WO2020114497A1 - 充放电电路 - Google Patents
充放电电路 Download PDFInfo
- Publication number
- WO2020114497A1 WO2020114497A1 PCT/CN2019/123707 CN2019123707W WO2020114497A1 WO 2020114497 A1 WO2020114497 A1 WO 2020114497A1 CN 2019123707 W CN2019123707 W CN 2019123707W WO 2020114497 A1 WO2020114497 A1 WO 2020114497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- charge
- signal
- sending
- battery pack
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present application relates to the field of battery power, in particular to a charging and discharging circuit.
- new energy can provide power for more and more equipment, such as battery modules, battery packs, etc. can be used as a power source to provide power for new energy vehicles, new energy ships, new energy aircraft and so on. Battery modules, battery packs, etc. will be charged and discharged multiple times during use.
- a relay is provided in the charging and discharging circuit, and the charging and discharging of the battery module and battery pack in the charging and discharging circuit are controlled by controlling the on and off of the relay.
- the low switching speed and high failure rate of the relay it adversely affects the charge and discharge of the battery module and battery pack, and reduces the charge and discharge capability of the charge and discharge circuit.
- the embodiments of the present application provide a charge-discharge circuit, which can improve the charge-discharge capability of the charge-discharge circuit.
- An embodiment of the present application provides a charging and discharging circuit, including: a charging circuit, including a battery pack connected in series, a first switch combination and a charging device, the charging circuit is used to charge the battery pack using the charging device, and pre-charge the charging device Charging; discharge circuit, including series connected battery pack, second switch combination and electrical equipment, the discharge circuit is used to discharge the battery pack to the electrical equipment and pre-charge the electrical equipment;
- the first switch combination and the first Each two-switch combination includes at least one switch, and all switches in the first and second switch combinations are semiconductor switches.
- An embodiment of the present application provides a charge-discharge circuit.
- the charge-discharge circuit includes a battery pack, a charging device, a power-using device, a first switch combination, and a second switch combination.
- the battery pack, the first switch combination and the charging device constitute a charging circuit
- the battery pack, the second switch combination and the electrical device constitute a discharging circuit.
- the switches in the charging circuit and the discharging circuit are semiconductor switches.
- the semiconductor switch has a smaller volume and weight, a low failure rate, and a high switching speed, which can reduce the adverse effects on the charging and discharging of battery modules, battery packs, etc. Improve the charge and discharge capacity of the charge and discharge circuit. Safely control the charge and discharge circuit while avoiding damage to the switching devices in the charge and discharge circuit.
- FIG. 1 is a schematic structural diagram of a charging and discharging circuit according to an embodiment of the present application
- FIG. 2 is a schematic structural diagram of a specific implementation manner of a charging and discharging circuit in an embodiment of the present application
- FIG. 3 is a schematic structural diagram of another specific implementation manner of a charge-discharge circuit in an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of yet another specific implementation manner of a charge-discharge circuit in an embodiment of the present application.
- the embodiments of the present application provide a charging and discharging circuit, which can be applied to a scenario of charging and discharging a battery pack.
- the battery pack includes at least one battery module or at least one battery unit, which is not limited herein.
- the battery pack can be used in electric vehicles to supply power to motors and as a power source for electric vehicles.
- the battery pack can also provide power for other power-consuming devices in electric vehicles, such as in-car air conditioners and car players.
- FIG. 1 is a schematic structural diagram of a charging and discharging circuit according to an embodiment of the present application.
- the charging and discharging circuit includes a charging circuit and a discharging circuit.
- the battery pack P1 is charged by the charging circuit and discharged by the discharging circuit.
- the charging circuit in the embodiment of the present application can also be used to pre-charge the charging device, and the discharging circuit can be used to pre-charge the electric device.
- the charging circuit includes a battery pack P1 connected in series, a first switch combination P4 and a charging device P2.
- the first switch combination P4 includes at least one switch.
- the distribution of the switches in the first switch combination P4 is not limited. For example, if the first switch combination P4 includes a plurality of switches, part of the switches can be distributed between the positive electrode of the battery pack P1 and the charging device P2, and the other part of the switch distribution Between the negative electrode of the battery pack P1 and the charging device P2.
- the charging device P2 is a device for charging the battery pack P1. When charging the battery pack P1, the charging loop is turned on.
- the discharge circuit includes a battery pack P1 connected in series, a second switch combination P5, and an electric device P3.
- the second switch combination P5 includes at least one switch.
- the distribution of the switches in the second switch combination P5 is not limited. For example, if the second switch combination P5 includes a plurality of switches, part of the switches can be distributed between the positive electrode of the battery pack P1 and the electric device P3, and the other part of the switches It is distributed between the negative electrode of the battery pack P1 and the electric device P3.
- the power-using device P3 is a device that consumes the power discharged from the battery pack P1. When the battery module discharges the electric device P3, the discharge circuit is turned on.
- first switch combination P4 and the second switch combination P5 may share one or more switches, which is not limited herein, and specific content will be described in detail in the following specific implementation manners.
- the semiconductor switch may include a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) or an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT). Both MOSFET and IGBT can be cut off under load.
- MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- the MOSFET has a gate, a source, and a drain.
- MOSEFT has a parasitic diode from the source to the drain, that is, there is a diode with the conduction direction from the source to the drain.
- a diode may also be provided in the IGBT, and the conduction direction of the diode is from source to drain.
- the IGBT may not be provided with a diode, which is not limited here.
- the first switch combination P4 and/or the second switch combination P5 includes at least two MOSFETs connected in series or two IGBTs connected in series.
- Two source series MOSFETs or two source series IGBTs can be connected directly or indirectly, that is, the source of two MOSFETs or the source of two IGBTs are connected in series through one or more devices. Not limited.
- the charging and discharging circuit further includes a controller, which can be connected to each switch in the charging circuit and the discharging circuit.
- the controller can send a control signal to each switch in the charging circuit and the discharging circuit, thereby controlling the conduction or disconnection of each switch in the charging circuit and the discharging circuit.
- the control signal may include an on signal, an off signal, a pulse signal, etc., which is not limited herein.
- the pulse signal may specifically be a pulse width modulation (Pulse Width Modulation, PWM) signal.
- the controller sends a turn-on signal to a part of the switches in the first switch combination P4, sends a pulse signal to another part of the switches in the first switch combination P4, and controls part of the switches in the first switch combination P4 to turn on, and another part of the switches Intermittently conduct to pre-charge the charging device P2.
- the controller may be used to send a conduction signal to the switches in the first switch combination P4, control the conduction of the switches in the first switch combination P4, and realize the conduction of the charging loop, so that the charging device P2 charges the battery pack P1.
- the controller sends a conduction signal to the switch in the second switch combination P5, controls the conduction of the switch in the second switch combination P5, and realizes the conduction of the discharge circuit, so that the battery pack P1 discharges to the electric device P3.
- the charging and discharging circuit in the embodiment of the present application except for the charging device P2 may be provided in an electric device or an electric system.
- other parts of the charging and discharging circuit except for the charging device P2 may be provided in the electric vehicle, and the electric device P3 is the electric part of the electric vehicle.
- the charging device P2 may specifically be a charging pile or a mains charging interface, etc., which is not limited herein.
- the charging device P2 is only connected to the charging circuit during the charging process. For example, the electric vehicle is about to be charged, and the electric vehicle is connected to the charging pile.
- the charging device P2 itself can also be provided with a charging switch. When the charging device P2 is connected to the charging circuit and the charging switch is turned on, the charging device can be connected with other parts of the charging circuit.
- the charging and discharging circuit includes a battery pack P1, a charging device P2, a power consumption device P3, a first switch combination P4, and a second switch combination P5.
- the battery pack P1, the first switch combination P4 and the charging device P2 form a charging circuit
- the battery pack P1, the second switch combination P5 and the electric device P3 form a discharge circuit.
- the switches in the charging circuit and the discharging circuit are semiconductor switches.
- the semiconductor switch has a smaller volume and weight, a low failure rate, and a high switching speed, which can reduce the adverse effects on the charging and discharging of battery modules, battery packs, etc. Improve the charge and discharge capacity of the charge and discharge circuit.
- the overall volume and weight of the charge and discharge circuit using the semiconductor switch will also be reduced, and the probability of charge and discharge failure of the charge and discharge circuit will also be reduced.
- the switching rate of the charging and discharging circuit in the embodiment of the present application is increased, and the controllability of charging and discharging of the charging and discharging circuit is improved.
- a semiconductor switch is used as a MOSFET, and the first end of the MOSFET is a drain stage, the second end is a source stage, and the control end of the MOSFET is a gate.
- the diode between the drain and source of the MOSFET is a parasitic diode.
- FIG. 2 is a schematic structural diagram of a specific implementation manner of a charge-discharge circuit in an embodiment of the present application.
- the first switch combination P4 includes a first switch K1, a second switch K2, and a third switch K3.
- the second switch combination P5 includes a first switch K1, a second switch K2, and a fourth switch K4.
- the first end of the first switch K1 is connected to the negative electrode of the battery pack P1.
- the second terminal of the first switch K1 is connected to the second terminal of the second switch K2.
- the first end of the second switch K2 is connected to one end of the charging device P2.
- the other end of the charging device P2 is connected to the first end of the third switch K3, and the second end of the third switch K3 is connected to the positive electrode of the battery pack P1.
- the first end of the second switch K2 is connected to one end of the electric device P3.
- the other end of the electric device P3 is connected to the second end of the fourth switch K4.
- the first end of the fourth switch K4 is connected to the positive electrode of the battery pack P1.
- the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all semiconductor switches.
- the positions of the first switch K1 and the second switch K2 in FIG. 2 can be changed, that is, the negative pole of the battery pack P1 is connected to the second end of the second switch K2, and the first end of the second switch K2 is connected to the second The first end of a switch K1 is connected, and the second end of the first switch K1 is connected to one end of the charging device P2 and one end of the electric device P3.
- the charging circuit includes three semiconductor switches connected in series, and the discharge circuit includes three semiconductor switches connected in series.
- the charging circuit and the discharging circuit share the first switch K1 and the second switch K2.
- the second terminal (ie source) of the first switch K1 is connected to the second terminal (ie source) of the second switch K2. It is ensured that the parasitic diodes of the first switch K1 and the second switch K2 will not be turned on at the same time, thereby ensuring the realization of the switch function and avoiding the wrong conduction of the charging circuit and the discharging circuit.
- the charge and discharge circuit can realize the four processes of pre-charging, charging, discharging pre-charging and discharging of the battery pack P1.
- the controller may send a control signal to the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4. Specifically, the controller may send a control signal to the control terminals of the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 to implement the first switch K1, the second switch K2, the third switch K3, and the The fourth switch K4 is turned on and off.
- the first switch K1 and the third switch K3 are turned on, the fourth switch K4 is turned off, and the second switch K2 is turned on intermittently, so as to realize the interval conduction of the charging circuit
- the charging device P2 performs pre-charging.
- the controller may send a conduction signal to the first switch K1 and the third switch K3 to control both the first switch K1 and the third switch K3 to be turned on.
- the controller sends an opening signal to the fourth switch K4 to control the fourth switch K4 to open.
- the controller sends a pulse signal to the second switch K2 to control the second switch K2 to be intermittently turned on to precharge the charging device P2.
- the first switch K1, the second switch K2, and the third switch K3 are turned on, and the fourth switch K4 is turned off.
- the controller may send a conducting signal to the first switch K1 and the third switch K3 to control the first switch K1 and the third switch K3 to conduct.
- the controller sends a disconnect signal to the fourth switch K4 to control the fourth switch K4 to be turned off, so that the charging device P2 charges the battery pack P1.
- the conduction direction of the parasitic diode in the second switch K2 is from the second end to the first end. Therefore, the second switch K2 is closed or opened, and the parasitic diodes in the second switch K2 are all in a conducting state.
- a turn-on command can also be sent to the second switch K2.
- the charging process can be triggered by conducting control of the first switch K1 and the third switch K3.
- the first switch K1 and the fourth switch K4 are turned on, the third switch K3 is turned off, and the second switch K2 is turned on intermittently.
- the controller sends a conducting signal to the first switch K1 and the fourth switch K4, and controls the first switch K1 and the fourth switch K4 to conduct.
- the controller sends an opening signal to the third switch K3, and controls the third switch K3 to open.
- the controller sends a pulse signal to the second switch K2 to control the second switch K2 to be intermittently turned on to pre-charge the electric device P3.
- the first switch K1, the second switch K2, and the fourth switch K4 are turned on, and the third switch K3 is turned off.
- the controller may send a conduction signal to the first switch K1, the second switch K2, and the fourth switch K4 to control the first switch K1, the second switch K2, and the fourth switch K4 to conduct.
- the controller sends an opening signal to the third switch K3, and controls the third switch K3 to open, so that the battery pack P1 discharges to the electric device P3.
- the first switch combination P4 includes a fifth switch K5 and a sixth switch K6.
- the second switch combination P5 includes a fifth switch K5, a sixth switch K6, and a seventh switch K7.
- the second terminal of the fifth switch K5 is connected to the positive electrode of the battery pack P1.
- the first end of the fifth switch K5 is connected to the other end of the charging device P2.
- One end of the charging device P2 is connected to the first end of the sixth switch K6.
- the second terminal of the sixth switch K6 is connected to the negative electrode of the battery pack P1.
- the first terminal of the fifth switch K5 is connected to the first terminal of the seventh switch K7.
- the second end of the seventh switch K7 is connected to the other end of the consumer P3.
- One end of the electric device P3 is connected to the first end of the sixth switch K6.
- the fifth switch K5, the sixth switch K6 and the seventh switch K7 are all semiconductor switches.
- the charging circuit includes two semiconductor switches connected in series, and the discharge circuit includes three semiconductor switches connected in series.
- the charging circuit and the discharging circuit share the fifth switch K5 and the sixth switch K6.
- the controller may send a control signal to the fifth switch K5, the sixth switch K6, and the seventh switch K7. Specifically, the controller may send a control signal to the control terminals of the fifth switch K5, the sixth switch K6, and the seventh switch K7, so as to realize the turning on and off of the fifth switch K5, the sixth switch K6, and the seventh switch K7 .
- the fifth switch K5 is turned on, the seventh switch K7 is turned off, and the sixth switch K6 is intermittently turned on to realize the intermittent conduction of the charging circuit to pre-charge the charging device P2 Charge.
- the controller sends a conduction signal to the fifth switch K5 to control the fifth switch K5 to be turned on.
- the controller sends an opening signal to the seventh switch K7, and controls the seventh switch K7 to open.
- the controller sends a pulse signal to the sixth switch K6 to control the sixth switch K6 to be intermittently turned on to precharge the charging device P2.
- the fifth switch K5 and the sixth switch K6 are turned on, and the seventh switch K7 is turned off.
- the controller sends a conducting signal to the fifth switch K5 and the sixth switch K6, and controls the fifth switch K5 and the sixth switch K6 to conduct.
- the controller sends an opening signal to the seventh switch K7, and controls the seventh switch K7 to open, so that the charging device P2 charges the battery pack P1.
- the fifth switch K5 and the seventh switch K7 are turned on, and the sixth switch K6 is turned on intermittently.
- the controller sends a conducting signal to the fifth switch K5 and the seventh switch K7, and controls the fifth switch K5 and the seventh switch K7 to conduct.
- the controller sends a pulse signal to the sixth switch K6 to control the sixth switch K6 to be turned on intermittently to pre-charge the electric device P3.
- the sixth switch K6 and the seventh switch K7 are turned on, and the fifth switch K5 is turned off.
- a conduction signal is sent to the fifth switch K5, the sixth switch K6, and the seventh switch K7, and the fifth switch K5, the sixth switch K6, and the seventh switch K7 are controlled to be turned on, so that the battery pack P1 is directed to the consumer P3 discharge.
- the second switch combination P5 includes an eighth switch K8 and a ninth switch K9.
- the first switch combination P4 includes a tenth switch K10 and an eleventh switch K11.
- the second end of the eighth switch K8 is connected to the negative terminal of the battery pack P1
- the first end of the eighth switch K8 is connected to one end of the electric device P3
- the other end of the electric device P3 is connected to the second end of the ninth switch K9
- the first end of the ninth switch K9 is connected to the anode of the battery pack P1.
- the second end of the tenth switch K10 is connected to the positive pole of the battery pack P1, the first end of the tenth switch K10 is connected to the other end of the charging device P2, and the second end of the eleventh switch K11 is connected to the negative pole of the battery pack P1, The first end of the eleventh switch K11 is connected to one end of the charging device P2.
- the eighth switch K8, the ninth switch K9, the tenth switch K10 and the eleventh switch K11 are all semiconductor switches.
- the charging circuit includes two semiconductor switches connected in series, and the discharge circuit includes two semiconductor switches connected in series.
- the controller may send control signals to the eighth switch K8, the ninth switch K9, the tenth switch K10, and the eleventh switch K11. Specifically, the controller may send a control signal to the control terminals of the eighth switch K8, the ninth switch K9, the tenth switch K10, and the eleventh switch K11 to implement the eighth switch K8, the ninth switch K9, and the tenth switch K10 Turn on and off with the eleventh switch K11.
- the tenth switch K10 is turned on, the eleventh switch K11 is intermittently turned on, and the eighth switch K8 and the ninth switch K9 are turned off.
- the controller sends a turn-on signal to the tenth switch K10 to control the tenth switch K10 to turn on.
- the controller sends a disconnect signal to the eighth switch K8 and the ninth switch K9, and controls the eighth switch K8 and the ninth switch K9 to be disconnected.
- the controller sends a pulse signal to the eleventh switch K11 to control the eleventh switch K11 to be intermittently turned on to precharge the charging device P2.
- the tenth switch K10 and the eleventh switch K11 are turned on, and the eighth switch K8 and the ninth switch K9 are turned off.
- the controller sends a conduction signal to the tenth switch K10 and the eleventh switch K11 to control the tenth switch K10 and the eleventh switch K11 to be turned on.
- the controller sends disconnection information to the eighth switch K8 and the ninth switch K9, and controls the eighth switch K8 and the ninth switch K9 to be disconnected, so that the charging device P2 charges the battery pack P1.
- the ninth switch K9 is turned on, the tenth switch K10 and the eleventh switch K11 are turned off, and the eighth switch K8 is turned on intermittently.
- the controller sends a conduction signal to the ninth switch K9 to control the ninth switch K9 to be turned on.
- the controller sends a disconnect signal to the tenth switch K10 and the eleventh switch K11, and controls the tenth switch K10 and the eleventh switch K11 to be disconnected.
- the controller sends a pulse signal to the eighth switch K8, and controls the eighth switch K8 to be intermittently turned on to pre-charge the electric device P3.
- the eighth switch K8 and the ninth switch K9 are turned on, and the tenth switch K10 and the eleventh switch K11 are turned off.
- the controller sends a conducting signal to the eighth switch K8 and the ninth switch K9, and controls the eighth switch K8 and the ninth switch K9 to conduct.
- the controller sends disconnection information to the tenth switch K10 and the eleventh switch K11, and controls the tenth switch K10 and the eleventh switch K11 to be disconnected, so that the battery pack P1 is discharged to the electric device P3.
- precharging the charging device specifically refers to precharging the capacitor in the charging device.
- Pre-charging the electric device specifically refers to pre-charging the capacitor in the electric device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本申请提供了一种充放电电路,涉及电池电力领域。该充放电电路,包括:充电回路,包括串联的电池包、第一开关组合与充电设备;放电回路,包括串联的电池包、第二开关组合与用电设备;其中,第一开关组合和第二开关组合均包括至少一个开关,且第一开关组合和/或第二开关组合中至少一个开关为半导体开关。利用本申请的技术方案能够提高充放电电路的充放电能力,在安全控制充放电电路的同时避免损害充放电电路中的开关器件。
Description
相关申请的交叉引用
本申请要求享有于2018年12月07日提交的名称为“充放电电路”的中国专利申请201811493731.9的优先权,该申请的全部内容通过引用并入本文中。
本申请涉及电池电力领域,尤其涉及一种充放电电路。
随着新能源的快速发展,新能源可以为越来越多的设备提供动力,比如电池模组、电池包等可作为动力源为新能源汽车、新能源船舶、新能源飞机等等提供动力。电池模组、电池包等在使用过程中会经过多次的充电和放电。
现阶段,在充放电电路中设置继电器,通过控制继电器的通断,控制充放电电路中电池模组、电池包等的充电和放电。但是,由于继电器开关速度低、失效率较高,对电池模组、电池包等的充放电带来了不良影响,降低了充放电电路的充放电能力。
发明内容
本申请实施例提供了一种充放电电路,能够提高充放电电路的充放电能力。
本申请实施例提供了一种充放电电路,包括:充电回路,包括串联的电池包、第一开关组合与充电设备,充电回路用于利用充电设备为电池包进行充电,以及对充电设备进行预充电;放电回路,包括串联的电池包、第二开关组合与用电设备,放电回路用于使电池包向用电设备放电,以及 对用电设备进行预充电;其中,第一开关组合和第二开关组合均包括至少一个开关,且第一开关组合和第二开关组合中的所有开关均为半导体开关。
本申请实施例提供了一种充放电电路,该充放电电路包括电池包、充电设备、用电设备、第一开关组合和第二开关组合。其中,电池包、第一开关组合和充电设备组成充电回路,电池包、第二开关组合和用电设备组成放电回路。且在充电回路和放电回路中的开关均为半导体开关,半导体开关的体积和重量更小,失效率低,且开关速度高,可减少对电池模组、电池包等的充放电的不良影响,提高充放电电路的充放电能力。在安全控制充放电电路的同时避免损害充放电电路中的开关器件。
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请其中,相同或相似的附图标记表示相同或相似的特征。
图1为本申请实施例中一种充放电电路的结构示意图;
图2为本申请实施例中一种充放电电路的一种具体实现方式的结构示意图;
图3为本申请实施例中一种充放电电路的另一种具体实现方式的结构示意图;
图4为本申请实施例中一种充放电电路的又一种具体实现方式的结构示意图。
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元 素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
本申请实施例提供了一种充放电回路,可应用于对电池包进行充电和放电的场景。电池包包括至少一个电池模组或至少一个电池单元,在此并不限定。电池包可应用于电动汽车,为电机供电,作为电动汽车的动力源。电池包还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
图1为本申请实施例中一种充放电电路的结构示意图。如图1所示,该充放电电路包括充电回路和放电回路。其中,电池包P1利用充电回路进行充电,利用放电回路进行放电。而且,本申请实施例中的充电回路还可用于对充电设备进行预充电,放电回路可用于对用电设备进行预充电。
充电回路包括串联的电池包P1、第一开关组合P4与充电设备P2。其中,第一开关组合P4包括至少一个开关。第一开关组合P4中的开关的分布并不限定,比如,第一开关组合P4包括多个开关,则可部分的开关分布于电池包P1的正极与充电设备P2之间,另外部分的开关分布于电池包P1的负极与充电设备P2之间。充电设备P2为用于为电池包P1充电的设备。当对电池包P1进行充电时,充电回路导通。
放电回路包括串联的电池包P1、第二开关组合P5与用电设备P3。其中,第二开关组合P5包括至少一个开关。第二开关组合P5中的开关的分布并不限定,比如,第二开关组合P5包括多个开关,则可部分的开关分布于电池包P1的正极与用电设备P3之间,另外部分的开关分布于电池包P1的负极与用电设备P3之间。用电设备P3为消耗电池包P1放出的电量的设备。当电池模组对用电设备P3进行放电时,放电回路导通。
值得一提的是,第一开关组合P4和第二开关组合P5可共用一个或多个开关,在此并不限定,具体内容会在下面的具体实现方式中进行详细描述。
需要说明的是,第一开关组合P4和第二开关组合P5中的所有开关均为半导体开关。在一些示例中,半导体开关可包括金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET) 或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)。MOSFET和IGBT均可带载切断。
需要说明的是,MOSFET具有栅极、源级和漏级。MOSEFT从源级到漏级之间存在寄生二极管,即存在一个导通方向为源级到漏级的二极管。IGBT中也可设置有二极管,该二极管的导通方向为源级到漏级。IGBT中也可不设置二极管,在此并不限定。
在一些示例中,若采用MOSFET实现继电器的功能,需要两个源级串联的MOSFET或两个源级串联的IGBT。也就是说,第一开关组合P4和/或第二开关组合P5至少包括两个源级串联的MOSFET或两个源级串联的IGBT。两个源级串联的MOSFET或两个源级串联的IGBT可以为直接串联,也可以为间接串联,即两个MOSFET的源级或两个IGBT的源级通过一个或多个器件串联,在此并不限定。
在一些示例中,充放电电路还包括控制器,该控制器可与充电回路和放电回路中的各个开关连接。该控制器可向充电回路和放电回路中的各个开关发送控制信号,从而控制充电回路和放电回路中各个开关的导通或断开。控制信号可包括导通信号、断开信号、脉冲信号等,在此并不限定。脉冲信号具体可以为脉冲宽度调制(Pulse Width Modulation,PWM)信号。
比如,控制器向第一开关组合P4中的部分开关发送导通信号,向第一开关组合P4中的另一部分开关发送脉冲信号,控制第一开关组合P4中的部分开关导通,另一部分开关间隔性导通,以对充电设备P2进行预充电。
控制器可用于向第一开关组合P4中的开关发送导通信号,控制第一开关组合P4中的开关导通,实现充电回路的导通,以使充电设备P2为电池包P1充电。
向第二开关组合P5中的部分开关发送导通信号,向第二开关组合P5中的另一部分开关发送脉冲信号,控制第二开关组合P5中的部分开关导通,另一部分开关间隔性导通,以对用电设备P3进行预充电。
控制器向第二开关组合P5中的开关发送导通信号,控制第二开关组 合P5中的开关的导通,实现放电回路的导通,以使电池包P1向用电设备P3放电。
需要说明的是,本申请实施例中的充放电电路中除充电设备P2外的其他部分可设置于用电装置或用电系统中。比如,充放电电路中除充电设备P2外的其他部分可设置于电动汽车中,用电设备P3为电动汽车中的用电部分。充电设备P2具体可为充电桩或市电充电接口等等,在此并不限定。充电设备P2在充电过程中才会接入充电回路,比如,电动汽车将要进行充电,将电动汽车与充电桩连接。且充电设备P2本身内部也可设置充电开关,当充电设备P2接入充电回路中,且充电开关导通,充电设备才能与充电回路中其他部分导通。
在本申请实施例中,充放电电路包括电池包P1、充电设备P2、用电设备P3、第一开关组合P4和第二开关组合P5。其中,电池包P1、第一开关组合P4和充电设备P2组成充电回路,电池包P1、第二开关组合P5和用电设备P3组成放电回路。且在充电回路和放电回路中的开关均为半导体开关,半导体开关的体积和重量更小,失效率低,且开关速度高,可减少对电池模组、电池包等的充放电的不良影响,提高充放电电路的充放电能力。在安全控制充放电电路的同时避免损害充放电电路中的开关器件。而且,利用半导体开关的充放电电路整体的体积和重量也会减小,充放电电路的充放电失效的概率也随之降低。本申请实施例中的充放电电路的开关速率提升,提升了充放电电路充放电的可控性。
下面将详细介绍几种充放电电路的具体实现方式。为了便于介绍,将以半导体开关为MOSFET,且MOSFET的第一端为漏级,第二端为源级,MOSFET的控制端为栅极为例进行说明。其中MOSFET的漏级与源级之间的二极管为寄生二极管。
图2为本申请实施例中一种充放电电路的一种具体实现方式的结构示意图。如图2所示,第一开关组合P4包括第一开关K1、第二开关K2与第三开关K3。第二开关组合P5包括第一开关K1、第二开关K2与第四开关K4。
其中,第一开关K1的第一端与电池包P1的负极连接。第一开关K1 的第二端与第二开关K2的第二端连接。第二开关K2的第一端与充电设备P2的一端连接。充电设备P2的另一端与第三开关K3的第一端连接,第三开关K3的第二端与电池包P1的正极连接。
第二开关K2的第一端与用电设备P3的一端连接。用电设备P3的另一端与第四开关K4的第二端连接。第四开关K4的第一端与电池包P1的正极连接。
上述第一开关K1、第二开关K2、第三开关K3和第四开关K4均为半导体开关。
在一些示例中,可调换图2中的第一开关K1与第二开关K2的位置,即电池包P1的负极与第二开关K2的第二端连接,第二开关K2的第一端与第一开关K1的第一端连接,第一开关K1的第二端与充电设备P2的一端及用电设备P3的一端连接。
由图2可得,充电回路包括串联的三个半导体开关,放电回路包括串联的三个半导体开关。充电回路与放电回路共用了第一开关K1与第二开关K2。第一开关K1的第二端(即源级)与第二开关K2的第二端(即源级)连接。保证第一开关K1与第二开关K2的寄生二极管不会同时导通,从而保证开关功能的实现,避免充电回路和放电回路错误的导通。
充放电电路可实现对电池包P1的充电的预充电、充电、放电的预充电和放电四个过程。
控制器可向第一开关K1、第二开关K2、第三开关K3和第四开关K4发送控制信号。具体的,控制器可向第一开关K1、第二开关K2、第三开关K3和第四开关K4的控制端发送控制信号,以实现第一开关K1、第二开关K2、第三开关K3和第四开关K4的导通和断开。
其中,在充电的预充电过程中,第一开关K1与第三开关K3导通,第四开关K4断开,第二开关K2间隔性导通,以实现充电回路的间隔性导通,以对充电设备P2进行预充电。
具体的,控制器可向第一开关K1与第三开关K3发送导通信号,控制第一开关K1与第三开关K3均导通。控制器向第四开关K4发送断开信号,控制第四开关K4断开。控制器向第二开关K2发送脉冲信号,控制第 二开关K2间隔性导通,以对充电设备P2进行预充电。
在充电过程中,第一开关K1、第二开关K2与第三开关K3导通,第四开关K4断开。
具体的,控制器可向第一开关K1与第三开关K3发送导通信号,控制第一开关K1与第三开关K3导通。控制器向第四开关K4发送断开信号,控制第四开关K4断开,以使充电设备P2为电池包P1充电。
需要说明的是,由于第二开关K2中的寄生二极管的导通方向为第二端至第一端。因此,第二开关K2闭合或断开,第二开关K2中的寄生二极管均处于导通状态。也可向第二开关K2发送导通指令。可通过对第一开关K1和第三开关K3的导通控制,触发充电过程开始。
在放电的预充电过程中,第一开关K1与第四开关K4导通,第三开关K3断开,第二开关K2间隔性导通。
具体的,控制器向第一开关K1与第四开关K4发送导通信号,控制第一开关K1与第四开关K4导通。控制器向第三开关K3发送断开信号,控制第三开关K3断开。控制器向第二开关K2发送脉冲信号,控制第二开关K2间隔性导通,以对用电设备P3进行预充电。
在放电过程中,第一开关K1、第二开关K2和第四开关K4导通,第三开关K3断开。
具体的,控制器可向第一开关K1、第二开关K2与第四开关K4发送导通信号,控制第一开关K1、第二开关K2与第四开关K4导通。控制器向第三开关K3发送断开信号,控制第三开关K3断开,以使电池包P1向用电设备P3放电。
图3为本申请实施例中一种充放电电路的另一种具体实现方式的结构示意图。如图3所示,第一开关组合P4包括第五开关K5与第六开关K6。第二开关组合P5包括第五开关K5、第六开关K6与第七开关K7。
第五开关K5的第二端与电池包P1的正极连接。第五开关K5的第一端与充电设备P2的另一端连接。充电设备P2的一端与第六开关K6的第一端连接。第六开关K6的第二端与电池包P1的负极连接。
第五开关K5的第一端与第七开关K7的第一端连接。第七开关K7的 第二端与用电设备P3的另一端连接。用电设备P3的一端与第六开关K6的第一端连接。
上述第五开关K5、第六开关K6与第七开关K7均为半导体开关。
由图3可得,充电回路包括串联的两个半导体开关,放电回路包括串联的三个半导体开关。充电回路与放电回路共用了第五开关K5与第六开关K6。充放电电路中共三个半导体开关,与图2相比,采用了更少数目的半导体开关,减小了充放电电路中半导体开关的总的导通电阻,从而减小了充放电电路中半导体开关的总的导通功耗。
控制器可向第五开关K5、第六开关K6和第七开关K7发送控制信号。具体的,控制器可向第五开关K5、第六开关K6和第七开关K7的控制端发送控制信号,以实现第五开关K5、第六开关K6和第七开关K7的导通和断开。
其中,在充电的预充电过程中,第五开关K5导通,第七开关K7断开,第六开关K6间隔性导通,以实现充电回路的间隔性导通,以对充电设备P2进行预充电。
具体的,控制器向第五开关K5发送导通信号,控制第五开关K5导通。控制器向第七开关K7发送断开信号,控制第七开关K7断开。控制器向第六开关K6发送脉冲信号,控制第六开关K6间隔性导通,以对充电设备P2进行预充电。
在充电过程中,第五开关K5与第六开关K6导通,第七开关K7断开。
具体的,控制器向第五开关K5与第六开关K6发送导通信号,控制第五开关K5与第六开关K6导通。控制器向第七开关K7发送断开信号,控制第七开关K7断开,以使充电设备P2为电池包P1充电。
需要说明的是,通过对第五开关K5的导通,触发充电过程开始。
在放电的预充电过程中,第五开关K5与第七开关K7导通,第六开关K6间隔性导通。
具体的,控制器向第五开关K5与第七开关K7发送导通信号,控制第五开关K5与第七开关K7导通。控制器向第六开关K6发送脉冲信号,控 制第六开关K6间隔性导通,以对用电设备P3进行预充电。
在放电过程中,第六开关K6与第七开关K7导通,第五开关K5断开。
具体的,向第五开关K5、第六开关K6与第七开关K7发送导通信号,控制第五开关K5、第六开关K6与第七开关K7导通,以使电池包P1向用电设备P3放电。
图4为本申请实施例中一种充放电电路的又一种具体实现方式的结构示意图。如图4所示,第二开关组合P5包括第八开关K8与第九开关K9。第一开关组合P4包括第十开关K10与第十一开关K11。
第八开关K8的第二端与电池包P1的负极连接,第八开关K8的第一端与用电设备P3的一端连接,用电设备P3的另一端与第九开关K9的第二端连接,第九开关K9的第一端与电池包P1的正极连接。
第十开关K10的第二端与电池包P1的正极连接,第十开关K10的第一端与充电设备P2的另一端连接,第十一开关K11的第二端与电池包P1的负极连接,第十一开关K11的第一端与充电设备P2的一端连接。
上述第八开关K8、第九开关K9、第十开关K10与第十一开关K11均为半导体开关。
如图4所示,充电回路包括串联的两个半导体开关,放电回路包括串联的两个半导体开关。
控制器可向第八开关K8、第九开关K9、第十开关K10与第十一开关K11发送控制信号。具体的,控制器可向第八开关K8、第九开关K9、第十开关K10与第十一开关K11的控制端发送控制信号,以实现第八开关K8、第九开关K9、第十开关K10与第十一开关K11的导通和断开。
其中,在充电的预充电过程中,第十开关K10导通,第十一开关K11间隔性导通,第八开关K8与第九开关K9断开。
具体的,控制器向第十开关K10发送导通信号,控制第十开关K10导通。控制器向第八开关K8与第九开关K9发送断开信号,控制第八开关K8与第九开关K9断开。控制器向第十一开关K11发送脉冲信号,控制第十一开关K11间隔性导通,以对充电设备P2进行预充电。
在充电过程中,第十开关K10与第十一开关K11导通,第八开关K8与第九开关K9断开。
具体的,控制器向第十开关K10与第十一开关K11发送导通信号,控制第十开关K10与第十一开关K11导通。控制器向第八开关K8与第九开关K9发送断开信息,控制第八开关K8与第九开关K9断开,以使充电设备P2为电池包P1充电。
在放电的预充电过程中,第九开关K9导通,第十开关K10与第十一开关K11断开,第八开关K8间隔性导通。
具体的,控制器向第九开关K9发送导通信号,控制第九开关K9导通。控制器向第十开关K10与第十一开关K11发送断开信号,控制第十开关K10与第十一开关K11断开。控制器向第八开关K8发送脉冲信号,控制第八开关K8间隔性导通,以对用电设备P3进行预充电。
在放电过程中,第八开关K8与第九开关K9导通,第十开关K10与第十一开关K11断开。
具体的,控制器向第八开关K8与第九开关K9发送导通信号,控制第八开关K8与第九开关K9导通。控制器向第十开关K10与第十一开关K11发送断开信息,控制第十开关K10与第十一开关K11断开,以使电池包P1向用电设备P3放电。
需要说明的是,在上述实施例中,对充电设备进行预充电,具体指对充电设备中的电容进行预充电。对用电设备进行预充电,具体指对用电设备中的电容进行预充电。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本申请并不局限于上文所描述并在图中示出的特定结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现 所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。
Claims (10)
- 一种充放电电路,包括:充电回路,包括串联的电池包、第一开关组合与充电设备,所述充电回路用于利用所述充电设备为所述电池包进行充电,以及对所述充电设备进行预充电;放电回路,包括串联的所述电池包、第二开关组合与用电设备,所述放电回路用于使所述电池包向所述用电设备放电,以及对所述用电设备进行预充电;其中,所述第一开关组合和所述第二开关组合均包括至少一个开关,且所述第一开关组合和所述第二开关组合中的所有开关均为半导体开关。
- 根据权利要求1所述的充放电电路,其中,所述充放电电路还包括控制器,所述控制器用于:向所述第一开关组合中的部分开关发送导通信号,向所述第一开关组合中的另一部分开关发送脉冲信号,控制所述第一开关组合中的部分开关导通,另一部分开关间隔性导通,以对所述充电设备进行预充电;向所述第一开关组合中的开关发送导通信号,控制所述第一开关组合中的开关导通,以使所述充电设备为所述电池包充电;向所述第二开关组合中的部分开关发送导通信号,向所述第二开关组合中的另一部分开关发送脉冲信号,控制所述第二开关组合中的部分开关导通,另一部分开关间隔性导通,以对所述用电设备进行预充电;向所述第二开关组合中的开关发送导通信号,控制所述第二开关组合中的开关的导通,以使所述电池包向所述用电设备放电。
- 根据权利要求1所述的充放电电路,其中,所述第一开关组合包括第一开关、第二开关与第三开关,其中,所述第一开关的第一端与所述电池包的负极连接,所述第一开关的第二端与所述第二开关的第二端连接,所述第二开关的第一端与所述充电设备的一端连接,所述充电设备的另一端与所述第三开关的第一端连接,所述第三开关的第二端与所述电池包的正极连接;所述第二开关组合包括所述第一开关、所述第二开关与第四开关,其中,所述第二开关的第一端与所述用电设备的一端连接,所述用电设备的另一端与所述第四开关的第二端连接,所述第四开关的第一端与所述电池包的正极连接。
- 根据权利要求3所述的充放电电路,其中,所述充放电电路还包括控制器,所述控制器用于:向所述第一开关与所述第三开关发送导通信号,控制所述第一开关与所述第三开关均导通,向所述第四开关发送断开信号,控制所述第四开关断开,并向所述第二开关发送脉冲信号,控制所述第二开关间隔性导通,以对所述充电设备进行预充电;向所述第一开关与所述第三开关发送导通信号,控制所述第一开关与所述第三开关导通,向所述第四开关发送断开信号,控制所述第四开关断开,以使所述充电设备为所述电池包充电;向所述第一开关与所述第四开关发送导通信号,控制所述第一开关与所述第四开关导通,向所述第三开关发送断开信号,控制所述第三开关断开,并向所述第二开关发送脉冲信号,控制所述第二开关间隔性导通,以对所述用电设备进行预充电;向所述第一开关、所述第二开关与所述第四开关发送导通信号,控制所述第一开关、所述第二开关与所述第四开关导通,向所述第三开关发送断开信号,控制所述第三开关断开,以使所述电池包向所述用电设备放电。
- 根据权利要求1所述的充放电电路,其中,所述第一开关组合包括第五开关与第六开关,其中,所述第五开关的第二端与所述电池包的正极连接,所述第五开关的第一端与所述充电设备的另一端连接,所述充电设备的一端与所述第六开关的第一端连接,所述第六开关的第二端与所述电池包的负极连接;所述第二开关组合包括所述第五开关、所述第六开关与第七开关,其中,所述第五开关的第一端与所述第七开关的第一端连接,所述第七开关的第二端与所述用电设备的另一端连接,所述用电设备的一端与所述第六 开关的第一端连接。
- 根据权利要求5所述的充放电电路,其中,所述充放电电路还包括控制器,所述控制器用于:向所述第五开关发送导通信号,控制所述第五开关导通,向所述第七开关发送断开信号,控制所述第七开关断开,向所述第六开关发送脉冲信号,控制所述第六开关间隔性导通,以对所述充电设备进行预充电;向所述第五开关与所述第六开关发送导通信号,控制所述第五开关与所述第六开关均导通,向所述第七开关发送断开信号,控制所述第七开关断开,以使所述充电设备为所述电池包充电;向所述第五开关与所述第七开关发送导通信号,控制所述第五开关与所述第七开关导通,向所述第六开关发送脉冲信号,控制所述第六开关间隔性导通,以对所述用电设备进行预充电;向所述第五开关、所述第六开关与所述第七开关发送导通信号,控制所述第五开关、所述第六开关与所述第七开关均导通,以使所述电池包向所述用电设备放电。
- 根据权利要求1所述的充放电电路,其中,所述第二开关组合包括第八开关与第九开关,其中,所述第八开关的第二端与所述电池包的负极连接,所述第八开关的第一端与所述用电设备的一端连接,所述用电设备的另一端与所述第九开关的第二端连接,所述第九开关的第一端与所述电池包的正极连接;所述第一开关组合包括第十开关与第十一开关,其中,所述第十开关的第二端与所述电池包的正极连接,所述第十开关的第一端与所述充电设备的另一端连接,所述第十一开关的第二端与所述电池包的负极连接,所述第十一开关的第一端与所述充电设备的一端连接。
- 根据权利要求7所述的充放电电路,其中,所述充放电电路还包括控制器,所述控制器用于:向所述第十开关发送导通信号,控制所述第十开关导通,向所述第八开关与所述第九开关发送断开信号,控制所述第八开关与所述第九开关断 开,向所述第十一开关发送脉冲信号,控制所述第十一开关间隔性导通,以对所述充电设备进行预充电;向所述第十开关与所述第十一开关发送导通信号,控制所述第十开关与所述第十一开关导通,向所述第八开关与所述第九开关发送断开信息,控制所述第八开关与所述第九开关断开,以使所述充电设备为所述电池包充电;向所述第九开关发送导通信号,控制所述第九开关导通,向所述第十开关与所述第十一开关发送断开信号,控制所述第十开关与所述第十一开关断开,向所述第八开关发送脉冲信号,控制所述第八开关间隔性导通,以对所述用电设备进行预充电;向所述第八开关与所述第九开关发送导通信号,控制所述第八开关与所述第九开关导通,向所述第十开关与所述第十一开关发送断开信息,控制所述第十开关与所述第十一开关断开,以使所述电池包向所述用电设备放电。
- 根据权利要求1所述的充放电电路,其中,所述半导体开关包括金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管IGBT。
- 根据权利要求9所述的充放电电路,其中,所述MOSFET或所述IGBT的第一端为漏级,所述MOSFET或所述IGBT的第二端为源级。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/978,683 US11652352B2 (en) | 2018-12-07 | 2019-12-06 | Charge and discharge circuit |
EP19893957.1A EP3751696B1 (en) | 2018-12-07 | 2019-12-06 | Charging and discharging circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811493731.9 | 2018-12-07 | ||
CN201811493731.9A CN110970962A (zh) | 2018-12-07 | 2018-12-07 | 充放电电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020114497A1 true WO2020114497A1 (zh) | 2020-06-11 |
Family
ID=70029564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/123707 WO2020114497A1 (zh) | 2018-12-07 | 2019-12-06 | 充放电电路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11652352B2 (zh) |
EP (1) | EP3751696B1 (zh) |
CN (1) | CN110970962A (zh) |
WO (1) | WO2020114497A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102656767A (zh) * | 2009-12-10 | 2012-09-05 | 德克萨斯仪器股份有限公司 | 脉冲宽度调制的电池充电 |
CN103847531A (zh) * | 2012-11-28 | 2014-06-11 | 北汽福田汽车股份有限公司 | 一种电动汽车高压电气系统及控制方法 |
WO2014141809A1 (ja) * | 2013-03-13 | 2014-09-18 | Necエナジーデバイス株式会社 | 電池パック、移動体および制御方法 |
CN206452129U (zh) * | 2016-12-23 | 2017-08-29 | 深圳市超力源科技有限公司 | 一种二次锂电池充电不能放电控制电路 |
CN108110868A (zh) * | 2018-02-14 | 2018-06-01 | 深圳市道通智能航空技术有限公司 | 电池负极控制回路保护装置、电池组件及无人机 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5789900A (en) * | 1994-12-05 | 1998-08-04 | Fuji Photo Film Co., Ltd. | Device for protecting a secondary battery from overcharge and overdischarge |
US6118254A (en) * | 1999-07-30 | 2000-09-12 | Compaq Computer Corporation | Battery charge control architecture for constant voltage maximum power operation |
CA2325595A1 (en) * | 2000-11-10 | 2002-05-10 | Jeffrey Phillips | Charger for a rechargeable nickel-zinc battery |
US7642750B2 (en) * | 2005-10-04 | 2010-01-05 | O2Micro International Limited | Battery charge/discharge control circuit |
TWI307200B (en) | 2006-02-16 | 2009-03-01 | Quanta Comp Inc | Controllable charging/discharging device |
US7595609B2 (en) * | 2006-03-09 | 2009-09-29 | Dell Products L.P. | Battery system power path configuration and methods for implementing same |
US8350529B2 (en) * | 2006-11-10 | 2013-01-08 | Lithium Balance A/S | Battery management system |
JP5174421B2 (ja) * | 2007-10-19 | 2013-04-03 | パナソニック株式会社 | 電池パック、及び電池システム |
US8154255B2 (en) * | 2009-01-30 | 2012-04-10 | Dell Products L.P. | Systems and methods for waking up a battery system |
US9537326B2 (en) * | 2009-04-16 | 2017-01-03 | Valence Technology, Inc. | Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods |
US8143863B2 (en) | 2009-10-12 | 2012-03-27 | O2Micro, Inc | Circuits and methods for controlling a current flowing through a battery |
JP5544923B2 (ja) * | 2010-02-24 | 2014-07-09 | セイコーエプソン株式会社 | 保護回路および電子機器 |
JP5652562B1 (ja) * | 2013-09-19 | 2015-01-14 | 株式会社豊田自動織機 | Mosfetスイッチ素子の異常診断装置及び方法 |
US10186887B2 (en) * | 2014-07-28 | 2019-01-22 | Ec Power, Llc | Systems and methods for fast charging batteries at low temperatures |
JP6569446B2 (ja) * | 2015-10-07 | 2019-09-04 | 三菱自動車工業株式会社 | バッテリ制御装置 |
KR102519118B1 (ko) * | 2016-02-24 | 2023-04-05 | 삼성에스디아이 주식회사 | 배터리 보호 회로 |
CN106206185A (zh) | 2016-09-18 | 2016-12-07 | 天津十二策科技有限公司 | 一种具有隔离装置的断路器 |
KR102082380B1 (ko) | 2016-11-02 | 2020-02-28 | 주식회사 엘지화학 | 부하 구동전류 제어방법 및 시스템 |
-
2018
- 2018-12-07 CN CN201811493731.9A patent/CN110970962A/zh active Pending
-
2019
- 2019-12-06 US US16/978,683 patent/US11652352B2/en active Active
- 2019-12-06 WO PCT/CN2019/123707 patent/WO2020114497A1/zh unknown
- 2019-12-06 EP EP19893957.1A patent/EP3751696B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102656767A (zh) * | 2009-12-10 | 2012-09-05 | 德克萨斯仪器股份有限公司 | 脉冲宽度调制的电池充电 |
CN103847531A (zh) * | 2012-11-28 | 2014-06-11 | 北汽福田汽车股份有限公司 | 一种电动汽车高压电气系统及控制方法 |
WO2014141809A1 (ja) * | 2013-03-13 | 2014-09-18 | Necエナジーデバイス株式会社 | 電池パック、移動体および制御方法 |
CN206452129U (zh) * | 2016-12-23 | 2017-08-29 | 深圳市超力源科技有限公司 | 一种二次锂电池充电不能放电控制电路 |
CN108110868A (zh) * | 2018-02-14 | 2018-06-01 | 深圳市道通智能航空技术有限公司 | 电池负极控制回路保护装置、电池组件及无人机 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3751696A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20200403418A1 (en) | 2020-12-24 |
US11652352B2 (en) | 2023-05-16 |
EP3751696A1 (en) | 2020-12-16 |
EP3751696A4 (en) | 2021-05-05 |
CN110970962A (zh) | 2020-04-07 |
EP3751696B1 (en) | 2022-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020114502A1 (zh) | 充放电电路 | |
US20140356686A1 (en) | High-voltage contactor switching systems and methods | |
US20190241091A1 (en) | Movable power generating system and method for vehicle | |
US11303145B2 (en) | Charging system | |
KR101646374B1 (ko) | 배터리 충전 장치 및 이를 이용한 차량간 충전 방법 | |
CN110073600A (zh) | 半导体开关的控制装置、电源系统 | |
TWI717661B (zh) | 用於充電台的電力電子模組以及對應的充電台和充電站 | |
CN111049383A (zh) | 一种直挂高压电源的升压电路及软启动方法 | |
US11600992B2 (en) | Electric protection circuit | |
CN114301271A (zh) | 功率变换系统及控制方法 | |
WO2020114497A1 (zh) | 充放电电路 | |
US20220294340A1 (en) | Voltage regulation module, charging module, and charging pile | |
CN104967154B (zh) | 一种电动汽车充电系统 | |
CN118322901B (zh) | 动力电池充电系统及车辆 | |
WO2022165759A1 (zh) | 一种充电电路及充电装置 | |
EP4201732A1 (en) | A pre-charging device, a voltage converter and an electrified vehicle | |
CN106452213A (zh) | 电子调速器及控制方法 | |
CN114301048B (zh) | 一种防反灌电路、直流变换电路以及直流充电桩 | |
US20210288507A1 (en) | Battery module | |
WO2014067436A1 (zh) | 一种充放电控制电路 | |
JP2012181925A (ja) | スイッチング装置 | |
WO2023117800A1 (en) | A safety power switching device, a voltage converter and an electrified vehicle | |
KR20220167595A (ko) | 배터리 장치 및 컨택터 제어 방법 | |
CN114726220A (zh) | 用于传输电力的转换器系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019893957 Country of ref document: EP Effective date: 20200907 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |