触分解触媒の原料成分を所定量含有する水性スラリーを調製した後、5~200分間熟成し、次いで噴霧乾燥処理することにより、所望性状を有する接触分解触媒を簡便に製造し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、炭化水素油の接触分解触媒を製造する方法であって、固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾルをSiO換算で10~30質量%、第一リン酸アルミニウムをAl・3P換算で0.1~21質量%および粘土鉱物を5~65質量%含有する水性スラリーを調製した後、5~200分間熟成し、次いで噴霧乾燥処理することを特徴とする炭化水素油の接触分解触媒の製造方法を提供するものである。
 本発明によれば、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供することができる。
 本発明に係る炭化水素油の接触分解触媒の製造方法は、固形分換算したときに(乾燥基準で)、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾルをSiO換算で10~30質量%、第一リン酸アルミニウムをAl・3P換算で0.1~21質量%および粘土鉱物を5~65質量%含有する水性スラリーを調製した後、5~200分間熟成し、次いで噴霧乾燥処理することを特徴とするものである。
(ソーダライトケージ構造を有するゼオライト)
 本発明において、ソーダライトケージ構造を有するゼオライトとは、ソーダライトケージ構造、すなわちアルミニウム及びケイ素四面体を基本単位とし、頂点の酸素をアルミニウム又はケイ素が共有することにより形成される立体的な正八面体の結晶構造の各頂点を切り落とした、四員環や六員環等により規定される十四面体結晶構造により構成される空隙を有し、このソーダライトケージ同士が結合する場所や方法が変化することによって、種々の細孔構造、骨格密度、チャンネル構造を有するものを意味する。
 上記ソーダライトケージ構造を有するゼオライトとしては、ソーダライト、A型ゼオライト、EMT、X型ゼオライト、Y型ゼオライト、安定化Y型ゼオライト等から選ばれる一種以上を挙げることができ、安定化Y型ゼオライトであることが好ましい。
 安定化Y型ゼオライトは、Y型ゼオライトを出発原料として合成され、Y型ゼオライトと比較して、結晶化度の劣化に対して耐性を示すものであり、一般には、Y型ゼオライトに対し高温での水蒸気処理を数回行った後、必要に応じて、塩酸等の鉱酸、水酸化ナトリウム等の塩基、フッ化カルシウム等の塩、エチレンジアミン四酢酸等のキレート剤で処理することにより作製されてなるものである。
 上記方法で得られた安定化Y型ゼオライトは、水素、アンモニウムあるいは多価金属から選ばれるカチオンでイオン交換された形で使用することができる。また、安定化Y型ゼオライトとして、より安定性に優れたヒートショック結晶性アルミノシリケートゼオライト(特許第2544317号公報参照)を使用することもできる。
 安定化Y型ゼオライトとしては、
(I)化学組成分析によるバルクのSiO/Alモル比が4~15で、好ましくは5~10であり、
(II)単位格子寸法が24.35~24.65Åで、好ましくは24.40~24.60Åであり、
(III)ゼオライト内の全Al原子数に対するゼオライト骨格を形成するAl原子数の比(モル比)が0.3~1.0で、好ましくは0.4~1.0である
ものが好ましい。
 この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記組成式 
(0.02~1.0)R2/mO・Al・(5~11)SiO・(5~8)H
(上記組成式において、Rは、Na、Kその他のアルカリ金属イオン又はアルカリ土類金属イオンを表し、mはRの原子価を表している)を有している。
 上記(I)化学組成分析によるバルクのゼオライトのSiO/Alモル比は、得られる接触分解触媒の酸強度を示しており、上記モル比が大きいほど得られる接触分解触媒の酸強度が強くなる。上記SiO/Alモル比が4以上であることにより、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応を好適に行うことができる。また、上記SiO/Alモル比が15以下であることにより、得られる接触分解触媒の酸強度が強くなり、必要な酸の数を確保でき、重質炭化水素油の分解活性を確保し易くなる。
 上記(I)化学組成分析によるバルクのゼオライトのSiO/Alモル比は、誘導結合プラズマ(ICP)により測定することができる。
 上記(II)ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示すものであるが、上記単位格子寸法が24.35Å以上であることにより、重質油の分解に必要なAl原子数が適当数となり、その結果分解反応を好適に行うことができる。また、上記単位格子寸法が24.65Å以下であることにより、ゼオライト結晶の劣化を抑制しやすくなり、触媒の分解活性の低下を抑制しやすくなる。
 上記(II)安定化Y型ゼオライトにおける単位格子寸法は、X線回折装置(XRD)により測定することができる。
 上記(III)ゼオライト内の全Al原子数に対するゼオライト骨格を形成するAl原子数の比(モル比)に関し、ゼオライト結晶を構成するAlの量が多くなりすぎると、ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点を発現しないために接触分解反応が進行しなくなる場合があるが、ゼオライト内の全Al原子数に対するゼオライト骨格を形成するAl原子数の比(モル比)が0.3以上であることにより、上記現象を回避することができる。また、上記比が1.0に近い場合には、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。
 上記(III)ゼオライト内の全Al原子数に対するゼオライト骨格を形成するAl原子数の比(モル比)は、(I)化学組成分析によるバルクのSiO/Al比(I)及び(II)単位格子寸法から、下記数式(A)~(C)を用いて算出することができる(なお、数式(A)は、H.K.Beyer et al.,J.Chem.Soc.,Faraday Trans.1,(81),2899(1985).に記載の式を採用したものである)。
(A)NAl=(a0-2.425)/0.000868
(数式(A)において、NAlは単位格子あたりのAl原子数(個)、a0は単位格子寸法(nm)、2.425は単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法(nm)、0.000868(nm/個)は実験により求めた計算値であり、a0とNAlについて1次式で整理したとき(a0=0.000868NAl+2.425)の傾きを表している。)
(B)(Si/Al)計算式=(192-NAl)/NAl
(数式(B)において、(Si/Al)計算式はバルクのゼオライトにおける計算上のSiO/Alモル比であり、NAlは数式(A)により算出される単位格子あたりのAl原子数(個)であり、192はY型ゼオライトの単位格子寸法あたりのSi原子とAl原子の原子数の総数(個)である。)
(C)ゼオライト内の全Al原子数に対するゼオライト骨格を形成するAl原子数の比(モル比)=(化学組成分析によるバルクのゼオライトのSiO/Alモル比)/(Si/Al)計算式
(数式(C)において、(Si/Al)計算式は数式(B)により算出されるバルクのゼオライトにおける計算上のSiO/Alモル比である。)
 本発明の製造方法においては、上記ソーダライトケージ構造を有するゼオライトを用いることによって、所望の高分解活性を発揮することができる。
 本発明の製造方法において、水性スラリーは、固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20~50質量%含むものであり、30~45質量%含むものであることが好ましく、35~45質量%含むものであることがより好ましい。
 ソーダライトケージ構造を有するゼオライトの含有量が20質量%以上であることにより、得られる接触分解触媒が所望の分解活性を得ることができ、また、ソーダライトケージ構造を有するゼオライトの含有量が50質量%以下であることにより、得られる接触分解触媒が粘土鉱物や、シリカゾル由来のケイ素、第一リン酸アルミニウム由来のリン・アルミニウム等の結合剤由来成分を容易に所望量含有することができることから、得られる接触分解触媒に所望の強度や嵩密度を付与しつつ、接触分解装置を好適に運転することができる。
(シリカゾル)
 本発明の製造方法において、水性スラリーは、固形分換算したときに、シリカゾルをSiO換算で10~30質量%含む。
 本発明の製造方法において、シリカゾルとしては、水溶性のシリカゾルであることが好ましい。
 シリカゾルには、幾つかの種類が知られており、コロイダルシリカを例に挙げれば、ナトリウム型、リチウム型、酸型等があるが、本発明の製造方法においてはいずれの型のシリカゾルを使用してもよい。
 また、商業的規模で生産する場合には、希釈水ガラス水溶液と硫酸水溶液とを反応させて得られるシリカヒドロゾル等を使用することもできる。
 シリカゾルとしては、ゾル状である限りにおいてはそのSiO換算濃度は特に制限されず、例えば10質量%程度のものから50質量%程度のものまで幅広く使用することができる。
 本発明の製造方法において、水性スラリーは、固形分換算したときに、シリカゾルをSiO換算で10~30質量%含有するものであり、15~30質量%含有することが好ましく、15~25質量%含有することがより好ましい。
 本発明の製造方法において、水性スラリーが、固形分換算したときに、シリカゾルをSiO換算で10質量%以上含有することにより、得られる接触分解触媒に所望強度を付与することができるため、触媒の散飛や、生成油中への混入等の好ましくない現象を回避することができ、また、水性スラリーが、固形分換算したときに、シリカゾルをSiO換算で30質量%以下含有することにより、得られる接触分解触媒において、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。
 本発明の製造方法で得られる接触分解触媒、通常、上記シリカゾル由来のケイ素を酸化物の状態で含有している。
 シリカゾルは接触分解触媒の製造時に結合剤として機能するものであり、接触分解触媒の調製時に加熱されて酸化されるものであるが、接触分解触媒の調製時にシリカゾルを使用することにより、ゼオライトや粘度鉱物を造粒化(微粒子化)する際の成形性を向上させ、容易に球状化することができ、また、得られる接触分解触媒の流動性及び耐摩耗性を容易に向上させることができる。
(第一リン酸アルミニウム)
 本発明の製造方法において、水性スラリーは、固形分換算したときに、第一リン酸アルミニウム由来のリン・アルミニウムをAl・3P換算で0.1~21質量%含む。
 第一リン酸アルミニウムは、一般式[Al(HPO]で示される水溶性の酸性リン酸塩であり、第一リン酸アルミニウム、モノリン酸アルミニウム又は重リン酸アルミニウムとも称される。
 第一リン酸アルミニウムは加熱によって脱水され、水分を失うと、酸化物形態(リン酸アルミニウム酸化物(AlPO))となって安定化する。また、第一リン酸アルミニウムは、他のアルミニウム源と比較して、水溶液中で多核錯体のポリマーとして存在しており、表面に多量の水酸基を含有しているため、強い結合力を発揮することができ、このために、接触分解触媒の製造時に結合剤として好適に機能する。
 また、本発明の製造方法で得られる接触分解触媒が、第一リン酸アルミニウム由来のリン・アルミニウムを含有することによって、酸性質が変化して酸点が増加し、それに伴って分解活性が向上する。
 従って、本発明の製造方法で得られる接触分解触媒は、第一リン酸アルミニウム由来のリン・アルミニウムを含有するものであることによって、所期の高い分解活性を発揮するとともに、オクタン価の高い高品質なガソリン留分を製造することができる。
 第一リン酸アルミニウムとしては、特に制限はなく、Al・3P換算濃度が、例えば30質量%~95質量%であるものから適宜選択することができる。
 第一リン酸アルミニウムのAl・3P換算濃度は、第一リン酸アルミニウムを高温炉で800℃の温度条件下3時間加熱処理した際の重量減少率から算出することができる。
 また、第一リン酸アルミニウムとしては、本発明の製造方法で得られる接触分解触媒の性能に影響しない範囲の不純物を含有するものであってもよく、例えば10質量%以下の含有量で、ホウ素やマグネシウムなどの金属分を含有するものであってもよいし、乳酸などの有機化合物を含有するものであってもよい。
 本発明の製造方法において、水性スラリーは、固形分換算したときに、第一リン酸アルミニウムを、Al・3P換算で、0.1~21質量%含み、0.1~10質量%含むことが好ましく、0.5~10質量%含むことがより好ましく、0.5~5質量%含むことがさらに好ましい。
 水性スラリーが、固形分換算したときに、第一リン酸アルミニウムをAl・3P換算で0.1質量%以上含有することにより、得られる接触分解触媒において炭化水素油の分解活性が向上し、また、第一リン酸アルミニウムをAl・3P換算で21質量%以下含有することにより、使用量に見合った触媒性能の向上が認められ、かつ、オクタン価が高いガソリン留分を製造することができる。
 本発明の製造方法において、上記シリカゾルや第一リン酸アルミニウムは、触媒調製時に加熱処理されることによって接触分解触媒中に酸化物として含有されるものである。
 本発明の製造方法においては、水性スラリーの調製時に結合剤としてアルミナゾル等の他の結合剤を含有させてもよく、この場合、触媒造粒物中にアルミナゾルが酸化物として含有されることになる。
 上記アルミナゾルとしては、塩基性塩化アルミニウム[Al(OH)Cl6-n(ただし、0<n<6、m≦10)、無定形のアルミナゾル、擬ベーマイト型のアルミナゾル、市販のアルミナゾル、更にジブサイト、バイアライト、ベーマイト、ベントナイト、結晶性アルミナを酸溶液中に溶解させた粒子等を使用することができるが、好ましくは塩基性塩化アルミニウムである。
 アルミナゾルも、加熱によって脱水され、水分を失うと、酸化物形態となって安定化する。
 本発明の製造方法において、水性スラリー中における、シリカゾル由来のケイ素原子に対する第一リン酸アルミニウム由来のリン原子のモル比(以下、適宜「リン/ケイ素モル比」と称する。)を、好ましくは0.01~0.75、より好ましくは0.01~0.35の範囲とすることが好ましい。
 水性スラリー中におけるリン/ケイ素モル比が0.01以上であることにより、より高い分解活性を有する接触分解触媒を得ることができ、また、水性スラリー中におけるリン/ケイ素モル比が0.75以下であることにより、よりオクタン価の高いFCCガソリンを生成し得る触媒が得られるため好ましい。
 上記リン/ケイ素モル比は、第一リン酸アルミニウムおよびシリカゾルの配合量を調節することにより制御することができる。
(粘土鉱物)
 本発明の製造方法において、水性スラリーは、固形分換算したときに、粘土鉱物を5~65質量%含む。
 粘土鉱物としては、モンモリロナイト、カオリナイト、ハロイサイト、ベントナイト、アタパルガイト、ボーキサイト等を挙げることができる。
 また、本発明の製造方法においては、シリカ、シリカ-アルミナ、アルミナ、シリカ-マグネシア、アルミナ-マグネシア、リン-アルミナ、シリカ-ジルコニア、シリカ-マグネシア-アルミナ等の通常の接触分解触媒に使用される公知の無機酸化物の微粒子を上記粘土鉱物と併用することもできる。
 本発明の製造方法において、水性スラリーは、固形分換算したときに、粘土鉱物を5~65質量%含むものであり、5~60質量%含むものであることが好ましく、10~60質量%含むものであることがより好ましい。
 水性スラリー中の粘土鉱物の含有割合が固形分換算したときに5質量%以上であることにより、得られる接触分解触媒の触媒強度を向上させるとともに、触媒の嵩密度を維持して接触分解装置を好適に運転することができる。また、水性スラリー中の粘土鉱物の含有割合が固形分換算したときに65質量%以下であることにより、ソーダライトケージ構造を有するゼオライトや、シリカゾルや第一リン酸アルミニウム等の結合剤を一定割合で含有させて、所望量の結合剤の存在下に容易に触媒調製を行うことができ、所期の分解活性を有する接触分解触媒を容易に調製することができる。
 本発明の製造方法においては、接触分解触媒の調製時に希土類金属をさらに付与することにより、希土類金属を含有する接触分解触媒を得てもよい。
 希土類金属としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ディスプロシウム、ホルミウム等から選ばれる一種以上を挙げることができ、これ等のうち、ランタン又はセリウムが好ましい。
 本発明の製造方法において、得られる接触分解触媒が希土類金属をさらに含有することにより、ゼオライト結晶の崩壊を抑制し、触媒の耐久性を向上させることができる。
 本発明の製造方法においては、得られる接触分解触媒が、希土類金属を、酸化物換算で、0~2質量%含むように付与することが好ましく、0~1.5質量%含むように付与することがより好ましく、0.1~1.2質量%含むように付与することがさらに好ましい。
 本発明の製造方法において、得られる接触分解触媒が希土類金属を酸化物換算で上記割合で含有するものであることにより、高分解活性を容易に発揮し得るとともに、オクタン価の高いガソリン留分を容易に製造することができる。
 本発明の製造方法において、希土類金属を付与する方法としては、例えば、ソーダライトケージ構造を有するゼオライトに予め希土類金属を担持させ、いわゆる金属修飾型のソーダライトケージ構造を有するゼオライトとし、該金属修飾型のソーダライトケージ構造を有するゼオライトを用いて水性スラリーを調製する態様が挙げられる。
 具体的には、希土類金属の塩化物、硝酸塩、硫酸塩、酢酸塩等の化合物の単独あるいは2種以上を含有する水溶液を、乾燥状態あるいは湿潤状態にあるソーダライトケージ構造を有するゼオライトにイオン交換あるいは含浸させ、必要に応じて加熱することにより希土類金属を担持して、金属修飾型のソーダライトケージ構造を有するゼオライトを調製した上で、水性スラリー中に混合し、以後の処理を施す方法を挙げることができる。
 また、本発明の製造方法において、希土類金属を付与する方法としては、後述する水性スラリーの熟成、乾燥処理後にイオン交換による洗浄処理を施した後、得られた微小球体を再度乾燥する前に、希土類金属によるイオン交換を行う態様を挙げることもできる。
 この場合においても、具体的には、希土類金属の塩化物、硝酸塩、硫酸塩、酢酸塩等の化合物の単独あるいは2種以上を含有する水溶液を、上記微小球体にイオン交換あるいは含浸させ、必要に応じて加熱することにより、希土類金属を担持した微小球体を調製し、以後の処理を施す方法を挙げることができる。
 本発明の製造方法においては、接触分解触媒の調製時に希土類金属以外の金属をさらに付与することにより、希土類金属以外の金属を含有する接触分解触媒を調製してもよい。
(スラリーの調製)
 本発明の製造方法において、水性スラリーを調製する方法としては、上記各成分を所定の割合で混合し、均一に分散し得る方法であれば特に制限されない。
 水性スラリーの調製時に使用する水性溶媒としては、水や、水および親水性溶媒の混合溶媒を挙げることができるが、水であることが好ましい。
 水性スラリーを調製する方法としては、例えば、先ず、シリカゾルを水中に添加し、攪拌して、均一な結合剤水溶液を調製した後、第一リン酸アルミニウム、ソーダライトケージ構造を有するゼオライト及び粘土鉱物を添加し、混合することにより、目的とする均一な水性スラリーを得る方法を挙げることができる。
 また、水性スラリーを調製する方法としては、例えば、先ず、シリカゾルおよび第一リン酸アルミニウムを水中に添加し、混合して、均一な結合剤水溶液を調製した後、ソーダライトケージ構造を有するゼオライト及び粘土鉱物を添加し、混合することにより、目的とする均一な水性スラリーを得る方法を挙げることもできる。
 このように、第一リン酸アルミニウムは、結合剤水溶液の調製段階で添加してもよいし、ソーダライトケージ構造を有するゼオライト及び粘土鉱物の添加段階で添加してもよく、第一リン酸アルミニウムを任意段階で添加することにより本発明の効果を発揮することができる。
 水性スラリーを調製する方法としては、ソーダライトケージ構造を有するゼオライト、シリカゾル、第一リン酸アルミニウムおよび粘土鉱物を同時に水中に添加し、混合することにより、目的とする均一な水性スラリーを得る方法を挙げることもできる。
 水性スラリーを調製する何れの方法においても、調製に使用する全成分を水性溶媒中に添加した後、攪拌混合することが好ましく、攪拌混合時間は、各成分が均一に分散し得る限り特に制限されないが、2分間以上が好ましく、5分間以上がより好ましく、10分間以上がさらに好ましい。
 上記攪拌混合時間の上限は特に制限されないが、長時間攪拌しても攪拌効果は飽和することになるので、攪拌効果を考えると、攪拌時間は60分間以下が好ましく、45分間以下がより好ましく、30分間以下がさらに好ましい。
 調製に使用する全成分を水性溶媒中に添加した後、2分間以上攪拌して混合することにより、第一リン酸アルミニウムとゼオライトとを十分に接触させることができ、詳細は不明であるが、ゼオライト周辺に第一リン酸アルミニウムを存在させることにより、ゼオライト骨格構造を安定化させることができると考えられる。
 水性スラリーの調製時に使用される攪拌混合装置は、各成分を均一に分散し得る限り特に制限されないが、例えば、プロペラ攪拌機、加温型スタラー、ディスパーサー等を挙げることができる。調製に使用する全成分を水性溶媒中に添加した後、攪拌して混合することにより、第一リン酸アルミニウムとゼオライトとを十分に接触させることができ、詳細は不明であるが、ゼオライト周辺に第一リン酸アルミニウムを存在させることにより、ゼオライト骨格構造を安定化させることができると考えられる。
 本発明の製造方法において、攪拌混合して水性スラリーを調製する場合、上記各成分が均一に分散された水性スラリーが得られるように、攪拌速度や攪拌時間等を適宜調整する。
 水性スラリーの調製は、10~80℃の温度雰囲気下で行うことが好ましく、20~70℃の温度雰囲気下で行うことがより好ましく、25~65℃の温度雰囲気下で行うことがさらに好ましい。
 上記水性スラリー中の固形分の含有割合は、5~60質量%が好ましく、10~50質量%がより好ましい。水性スラリー中の固形分の含有割合が上記範囲内であることにより、水性スラリーの乾燥時に蒸発させる水分量が適当量となり、簡便に乾燥を行うことができ、また、スラリーの粘度上昇を招くことなく、簡便に輸送することができる。
(熟成)
 本発明の製造方法においては、上記水性スラリーを調製した後、5~200分間熟成する。
 本発明の製造方法において、熟成とは、上記水性スラリーを調製した後、噴霧乾燥処理を行うまでの間、一定時間水性スラリーの状態を保持することを意味する。
 本発明の製造方法において、上記熟成は、5~200分間行い、10~100分間行うことが好ましく、15~60分間行うことがより好ましい。
 熟成時間が5分間以上であることにより、水性スラリー中に含有される触媒構成成分同士の相互作用が十分に進行し、また、熟成時間が200分以内であることにより、触媒構成成分同士の相互作用を効率的に進行させることができ、また所望の構造を有する接触分解触媒を好適に製造し得ると考えられる。
 本発明の製造方法において、上記熟成を行う温度も特に制限されないが、10~80℃であることが好ましく、20~70℃であることがより好ましく、25~65℃であることがさらに好ましい。
 本発明の製造方法において、接触分解触媒を調製する方法としては、バッチ方式および連続調製方式の何れも採用することができる。
 バッチ方式で接触分解触媒を調製する場合、上記熟成は、例えば、混合槽内で調製した水性スラリーを槽内または槽外に取り出した状態で所定時間静置することにより実施することができる。
 連続調製方式で接触分解触媒を調製する場合、上記熟成は、例えば、混合槽内で調製した水性スラリーを混合槽の下部から配管を通じて抜き出した水性スラリーを、次工程である噴霧乾燥工程まで送達される時間が所定時間になるように配管の長さや太さまたは水性スラリーの搬送速度を調整することにより、制御することができる。
 接触分解触媒の調製においては、従来、水性スラリーの調製後、その変質を低減するために、水性スラリーの調製直後に次工程の処理が施されていたが、本発明の製造方法においては、水性スラリーを所定時間熟成することにより、各成分の相互作用が進行して、このために所望性状を発揮し得る特定構造を有する接触分解触媒を予備調製し得ると考えられる。
 本発明の製造方法においては、上記熟成処理を施すことなく、水性スラリーの調製直後に噴霧乾燥処理を施すだけでも重質炭化水素油に対して高い分解活性を有する等、優れた触媒性能を示す接触分解触媒を得ることができるが、驚くべきことに、本発明者等の検討によれば、上記水性スラリーを調製した後、所定時間熟成し次いで噴霧乾燥処理することにより、一層高い分解活性を有する等、さらに優れた触媒性能を示す接触分解触媒を得ることができることを見出し、本発明を完成するに至ったものである。
(噴霧乾燥)
 本発明の製造方法においては、上記水性スラリーを熟成処理した後、噴霧乾燥処理する。
 熟成処理した水性スラリーを噴霧乾燥することにより、微小球体(触媒あるいは触媒前駆体)を得ることができる。
 上記噴霧乾燥は、噴霧乾燥装置により、200~600℃のガス入口温度、及び100~300℃のガス出口温度の条件下に行うことが好ましい。
 噴霧乾燥により得られる微小球体は、20~150μmの粒子径、5~30質量%の水分を含有するものであることが適当である。
 上記微小球体が過剰のアルカリ金属や可溶性の不純物等を含まないものである場合は、そのまま目的とする接触分解触媒とすることができる。
 なお、本出願書類において、上記微小球体の粒子径は、JIS Z 8815に準拠して測定した値を意味するものとし、上記微小球体の水分量は、加熱炉において800℃で3時間加熱処理を行い、加熱前後の質量変化量を水分脱離量としてみなして算出した値を意味するものとする。
 本発明の製造方法においては、上記乾燥処理して得られた微小球体に対し、さらに必要に応じて、公知の方法で洗浄処理及びイオン交換処理を行い、各種原料から持ち込まれる過剰のアルカリ金属や可溶性の不純物等を除去してもよい。
 上記の洗浄処理は、具体的には、水又はアンモニア水により行うことができ、水又はアンモニア水で洗浄することにより、可溶性不純物の含有量を低減させることができる。
 イオン交換処理は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液によって行うことができ、このイオン交換によって微小球体に残存するナトリウムやカリウムなどのアルカリ金属を低減させることができる。
 上記洗浄処理は、通常イオン交換処理に先立って行われるが、洗浄処理及びイオン交換処理が好適に施される限りにおいては、イオン交換処理を先に行ってもよい。
 上記洗浄処理及びイオン交換処理は、アルカリ金属の含有量及び可溶性不純物の含有量が所望量以下になるまで行うことが好ましく、アルカリ金属の含有量及び可溶性不純物の含有量が所望量以下であることにより、触媒活性を好適に高めることができる。
 本発明の製造方法において、微小球体は、乾燥触媒基準で、アルカリ金属の含有量が、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、可溶性不純物の含有量が、2.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。
 上記の洗浄処理及びイオン交換処理が施された微小球体は、再度乾燥処理することが好ましい。この乾燥処理は、100~500℃の温度の温度条件下、微小球体の水分含有量が1~25質量%になるまで行うことが好ましい。
 本発明の製造方法においては、このようにして、目的とする接触分解触媒を調製することができる。
 本発明の製造方法によれば、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供することができる。
 本発明の製造方法で得られる接触分解触媒は、調製時に用いた各成分の原料に由来して、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾル由来のケイ素をSiO換算で10~30質量%、第一リン酸アルミニウム由来のリン・アルミニウムをAl・3P換算で0.1~21質量%、粘土鉱物を5~65質量%含有するものである。
 本発明の製造方法で得られる接触分解触媒は、ソーダライトケージ構造を有するゼオライトを20~50質量%含むものであり、30~45質量%含むものであることが好ましく、35~45質量%含むものであることがより好ましい。
 ソーダライトケージ構造を有するゼオライトの含有量が20質量%以上であることにより、所望の分解活性を得ることができ、また、ソーダライトケージ構造を有するゼオライトの含有量が50質量%以下であることにより、粘土鉱物や、シリカゾル由来のケイ素、第一リン酸アルミニウム由来のリン・アルミニウム等の結合剤由来成分を容易に所望量含有することができることから、得られる接触分解触媒の強度や嵩密度を維持しつつ、接触分解装置を好適に運転することができる。
 本発明の製造方法で得られる接触分解触媒は、シリカゾル由来のケイ素をSiO換算で10~30質量%含有するものであり、15~30質量%含有することが好ましく、15~25質量%含有することがより好ましい。
 シリカゾル由来のケイ素の含有量がSiO換算で10質量%以上であることにより、得られる接触分解触媒の強度が保たれるため、触媒の散飛や、生成油中への混入等の好ましくない現象を回避することができ、また、シリカゾル由来のケイ素の含有量がSiO換算で30質量%以下であることにより、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。
 なお、本発明の製造方法で得られる接触分解触媒は、通常、シリカゾル由来のケイ素を酸化物の状態で含有している。
 本発明の製造方法で得られる接触分解触媒は、第一リン酸アルミニウム由来のリン・アルミニウムを、Al・3P換算で、0.1~21質量%含み、0.1~10質量%含むことが好ましく、0.5~10質量%含むことがより好ましく、0.5~5質量%含むことがさらに好ましい。
 第一リン酸アルミニウム由来のリン・アルミニウムの含有量が0.1質量%以上であることにより炭化水素油の分解活性が向上し、また、第一リン酸アルミニウム由来のリン・アルミニウムの含有量が21質量%以下であることにより、使用量に見合った触媒性能の向上が認められ、かつ、オクタン価が高いガソリン留分を製造することができる。
 なお、第一リン酸アルミニウムは加熱によって脱水され、水分を失うと、酸化物形態(リン酸アルミニウム酸化物(AlPO))となって安定化するものであり、本発明の製造方法で得られる接触分解触媒においても、第一リン酸アルミニウムは酸化物の形態で含有すると考えられる。
 本発明の製造方法で得られる接触分解触媒は、粘土鉱物を5~65質量%含むものであり、5~60質量%含むものであることが好ましく、10~60質量%含むものであることがより好ましい。
 粘土鉱物の含有割合が5質量%以上であることにより、得られる接触分解触媒の触媒強度を向上させるとともに、触媒の嵩密度を維持して接触分解装置を好適に運転することができる。また、粘土鉱物の含有割合が65質量%以下であることにより、ソーダライトケージ構造を有するゼオライトや、シリカゾル由来のケイ素や第一リン酸アルミニウム由来のリン・アルミニウム等の結合剤由来成分を一定割合で含有させて、初期の分解活性を維持しつつ、所望量の結合剤の存在下に容易に触媒調製を行うことができる。
 本発明の製造方法で得られる接触分解触媒は、任意成分として希土類金属を含むものであって、希土類金属を、酸化物換算で、0~2質量%含むものであることが好ましく、0~1.5質量%含むものであることがより好ましく、0.1~1.2質量%含むものであることがさらに好ましい。
 接触分解触媒が希土類金属を酸化物換算で上記割合で含有するものであることにより、本発明に係る接触分解触媒が、高分解活性を発揮し得るとともに、オクタン価の高いガソリン留分を製造することができる。
 本発明の製造方法で得られる接触分解触媒は、シリカゾル由来のケイ素原子に対する第一リン酸アルミニウム由来のリン原子のモル比(リン/ケイ素モル比)が、0.01~0.75であるものが好ましく、0.01~0.35であるものがより好ましい。
 接触分解触媒のリン/ケイ素モル比が0.01以上であることにより、より高い分解活性を有する接触分解触媒を容易に得ることができ、また、接触分解触媒のリン/ケイ素モル比が0.75以下であることにより、より高オクタン価のFCCガソリンを容易に得ることができる。
 本発明の製造方法で得られる接触分解触媒は、触媒調製時に結合剤としてアルミナゾル等の結合剤をさらに使用した場合には、当該結合剤に由来する成分としてアルミナゾルの酸化物等の成分をさらに含有する。
 本発明の製造方法で得られた接触分解触媒を構成するソーダライトケージ構造を有するゼオライトの含有量、シリカゾル由来のケイ素のSiO換算した含有量、第一リン酸アルミニウム由来のリン・アルミニウムをAl・3P換算した含有量、粘土鉱物の含有量及び希土類金属の酸化物換算した含有量は、触媒調製時に加えた各原料量から算出することができる。
 本発明の方法で得られる接触分解触媒は、流動床式の接触分解装置およびバッチ式の接触分解装置の何れの装置においても好適に使用し得るものであるが、流動床式の接触分解装置において好適に使用することができる。
 本発明の製造方法で得られる接触分解触媒は、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができるものである。
 一般に、炭化水素油の流動接触分解は、その性質上、わずかでも分解活性が向上すると、流動接触分解時に必要となる装置コストや運転コストを低減し得るばかりか、装置に対する運転時の負荷を低減して安定した操業が可能になる。
 さらに、一般に、FCCガソリンは、市販ガソリン(市場に出荷するガソリン)への配合量が多いことから、FCCガソリンのオクタン価向上により生み出される利益は非常に大きい。
 本発明で得られた接触分解触媒は、上述したように、重質炭化水素油に対する分解活性が高く、オクタン価の高いガソリン留分(FCCガソリン)を製造し得るものであるから、実用上極めて有効である。
 次に、本発明の製造方法で得られた接触分解触媒を用いた接触分解方法について説明する。
 本発明の製造方法で得られた接触分解触媒を用いた接触分解は、本発明の製造方法で得られた接触分解触媒と炭化水素油(炭化水素混合油)とを接触させることにより実施することができる。
 上記接触分解対象となる炭化水素油としては、ガソリンの沸点以上の温度で沸騰する炭化水素油(炭化水素混合物)を挙げることができる。
 このガソリン沸点以上の温度で沸騰する炭化水素油としては、原油の常圧あるいは減圧蒸留で得られる軽油留分や常圧蒸留残渣油及び減圧蒸留残渣油等から選ばれる一種以上を挙げることができ、もちろんコーカー軽油、溶剤脱瀝油、溶剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油、GTL(Gas to Liquids)油、植物油、廃潤滑油、廃食油等から選ばれる一種以上も挙げることができる。 更に、炭化水素油としては、上記各原料油を当業者に周知の水素化処理、即ちNi-Mo系触媒、Co-Mo系触媒、Ni-Co-Mo系触媒、Ni-W系触媒などの水素化処理触媒の存在下、高温・高圧下で水素化脱硫した水素化処理油も挙げることができる。
 商業的規模での炭化水素油の接触分解処理は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、本発明の製造方法により得られた接触分解触媒を連続的に循環させることにより行うことができる。
 すなわち、触媒再生器から供給される高温の再生触媒を、クラッキング反応器中で炭化水素油と混合して接触させ、上記触媒をクラッキング反応器の上方向に導きつつ、炭化水素油を分解する。次いで、上記炭化水素油を接触分解することにより表面に析出したコークによって失活した触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に供給する。触媒再生器に供給された失活した接触分解触媒は、該触媒上のコークを空気燃焼により除去、再生した後、再びクラッキング反応器に循環する。
 一方、接触分解反応により得られたクラッキング反応器内の分解生成物は、ドライガス、LPG、ガソリン留分、LCO、HCOあるいはスラリー油のような一種以上の留分に分離する。もちろん、分解生成物から分離したLCO、HCO、スラリー油等の一部あるいは全部を、クラッキング反応器内に再循環させて分解反応をさらに進めてもよい。
 クラッキング反応器の運転条件としては、反応温度が400~600℃であることが好ましく、450~550℃であることがより好ましく、反応圧力が常圧~0.49MPa(5kg/cm)であることが好ましく、常圧~0.29MPa(3kg/cm)であることがより好ましく、接触分解触媒の質量/炭化水素油の質量で表される質量比(g/g)が2~20であることが好ましく、4~15であることがより好ましい。
 クラッキング反応器における反応温度が400℃以上であると、炭化水素油の分解反応が進行して、分解生成物を好適に得ることができる。また、クラッキング反応器における反応温度が600℃以下であると、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減することができ、目的物のガソリン留分の収率を相対的に増大させることができるため経済的である。
 クラッキング反応器における反応圧力が0.49MPa以下であることにより、モル数が増加する分解反応の進行が阻害されにくい。また、クラッキング反応器における接触分解触媒の質量/原料炭化水素油の質量で表される比が2以上であると、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。クラッキング反応器における本発明に係る接触分解触媒/原料炭化水素油の質量比(g/g)が20以下である場合も、炭化水素油の分解反応が効果的に進行し、触媒濃度の上昇に見合った分解反応を進行させることができる。
 本発明によれば、オクタン価が高いガソリン留分を高い得率で生産することができるとともに、プロピレンの含有率が高いLPGを高い得率で生産することができる炭化水素油の接触分解触媒を用いた炭化水素油の接触分解方法を提供することができる。このため、本発明の炭化水素油の接触分解方法は、炭化水素油の流動接触分解方法として、好適に実施することができる。
 本発明によれば、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供することができる。
 このため、本発明の製造方法で得られた接触分解触媒により、炭化水素油の流動接触分解方法を好適に実施することができる。
 以下、本発明を実施例により説明するが、これらは例示であって、本発明はこれら実施例によりなんら制限されるものではない。
<触媒調製>
 以下の実施例および比較例においては、ソーダライトケージ構造を有するゼオライトとして表1の特性を有する安定化Y型ゼオライトを使用するとともに、シリカゾルとしてSiO濃度29.0質量%であるもの、第一リン酸アルミニウムとしてAl・3P換算濃度46.2質量%であるもの、粘土鉱物としてカオリナイトをそれぞれ使用した。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 上記シリカゾル42.0g(乾燥基準、SiO換算量)を25%硫酸で希釈し、攪拌することによりシリカゾルの水溶液を得た。一方、表1の特性を有する安定化Y型ゼオライト80.0g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記シリカゾルの水溶液に、上記カオリナイト76.0g(乾燥基準)と、上記ゼオライトスラリーとを添加し、さらに上記第一リン酸アルミニウム2.0g(乾燥基準、Al・3P換算量)とを加えて、ディスパーサーを用いて10分間攪拌混合することにより、総水分量714.3ml、固形分量200gの水性スラリーを調製した。
 上記水性スラリーを調製した後、噴霧乾燥器のタンクに移して、空気雰囲気下、室温で6分間静置することにより熟成処理した。
 次いで、上記熟成処理した水性処理した水性スラリーを、噴霧乾燥器内で210℃の入口温度および140℃の出口温度の条件で3分間噴霧乾燥し、触媒前駆体である微小球体を得た。得られた微小球体を1気圧下、200℃で10分間熱処理した後、60℃に加温された5質量%硫酸アンモニウム水溶液3リットル(以下、リットルを「L」と記すこともある)で2回イオン交換し、更に3Lの蒸留水で洗浄し、乾燥機中110℃で一晩乾燥することにより、目的とする触媒Aを得た。
(実施例2)
 水性スラリーを調製した後、熟成処理の時間を195分間に変更したこと以外は、実施例1と同様の方法で触媒Bを調製した。
(実施例3)
 水性スラリーを調製した後、熟成処理の時間を12分間に変更したこと以外は、実施例1と同様の方法で触媒Cを調製した。
(実施例4)
 水性スラリーを調製した後、熟成処理の時間を95分間に変更したこと以外は、実施例1と同様の方法で触媒Dを調製した。
(実施例5)
 水性スラリーを調製した後、熟成処理の時間を17分間に変更したこと以外は、実施例1と同様の方法で触媒Eを調製した。
(実施例6)
 水性スラリーを調製した後、熟成処理の時間を55分間に変更したこと以外は、実施例1と同様の方法で触媒Fを調製した。
(実施例7)
 水性スラリー調製時の攪拌時間を5分間に変更し、水性スラリーを調製した後、熟成処理の時間を17分間に変更したこと以外は、実施例1と同様の方法で触媒Gを調製した。
(実施例8)
 水性スラリー調製時の攪拌時間を2分間に変更し、水性スラリーを調製した後、熟成処理の時間を17分間に変更したこと以外は、実施例1と同様の方法で触媒Hを調製した。
(実施例9)
 上記安定化Y型ゼオライトの使用量を80.0g(乾燥基準)から60.0g(乾燥基準)に変更し、上記カオリナイトの使用量を76.0g(乾燥基準)から96.0g(乾燥基準)に変更した以外は、実施例6と同様の方法で触媒Iを調製した。
(実施例10)
 上記第一リン酸アルミニウムの使用量を2.0g(乾燥基準、Al・3P換算量)から4.0g(乾燥基準、Al・3P換算量)に変更し、上記カオリナイトの使用量を76.0g(乾燥基準)から74.0g(乾燥基準)に変更した以外は、実施例6と同様の方法で触媒Jを調製した。
(比較例1)
 水性スラリーを調製した後、熟成処理の時間を2分間に変更したこと以外は、実施例1と同様の方法で比較触媒1を調製した。
(比較例2)
 水性スラリーを調製した後、熟成処理の時間を250分間に変更したこと以外は、実施例1と同様の方法で比較触媒2を調製した。
(比較例3)
 水性スラリーを調製した後、熟成処理の時間を2分間に変更したこと以外は、実施例9と同様の方法で比較触媒3を調製した。
(比較例4)
 水性スラリーを調製した後、熟成処理の時間を2分間に変更したこと以外は、実施例10と同様の方法で比較触媒4を調製した。
 触媒A~触媒Jおよび比較触媒1~比較触媒4の調製条件を表2に示す。
 なお、表2において、「Yゼオライト」は、安定化Y型ゼオライトの乾燥基準での含有量を示し、「シリカゾル」は、シリカゾルを乾燥基準でSiO換算したときの含有量を示し、「第一リン酸アルミニウム」は、第一リン酸アルミニウムを乾燥基準でAl・3P換算したときの含有量を示し、「粘土鉱物」は、粘土鉱物(カオリナイト)の乾燥基準での含有量を示している。
Figure JPOXMLDOC01-appb-T000002
 <流動接触分解>
 実施例1~実施例10および比較例1~比較例4で調製した接触分解触媒を用い、反応容器(クラッキング容器)と触媒再生器とを有する流動床式接触分解装置であるベンチスケールプラントにより、同一原料油を同一条件下で流動接触分解させた。
 先ず、接触分解に先立ち、実際の使用状態に近似させるべく、即ち平衡化させるべく、実施例1~実施例10および比較例1~比較例4で調製した各接触分解触媒を、500℃で5時間乾燥した後、各接触分解触媒のニッケル及びバナジウムの含有量がそれぞれ1000質量ppm及び2000質量ppmになるように、ナフテン酸ニッケル及びナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させた後、乾燥させ、600℃で2時間の焼成を行い、引き続き、各触媒を100%水蒸気雰囲気中785℃で6時間処理した。
 続いて、上記のとおり実際の使用状態に近似させた各接触分解触媒を用い、表3に記載の性状を有する、脱硫減圧軽油(VGO)50容量%と脱硫残油(DDSP)50容量%とを混合してなる炭化水素油を、表4に記載の反応条件により、各例で得られた接触分解触媒を用いて流動接触分解反応を行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<調製した触媒の接触分解反応結果>
 上記分解条件で得られた、ガソリン留分(沸点25~190℃)、中間留分(LCO(沸点190~350℃))および重質留分(沸点350℃以上)の生成量(容量%および質量%)を、各々Agilent technologies社製 AC Simdis Analyzerを用いたガスクロ蒸留法により測定した。
 得られたガソリン留分の含有割合(容量%)をガソリンの得率(容量%)として表5に示す。
 また、上記測定結果に基づき、触媒/原料油(質量比)=8における転化率(質量%)を下記式により算出した。結果を表5に示す。
 転化率(質量%)=100(質量%)-LCOの含有割合(質量%)-重質留分の含有割合(質量%)
 さらに、得られたガソリン留分のリサーチオクタン価(RON)を、ヒューレッドパッカード社製PONA分析装置を用い、ガスクロマトグラフ法によるGC-RONにより算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表2および表5より、実施例1~実施例10においては、ソーダライトケージ構造を有するゼオライト、シリカゾル、第一リン酸アルミニウムおよび粘土鉱物を所定量含む水性スラリーを、5~200分間熟成した後、噴霧乾燥して接触分解触媒を調製していることから、得られた接触分解触媒は、転化率が61.6~67.2質量%と高く、ガソリン留分の得率が48.1~49.5容量%と高く、ガソリン留分のオクタン価(RON)も90.4~90.6と高い。
 一方、表2および表5より、比較例1、比較例3、比較例4においては、上記熟成時間が2分間と短く、比較例2においては、上記熟成時間が250分間と長すぎるために、これ等の例においては、転化率が60.0~65.4(質量%)と低下傾向を示し、ガソリン留分の得率が42.8~47.8容量%と低く、ガソリン留分のオクタン価も89.8~90.2と低い。
 このため、実施例1~実施例10においては、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造できることが分かる。
 本発明によれば、重質炭化水素油に対する分解活性が高く、オクタン価が高いガソリン留分を高い得率で生産することができる炭化水素油の接触分解触媒を簡便に製造する方法を提供することができる。

Claims (1)

  1.  炭化水素油の接触分解触媒を製造する方法であって、
     固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20~50質量%、シリカゾルをSiO換算で10~30質量%、第一リン酸アルミニウムをAl・3P換算で0.1~21質量%および粘土鉱物を5~65質量%含有する水性スラリーを調製した後、5~200分間熟成し、次いで噴霧乾燥処理する
    ことを特徴とする炭化水素油の接触分解触媒の製造方法。
PCT/JP2014/057074 2013-03-22 2014-03-17 炭化水素油の接触分解触媒の製造方法 WO2014148416A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157027538A KR102089608B1 (ko) 2013-03-22 2014-03-17 탄화수소유의 접촉 분해 촉매의 제조 방법
EP14770804.4A EP2977104B1 (en) 2013-03-22 2014-03-17 Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
AU2014239739A AU2014239739B2 (en) 2013-03-22 2014-03-17 Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
BR112015024069-0A BR112015024069B1 (pt) 2013-03-22 2014-03-17 método para produzir um catalisador para craqueamento catalítico de um óleo de hidrocarboneto
CN201480017516.5A CN105050715B (zh) 2013-03-22 2014-03-17 烃油的催化裂化催化剂的制造方法
US14/772,165 US9415380B2 (en) 2013-03-22 2014-03-17 Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
CA2907716A CA2907716C (en) 2013-03-22 2014-03-17 Method for manufacturing catalytic cracking catalyst for hydrocarbon oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013059339A JP5911446B2 (ja) 2013-03-22 2013-03-22 炭化水素油の接触分解触媒の製造方法
JP2013-059339 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148416A1 true WO2014148416A1 (ja) 2014-09-25

Family

ID=51580095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057074 WO2014148416A1 (ja) 2013-03-22 2014-03-17 炭化水素油の接触分解触媒の製造方法

Country Status (9)

Country Link
US (1) US9415380B2 (ja)
EP (1) EP2977104B1 (ja)
JP (1) JP5911446B2 (ja)
KR (1) KR102089608B1 (ja)
CN (1) CN105050715B (ja)
AU (1) AU2014239739B2 (ja)
BR (1) BR112015024069B1 (ja)
CA (1) CA2907716C (ja)
WO (1) WO2014148416A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135748A1 (en) * 2015-08-24 2017-03-01 INDIAN OIL CORPORATION Ltd. A composition and a process for preparation of attrition resistant cracking catalyst suitable for enhancing light olefins
US10669671B2 (en) 2016-04-04 2020-06-02 Fiberlean Technologies Limited Ceiling tile compositions comprising microfibrillated cellulose and methods for making same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025298B (zh) * 2015-07-23 2021-07-06 雅宝公司 Fcc催化剂添加剂和粘合剂
US10647922B2 (en) * 2015-12-18 2020-05-12 Solvay Sa Use of a catalyst composition for the catalytic depolymerization of plastics waste
JP7512196B2 (ja) 2017-12-11 2024-07-08 ビーエーエスエフ コーポレーション 残油分解触媒のための反応性シリカ-アルミナマトリックス成分組成物
US11343260B2 (en) 2018-03-01 2022-05-24 Google Llc Gradual credential disablement
CN112237941A (zh) * 2019-07-19 2021-01-19 国家能源投资集团有限责任公司 芳构化催化剂及其制备方法和低碳烯烃芳构化方法
DE102020132631A1 (de) 2020-12-08 2022-06-09 Valeo Schalter Und Sensoren Gmbh Ultraschallsensor für ein kraftfahrzeug und kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544317B2 (ja) 1990-06-29 1996-10-16 財団法人石油産業活性化センター 流動接触分解触媒組成物およびその製法ならびにそれを用いる炭化水素油の流動接触分解法
JP2002515329A (ja) * 1998-05-15 2002-05-28 ブルドッグ テクノロジーズ,ユー.エス.エイ.,インコーポレイテッド アルカリリン酸塩活性化クレー・ゼオライト触媒
JP2009262127A (ja) * 2008-03-31 2009-11-12 Petroleum Energy Center 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
JP2010247146A (ja) 2009-03-25 2010-11-04 Petroleum Energy Center 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
JP2012061408A (ja) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center 接触分解触媒の製造方法
JP2012061409A (ja) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center 接触分解触媒の製造方法
JP2012170855A (ja) * 2011-02-18 2012-09-10 Cosmo Oil Co Ltd 炭化水素油の接触分解触媒及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3720850A1 (de) * 1987-06-24 1989-01-05 Basf Ag Verfahren zur herstellung von ungesaettigten und gesaettigten ketonen
US5179054A (en) * 1987-12-28 1993-01-12 Mobil Oil Corporation Layered cracking catalyst and method of manufacture and use thereof
US5160601A (en) * 1988-09-30 1992-11-03 Chevron Research Company Hydrocarbon conversion with octane-enhancing catalysts
US5238676A (en) * 1990-01-25 1993-08-24 Mobil Oil Corporation Method for modifying synthetic mesoporous crystalline materials
US5258114A (en) * 1990-01-25 1993-11-02 Mobil Oil Corporation Ultra large pore cracking catalyst and process for catalytic cracking
US5264203A (en) * 1990-01-25 1993-11-23 Mobil Oil Corporation Synthetic mesoporous crystalline materials
US5958818A (en) * 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
CN1119390C (zh) * 1999-04-09 2003-08-27 中国石油化工集团公司 一种石油烃类裂化催化剂的制备方法
CN101134172B (zh) * 2006-08-31 2010-10-27 中国石油化工股份有限公司 一种烃类转化催化剂
CN102553636B (zh) * 2010-12-20 2014-08-13 中国石油化工股份有限公司 一种烷基化催化剂
JP5757620B2 (ja) * 2011-04-18 2015-07-29 株式会社不動テトラ 地盤改良装置及びそのリーダ起伏方法
JP5904922B2 (ja) * 2012-10-10 2016-04-20 コスモ石油株式会社 炭化水素油の接触分解触媒及び炭化水素油の接触分解方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544317B2 (ja) 1990-06-29 1996-10-16 財団法人石油産業活性化センター 流動接触分解触媒組成物およびその製法ならびにそれを用いる炭化水素油の流動接触分解法
JP2002515329A (ja) * 1998-05-15 2002-05-28 ブルドッグ テクノロジーズ,ユー.エス.エイ.,インコーポレイテッド アルカリリン酸塩活性化クレー・ゼオライト触媒
JP2009262127A (ja) * 2008-03-31 2009-11-12 Petroleum Energy Center 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
JP2010247146A (ja) 2009-03-25 2010-11-04 Petroleum Energy Center 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
JP2012061408A (ja) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center 接触分解触媒の製造方法
JP2012061409A (ja) * 2010-09-15 2012-03-29 Japan Petroleum Energy Center 接触分解触媒の製造方法
JP2012170855A (ja) * 2011-02-18 2012-09-10 Cosmo Oil Co Ltd 炭化水素油の接触分解触媒及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.K. BEYER ET AL., J. CHEM. SOC., FARADAY TRANS., vol. 1, no. 81, 1985, pages 2899
See also references of EP2977104A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135748A1 (en) * 2015-08-24 2017-03-01 INDIAN OIL CORPORATION Ltd. A composition and a process for preparation of attrition resistant cracking catalyst suitable for enhancing light olefins
US10669671B2 (en) 2016-04-04 2020-06-02 Fiberlean Technologies Limited Ceiling tile compositions comprising microfibrillated cellulose and methods for making same
US11512020B2 (en) 2016-04-04 2022-11-29 Fiberlean Technologies Limited Compositions and methods for providing increased strength in ceiling, flooring, and building products

Also Published As

Publication number Publication date
JP5911446B2 (ja) 2016-04-27
EP2977104A1 (en) 2016-01-27
CN105050715B (zh) 2017-08-08
BR112015024069A2 (pt) 2017-07-18
CN105050715A (zh) 2015-11-11
EP2977104A4 (en) 2017-01-11
CA2907716A1 (en) 2014-09-25
JP2014184361A (ja) 2014-10-02
US9415380B2 (en) 2016-08-16
US20160008796A1 (en) 2016-01-14
KR102089608B1 (ko) 2020-03-16
EP2977104B1 (en) 2018-01-10
KR20150133742A (ko) 2015-11-30
CA2907716C (en) 2019-09-17
AU2014239739A1 (en) 2015-09-17
AU2014239739B2 (en) 2017-03-30
BR112015024069B1 (pt) 2020-12-01

Similar Documents

Publication Publication Date Title
JP5911446B2 (ja) 炭化水素油の接触分解触媒の製造方法
JP5392150B2 (ja) 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
KR102095506B1 (ko) 탄화수소유의 접촉 분해 촉매 및 탄화수소유의 접촉 분해 방법
JP5126613B2 (ja) 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
JP5660674B2 (ja) 炭化水素油の接触分解触媒及びその製造方法
JP5470660B2 (ja) 接触分解触媒の製造方法
JP5152925B2 (ja) 炭化水素油の接触分解触媒、炭化水素油の接触分解触媒の製造方法および炭化水素油の接触分解方法
JP5499407B2 (ja) 接触分解触媒の製造方法
JP5445781B2 (ja) 接触分解触媒の製造方法
JP6327709B2 (ja) 炭化水素油の接触分解触媒および炭化水素油の接触分解方法
JP2011088137A (ja) 炭化水素油の接触分解触媒及びその製造方法、並びに炭化水素油の接触分解方法
JP2008200580A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP6632065B2 (ja) 炭化水素油の接触分解触媒、炭化水素油の接触分解触媒の製造方法および炭化水素油の接触分解方法
JP2009148704A (ja) 炭化水素油の接触分解触媒及び炭化水素油の接触分解方法
JP2008173529A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP2008173530A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017516.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772165

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014239739

Country of ref document: AU

Date of ref document: 20140317

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2907716

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014770804

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157027538

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024069

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024069

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150918