WO2014141809A1 - 電池パック、移動体および制御方法 - Google Patents

電池パック、移動体および制御方法 Download PDF

Info

Publication number
WO2014141809A1
WO2014141809A1 PCT/JP2014/053405 JP2014053405W WO2014141809A1 WO 2014141809 A1 WO2014141809 A1 WO 2014141809A1 JP 2014053405 W JP2014053405 W JP 2014053405W WO 2014141809 A1 WO2014141809 A1 WO 2014141809A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
cell
abnormality
value
temperature
Prior art date
Application number
PCT/JP2014/053405
Other languages
English (en)
French (fr)
Inventor
忠大 吉田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US14/774,406 priority Critical patent/US20160043583A1/en
Priority to JP2015505330A priority patent/JPWO2014141809A1/ja
Publication of WO2014141809A1 publication Critical patent/WO2014141809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack provided with secondary battery cells, and more particularly, to a battery pack provided with lithium ion secondary battery cells.
  • lithium ion secondary battery cells have attracted attention as a power source for electrical equipment.
  • Lithium ion secondary battery cells have the advantage that they can be reduced in size and weight because of their high energy density.
  • lithium ion secondary battery cells are damaged by overcharge or overdischarge. There is a possibility. For this reason, the lithium ion secondary battery cell is normally used as a battery pack together with a protection circuit (BMU: Battery Management Unit) for protecting the lithium ion secondary battery cell.
  • BMU Battery Management Unit
  • the protection circuit monitors the state of the lithium ion secondary battery cell and blocks the lithium ion secondary battery cell from the outside based on the state before the lithium ion secondary battery cell is damaged. More specifically, the protection circuit determines the voltage between the two electrodes of the lithium ion secondary battery cell, the current flowing through the lithium ion secondary battery cell, and the temperature of the lithium ion secondary battery cell. The state is monitored, and when these values exceed a predetermined threshold, the lithium ion secondary battery cell is forcibly cut off from the outside, thereby preventing damage to the lithium ion secondary battery cell.
  • the lithium ion secondary battery cell is cut off from the outside at the moment when the above value exceeds the threshold, the power supply to the electric device is suddenly stopped, and data processing such as a personal computer or a mobile phone is performed. In such an electrical device, the problem is that data being processed is destroyed.
  • Patent Document 1 discloses a signal indicating that power supply is stopped when the voltage exceeds a threshold value in order to secure time for saving data being processed by the electric device to a hard disk or the like.
  • An overdischarge prevention device is described in which the energization between the battery cell and the outside is interrupted after about several milliseconds to several hundred milliseconds.
  • the battery pack as described above is used as a power source for a mobile body such as an electric assist bicycle
  • a mobile body such as an electric assist bicycle
  • the pedal of the electric assist bicycle or the electric vehicle There is a problem that the load related to the steering wheel or the like suddenly changes and driving becomes unstable.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a battery pack, a moving body, and a control method capable of solving the problem of unstable operation.
  • the battery pack according to the present invention is a battery pack including secondary battery cells, a switch for switching connection and disconnection between the secondary battery cells and the outside, and detection for detecting a state value indicating the state of the battery pack. And determining whether or not an abnormality has occurred in the battery pack based on the state value, and when the abnormality has occurred, an abnormality signal indicating that the abnormality has occurred is transmitted to the outside.
  • a management unit that outputs a shut-off instruction to shut off the secondary battery cell from outside after a predetermined delay time has elapsed; and when the shut-off instruction is output, the switch is used to switch the secondary battery
  • a blocking unit that blocks the cell from the outside, and the delay time is 5 seconds or more.
  • the moving body according to the present invention includes the above battery pack.
  • a battery pack control method is a battery pack control method including a secondary battery cell, wherein a state value indicating a state of the battery pack is detected, and the battery pack is detected based on the state value. It is determined whether or not an abnormality has occurred, and when the abnormality has occurred, an abnormality signal indicating that the abnormality has occurred is transmitted to the outside, and then after a predetermined delay time has elapsed, the secondary battery A battery pack control method for outputting a shut-off instruction for shutting off a cell from the outside, and shutting off the secondary battery cell from the outside when the shut-off instruction is output, and the delay time is 5 seconds or more .
  • FIG. 1 is a block diagram showing a configuration of a battery pack according to an embodiment of the present invention.
  • a battery pack 100 includes a battery unit 1 and a protection unit (BMU: Battery Management Unit) 2.
  • the battery pack 100 is connected to an electric device (not shown in FIG. 1) and functions as a power source for the electric device.
  • the electric device is a moving body such as an electric assist bicycle, an electric motorcycle, and an electric automobile.
  • the battery unit 1 includes a secondary battery cell (Cell) 11 that can be charged and discharged, a positive electrode terminal P, and a negative electrode terminal N.
  • Cell secondary battery cell
  • the battery unit 1 has a configuration in which a plurality of secondary battery cells 11 are connected in series.
  • the battery part 1 may be comprised by the single secondary battery cell, and the structure by which the some secondary battery was connected in parallel or the matrix form may be sufficient. Note that the number and arrangement of the secondary battery cells are appropriately determined according to the type of the electrical device, the type of the secondary battery cell, and the like.
  • the type of the secondary battery cell 11 is not particularly limited, but is, for example, a lithium ion secondary battery cell.
  • the lithium ion secondary battery cell include a manganese lithium ion secondary battery cell in which the positive electrode is formed of manganese, and a ternary lithium ion battery cell in which the positive electrode is formed of cobalt, nickel, and manganese.
  • the protection unit 2 is connected to the battery unit 1 (specifically, the positive electrode terminal P and the negative electrode terminal N), and protects the electric device connected to the battery unit 1 and the battery pack 100.
  • the protection unit 2 includes a discharge FET (Field effect transistor) 21, a charge FET22, temperature sensors 23 and 24, a current detection unit 25, a monitoring IC (Integrated Circuit) 26, and an MCU (Micro Control). Unit) 26. Further, the protection unit 2 includes a positive output terminal POUT and a negative output terminal NOUT for transmitting / receiving electric power to / from an electric device, and a communication terminal CX for communicating with the electric device. There may be a plurality of communication terminals CX.
  • the discharge FET 21 and the charge FET 22 constitute a switch that switches between connection and disconnection between the battery unit 1 (specifically, the secondary battery cell 11) and the outside.
  • the discharge FET 21 is a switch for controlling the discharge current output from the battery unit 1
  • the charge FET 22 is a switch for controlling the charge current supplied to the battery unit 1.
  • the discharge FET 21 and the charge FET 22 are provided between the positive terminal P and the positive output terminal POUT of the battery unit 1, but between the negative terminal N and the negative output terminal NOUT of the battery unit 1. May be provided.
  • a switch for controlling the discharge current and the charge current a breaker or a relay may be used instead of the FET.
  • the temperature sensors 23 and 24, the current detection unit 25, and the monitoring IC 26 constitute a detection unit that detects a state value indicating the state of the battery pack 100.
  • the detection unit has, as the state value, a cell voltage value that is a voltage value between both electrodes of the secondary battery cell 11, a cell current value that is a value of a discharge current flowing through the secondary battery cell 11, and a pack temperature that is a temperature of the battery pack. However, in the present embodiment, all of the state values are detected. Further, the detection unit may detect at least one of the cell temperature that is the temperature of the battery unit 1 and the switch temperature that is the temperature of the switch (discharge FET 21 and charge FET 22) as the pack temperature. Both pack temperatures shall be detected.
  • the temperature sensor 23 detects the cell temperature that is the temperature of the battery unit 1. There may be a plurality of temperature sensors 23. In this case, each of the temperature sensors 23 measures the temperature of a different part of the battery unit 1.
  • the temperature sensor 24 detects the switch temperature, which is the temperature of the discharge FET 21 and the charge FET 22. There may be a plurality of temperature sensors 24. In this case, each of the temperature sensors 24 measures the temperature of each of the discharge FET 21 and the charge FET 22.
  • the current detector 25 detects the charging current and discharging current of the battery unit 1.
  • the current detection unit 25 is provided between the negative electrode terminal N and the negative electrode output terminal NOUT of the battery unit 1, but between the positive electrode terminal P and the positive electrode output terminal POUT of the battery unit 1. May be provided.
  • the charging current and discharging current of the battery unit 1 may be collectively referred to as charging / discharging current.
  • the monitoring IC 26 functions as a detection unit that detects a cell voltage value that is a voltage between both electrodes of each secondary battery cell 11 and a blocking unit that blocks the battery unit 1 from the outside using the discharge FET 21 and the charging FET 22. It has the function of.
  • the monitoring IC 26 is sometimes called an analog front end (AFE: Analog Front End).
  • the monitoring IC 26 specifically, when the MCU 27 outputs a shut-off instruction to shut off the battery unit 1 from the outside, the discharge FET 21, the charge FET 22, or the discharge FET 21 and the charge FET 22 Both are turned off to block the battery unit 1 from the outside.
  • the MCU 27 is sometimes called a management unit.
  • the MCU 27 detects the detected state values (that is, the cell temperature and switch temperature detected by the temperature sensors 23 and 24, the charging / discharging current detected by the current detection unit 25, and the cell voltage value detected by the monitoring IC 26). ) To determine whether or not an abnormality has occurred in the battery pack 100.
  • the MCU 27 determines whether or not the state value satisfies an abnormal condition corresponding to the state value, and when there is a state value that satisfies the abnormal condition, When it is determined that an abnormality has occurred and there is no state value that satisfies the abnormality condition, it is determined that no abnormality has occurred.
  • the MCU 27 transmits an abnormality signal indicating that an abnormality has occurred to the outside via the communication terminal CX. Thereafter, after a predetermined delay time has elapsed, the MCU 27 outputs to the monitoring IC 26 a cutoff instruction to shut off the battery unit 1 (specifically, the secondary battery cell 11) from the outside.
  • the delay time is desirably a time that allows a user who uses the mobile body equipped with the battery pack 100 to confirm that the power supply from the battery pack 100 is stopped, and specifically, it is 5 seconds or more. It is desirable to be. However, if the delay time is too long, there is a possibility that the secondary battery cell 11 may be damaged. For this reason, it is desirable that the delay time be included in the range from 5 seconds to 1 minute.
  • the MCU 27 may determine whether or not an abnormality is predicted to occur in the battery pack 100 based on the state value. Specifically, the MCU 27 determines, for each state value, whether or not the state value satisfies a warning condition corresponding to the state value. Is predicted, and if there is no state value that satisfies the warning condition, it is determined that the occurrence of abnormality is not predicted. When the occurrence of an abnormality is predicted, the MCU 27 transmits a warning signal indicating that the occurrence of the abnormality is predicted to the outside through the communication terminal CX.
  • Examples of abnormalities occurring in the battery pack include overdischarge, discharge overcurrent, abnormally high temperature, open breakage, and disconnection.
  • processing performed by the MCU 27 for each type of abnormality will be described.
  • the cell voltage value is desirably equal to or lower than the first voltage threshold value.
  • the MCU 27 determines that an abnormality has occurred, continues to transmit an abnormality signal until the delay time elapses, and then outputs a cutoff instruction to the monitoring IC 26. This causes the monitoring IC 26 to block the battery unit 1 from the outside.
  • the deep discharge voltage value that is a voltage value that may cause a problem during charging, and when the secondary battery cell is left uncharged for a predetermined period (for example, several months to several years)
  • the discharge end voltage value which is a voltage value that becomes a deep discharge voltage value
  • the first voltage threshold is about 2.3 V
  • the battery unit 1 is actually cut off from the outside after the cell voltage value becomes equal to or lower than the first voltage threshold. Until then, even if the cell voltage value is lowered, the deterioration of the secondary battery cell can be suppressed.
  • the first voltage threshold is higher than 2.3V.
  • a 1st voltage threshold value is determined according to the characteristic of the secondary battery cell 11, etc., it is desirable to be contained in the range from 2.5V to 2.9V, for example.
  • the cell voltage value is larger than the first voltage threshold and not more than the second voltage threshold larger than the first voltage threshold.
  • the MCU 27 transmits a warning signal to the outside via the communication terminal CX when the cell voltage value is greater than the first voltage threshold and less than or equal to the second voltage threshold greater than the first voltage threshold.
  • the second voltage threshold is included in a range from 2.9V to 3.3V, for example.
  • the cell current value is desirably equal to or higher than the first current threshold value.
  • the MCU 27 determines that an abnormality has occurred, continues to transmit an abnormality signal until the delay time has elapsed, and then outputs a cutoff instruction to the monitoring IC 26. This causes the monitoring IC 26 to block the battery unit 1 from the outside.
  • the first current threshold value varies depending on the characteristics of the secondary battery cell 11, but when the maximum value of the cell current value in which the operation of the secondary battery cell 11 is guaranteed is 20A, for example, a range from 25A to 40A include.
  • the MCU 27 transmits a warning signal to the outside via the communication terminal CX when the cell current value is smaller than the first current threshold and equal to or larger than the second current threshold smaller than the first current threshold.
  • the second current threshold is included in a range from 20A to 35A, for example.
  • the cell temperature is desirably equal to or higher than the first cell temperature threshold
  • the switch temperature is equal to or higher than the first switch temperature threshold. It is desirable to become.
  • the MCU 27 determines that an abnormality has occurred when the cell temperature value is equal to or higher than the first cell temperature threshold, or when the switch temperature is equal to or higher than the first switch temperature threshold, and the delay time is determined.
  • the abnormal signal continues to be transmitted until the time elapses, and thereafter, the battery IC 1 is shut off from the outside by outputting a shut-off instruction to the monitor IC 26.
  • the first cell temperature threshold value varies depending on the characteristics of the secondary battery cell 11. For example, when the maximum value of the guaranteed operating temperature of the secondary battery cell 11 is 60 ° C., the first cell temperature threshold is in the range from 60 ° C. to 70 ° C. included.
  • the first switch temperature threshold value varies depending on the characteristics of the switch. For example, when the junction temperature of the FET that is the switch is 150 ° C., the first switch temperature threshold is included in the range from 90 ° C. to 110 ° C.
  • the cell temperature is lower than the first cell temperature threshold and equal to or higher than the second cell temperature threshold lower than the first cell temperature threshold.
  • the warning condition corresponding to the switch temperature may be that the switch temperature is lower than the first switch temperature threshold and equal to or higher than the second switch temperature threshold lower than the first switch temperature threshold.
  • the MCU 27 determines whether the cell temperature is lower than the first cell temperature threshold and the second cell temperature threshold is lower than the first cell temperature threshold or the warning condition corresponding to the switch temperature is When the switch temperature is lower than the first switch temperature threshold and equal to or higher than the second switch temperature threshold lower than the first switch temperature threshold, a warning signal is transmitted to the outside via the communication terminal CX.
  • the second cell temperature threshold is included in a range from 45 ° C. to 60 ° C., for example, when the maximum value of the guaranteed operating temperature of the secondary battery cell 11 is 60 ° C.
  • the second switch temperature threshold is included in the range from 70 ° C. to 90 ° C., for example, when the junction temperature of the FET that is the switch is 150 ° C.
  • NTC thermistor Negative Temperature Coefficient Thermistor
  • the abnormal condition corresponding to the pack temperature includes that the pack temperature is equal to or lower than the pack temperature threshold.
  • the MCU 27 determines that an abnormality has occurred, continues to transmit an abnormality signal until the delay time elapses, and then outputs a cutoff instruction to the monitoring IC 26. Then, the monitoring IC 26 blocks the battery unit 1 from the outside.
  • the pack temperature threshold is included in the range of ⁇ 15 ° C. to ⁇ 25 ° C.
  • the status value may temporarily become an abnormal value for some reason. In such a case, if the secondary battery cell 11 is cut off from the outside, the power supply to the outside is stopped regardless of whether the secondary battery cell 11 is damaged or the like, which is not convenient. .
  • the MCU 27 determines, for each state value, whether or not the state value continues the predetermined insensitive time to satisfy the abnormal condition, and the state value that satisfies the abnormal condition continues for the insensitive time. If present, it is desirable to determine that an abnormality has occurred.
  • the insensitive time is a time for preventing erroneous determination of abnormality, and is a value within 5 seconds, for example.
  • the monitoring IC 26 needs to be connected to both electrodes of the secondary battery cell 11 via wiring in order to detect the cell voltage value of the secondary battery cell 11. When this wiring is disconnected, the monitoring IC 26 cannot detect the cell voltage value, and the detection of the cell voltage value is stopped.
  • the MCU 27 is set as the abnormal condition for the cell voltage value that the detection of the cell voltage value is stopped, and the MCU 27 determines that an abnormality has occurred when the detection of the cell voltage value is stopped. .
  • FIG. 2 is a block diagram showing an example of the configuration of an electric device provided with the battery pack 100.
  • a moving body 200 shown in FIG. 2 includes a battery pack 100, a load 201, a control unit 202, and a notification unit 203.
  • the load 201 is connected to the positive electrode output terminal POUT and the negative electrode output terminal NOUT of the battery pack 100 and is driven by electric power supplied from the battery pack 100 via the positive electrode output terminal POUT and the negative electrode output terminal NOUT.
  • Examples of the load 201 include an electric vehicle and a motor of an electric assist bicycle.
  • the control unit 202 is connected to the communication terminal CX of the battery pack 100 and receives an abnormality signal and a warning signal from the battery pack 100 via the communication terminal CX.
  • the control unit 202 uses the notification unit 203 to notify the user that an abnormality is predicted to occur.
  • the control unit 202 uses the notification unit 203 to notify that the power supply from the battery pack 100 is stopped. At this time, the control unit 202 may notify the remaining time until the power supply from the battery pack 100 is stopped.
  • the notification unit is, for example, a monitor, a speaker, and a vibration.
  • the battery pack 100 may be detachable from the moving body 200.
  • the moving body 200 may include a standby power source other than the battery pack 100.
  • FIG. 3 is a flowchart for explaining an example of the operation of the battery pack 100.
  • the temperature sensor 23 detects the cell temperature, which is the temperature of the battery unit 1, and notifies the monitoring IC 26 of a cell temperature signal indicating the cell temperature.
  • the temperature sensor 24 detects a switch temperature, which is a switch temperature, and notifies the monitoring IC 26 of a switch temperature signal indicating the switch temperature.
  • the current detection unit 25 detects the charge / discharge current of the battery unit 1 and notifies the monitoring IC 26 of a current signal indicating the charge / discharge current.
  • the monitoring IC 26 detects the cell voltage of each secondary battery cell 11 and receives a cell temperature signal, a switch temperature signal, and a current signal. Then, the monitoring IC 26 notifies the MCU 27 of the voltage signal indicating each detected cell voltage and the received cell temperature signal, switch temperature signal, and current signal (step S301).
  • step S302 When the MCU 27 receives the voltage signal, the cell temperature signal, the switch temperature signal, and the current signal, whether or not an abnormality has occurred in the battery pack 100 based on the voltage signal, the cell temperature signal, the switch temperature signal, and the current signal. It is determined whether or not (step S302).
  • the MCU 27 determines whether or not an abnormality is predicted to occur in the battery pack 100 based on the voltage signal, the cell temperature signal, the switch temperature signal, and the current signal (step) S303).
  • the MCU 27 ends the process.
  • the MCU 27 transmits a warning signal to the control unit 202 of the moving body 200 via the communication terminal CX (step S304), and ends the process.
  • the control unit 202 uses the notification unit 203 to notify the user that the occurrence of an abnormality is predicted.
  • step S302 the MCU 27 transmits an abnormality signal to the control unit 202 of the moving body 200 via the communication terminal CX (step S305).
  • the control unit 202 uses the notification unit 203 to notify the user that power supply from the battery pack 100 is stopped.
  • step S305 When an abnormal signal is transmitted in step S305, the MCU 27 measures time until the delay time elapses (step S306).
  • the MCU 27 transmits a cutoff instruction to the monitoring IC 26.
  • the monitoring IC 26 turns off the discharge FET 21, the charge FET 22, or both the discharge FET 21 and the charge FET 22, shuts off the battery unit 1 from the outside (step S307), and ends the process. Thereby, the power supply to the load 201 of the moving body 200 is stopped.
  • an abnormality signal indicating that the abnormality has occurred is transmitted to the outside, and then, after 5 seconds or more have elapsed, the secondary battery cell 11 is disconnected from the outside. Therefore, it is possible to secure a sufficient time for notifying the user that the power is supplied before the power supply is stopped. Therefore, since it becomes possible to know in advance that the load related to the pedal of the electric assist bicycle or the handle of the electric vehicle changes, it becomes possible to reduce the unstable driving.
  • a warning signal is output, so that it is possible to more reliably reduce the unstable operation.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
  • a battery pack comprising secondary battery cells, A switch for switching between connection and disconnection between the secondary battery cell and the outside; A detection unit for detecting a state value indicating the state of the battery pack; Based on the state value, it is determined whether or not an abnormality has occurred in the battery pack. If the abnormality has occurred, an abnormality signal indicating that the abnormality has occurred is transmitted to the outside, and then predetermined.
  • a management unit that outputs a shut-off instruction to shut off the secondary battery cell from the outside after a delay time has elapsed; A shut-off unit that shuts off the secondary battery cell from the outside using the switch when the shut-off instruction is output; The battery pack, wherein the delay time is 5 seconds or more.
  • the detection unit includes, as the state value, a cell voltage value that is a voltage value between both electrodes of the secondary battery cell, a cell current value that is a value of a discharge current flowing through the secondary battery cell, and a temperature of the battery pack The battery pack according to appendix 1, wherein at least one of a certain pack temperature is detected.
  • the management unit determines, for each of the detected state values, whether the state value satisfies an abnormal condition corresponding to the state value, and when there is a state value that satisfies the abnormal condition, The battery pack according to appendix 2, wherein it is determined that an abnormality has occurred.
  • the abnormal condition corresponding to the cell voltage value includes that the cell voltage value is equal to or lower than a first voltage threshold value,
  • the management unit indicates that the occurrence of the abnormality is predicted when the cell voltage value is greater than the first voltage threshold and less than or equal to a second voltage threshold greater than the first voltage threshold.
  • the first voltage threshold is included in a range from 2.5V to 2.9V
  • the battery pack according to appendix 4 wherein the second voltage threshold is included in a range from 2.9 V to 3.2 V.
  • the abnormal condition corresponding to the cell current value includes that the cell current value is equal to or higher than a first current threshold value,
  • the management unit issues a warning signal that the occurrence of the abnormality is predicted when the cell current value is smaller than the first current value and becomes equal to or greater than a second current threshold value smaller than the first current value.
  • the battery pack according to any one of appendices 3 to 5, wherein the battery pack is transmitted to the outside.
  • the first current threshold is included in a range from 25A to 40A
  • the said detection part detects at least one of the cell temperature which is the temperature of the said secondary battery cell, and the switch temperature which is the temperature of the said switch as the said pack temperature, Any one of the appendix 3 thru
  • the abnormal condition corresponding to the cell temperature includes that the cell temperature is equal to or higher than a first cell temperature threshold,
  • the management unit indicates that the occurrence of the abnormality is predicted when the cell temperature is lower than the first cell temperature threshold and is equal to or higher than a second cell temperature threshold lower than the first cell temperature threshold.
  • Item 9 The battery pack according to item 8, wherein the warning signal is transmitted to the outside.
  • the first cell temperature threshold is included in a range from 60 ° C. to 70 ° C.
  • the battery pack according to appendix 9 wherein the second cell temperature threshold is included in a range from 45 ° C to 65 ° C.
  • the abnormal condition corresponding to the switch temperature includes that the switch temperature is equal to or higher than a first switch temperature threshold,
  • the management unit indicates that the occurrence of the abnormality is predicted when the switch temperature is lower than the first switch temperature threshold and equal to or higher than a second switch temperature threshold lower than the first switch temperature threshold.
  • the battery pack according to appendix 8 which transmits a warning signal to the outside.
  • the first switch temperature threshold is included in a range from 90 ° C. to 110 ° C .;
  • Appendix 14 14. The battery pack according to appendix 13, wherein the pack temperature threshold is included in a range from ⁇ 15 ° C. to ⁇ 25 ° C.
  • the management unit determines, for each of the detected state values, whether or not the state value continuously satisfies the abnormality condition for a predetermined insensitivity time, and continues the insensitivity time for the abnormality.
  • the battery pack according to any one of appendices 3 to 14, wherein when there is a state value that satisfies the condition, it is determined that the abnormality has occurred.
  • Appendix 20 A method for controlling a battery pack comprising secondary battery cells, Detecting a state value indicating the state of the battery pack; Based on the state value, it is determined whether or not an abnormality has occurred in the battery pack. If the abnormality has occurred, an abnormality signal indicating that the abnormality has occurred is transmitted to the outside, and then predetermined. After a delay time elapses, output a shutoff instruction to shut off the secondary battery cell from the outside, When the shutoff instruction is output, shut off the secondary battery cell from the outside, The battery pack control method, wherein the delay time is 5 seconds or more.

Abstract

 運転が不安定になるという問題を解決することが可能な電池パックを提供する。 スイッチ(21、22)は、2次電池セル(11)と外部との接続と遮断を切り換える。検出部(23~26)は、電池パック(200)の状態を示す状態値を検出する。管理部(27)は、状態値に基づいて、電池パックに異常が発生したか否かを判定し、異常が発生した場合、異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、2次電池セル(11)を外部と遮断する旨の遮断指示を出力する。遮断部(26)は、遮断指示が出力された場合、スイッチ(21、22)を用いて、2次電池セル(11)を外部と遮断する。また、遅延時間は、5秒以上である。

Description

電池パック、移動体および制御方法
 本発明は、2次電池セルを備えた電池パックに関し、特には、リチウムイオン2次電池セルを備えた電池パックに関する。
 近年、電気機器の動力源として、リチウムイオン2次電池セルが注目されている。リチウムイオン2次電池セルは、エネルギー密度が高いため、小型化および軽量化が図れるという利点を有するが、その一方で、過充電や過放電などによって、リチウムイオン2次電池セル自身を破損させてしまう可能性がある。このため、リチウムイオン2次電池セルは、通常、そのリチウムイオン2次電池セルを保護するための保護回路(BMU:Battery Management Unit)と合わせて電池パックとして使用されている。
 保護回路は、リチウムイオン2次電池セルの状態を監視し、その状態に基づいて、リチウムイオン2次電池セルが破損する前に、リチウムイオン2次電池セルを外部と遮断させる。より具体的に言えば、保護回路は、リチウムイオン2次電池セルの両極間の電圧、リチウムイオン2次電池セルに流れる電流およびリチウムイオン2次電池セルの温度を、リチウムイオン2次電池セルの状態として監視し、それらの値が所定の閾値を超えた場合に、リチウムイオン2次電池セルを外部と強制的に遮断させることで、リチウムイオン2次電池セルの破損を防止している。
 しかしながら、上記の値が閾値を超えた瞬間に、リチウムイオン2次電池セルが外部と遮断されると、電気機器への電力供給が突然停止されることとなり、パソコンや携帯電話機のようなデータ処理を行う電気機器では、処理中のデータが破壊されるなどの問題が生じる。
 これに対して特許文献1には、電気機器が処理中のデータをハードディスクなどに退避させる時間を確保するために、電圧が閾値を超えた場合、電力供給を停止することを示す信号を電気機器に対して出力し、その後、数ミリ秒ないし数百ミリ秒程度経過すると、電池セルと外部との通電を遮断させる過放電防止装置が記載されている。
特開平09-215213号公報
 上記のような電池パックが電動アシスト自転車などの移動体の動力源として使用される場合、保護回路の機能により電気機器への電力供給が突然停止されると、電動アシスト自転車のペダルや電気自動車のハンドルなどに係る負荷などが突然変化してしまい、運転が不安定になるという問題がある。
 特許文献1に記載の過放電防止装置では、電圧が閾値を超えてから電気機器への電力供給が停止されるまで数ミリ秒ないし数百ミリ秒程度の余裕があるが、このような短時間では、ユーザは、負荷が変化することを事前に把握することができず、運転が不安定になるという問題を解決することができない。
 本発明は、上記の問題を鑑みてなされたものであり、運転が不安定になるという問題を解決することが可能な電池パック、移動体および制御方法を提供することを目的とする。
 本発明による電池パックは、2次電池セルを備えた電池パックであって、前記2次電池セルと外部との接続と遮断を切り換えるスイッチと、前記電池パックの状態を示す状態値を検出する検出部と、前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力する管理部と、前記遮断指示が出力された場合、前記スイッチを用いて、前記2次電池セルを外部と遮断する遮断部と、を有し、前記遅延時間は、5秒以上である。
 本発明による移動体は、上記の電池パックを備える。
 本発明による電池パックの制御方法は、2次電池セルを備えた電池パックの制御方法であって、前記電池パックの状態を示す状態値を検出し、前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力し、前記遮断指示が出力された場合、前記2次電池セルを外部と遮断し、前記遅延時間は、5秒以上である、電池パックの制御方法。
 本発明によれば、運転が不安定になることを軽減することが可能になる。
本発明の一実施形態の電池パックの構成を示すブロック図である。 本発明の一実施形態の移動体の構成を示すブロック図である。 本発明の一実施形態の電池パックおよび移動体の動作の一例を説明するための図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 図1は、本発明の一実施形態の電池パックの構成を示すブロック図である。図1において、電池パック100は、電池部1と、保護部(BMU:Battery Management Unit)2とを有する。なお、電池パック100は、電気機器(図1では不図示)と接続され、その電気機器の動力源として機能する。電気機器は、例えば、電動アシスト自転車、電動モータサイクルおよび電動自動車のような移動体である。
 電池部1は、充放電が可能な2次電池セル(Cell)11と、正極端子Pと、負極端子Nとを有する。
 本実施形態では、電池部1は、複数の2次電池セル11が直列に接続された構成を有するものする。しかしながら、電池部1は、単一の2次電池セルで構成されてもよいし、複数の2次電池が並列またはマトリックス状に接続された構成でもよい。なお、2次電池セルの数や配置は、電気機器の種類や2次電池セルの種類などに応じて適宜決定される。
 また、2次電池セル11の種類は特に限定されないが、例えば、リチウムイオン2次電池セルである。リチウムイオン2次電池セルとしては、正極がマンガンで形成されたマンガン系リチウムイオン2次電池セルや、正極がコバルト、ニッケルおよびマンガンで形成された三元系リチウムイオン電池セルなどが挙げられる。
 保護部2は、電池部1(具体的には、正極端子Pおよび負極端子N)と接続され、電池部1や電池パック100と接続された電気機器を保護する。
 具体的には、保護部2は、放電FET(Field effect transistor)21と、充電FET22と、温度センサ23および24と、電流検出部25と、監視IC(Integrated Circuit)26と、MCU(Micro Control Unit)26とを有する。また、保護部2は、電気機器と電力の送受を行うための正極出力端子POUTおよび負極出力端子NOUTと、電気機器と通信を行うための通信端子CXとを有する。なお、通信端子CXは、複数あってもよい。
 放電FET21および充電FET22は、電池部1(具体的には、2次電池セル11)と外部との接続と遮断を切り換えるスイッチを構成する。具体的には、放電FET21は、電池部1から出力される放電電流を制御するためのスイッチであり、充電FET22は、電池部1に供給される充電電流を制御するためのスイッチである。
 なお、放電FET21および充電FET22は、図1では、電池部1の正極端子Pと正極出力端子POUTとの間に設けられているが、電池部1の負極端子Nと負極出力端子NOUTとの間に設けられてもよい。また、放電電流および充電電流を制御するためのスイッチとしては、FETの代わりに、ブレーカやリレーが使用されてもよい。
 温度センサ23および24、電流検出部25および監視IC26は、電池パック100の状態を示す状態値を検出する検出部を構成する。検出部は、状態値として、2次電池セル11の両極間の電圧値であるセル電圧値、2次電池セル11に流れる放電電流の値であるセル電流値、電池パックの温度であるパック温度の少なくとも一つを検出すればよいが、本実施形態では、それらの状態値の全てを検出するものとする。また、検出部は、パック温度として、電池部1の温度であるセル温度と、スイッチ(放電FET21および充電FET22)の温度であるスイッチ温度の少なくとも一方を検出すればよいが、本実施形態では、それらのパック温度の両方を検出するものとする。
 温度センサ23は、電池部1の温度であるセル温度を検出する。なお、温度センサ23は、複数あってもよい。この場合、温度センサ23のそれぞれは、電池部1のそれぞれ異なる箇所の温度を測定する。
 温度センサ24は、放電FET21および充電FET22の温度であるスイッチ温度を検出する。なお、温度センサ24は、複数あってもよい。この場合、温度センサ24のそれぞれは、放電FET21および充電FET22のそれぞれの温度を測定する。
 電流検出部25は、電池部1の充電電流および放電電流を検出する。なお、本実施形態では、電流検出部25は、電池部1の負極端子Nと負極出力端子NOUTとの間に設けられているが、電池部1の正極端子Pと正極出力端子POUTとの間に設けられてもよい。また、以下では、電池部1の充電電流および放電電流を充放電流と総称することもある。
 監視IC26は、各2次電池セル11の両極間の電圧であるセル電圧値を検出する検出部としての機能と、放電FET21および充電FET22を用いて、電池部1を外部と遮断する遮断部としての機能とを有する。なお、監視IC26は、アナログフロントエンド(AFE:Analog Front End)と呼ばれることもある。
 停止部として機能する場合、監視IC26は、具体的には、MCU27から電池部1を外部と遮断する旨の遮断指示が出力された場合、放電FET21、充電FET22、または、放電FET21および充電FET22の両方をオフにして、電池部1を外部と遮断する。
 MCU27は、管理部と呼ばれることもある。MCU27は、検出された状態値(すなわち、温度センサ23および24で検出されたセル温度およびスイッチ温度、電流検出部25で検出された充放電流、および、監視IC26にて検出されたセル電圧値)に基づいて、電池パック100に異常が発生したか否かを判定する。
 具体的には、MCU27は、検出された状態値のそれぞれについて、その状態値が、その状態値に対応する異常条件を満たすか否かを判定し、異常条件を満たす状態値が存在する場合、異常が発生したと判定し、異常条件を満たす状態値が存在しない場合、異常が発生していないと判定する。
 異常が発生した場合、MCU27は、異常が発生した旨の異常信号を通信端子CXを介して外部に送信する。その後、MCU27は、予め定められた遅延時間が経過してから、電池部1(具体的には、2次電池セル11)を外部と遮断する旨の遮断指示を監視IC26に出力する。
 なお、遅延時間は、電池パック100が備わった移動体を利用するユーザが、電池パック100からの電力供給が停止されることを確認できる程度の時間が望ましく、具体的には、5秒以上であることが望ましい。ただし遅延時間が長くなり過ぎると、2次電池セル11が破損するなどの問題が生じる可能性があるため、長ければよいということでもない。このため、遅延時間は、5秒から1分までの範囲に含まれることが望ましい。
 また、MCU27は、状態値に基づいて、電池パック100に異常が発生することが予測されるか否かを判定してもよい。具体的には、MCU27は、状態値のそれぞれについて、その状態値が、その状態値に対応する警告条件を満たすか否かを判定し、警告条件を満たす状態値が存在する場合、異常の発生が予測されると判定し、警告条件を満たす状態値が存在しない場合、異常の発生は予測されないと判定する。そして、異常の発生が予測される場合、MCU27は、異常の発生が予測される旨の警告信号を通信端子CXを介して外部に送信する。
 次に、MCU27が行う処理についてより詳細に説明する。
 電池パックに発生する異常としては、例えば、過放電、放電過電流、異常高温、オープン破損、および、断線が挙げられる。以下、異常の種類ごとにMCU27が行う処理について説明する。
 (1)過放電
 2次電池セル11としてリチウムイオン2次電池セルなどが使用される場合、放電により2次電池セル11の電圧値が低下しすぎると、2次電池セルは劣化してしまい、充電の際に発熱などの問題が生じる可能性がある。
 このため、セル電圧値に対応する異常条件としては、例えば、セル電圧値が第1の電圧閾値以下になることが望ましい。この場合、MCU27は、セル電圧値が第1の電圧閾値以下になると、異常が発生したと判定し、遅延時間が経過するまで異常信号を送信し続け、その後、遮断指示を監視IC26に出力することで、監視IC26に電池部1を外部と遮断させる。
 なお、充電の際に問題が生じる可能性のある電圧値である深放電電圧値、および、2次電池セルが充電されずに所定の期間(例えば、数か月ないし数年)放置されたときに深放電電圧値となる電圧値である放電終止電圧値は、2次電池セルの種類などに応じて異なるが、一般的には、それぞれ1Vおよび3V程度である。この場合、仮に遅延時間が必要ないとすると、第1の電圧閾値が2.3V程度であれば、セル電圧値が第1の電圧閾値以下になってから電池部1が実際に外部と遮断されるまでに、セル電圧値が低下していっても、2次電池セルの劣化を抑制することができる。
 しかしながら、本実施形態では、遅延時間が必要であるため、第1の電圧閾値は2.3Vより高くすることが望ましい。このような第1の電圧閾値は、2次電池セル11の特性などに応じて決定されるが、例えば、2.5Vから2.9Vまでの範囲に含まれることが望ましい。
 また、セル電圧値に対応する警告条件としては、例えば、セル電圧値が第1の電圧閾値より大きく、かつ、第1の電圧閾値より大きい第2の電圧閾値以下であることが挙げられる。この場合、MCU27は、セル電圧値が第1の電圧閾値より大きく、かつ、第1の電圧閾値より大きい第2の電圧閾値以下になると、警告信号を通信端子CXを介して外部に送信する。第2の電圧閾値は、例えば、2.9Vから3.3Vまでの範囲に含まれる。
 (2)放電過電流
 2次電池セルの放電時に、予め想定された最大電流値以上の電流が2次電池セルから放電されると、2次電池が劣化したり破損したりする可能性がある。
 このため、セル電流値に対応する異常条件としては、例えば、セル電流値が第1の電流閾値以上になることが望ましい。この場合、MCU27は、セル電流値が第1の電流閾値以上になると、異常が発生したと判定し、遅延時間が経過するまで異常信号を送信し続け、その後、遮断指示を監視IC26に出力することで、監視IC26に電池部1を外部と遮断させる。
 第1の電流閾値は、2次電池セル11の特性に応じて異なるが、2次電池セル11の動作が保証されたセル電流値の最大値が20Aの場合、例えば、25Aから40Aまでの範囲に含まれる。
 また、セル電流値に対応する警告条件としては、セル電流値が第1の電流閾値より小さく、かつ、第1の電流閾値より小さい第2の電流閾値以上になることが挙げられる。この場合、MCU27は、セル電流値が第1の電流閾値より小さく、かつ、第1の電流閾値より小さい第2の電流閾値以上になると、警告信号を通信端子CXを介して外部に送信する。第2の電流閾値は、2次電池セル11の動作が保証されたセル電流値の最大値が20Aの場合、例えば、20Aから35Aまでの範囲に含まれる。
 (3)異常高温
 電池パック100、具体的には、2次電池セル11およびスイッチ(放電FET21および充電FET22)の温度が高くなりすぎると、2次電池セル11やスイッチが劣化したり破損したりする可能性がある。
 このため、セル温度に対応する異常条件としては、セル温度が第1のセル温度閾値以上になることが望ましく、スイッチ温度に対応する異常条件としては、スイッチ温度が第1のスイッチ温度閾値以上になることが望ましい。この場合、MCU27は、セル温度値が第1のセル温度閾値以上になった場合、または、スイッチ温度が第1のスイッチ温度閾値以上になった場合、異常が発生したと判定し、遅延時間が経過するまで異常信号を送信し続け、その後、遮断指示を監視IC26に出力することで、監視IC26に電池部1を外部と遮断させる。
 第1のセル温度閾値は、2次電池セル11の特性に応じて異なるが、例えば、2次電池セル11の動作保証温度の最大値が60℃の場合、60℃から70℃までの範囲に含まれる。また、第1のスイッチ温度閾値は、スイッチの特性に応じて異なるが、例えば、スイッチであるFETのジャンクション温度が150℃の場合、90℃から110℃までの範囲に含まれる。
 また、セル温度に対応する警告条件としては、セル温度が第1のセル温度閾値より小さく、かつ、第1のセル温度閾値より小さい第2のセル温度閾値以上になったことが挙げられる。また、スイッチ温度に対応する警告条件としては、スイッチ温度が第1のスイッチ温度閾値より小さく、かつ、第1のスイッチ温度閾値より小さい第2のスイッチ温度閾値以上になったことが挙げられる。この場合、MCU27は、セル温度が第1のセル温度閾値より小さく、かつ、第1のセル温度閾値より小さい第2のセル温度閾値以上になったか、または、スイッチ温度に対応する警告条件としては、スイッチ温度が第1のスイッチ温度閾値より小さく、かつ、第1のスイッチ温度閾値より小さい第2のスイッチ温度閾値以上になると、警告信号を通信端子CXを介して外部に送信する。
 第2のセル温度閾値は、2次電池セル11の動作保証温度の最大値が60℃の場合、例えば、45℃から60℃までの範囲に含まれる。また、第2のスイッチ温度閾値は、スイッチであるFETのジャンクション温度が150℃の場合、例えば、70℃から90℃までの範囲に含まれる。
 なお、温度センサ23および24としてNTCサーミスタ(Negative Temperature Coefficient Thermistor)が使用された場合、温度センサ23または24にショート破損が発生すると、非常に高いセル温度またはスイッチ温度が検出されることとなる。この場合、セル温度またはスイッチ温度が第1のセル温度閾値またはスイッチ温度閾値以上になるため、異常として検出される。
 (4)オープン破損
 温度センサ23および24としてNTCサーミスタが使用された場合、温度センサ23または24にオープン破損が発生すると、非常に低いパック温度(セル温度またはスイッチ温度)が検出されることとなる。
 このため、パック温度に対応する異常条件として、そのパック温度がパック温度閾値以下になることを含むことが望ましい。この場合、MCU27は、パック温度値がパック温度閾値以下になると、異常が発生したと判定し、遅延時間が経過するまで異常信号を送信し続け、その後、遮断指示を監視IC26に出力することで、監視IC26に電池部1を外部と遮断させる。パック温度閾値は、例えば、電池パック100の動作保証温度の最小値が-10の場合、-15℃から-25℃の範囲に含まれる。
 なお、温度センサが破損したことが原因で、実際の温度が急激に上昇することはないので、遅延時間を5秒以上確保することが可能である。
 また、以上説明した異常(1)~(4)の判定では、状態値は、何らかの理由により、一時的に異常な値になることがある。このような場合に、2次電池セル11が外部と遮断されると、2次電池セル11に破損などが生じないのに関わらず、外部への電力供給が停止されてしまい、利便性が悪い。
 このため、MCU27は、状態値のそれぞれについて、その状態値が予め定められた不感応時間継続して異常条件を満たすか否かを判定し、不感応時間継続して異常条件を満たす状態値が存在する場合、異常が発生したと判定することが望ましい。
 不感応時間は、異常の誤判定を防止するための時間であり、例えば、5秒以内の値である。
 (5)断線
 監視IC26は、2次電池セル11のセル電圧値を検出するために、2次電池セル11の両極と配線を介して接続される必要がある。この配線が断線されると、監視IC26はセル電圧値を検出することができなくなり、セル電圧値の検出が停止されてしまう。
 このため、MCU27には、セル電圧値に対する異常条件として、セル電圧値の検出が停止されたことが設定され、MCU27は、セル電圧値の検出が停止されると、異常が発生したと判定する。
 なお、監視IC26と2次電池セル11の両極とを接続する配線が断線されても、それが原因で2次電池セルのセル電圧値が急激に低下することはない。このため、遅延時間を5秒以上確保することが可能になる。また、断線は通常突発的に発生するため、断線に関しては、警告条件や不感応時間を設定する必要はない。
 次に電池パック100を備えた移動体について説明する。
 図2は、電池パック100を備えた電気機器の構成の一例を示すブロック図である。図2に示す移動体200は、電池パック100と、負荷201と、制御部202と、通知部203とを有する。
 負荷201は、電池パック100の正極出力端子POUTおよび負極出力端子NOUTと接続され、電池パック100から正極出力端子POUTおよび負極出力端子NOUTを介して供給される電力で駆動する。負荷201としては、例えば、電動自動車や電動アシスト自転車のモーターなどが挙げられる。
 制御部202は、電池パック100の通信端子CXと接続され、電池パック100から通信端子CXを介して異常信号および警告信号を受信する。
 警告信号を受信した場合、制御部202は、通知部203を用いて、異常の発生が予測される旨をユーザに通知する。
 異常信号を受信した場合、制御部202は、通知部203を用いて、電池パック100からの電力供給が停止される旨を通知する。このとき、制御部202は、電池パック100からの電力供給が停止されるまでの残り時間などを通知してもよい。
 なお、通知部は、例えば、モニタ、スピーカおよびバイブレーションなどである。また、電池パック100は移動体200と脱着可能でもよい。また、移動体200は、電池パック100とは別の予備動力源などを備えていてもよい。
 次に電池パック100および移動体200の動作について説明する。なお、以下の動作が定期的に行われる。
 図3は、電池パック100の動作の一例を説明するためのフローチャートである。
 先ず、温度センサ23は、電池部1の温度であるセル温度を検出し、そのセル温度を示すセル温度信号を監視IC26に通知する。また、温度センサ24は、スイッチの温度であるスイッチ温度を検出し、そのスイッチ温度を示すスイッチ温度信号を監視IC26に通知する。電流検出部25は、電池部1の充放電流を検出し、その充放電流を示す電流信号を監視IC26に通知する。監視IC26は、各2次電池セル11のセル電圧を検出するとともに、セル温度信号、スイッチ温度信号および電流信号を受信する。そして、監視IC26は、検出した各セル電圧を示す電圧信号と、受信したセル温度信号、スイッチ温度信号および電流信号とをMCU27に通知する(ステップS301)。
 MCU27は、電圧信号と、セル温度信号、スイッチ温度信号および電流信号を受信すると、その、電圧信号と、セル温度信号、スイッチ温度信号および電流信号に基づいて、電池パック100に異常が発生したか否かを判定する(ステップS302)。
 異常が発生していない場合、MCU27は、電圧信号と、セル温度信号、スイッチ温度信号および電流信号に基づいて、電池パック100に異常が発生することが予測されるか否かを判定する(ステップS303)。
 異常の発生が予想されない場合、MCU27は処理を終了する。
 一方、異常の発生が予想される場合、MCU27は、警告信号を通信端子CXを介して移動体200の制御部202に送信し(ステップS304)、処理を終了する。なお、この場合、制御部202は、警告信号を受信すると、通知部203を用いて、異常の発生が予測される旨をユーザに通知する。
 また、ステップS302において異常が発生した場合、MCU27は、異常信号を通信端子CXを介して移動体200の制御部202に送信する(ステップS305)。この場合、制御部202は、異常信号を受信すると、通知部203を用いて、電池パック100からの電力供給が停止される旨をユーザに通知する。
 ステップS305で異常信号が送信されると、MCU27は、遅延時間が経過するまで時間を計測する(ステップS306)。
 遅延時間が経過すると、MCU27は、遮断指示を監視IC26に送信する。監視IC26は、遮断指示を受信すると、放電FET21、充電FET22、または、放電FET21および充電FET22の両方をオフにして、電池部1を外部と遮断して(ステップS307)、処理を終了する。これにより、移動体200の負荷201への電力供給が停止される。
 以上説明したように本実施形態によれば、異常が発生した場合、異常が発生した旨の異常信号が外部に送信され、その後、5秒以上経過してから2次電池セル11が外部と遮断されるため、ユーザに電力供給が停止されるまでに、電力供給ことを伝えるだけの十分な時間を確保することが可能になる。したがって、電動アシスト自転車のペダルや電気自動車のハンドルなどに係る負荷などが変化することを事前に知ることが可能になるので、運転が不安定になることを軽減することが可能になる。
 また、本実施形態では、異常の発生が予測される場合には、警告信号が出力されるので、運転が不安定になることをより確実に軽減することが可能になる。
 以上説明した実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 また、上記の実施形態の一部又は全部は、以下の付記のように記載することが可能であるが、以下には限定されない。
 [付記1]
2次電池セルを備えた電池パックであって、
前記2次電池セルと外部との接続と遮断を切り換えるスイッチと、
前記電池パックの状態を示す状態値を検出する検出部と、
前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力する管理部と、
前記遮断指示が出力された場合、前記スイッチを用いて、前記2次電池セルを外部と遮断する遮断部と、を有し、
前記遅延時間は、5秒以上である、電池パック。
 [付記2]
前記検出部は、前記状態値として、前記2次電池セルの両極間の電圧値であるセル電圧値、前記2次電池セルに流れる放電電流の値であるセル電流値、前記電池パックの温度であるパック温度の少なくとも一つを検出する、付記1に記載の電池パック。
 [付記3]
前記管理部は、前記検出された状態値のそれぞれについて、当該状態値が、当該状態値に対応する異常条件を満たすか否かを判定し、前記異常条件を満たす状態値が存在する場合、前記異常が発生したと判定する、付記2に記載の電池パック。
 [付記4]
前記セル電圧値に対応する異常条件は、当該セル電圧値が第1の電圧閾値以下になることを含み、
前記管理部は、前記セル電圧値が前記第1の電圧閾値よりも大きく、かつ、前記第1の電圧閾値よりも大きい第2の電圧閾値以下になると、前記異常の発生が予測される旨の警告信号を外部に送信する、付記3に記載の電池パック。
 [付記5]
前記第1の電圧閾値は、2.5Vから2.9Vまでの範囲に含まれ、
前記第2の電圧閾値は、2.9Vから3.2Vまでの範囲に含まれる、付記4に記載の電池パック。
 [付記6]
前記セル電流値に対応する異常条件は、当該セル電流値が第1の電流閾値以上になることを含み、
前記管理部は、前記セル電流値が前記第1の電流値より小さく、かつ、前記第1の電流値より小さい第2の電流閾値以上になると、前記異常の発生が予測される旨の警告信号を外部に送信する、付記3ないし5のいずれか1項に記載の電池パック。
 [付記7]
前記第1の電流閾値は、25Aから40Aまでの範囲に含まれ、
前記第2の電流閾値は、20Aから35Aまでの範囲に含まれる、付記6に記載の電池パック。
 [付記8]
前記検出部は、前記パック温度として、前記2次電池セルの温度であるセル温度と、前記スイッチの温度であるスイッチ温度との少なくとも一方を検出する、付記3ないし7のいずれか1項に記載の電池パック。
 [付記9]
前記セル温度に対応する異常条件は、当該セル温度が第1のセル温度閾値以上になることを含み、
前記管理部は、前記セル温度が前記第1のセル温度閾値より小さく、かつ、前記第1のセル温度閾値より小さい第2のセル温度閾値以上になると、前記異常の発生が予測される旨の警告信号を外部に送信する、付記8項に記載の電池パック。
 [付記10]
前記第1のセル温度閾値は、60℃から70℃までの範囲に含まれ、
前記第2のセル温度閾値は、45℃から65℃までの範囲に含まれる、付記9に記載の電池パック。
 [付記11]
前記スイッチ温度に対応する異常条件は、当該スイッチ温度が第1のスイッチ温度閾値以上になることを含み、
前記管理部は、前記スイッチ温度が前記第1のスイッチ温度閾値より小さく、かつ、前記第1のスイッチ温度閾値より小さい第2のスイッチ温度閾値以上になると、前記異常の発生が予測される旨の警告信号を外部に送信する、付記8に記載の電池パック。
 [付記12]
前記第1のスイッチ温度閾値は、90℃から110℃までの範囲に含まれ、
前記第2のスイッチ温度閾値は、70℃から90℃までの範囲に含まれる、付記11に記載の電池パック。
 [付記13]
前記パック温度に対応する異常条件は、当該パック温度がパック温度閾値以下になることを含む、付記3ないし12のいずれか1項に記載の電池パック。
 [付記14]
前記パック温度閾値は、-15℃から-25℃までの範囲に含まれる、付記13に記載の電池パック。
 [付記15]
前記管理部は、前記検出された状態値のそれぞれについて、当該状態値が予め定められた不感応時間継続して前記異常条件を満たすか否かを判定し、前記不感応時間継続して前記異常条件を満たす状態値が存在する場合、前記異常が発生したと判定する、付記3ないし14のいずれか1項に記載の電池パック。
 [付記16]
前記不感応時間は、5秒以内の値である、付記15に記載の電池パック。
 [付記17]
前記セル電圧値に対応する異常条件は、当該セル電圧値の検出が停止されたことを含む、付記3ないし16のいずれか1項に記載の電池パック。
 [付記18]
前記2次電池セルは、正極にマンガンを用いたマンガンスピネル系リチウムイオン2次電池セルである、付記1ないし17のいずれか1項に記載の電池パック。
 [付記19]
付記1ないし18のいずれか1項に記載の電池パックと、
通知部と、
前記電池パックから異常信号が出力された場合、前記通知部を用いて、前記電池パックに異常が発生した旨を通知する制御部と、を備えた移動体。
 [付記20]
2次電池セルを備えた電池パックの制御方法であって、
前記電池パックの状態を示す状態値を検出し、
前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力し、
前記遮断指示が出力された場合、前記2次電池セルを外部と遮断し、
前記遅延時間は、5秒以上である、電池パックの制御方法。
 なお、この出願は、2013年3月13日に出願された日本出願特願2013-050084号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1   電池部
 2   保護回路
 11  2次電池セル
 21  放電FET
 22  充電FET
 23  温度センサ
 24  温度センサ
 25  電流検出部
 26  監視IC
 27  MCU
 100 電池パック
 200 移動体
 201 負荷
 202 管理部
 203 通知部

Claims (10)

  1.  2次電池セルを備えた電池パックであって、
     前記2次電池セルと外部との接続と遮断を切り換えるスイッチと、
     前記電池パックの状態を示す状態値を検出する検出部と、
     前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力する管理部と、
     前記遮断指示が出力された場合、前記スイッチを用いて、前記2次電池セルを外部と遮断する遮断部と、を有し、
     前記遅延時間は、5秒以上である、電池パック。
  2.  前記検出部は、前記状態値として、前記2次電池セルの両極間の電圧値であるセル電圧値、前記2次電池セルに流れる放電電流の値であるセル電流値、前記電池パックの温度であるパック温度の少なくとも一つを検出する、請求項1に記載の電池パック。
  3.  前記管理部は、前記検出された状態値のそれぞれについて、当該状態値が、当該状態値に対応する異常条件を満たすか否かを判定し、前記異常条件を満たす状態値が存在する場合、前記異常が発生したと判定する、請求項2に記載の電池パック。
  4.  前記セル電圧値に対応する異常条件は、当該セル電圧値が第1の電圧閾値以下になることを含み、
     前記管理部は、前記セル電圧値が前記第1の電圧閾値よりも大きく、かつ、前記第1の電圧閾値よりも大きい第2の電圧閾値以下になると、前記異常の発生が予測される旨の警告信号を外部に送信する、請求項3に記載の電池パック。
  5.  前記第1の電圧閾値は、2.5Vから2.9Vまでの範囲に含まれ、
     前記第2の電圧閾値は、2.9Vから3.2Vまでの範囲に含まれる、請求項4に記載の電池パック。
  6.  前記セル電流値に対応する異常条件は、当該セル電流値が第1の電流閾値以上になることを含み、
     前記管理部は、前記セル電流値が前記第1の電流値より小さく、かつ、前記第1の電流値より小さい第2の電流閾値以上になると、前記異常の発生が予測される旨の警告信号を外部に送信する、請求項3ないし5のいずれか1項に記載の電池パック。
  7.  前記第1の電流閾値は、25Aから40Aまでの範囲に含まれ、
     前記第2の電流閾値は、20Aから35Aまでの範囲に含まれる、請求項6に記載の電池パック。
  8.  前記検出部は、前記パック温度として、前記2次電池セルの温度であるセル温度と、前記スイッチの温度であるスイッチ温度との少なくとも一方を検出する、請求項3ないし7のいずれか1項に記載の電池パック。
  9.  請求項1ないし8のいずれか1項に記載の電池パックと、
     通知部と、
     前記電池パックから異常信号が出力された場合、前記通知部を用いて、前記電池パックに異常が発生した旨を通知する制御部と、を備えた移動体。
  10.  2次電池セルを備えた電池パックの制御方法であって、
     前記電池パックの状態を示す状態値を検出し、
     前記状態値に基づいて、前記電池パックに異常が発生したか否かを判定し、前記異常が発生した場合、前記異常が発生した旨の異常信号を外部に送信し、その後、予め定められた遅延時間経過してから、前記2次電池セルを外部と遮断する旨の遮断指示を出力し、
     前記遮断指示が出力された場合、前記2次電池セルを外部と遮断し、
     前記遅延時間は、5秒以上である、電池パックの制御方法。
PCT/JP2014/053405 2013-03-13 2014-02-14 電池パック、移動体および制御方法 WO2014141809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/774,406 US20160043583A1 (en) 2013-03-13 2014-02-14 Battery pack, mobile body, and control method thereof
JP2015505330A JPWO2014141809A1 (ja) 2013-03-13 2014-02-14 電池パック、移動体および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050084 2013-03-13
JP2013-050084 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141809A1 true WO2014141809A1 (ja) 2014-09-18

Family

ID=51536484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053405 WO2014141809A1 (ja) 2013-03-13 2014-02-14 電池パック、移動体および制御方法

Country Status (3)

Country Link
US (1) US20160043583A1 (ja)
JP (1) JPWO2014141809A1 (ja)
WO (1) WO2014141809A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553039A (zh) * 2016-02-05 2016-05-04 常州永安公共自行车系统股份有限公司 电动助力自行车系统及其充电方法
WO2016103606A1 (ja) * 2014-12-25 2016-06-30 三洋電機株式会社 電池パック
JP2017005985A (ja) * 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
WO2017130402A1 (ja) * 2016-01-29 2017-08-03 三菱電機株式会社 除湿装置
JP2017200272A (ja) * 2016-04-26 2017-11-02 株式会社Gsユアサ 電力管理システム、電池管理装置、バッテリ装置および車両の電力管理方法
CN110970963A (zh) * 2018-12-07 2020-04-07 宁德时代新能源科技股份有限公司 充放电电路
WO2020114497A1 (zh) * 2018-12-07 2020-06-11 宁德时代新能源科技股份有限公司 充放电电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831691B2 (en) * 2012-09-18 2017-11-28 Nec Energy Devices, Ltd. Power storage system and cell protection method which protects the cell by both cutting from the cell pack and the cell pack from the system
DE102013216129A1 (de) * 2013-08-14 2015-02-19 Bayerische Motoren Werke Aktiengesellschaft Hochvoltvorrichtung und externe Wiedergabevorrichtung und System
KR102442187B1 (ko) * 2015-04-10 2022-09-07 삼성에스디아이 주식회사 배터리 보호 회로

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215213A (ja) * 1996-02-05 1997-08-15 Fuji Elelctrochem Co Ltd 過放電防止装置
JP2010187532A (ja) * 2009-01-14 2010-08-26 Mitsumi Electric Co Ltd 保護監視回路、電池パック、二次電池監視回路、及び保護回路
JP2010186619A (ja) * 2009-02-12 2010-08-26 Sony Corp 電池パックおよび電池容量計算方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085566A (ja) * 2003-09-08 2005-03-31 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法
US7496460B2 (en) * 2006-09-06 2009-02-24 Eastway Fair Company Limited Energy source monitoring and control system for power tools
DE102008046510A1 (de) * 2008-09-10 2010-03-11 Li-Tec Battery Gmbh Nach galvanischen Prinzipien arbeitende elektrische Einrichtungen, wie beispielsweise Lithium-Ionen-Zelle, mit einer Betriebszustandssteuerung
US8558712B2 (en) * 2010-06-03 2013-10-15 C&C Power, Inc. Battery system and management method
JP5503430B2 (ja) * 2010-06-25 2014-05-28 日立マクセル株式会社 出力停止スイッチ付き電池パック
JP2012016147A (ja) * 2010-06-30 2012-01-19 Sony Corp 電池パックおよび電池パックの充放電制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215213A (ja) * 1996-02-05 1997-08-15 Fuji Elelctrochem Co Ltd 過放電防止装置
JP2010187532A (ja) * 2009-01-14 2010-08-26 Mitsumi Electric Co Ltd 保護監視回路、電池パック、二次電池監視回路、及び保護回路
JP2010186619A (ja) * 2009-02-12 2010-08-26 Sony Corp 電池パックおよび電池容量計算方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103606A1 (ja) * 2014-12-25 2016-06-30 三洋電機株式会社 電池パック
JP2017005985A (ja) * 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
WO2017130402A1 (ja) * 2016-01-29 2017-08-03 三菱電機株式会社 除湿装置
CN105553039A (zh) * 2016-02-05 2016-05-04 常州永安公共自行车系统股份有限公司 电动助力自行车系统及其充电方法
JP2017200272A (ja) * 2016-04-26 2017-11-02 株式会社Gsユアサ 電力管理システム、電池管理装置、バッテリ装置および車両の電力管理方法
US10647204B2 (en) 2016-04-26 2020-05-12 Gs Yuasa International Ltd. Electric energy management system, management device for energy storage device, energy storage apparatus and electric energy management method for vehicle
CN110970963A (zh) * 2018-12-07 2020-04-07 宁德时代新能源科技股份有限公司 充放电电路
WO2020114497A1 (zh) * 2018-12-07 2020-06-11 宁德时代新能源科技股份有限公司 充放电电路
WO2020114502A1 (zh) * 2018-12-07 2020-06-11 宁德时代新能源科技股份有限公司 充放电电路
CN110970963B (zh) * 2018-12-07 2021-02-19 宁德时代新能源科技股份有限公司 充放电电路
US11418046B2 (en) 2018-12-07 2022-08-16 Contemporarv Amperex Technologv Co., Limited Charge and discharge circuit
US11652352B2 (en) 2018-12-07 2023-05-16 Contemporary Amperex Technology Co., Limited Charge and discharge circuit

Also Published As

Publication number Publication date
US20160043583A1 (en) 2016-02-11
JPWO2014141809A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014141809A1 (ja) 電池パック、移動体および制御方法
US8355231B2 (en) Apparatus and method for protecting battery pack by detecting destruction of sense resistor in battery pack
KR101696160B1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
US7898216B2 (en) Rechargeable battery device having a protection circuit for protecting from overcharge and overdischarge
JP6510674B2 (ja) リチウムイオン二次電池の保護回路及び電池パック
JP5065958B2 (ja) 電池パック
JP2017004968A (ja) 安全性の向上した電池パック
CN105009401A (zh) 电池组和电气设备
JP6347967B2 (ja) 電池保護回路および電池パック
JP5503430B2 (ja) 出力停止スイッチ付き電池パック
JP2008312396A (ja) 車両用電源システム
JP5990878B2 (ja) 無停電電源装置及び電源装置
JP6202632B2 (ja) 蓄電システムおよび電池保護方法
JP2003174720A (ja) 二次電池の保護回路及び保護回路用ic
JP5712357B2 (ja) 電池パック
JP2008271690A (ja) 二次電池パック
US11418042B2 (en) Battery management unit
JP2010200485A (ja) パック電池の保護システム
JP2006352998A (ja) 電池パック
JP2010130738A (ja) 二次電池パック
KR20160037098A (ko) 2차 전지 보호 회로 및 배터리 장치
JP2013078233A (ja) 組電池の監視装置、及び該監視装置を備えた電池パック
JP4612022B2 (ja) 電池システム
KR101744374B1 (ko) 보호 회로를 이용한 배터리 보호 장치 및 방법
JP2015173568A (ja) 電池保護回路および電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505330

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14774406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765641

Country of ref document: EP

Kind code of ref document: A1