WO2014141794A1 - 応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置 - Google Patents

応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置 Download PDF

Info

Publication number
WO2014141794A1
WO2014141794A1 PCT/JP2014/053069 JP2014053069W WO2014141794A1 WO 2014141794 A1 WO2014141794 A1 WO 2014141794A1 JP 2014053069 W JP2014053069 W JP 2014053069W WO 2014141794 A1 WO2014141794 A1 WO 2014141794A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
experimental value
unloading
springback
equation
Prior art date
Application number
PCT/JP2014/053069
Other languages
English (en)
French (fr)
Inventor
智史 澄川
亮伸 石渡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480013384.9A priority Critical patent/CN105122033B/zh
Priority to EP14765635.9A priority patent/EP2975377B1/en
Priority to MX2015012272A priority patent/MX343944B/es
Priority to US14/765,208 priority patent/US10089422B2/en
Priority to KR1020157023248A priority patent/KR101819474B1/ko
Publication of WO2014141794A1 publication Critical patent/WO2014141794A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials

Definitions

  • the present invention relates to a stress-strain relationship simulation method for evaluating the stress-strain relationship of an elastic-plastic material, and a springback for predicting the amount of springback of the elastic-plastic material during press molding.
  • the present invention relates to an amount prediction method and a springback analysis device for a press-formed product.
  • Press forming is a method in which a die shape is pressed against a blank (metal plate) to be molded, and the shape of the die is transferred to the blank for processing.
  • a press molding after the press-molded product is taken out of the mold, the deformation applied to the blank is slightly restored, so-called springback occurs, so that the press-molded product differs from the desired shape. May end up.
  • it is necessary to predict the amount of spring back of the press-molded product and design the shape of the mold so that the shape of the press-molded product after spring back becomes a desired shape based on the prediction result. is there.
  • FIG. 16 is a diagram showing the relationship between the stress and strain that the material receives in the press molding process and the springback process, with the horizontal axis representing strain and the vertical axis representing stress.
  • FIG. 16 when an external force ⁇ is applied to the material in the press forming process, the material undergoes an elastic deformation region and undergoes plastic deformation (yield point A as a boundary). plastic deformation) occurs, and the plastic deformation proceeds to point B where the strain amount ⁇ 2 (stress ⁇ 2 ) corresponds to the desired shape.
  • the amount of springback is determined by the difference in strain amount ⁇ generated during the unloading process, that is, the difference ⁇ between the strain amount ⁇ 2 at the unloading start point B and the strain amount ⁇ 1 at the unloading end point C.
  • a classical mathematical model called a conventional isotropic hardening model
  • the unloading end point is point E.
  • the relationship between stress and strain (stress-strain) Relationship) draws a non-linear curve.
  • Such an early yielding phenomenon at the time of stress reversal is called a Bauschinger effect.
  • Kinematic hardening means that the yield surface hardens by moving without changing its size.
  • a typical example considering kinematic hardening is the Yoshida-Uemori model (see Non-Patent Document 1).
  • This Yoshida-Uemori model can reproduce the Bausinger effect.
  • the apparent stress-strain gradient (apparent Young's modulus) is assumed by assuming that the non-linear stress-strain relationship immediately after stress reversal is that work hardening occurs linearly. (Your's modulus)) is linear approximation.
  • Patent Document 1 describes a method for expressing the Bausinger effect that occurs in the early stage of the unloading process.
  • the stress at the beginning of plastic deformation in the unloading process is identified from the stress-strain gradient, and the stress at the yield point A (yield stress) is made smaller than in the prior art. That is, in this technique, the Bausinger effect that occurs at the beginning of the unloading process is expressed by reducing the linear elastic region and increasing the non-linear work hardening region.
  • a coefficient of convergence speed of kinematic hardening of the yield surface (parameter) is defined as a function of equivalent plastic strain.
  • the convergence speed is large when the stress rapidly increases in a region where the strain is small, and the convergence speed is small when the strain is large and the stress does not increase so much.
  • FIG. 17 is a diagram illustrating the relationship between stress and strain when a material is unloaded after tensile deformation and further subjected to another tensile deformation (re-tensile deformation).
  • a non-linear curve is drawn as described above, and the non-linear behavior is similarly observed during re-tensioning. Further, when the tensile deformation progresses, it deforms similarly to the original tensile stress-strain relationship.
  • FIG. 18 is a diagram showing a change in the stress gradient (d ⁇ / d ⁇ ) with respect to the strain when subjected to the unloading (compression) and re-tensile deformation of FIG. In FIG.
  • the horizontal axis indicates stress ( ⁇ ), and the vertical axis indicates gradient (d ⁇ / d ⁇ ).
  • the gradient at the time of unloading (compression) and the gradient at the time of re-tension are gradually reduced because of plastic deformation from a high value at the initial stage of deformation.
  • the inventor has found through experiments that the gradient at the time of unloading and the gradient at the time of re-tension are symmetric with respect to ⁇ 3 . That is, the present inventor has found that the stress-strain relationship due to unloading (compression) and re-tension is a point symmetry hysteresis.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a stress-strain relationship simulation method capable of accurately simulating the stress-strain relationship of an elastic-plastic material. Another object of the present invention is to provide a springback prediction method capable of accurately predicting the amount of springback of an elastic-plastic material during press molding. Another object of the present invention is to provide a springback analyzing apparatus capable of analyzing springback with high accuracy.
  • an experimental value acquisition step of acquiring an experimental value of a stress-strain relationship by plastically deforming an elastic-plastic material, and a computer are defined as a function of stress and back stress.
  • the material parameter included in the elastic-plastic constitutive equation is expressed by the equation (1) where the incremental vector k ⁇ ij of the yield surface in the elastic-plastic constitutive model is the above-described experiment.
  • the stress-strain relationship simulating method according to the present invention is the method of applying a stress in the tensile direction to the elastoplastic material as a method of imparting plastic deformation to the elastoplastic material in the experimental value acquisition step in the above invention.
  • the method of unloading after plastic deformation, the method of unloading after applying plastic deformation to the elastoplastic material after applying stress in the tensile direction, and plastic deformation by applying stress in the compression direction, or applying stress in the tensile direction After the plastic deformation, the unloading is performed, and stress is applied in the tensile direction again to perform plastic deformation.
  • the springback amount prediction method includes an experimental value acquisition step of acquiring an experimental value of a stress-strain relationship by plastically deforming an elastic-plastic material, and an elastic-plasticity in which a computer is defined as a function of stress and back stress.
  • the constant identification step, and the computer calculates the formula (2) based on the formula (1) into which the material constant identified in the first material constant identification step is substituted and the experimental value acquired in the experimental value acquisition step.
  • the second material constant identification step for identifying the material constants included in (1)), and the computer uses the equations (1), (2), and the elastoplastic constitutive equations into which the identified material constants are substituted. Comprising the steps of: predicting a ringback amount.
  • the variables X ij , ⁇ , A, n in the equations (1) and (2) are represented by the equation (3).
  • the spring back amount prediction method according to the present invention is the method of applying plastic stress to the elastic-plastic material in the tensile strength direction as the method of imparting plastic deformation to the elastic-plastic material in the experimental value acquisition step in the above invention. After unloading, applying a stress in the tensile direction to the elastoplastic material and then plastically deforming it, unloading it, and applying a stress in the compression direction to plastically deform, or applying a stress in the tensile direction to make plastic deformation After the deformation, the unloading is performed, and any one of the methods of plastic deformation by applying stress in the tensile direction again is performed.
  • the springback analysis apparatus is a springback analysis apparatus in which a computer predicts a springback amount of a press-formed product, and the analysis of the press-formed product before die release is performed by press-molding analysis.
  • Press molding analysis means for obtaining shape, residual stress distribution and strain distribution, and after releasing the press molded product by springback analysis based on the shape, residual stress distribution and strain distribution of the press molded product
  • Springback analysis means for obtaining the amount of springback of the above-mentioned, and the kinematic hardening incremental vector d ⁇ ij of the yield surface in the elasto-plastic constitutive equation possessed by the press forming analysis means and the springback analysis means is expressed by equation (1) ( 2).
  • the variables X ij , ⁇ , A, n in the expressions (1) and (2) are represented by the expression (3).
  • the stress-strain relationship simulation method according to the present invention can accurately simulate the stress-strain relationship of an elastoplastic material. Further, according to the spring back amount prediction method according to the present invention, the spring back amount of the elastic-plastic material can be accurately predicted. Furthermore, according to the springback analyzing apparatus according to the present invention, the amount of springback of the press-formed product can be accurately predicted.
  • FIG. 1A is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 1B is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 3 is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 4 is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 5 is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 6 is an explanatory diagram for explaining the principle of the present invention.
  • FIG. 7 is a flowchart for explaining the flow of the stress-strain relationship simulation method according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining the flow of the springback amount prediction method according to the second embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining the flow of the stress-strain relationship simulation method according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining the
  • FIG. 9 is a block diagram illustrating the configuration of the springback analyzing apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining the flow of the springback analysis method using the springback analysis apparatus according to the third embodiment of the present invention.
  • FIG. 11 is an explanatory diagram for explaining an experimental result in Example 1 of the present invention.
  • FIG. 12A is an explanatory diagram illustrating the contents of an experiment in Example 2 of the present invention.
  • FIG. 12B is an explanatory diagram illustrating experimental contents in Example 2 of the present invention.
  • FIG. 13 is an explanatory diagram for explaining a springback evaluation method as an experimental result in Example 2 of the present invention.
  • FIG. 14 is an explanatory diagram for explaining an experimental result in Example 2 of the present invention.
  • FIG. 12A is an explanatory diagram illustrating the contents of an experiment in Example 2 of the present invention.
  • FIG. 12B is an explanatory diagram illustrating experimental contents in Example 2 of the present invention.
  • FIG. 13 is an
  • FIG. 15 is a diagram for explaining the effect of the present invention, and showing an example of a stress-strain relationship in a normal rotation deformation process.
  • FIG. 16 is an explanatory diagram for explaining the prior art.
  • FIG. 17 is an explanatory diagram for explaining a problem to be solved by the present invention.
  • FIG. 18 is an explanatory diagram for explaining a problem to be solved by the present invention.
  • FIG. 1A is a diagram illustrating an example of a stress-strain relationship when a material is subjected to tensile deformation and unloaded, and then subjected to re-tensile deformation
  • FIG. 1B is an enlarged view of a region R1 illustrated in FIG. 1A. It is.
  • the stress-strain relationship shows a hysteresis that becomes a non-linear curve during unloading (between point A and point B) and during re-tensioning (reloading) (between point B and point C). ing.
  • the stress-strain relationship at the time of unloading and re-tension is a non-linear curve.
  • this region is treated as an elastic deformation region, so the stress-strain relationship is assumed to be a straight line. For this reason, even if the deformation does not involve compression as shown in FIGS. 1A and 1B, the hysteresis of the stress-strain relationship cannot be accurately reproduced. There is a problem that the deviation from reality becomes larger.
  • the elasto-plastic constitutive equation of the Yoshida-Uemori model it is common to increase the yield surface radius (elastic deformation range), but as described above, after applying the actual tensile deformation to unloading, the re-tensile deformation Is given, the elastic deformation area is small and the yield surface radius is small. Therefore, in order to reduce the elastic deformation region in which the stress gradient (stress-strain gradient) with respect to the strain in the unloading and re-tension region is constant, the inventors have made the yield surface radius small, and the majority of this region. Was first considered to be the work hardening (plastic deformation) region.
  • FIG. 2 shows the stress-strain relationship when a material is subjected to tensile deformation, unloaded and compressed (hereinafter referred to as “unloading / compression”), and then subjected to re-tensile deformation.
  • a curve L1 indicates experimental values
  • a curve L2 indicates calculated values of the Yoshida-Uemori model when the radius of the yield surface is reduced.
  • the experimental value and the calculated value are greatly different.
  • the present inventor examined the method of this divergence and focused on two points.
  • the point of interest 1 is that the stress-strain gradient between the unloading / compression and the re-tension of the experimental values is almost the same value, whereas the stress-strain gradient between the unloading / compression and the re-tension is different in the calculated value. It is that.
  • the point of interest 2 is that, for both unloading / compression and re-tensioning, the calculated stress at a certain strain amount is smaller than the experimental stress.
  • the attention points 1 and 2 will be described.
  • ⁇ Regarding point of interest 1> In order to examine the point of interest 1, the change in the stress gradient (d ⁇ / d ⁇ ) (ie, the slope of the segment in FIG. 2) with respect to the strain when subjected to re-tension after unloading and compression Examined. Specifically, as shown in FIG. 3, the horizontal axis is stress ( ⁇ ) and the vertical axis is a stress gradient with respect to strain (d ⁇ / d ⁇ ).
  • a curve L3 indicates a change in the stress-strain gradient in the unloading / compression process at the experimental value
  • a curve L4 indicates a change in the stress-strain gradient in the re-tension process at the experimental value.
  • Curve L5 shows the change in the stress-strain gradient during the unloading / compression process in the calculated value of the Yoshida-Uemori model
  • curve L6 shows the stress-strain in the re-tension process in the calculated value of the Yoshida-Uemori model.
  • a curve L3 showing a change in stress-strain gradient of unloading / compression in the experiment and a curve L4 showing a change of stress-strain gradient in re-tension in the experiment are the curves L3 and L4. It can be seen that the axis is axially symmetric with respect to the vertical axis passing through the intersection.
  • a curve L5 indicating a change in the stress-strain gradient of unloading / compression at the calculated value and a curve L6 indicating a change in the stress-strain gradient of the re-tension at the calculated value are the curves L5 and L6. It can be seen that there is a significant difference from line symmetry with respect to the vertical axis passing through the intersection.
  • the stress change amount from the stress reversal is, in other words, a stress change amount ⁇ representing how much the stress has changed since the stress reversal (unloading from the point B in FIG. 17 or re-tensioning from the point C). .
  • FIG. 1 The stress change amount from the stress reversal is, in other words, a stress change amount ⁇ representing how much the stress has changed since the stress reversal (unloading from the point B in FIG. 17 or re-tensioning from the point C).
  • FIG. 4 is a diagram showing the relationship between the unloading / compression process and the re-tensioning process, with the vertical axis representing the gradient (d ⁇ / d ⁇ ) and the horizontal axis representing the stress change ⁇ .
  • a curve L7 shows the relationship in the unloading / compression process
  • a curve L8 shows the relationship in the re-tensioning process.
  • the present inventor found that the stress-strain relationship gradient, that is, the hardening behavior of the material (behavior during work hardening) depends on how much the stress has changed since the stress reversal, regardless of whether it is compression or re-tensioning. The knowledge that it was decided was acquired.
  • the present inventors examined the problems of the Yoshida-Uemori model.
  • the inventors paid attention to the movement (back stress) of the yield surface in the elastoplastic constitutive equation.
  • the movement of the yield surface is directly attributable to the work hardening of the material. Therefore, the stress-strain relationship is changed by changing the degree of movement.
  • Expression (4) shown below shows an incremental expression of the movement vector ⁇ * ij of the yield surface of the Yoshida-Uemori model.
  • the coefficient C in equation (4) is a material constant that defines the convergence speed of kinematic hardening of the yield surface
  • a is the radius difference between the bounding surface and the yield surface
  • Y is the yield stress
  • ⁇ * eq is an equivalent value of ⁇ * ij
  • d ⁇ p eq is an equivalent plastic strain increment.
  • the present inventors considered switching ⁇ and X ij in the formula (5) according to the stress received by the material.
  • the switching method will be described.
  • the equivalent value of the current stress that the material receives in three dimensions (converted value to uniaxial tensile stress) ⁇ eq is the maximum, that is, the current stress is
  • the variable in equation (5) is expressed by the following equation depending on whether the value is greater than the maximum value ⁇ eqmax (the maximum value of equivalent stress when isotropic hardening is assumed) or not. We decided to divide the case as shown in (6).
  • ⁇ * tmp ij is the back stress (yield surface vector) at the time of stress reversal, and is a value that does not change until the next stress reversal occurs.
  • Equation (6) is a case where the currently received stress is greater than the stress received so far, It means that the stress is the maximum in the past.
  • the above-mentioned case is, for example, a case where the material is subjected to re-tension after unloading / compression, and further subjected to tension after the stress returns to the value at the time of unloading.
  • Equation (6) “when ⁇ eq ⁇ eqmax ” in Equation (6) is when the current stress is smaller than the stress received so far.
  • the material is re-tensioned from unloading / compression.
  • FIG. 1B the state moves from point A to point B and moves from point B to point C.
  • ⁇ eqmax refers to the stress at point A.
  • the curing behavior of the material is formulated by the amount of change in stress from the time of stress reversal.
  • the coefficient C in FIG. 1 is a material constant that defines the convergence speed of kinematic hardening of the yield surface. If the convergence speed of kinematic hardening of the yield surface is large, the stress-strain gradient after stress reversal becomes large. Referring to FIG. 2, it can be considered that the stress of the calculated value is smaller than the stress of the experimental value because the gradient of the calculated value curve L2 is smaller than the gradient of the experimental value curve L1.
  • equation (5) was modified to obtain the following equation (7).
  • FIG. 5 shows the calculated ideal value of the coefficient C on the vertical axis and the stress ⁇ on the horizontal axis.
  • a curve L9 shows an ideal value of the coefficient C in the unloading / compression process
  • a curve L10 shows an ideal value of the coefficient C in the re-tensioning process.
  • FIG. 6 is a diagram showing these relationships in the unloading / compression process and the re-tensioning process, with the vertical axis representing the ideal value of the coefficient C and the horizontal axis representing the stress change amount ⁇ .
  • a curve L11 indicates a relationship in the unloading / compression process
  • a curve L12 indicates a relationship in the re-tensioning process.
  • the curve L11 of the unloading / compression process and the curve L12 of the re-tensioning process are almost the same.
  • the coefficient C shows a high value at the beginning of the unloading / compression process and the re-tension process, and shows a behavior that asymptotically approaches a low value as the amount of stress change from the stress reversal increases. It is thought that it can approximate (approximate) a graph of an exponential function. Therefore, the inventors of the present invention described the coefficient C as a function of the amount of change in stress as shown in the following equation (2).
  • X eq is an equivalent value of X ij
  • C 0 , C C , A 1 , A 2 , n 1 , and n 2 are material constants.
  • the coefficient C 0 is a material constant related to the convergence value of the coefficient C, and the material constant C identified by the Yoshida-Uemori model is substituted.
  • the coefficient C C is a material constant of the increment of factor C, factor A 1, A 2, n 1 , n 2 is the material constant of the convergence speed of the coefficient C (work-hardening rate).
  • the stress-strain relationship in the unloading / compression process and the re-tensioning process is defined by the amount of change in stress from the time of stress reversal. It can be expressed without any relation and deviation from the experimental values shown in the tensile process. That is, according to the present invention, the calculated value of the stress-strain relationship can be matched with the experimental value in the unloading / compression process and the re-tension process (and the compression process), and as a result, the springback amount is also predicted with high accuracy. be able to.
  • the Yoshida-Uemori model has been described as an example as an elastic-plastic constitutive equation defined as a function of stress and back stress. Therefore, as a representation of kinematic hardening increment vector d [alpha] ij, Yoshida - notation d [alpha] * ij being used above Mori model ( "*" notation used) is used.
  • the present invention is not based on the Yoshida-Uemori model, and the kinematic hardening incremental vector d ⁇ ij of the present invention can be used as the kinematic hardening incremental vector of the yield surface in the conventionally proposed elastic-plastic constitutive equation. .
  • the elastoplastic constitutive equation can be constituted only by the moving hardening incremental vector d ⁇ ij .
  • a represents the radius difference between the limit surface and the yield surface as described above.
  • a is the maximum value of the kinematic hardening amount of the yield surface.
  • FIG. 7 is a flowchart showing the flow of the stress-strain relationship simulation method according to the first embodiment.
  • the operator acquires an experimental value of the stress-strain relationship of the elastic-plastic material.
  • the operator applies the stress in the tensile direction to the elastoplastic material and then plastically deforms it, then unloads it and plastically deforms it by applying the stress in the compression direction (Tension ⁇ Unload ⁇ Compression). ) Perform the test. Further, the operator performs a test in which stress is applied in the tensile direction to cause plastic deformation and then unloaded, and stress is applied in the tensile direction again to perform plastic deformation (tensile ⁇ unload ⁇ re-tension).
  • the experimental value of the stress-strain relationship of the elastic-plastic material is obtained by performing the tension ⁇ unloading ⁇ compression test and the tension ⁇ unloading ⁇ re-tension test. Only one of the tests may be performed. In place of these two tests, a test for unloading after applying plastic deformation by applying stress in the tensile direction (tensile ⁇ unloading test) may be performed.
  • a computer such as a PC (personal computer) uses the experimental value of the stress-strain relationship obtained by the process of step S1 to describe the non-patent document 1 included in the Yoshida-Uemori model. Identify other material constants Y, B, C, b, m, R sat , h.
  • step S3 the computer uses the experimental value of the stress-strain relationship obtained by the process of step S1 to calculate the stress (yield surface radius) at which the tangential gradient d ⁇ / d ⁇ between stress and strain starts to decrease. Re-identify as material constant Y (yield stress).
  • step S4 the computer determines the characteristic immediately after the stress reversal using the equation (1) which is the elastic-plastic constitutive equation of the present invention using the material constants identified by the processes of step S2 and step S3.
  • the material constants C c , A 1 , A 2 , n 1 , n 2 are identified. Note that the coefficient C 0 in the Yoshida-Uemori model identified in step S2 is used as the coefficient C 0 in equation (1).
  • step S5 when the material constants identified by the processes of steps S2 to S4 are substituted into the elastoplastic constitutive equations (1) and (2), the computer uses the elastoplastic constitutive equation into which the constants are substituted. Calculate the stress-strain relationship of the elastoplastic material. Through these steps S1 to S5, the series of stress-strain relationship simulation processing ends.
  • FIG. 8 is a flowchart showing the flow of the springback amount prediction method according to the present embodiment. Since the processing in steps S1 to S4 is the same as that in FIG. 7, the description thereof is omitted. In the process of step S6, when the material constants identified by the processes of steps S2 to S4 are substituted into the elastoplastic constitutive equations (1) and (2), the computer calculates the elastoplastic constitutive equation into which the material constants are substituted. To perform a springback analysis and predict the amount of springback.
  • the springback analysis device 1 is configured by a PC (personal computer) or the like, and includes a display device 3, an input device 5, a main memory device 7, and an auxiliary device.
  • a storage device 9 and an arithmetic processing unit 11 are included.
  • a display device 3, an input device 5, a main storage device 7, and an auxiliary storage device 9 are connected to the arithmetic processing unit 11, and each function is executed by an instruction from the arithmetic processing unit 11.
  • the display device 3 is composed of a liquid crystal monitor or the like, and is used for displaying calculation results.
  • the input device 5 includes a keyboard, a mouse, and the like, and is used for input from an operator.
  • the main storage device 7 is composed of a RAM or the like, and is used for temporary storage of data used in the arithmetic processing unit 11 and arithmetic operations.
  • the auxiliary storage device 9 is composed of a hard disk or the like, and is used for storing data.
  • the arithmetic processing unit 11 is configured by a CPU (central processing unit) such as a PC, and the arithmetic processing unit 11 includes a press forming analysis unit 13 and a spring back analysis unit 15. These means (13, 15) are realized by the CPU of the arithmetic processing unit 11 executing a predetermined program. These means (13, 15) will be described in detail below.
  • the press molding analysis means 13 performs press molding analysis on the press molded product, and acquires shape information, stress distribution, and strain distribution after press molding (before mold release).
  • An elastoplastic constitutive equation defined as a function of stress and back stress is input to the press forming analysis means 13, and its kinematic hardening incremental vector d ⁇ ij is shown in the above equation (1).
  • the springback analysis means 15 performs a springback analysis based on the shape information before release, the stress distribution, the strain distribution, and the given physical property values obtained by the press forming analysis means 13, and the springback after release. Get the quantity.
  • An elastic-plastic constitutive equation defined as a function of stress and back stress is input to the springback analyzing means 15 as well as the press forming analyzing means 13, and the kinematic hardening increment vector d ⁇ ij is expressed by the above equation (1). It is the same.
  • the material constants in the elasto-plastic constitutive equation possessed by the press forming analysis means 13 and the springback analysis means 15 are identified by executing the processing of steps S1 to S4 shown in FIG. Therefore, when the springback analysis apparatus 1 of the present embodiment performs the springback analysis, the material constants of the equations (1) and (2) are executed by executing the processing of steps S1 to S4 for the material used for press molding. May be identified and substituted into the elastic-plastic constitutive equation of the press forming analysis means 13 and the springback analysis means 15.
  • the stress-strain relationship in unloading / compression and re-tension given to the material in the press molding process can be accurately reproduced, thereby predicting the spring back amount with high accuracy. be able to.
  • the arithmetic processing unit 11 identifies the material constants included in the elastoplastic constitutive equations (1) and (2) by executing the processes of the above-described steps S1 to S4 (step S11).
  • the arithmetic processing unit 11 is required to perform molding analysis (press forming analysis), for example, data relating to the mold, data relating to the blank, molding speed, etc. in addition to the material constants identified by the process of step S11. Is prepared as input data.
  • molding analysis press forming analysis
  • step S13 the input data created by the process of step S12 is input, and the press forming analysis means 13 installed in the springback analyzing apparatus 1 executes the forming analysis.
  • the springback analysis means 15 performs a springback analysis based on the result of the molding analysis of step S13, and predicts the springback amount of the elastic-plastic material at the time of press molding. Through these steps S11 to S14, a series of springback amount prediction processing ends.
  • Example 1 In Example 1, (1) tension ⁇ unloading test, (2) tension ⁇ unloading ⁇ compression test, and (3) tension ⁇ unloading ⁇ reloading to a steel sheet JSC980Y having a thickness of 1.2 mm Each test of the tensile test was performed, and the experimental value of the stress-strain relationship of the steel plate JSC980Y was obtained in each test. In addition, the material constants of the elastoplastic constitutive equation were identified using the experimental values obtained in each test, and the stress-strain relationship of the steel plate JSC980Y was calculated using the elastoplastic constitutive equation with the identified material constants.
  • FIG. 11 is a diagram showing each stress-strain relationship.
  • a curve L13 shows the stress-strain relationship calculated using the conventional Yoshida-Uemori model.
  • a curve L14 shows the stress-strain relationship of the present invention calculated based on the experimental value P1 of the stress-strain relationship obtained from the tension ⁇ unloading test.
  • a curve L15 shows the stress-strain relationship of the present invention calculated based on the experimental value P1 of the stress-strain relationship obtained from the tension ⁇ unloading ⁇ compression test.
  • the stress-strain relationship curves L14 and L15 calculated based on the experimental value P1 are higher than the curve L13 indicating the stress-strain relationship calculated using the Yoshida-Uemori model. The accuracy is consistent with the experimental value P1.
  • the material constant of the elastoplastic constitutive equation of the present invention is identified using the experimental value of the obtained stress-strain relationship.
  • regulates the convergence speed of kinematic hardening of the yield surface represented by Formula (2) using the identified material constant is calculated. Further, the calculated material constant and coefficient C are substituted into the elastic-plastic constitutive equation. As described above, it was confirmed that the stress-strain relationship can be calculated with high accuracy by this example.
  • Example 2 in order to verify the usefulness of the present invention for predicting the amount of springback in forming analysis, a simple bending test was performed on a steel sheet JSC980Y having a thickness of 1.2 mm.
  • 12A and 12B are schematic diagrams for explaining the contents of a simple bending test.
  • the bending angle ⁇ of the steel plate 27 after spring back was defined as shown in FIG.
  • FIG. 14 shows the difference between the angle difference of the prediction analysis result (springback amount of the prediction analysis result) and the angle difference of the experiment result (springback amount of the experiment result) in the bending angle ⁇ after the primary bending and the secondary bending.
  • the difference (spring back amount difference) is shown.
  • the angle difference predicted by the present invention for both the primary bending and the secondary bending is an experimental value of the angle difference than the angle difference predicted by the conventional isotropic hardening model and the Yoshida-Uemori model. It was confirmed that the difference with the difference was small. From the above, according to the present invention, it was confirmed that the amount of springback can be predicted with high accuracy.
  • the material constant of the elastic-plastic material included in the elastic-plastic constitutive equation is calculated using the experimental value of the stress-strain relationship of the elastic-plastic material.
  • regulates the convergence speed of kinematic hardening of the yield surface represented by Formula (2) using the calculated material constant is calculated.
  • the stress-strain relationship of the elastic-plastic material is calculated by substituting the calculated material constant and the coefficient C into the elastic-plastic constitutive equation.
  • the coefficient C that defines the rate of convergence of kinematic hardening of the yield surface changes depending on the stress state. Can be calculated.
  • the computer predicts the springback amount using the stress-strain relationship calculated by the stress-strain relationship simulation method according to the present invention. The amount of springback of the plastic material can be predicted with high accuracy.
  • the present invention can be applied to a process for evaluating the stress-strain relationship of an elastic-plastic material. As a result, the stress-strain relationship of the elastoplastic material can be accurately simulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

 弾塑性材料に変位または荷重を与えて塑性変形をさせて応力-ひずみ関係の実験値を取得し、計算機が、応力および背応力の関数として定義される弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijを示す所定の第1の式として、弾塑性構成式に含まれる材料定数を、取得された実験値を用いて同定し、同定された材料定数が代入された所定の第1の式と取得された実験値とに基づいて所定の第2の式に含まれる材料定数を同定し、同定された材料定数が代入されたこれらの所定の第1の式、所定の第2の式、および弾塑性構成式を用いて弾塑性材料の応力-ひずみ関係をシミュレートする。

Description

応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置
 本発明は、弾塑性材料(elastic-plastic material)の応力-ひずみ関係を評価する応力-ひずみ(stress-strain)関係シミュレート方法、プレス成形時の弾塑性材料のスプリングバック量を予測するスプリングバック量予測方法およびプレス成形品のスプリングバック解析装置に関するものである。
 プレス成形(press forming)とは、成形対象のブランク(blank)(金属板)に金型(die)を押し付けることにより、金型の形状をブランクに転写して加工する方法である。このプレス成形においては、プレス成形品を金型から取り出した後に、ブランクに加えた変形が若干元に戻る、いわゆるスプリングバック(springback)が発生することによって、プレス成形品が所望の形状とは異なってしまうことがある。このため、プレス成形においては、プレス成形品のスプリングバック量を予測し、予測結果に基づいてスプリングバック後のプレス成形品の形状が所望の形状となるように金型の形状を設計する必要がある。
 スプリングバックは、プレス成形品を金型から取り出した際、加工によって受けた応力が取り除かれることにより発生する。図16を参照して、さらに詳しくスプリングバックについて説明する。図16は、材料(material)がプレス成形過程およびスプリングバック過程で受ける応力とひずみとの関係を、横軸にひずみ、縦軸に応力をとって示した図である。この図16に示すように、プレス成形過程において、材料に外力(eternal force)σが与えられると、材料は弾性変形(elastic deformation)領域を経て降伏点(yield point)Aを境に塑性変形(plastic deformation)が生じ、所望の形状に対応するひずみ量ε(応力σ)である点Bまで塑性変形は進行する。そして、材料が金型から取り出されると、外力は除荷(unload)され応力σは低下して、材料全体に働く力が釣り合うひずみ量ε(応力σ)の点Cで除荷は終了する。
 スプリングバック量は、この除荷過程に生じたひずみ量εの差、すなわち除荷開始点Bのひずみ量εと除荷終了点Cのひずみ量εとの差Δεによって決まる。従来の等方硬化モデル(isotorpic hardening model)と呼ばれる古典的な数式モデルでは、除荷開始点Bに対して応力σの絶対値が等しい点Dまで弾性変形領域、つまり応力とひずみとの関係が線形となる領域と仮定するので、除荷終了点は点Eとなる。しかしながら、実際の多くの材料は、除荷過程において線形な領域はほとんど存在せず、弾性変形領域から外れて点Dよりはるかに早期に降伏現象が起こり、応力とひずみとの関係(応力-ひずみ関係)は非線形(non-linear)な曲線を描く。
 このような応力反転時の早期降伏現象はバウシンガー効果(Bauschinger effect)と呼ばれる。このバウシンガー効果を再現するには、移動硬化を考慮することが必要となる。移動硬化(kinematic hardening)とは、降伏曲面(yield surface)がその大きさを変えることなく移動することによって硬化することを意味する。移動硬化を考慮した代表的な例としては、吉田-上森モデルがある(非特許文献1参照)。この吉田-上森モデルにおいてはバウシンガー効果を再現できる。さらに、吉田-上森モデルでは、応力反転(stress reversal)直後の非線形な応力-ひずみ関係を、加工硬化が直線状に生ずると仮定することによって、応力とひずみの見掛けの勾配(見掛けのヤング率(Young’s modulus))として線形近似(linear approximation)している。
 しかしながら、除荷過程の非線形な応力-ひずみ関係の挙動と、これを線形近似することによる挙動との差は明らかであり、吉田-上森モデルによって応力-ひずみ関係を精度よく再現することはできない。このような背景から、除荷過程の初期に起こるバウシンガー効果を表現する方法が特許文献1に記載されている。この方法では、ひずみに対する応力の勾配(stress-strain gradient)から除荷過程における塑性変形開始応力を同定し、降伏点Aでの応力(降伏応力(yield stress))を従来技術より小さくする。すなわち、この技術では、線形となる弾性領域を少なくし、非線形の加工硬化(work hardening)領域を増やすことによって、除荷過程の初期に起こるバウシンガー効果を表現している。
 また、特許文献1に記載の方法では、除荷時の再降伏した後の加工硬化(塑性変形)領域での精度を向上させるために、降伏曲面の移動硬化の収束(saturation)速さの係数(parameter)を相当塑性ひずみ(equivalent plastic strain)の関数として定義している。この方法では、ひずみに対する応力の勾配において、ひずみが小さい領域で応力が急増する場合の収束速さが大きいとし、ひずみが大きく応力があまり増加しない場合の収束速さが小さいとしている。
特許第3809374号公報
Yoshida,F.,Uemori,T.:Int.J.Plasticity,18,(2002),661-686.
 しかしながら、除荷過程で発生する塑性ひずみ量はごくわずかであり、その大きさが極めて小さいため、塑性ひずみ量を求めるために同一材料で試験を行ったとしても、除荷時に発生する塑性ひずみ量はばらつき易い。このため、特許文献1記載の方法では、降伏曲面の移動硬化の収束速さの係数を精度よく算出することができないため、応力-ひずみ関係を精度よく算出できない。その結果、特許文献1に記載の方法では、プレス成形時の弾塑性材料のスプリングバック量を精度よく予測することが困難であった。
 プレス成形過程においては、材料は、引張(tension)から圧縮(compression)、圧縮から引張のように反転する応力を受けて変形(deformation)する。したがって、材料が反転する応力を受ける場合の応力-ひずみ関係をシミュレートすることは非常に重要である。しかしながら、上記特許文献1で開示された方法では精度よくシミュレートすることはできない。以下、この点を説明する。
 図17は、材料が引張変形の後、除荷され、さらに再度の引張変形(再引張変形)を受けた際の応力とひずみとの関係を表す図である。除荷(圧縮)過程では、前述のように非線形な曲線を描き、また再引張時も同様に非線形な挙動となる。さらに、引張変形が進むと元の引張応力-ひずみ関係と同様に変形する。図18は、図17の除荷(圧縮)および再引張変形を受けた際のひずみに対する応力の勾配(dσ/dε)の変化を示す図である。この図18では、横軸が応力(σ)、縦軸が勾配(dσ/dε)を示す。除荷(圧縮)時の勾配と再引張時の勾配とは、変形初期の高い値から塑性変形するため徐々に小さくなる。本発明者は、この除荷時の勾配と再引張時の勾配とはσを境に対称になることを実験により知見した。すなわち、本発明者は、除荷(圧縮)と再引張とによる応力-ひずみ関係は点対称(point symmetry)なヒステリシス(hysteresis)となることを知見した。
 しかしながら、特許文献1記載の方法で、除荷(圧縮)および再引張変形を受けた際の応力-ひずみ関係を算出すると、除荷と再引張とでは応力のひずみに対する勾配が異なり、実験で得られるような点対称なヒステリシスを描くことができない。つまり、特許文献1の方法では、材料が反転する応力を受ける場合の応力-ひずみ関係を精度よくシミュレートすることができない。
 本発明は、上記課題に鑑みてなされたものであって、弾塑性材料の応力-ひずみ関係を精度よくシミュレートすることが可能な応力-ひずみ関係シミュレート方法を提供することを目的とする。また、本発明の他の目的は、プレス成形時の弾塑性材料のスプリングバック量を精度よく予測可能なスプリングバック予測方法を提供することにある。また、本発明の他の目的は、精度よくスプリングバックを解析できるスプリングバック解析装置を提供することにある。
 本発明に係る応力-ひずみ関係シミュレート方法は、弾塑性材料を塑性変形させて応力-ひずみ関係の実験値を取得する実験値取得ステップと、計算機が、応力および背応力の関数として定義される弾塑性構成式(elastic-plastic constitutive model)における降伏曲面の移動硬化増分ベクトル(incremental vector)dαijを式(1)として、該弾塑性構成式に含まれる材料定数(material parameter)を、前記実験値取得ステップで取得された実験値を用いて同定(identification)する第1材料定数同定ステップと、計算機が、該第1材料定数同定ステップで同定された材料定数が代入された前記式(1)と、前記実験値取得ステップで取得された実験値とに基づいて式(2)に含まれる材料定数を同定する第2材料定数同定ステップと、計算機が、同定された材料定数が代入された前記式(1)、前記式(2)、および前記弾塑性構成式を用いて弾塑性材料の応力-ひずみ関係をシミュレートするステップと、を含む。
Figure JPOXMLDOC01-appb-M000007
 また、本発明に係る応力-ひずみ関係シミュレート方法は、上記発明において、前記式(1)(2)における変数(variable)Xij,ρ,A,nが式(3)によって表される。
Figure JPOXMLDOC01-appb-M000008
 また、本発明に係る応力-ひずみ関係シミュレート方法は、上記発明において、前記実験値取得ステップにおける弾塑性材料に塑性変形を与える方法として、前記弾塑性材料に対して引張方向に応力を加えて塑性変形させた後に除荷する方法、前記弾塑性材料に引張方向に応力を加えて塑性変形させた後に除荷し、圧縮方向に応力を加えて塑性変形させる方法、または引張方向に応力を加えて塑性変形させた後に除荷し、再び引張方向に応力を加えて塑性変形させる方法のうちのいずれかの方法で行う。
 本発明に係るスプリングバック量予測方法は、弾塑性材料を塑性変形させて応力-ひずみ関係の実験値を取得する実験値取得ステップと、計算機が、応力および背応力の関数として定義される弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijを式(1)として、該弾塑性構成式に含まれる材料定数を、前記実験値取得ステップで取得された実験値を用いて同定する第1材料定数同定ステップと、計算機が、該第1材料定数同定ステップで同定された材料定数が代入された前記式(1)と、前記実験値取得ステップで取得された実験値とに基づいて式(2)に含まれる材料定数を同定する第2材料定数同定ステップと、計算機が、同定された材料定数が代入された前記式(1)、前記式(2)および前記弾塑性構成式を用いてスプリングバック量を予測するステップと、を含む。
Figure JPOXMLDOC01-appb-M000009
 また、本発明に係るスプリングバック量予測方法は、上記発明において、前記式(1)(2)における変数Xij,ρ,A,nが式(3)によって表される。
Figure JPOXMLDOC01-appb-M000010
 また、本発明に係るスプリングバック量予測方法は、上記発明において、前記実験値取得ステップにおける弾塑性材料に塑性変形を与える方法として、前記弾塑性材料に対して引張方向に応力を加えて塑性変形させた後に除荷する方法、前記弾塑性材料に引張方向に応力を加えて塑性変形させた後に除荷し、圧縮方向に応力を加えて塑性変形させる方法、または引張方向に応力を加えて塑性変形させた後に除荷し、再び引張方向に応力を加えて塑性変形させる方法のうちのいずれかの方法で行う。
 本発明に係るスプリングバック解析装置は、計算機が、プレス成形品のスプリングバック量を予測するスプリングバック解析装置であって、プレス成形解析によって前記プレス成形品の離型(die release)前の解析の形状、残留応力(residual stress)分布およびひずみ分布を取得するプレス成形解析手段と、前記プレス成形品の形状、残留応力分布およびひずみ分布に基づいて、スプリングバック解析によって前記プレス成形品の離型後のスプリングバック量を取得するスプリングバック解析手段と、を有し、前記プレス成形解析手段および前記スプリングバック解析手段が有する弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijが式(1)(2)である。
Figure JPOXMLDOC01-appb-M000011
 また、本発明に係るスプリングバック解析装置は、上記発明において、前記式(1)(2)における変数Xij,ρ,A,nが式(3)によって表される。
Figure JPOXMLDOC01-appb-M000012
 本発明に係る応力-ひずみ関係シミュレート方法によれば、弾塑性材料の応力-ひずみ関係を精度よくシミュレートできる。また本発明に係るスプリングバック量予測方法によれば、弾塑性材料のスプリングバック量を精度よく予測することができる。さらは、本発明に係るスプリングバック解析装置によれば、プレス成形品のスプリングバック量を精度よく予測できる。
図1Aは、本発明の原理を説明するための説明図である。 図1Bは、本発明の原理を説明するための説明図である。 図2は、本発明の原理を説明するための説明図である。 図3は、本発明の原理を説明するための説明図である。 図4は、本発明の原理を説明するための説明図である。 図5は、本発明の原理を説明するための説明図である。 図6は、本発明の原理を説明するための説明図である。 図7は、本発明の実施の形態1に係る応力-ひずみ関係シミュレート方法の流れを説明するフローチャートである。 図8は、本発明の実施の形態2に係るスプリングバック量予測方法の流れを説明するフローチャートである。 図9は、本発明の実施の形態3に係るスプリングバック解析装置の構成を説明するブロック図である。 図10は、本発明の実施の形態3に係るスプリングバック解析装置を用いたスプリングバック解析方法の流れを説明するフローチャートである。 図11は、本発明の実施例1における実験結果について説明する説明図である。 図12Aは、本発明の実施例2における実験内容を説明する説明図である。 図12Bは、本発明の実施例2における実験内容を説明する説明図である。 図13は、本発明の実施例2における実験結果のスプリングバック評価方法について説明する説明図である。 図14は、本発明の実施例2における実験結果について説明する説明図である。 図15は、本発明の効果を説明する図であって、正転(normal rotation)変形過程における応力-ひずみ関係の一例を示す図である。 図16は、従来技術について説明する説明図である。 図17は、本発明が解決しようとする課題について説明するための説明図である。 図18は、本発明が解決しようとする課題について説明するための説明図である。
[本発明の原理]
 本発明の発明者らは、開示されている応力および背応力(back stress)の関数として定義される弾塑性構成式の中で精度が高いとされる吉田-上森モデルに着目し、吉田-上森モデルの有する問題点を解明し、新たな弾塑性構成式を考えた。そこで、まず本発明の原理を説明する。
 図1Aは材料に引張変形が与えられて除荷された後、再引張変形が与えられた際の応力-ひずみ関係の一例を示す図であり、図1Bは図1Aに示す領域R1の拡大図である。図1Bに示すように、除荷時(点A→点B間)および再引張(再負荷)時(点B→点C間)に、共に応力-ひずみ関係は非線形な曲線となるヒステリシスを描いている。このように、圧縮を伴わない引張、除荷、再引張の場合であっても、除荷時および再引張時の応力-ひずみ関係は非線形な曲線となる。
 しかしながら、吉田-上森モデルの弾塑性構成式では、この領域は弾性変形域として扱われるため、応力-ひずみ関係は直線と仮定している。このため、図1Aおよび図1Bに示すような圧縮を伴わないような変形であっても応力-ひずみ関係のヒステリシスを精度よく再現することができず、まして圧縮を伴うような変形時の挙動については現実との乖離がより大きくなるという問題がある。
 吉田-上森モデルの弾塑性構成式では、降伏曲面半径(弾性変形域)を大きくとるのが一般的であるが、上記の通り、現実に引張変形を与えて除荷した後、再引張変形を与えるような場合には、弾性変形域が小さく降伏曲面半径は小さい。そこで、本発明者らは、除荷および再度引張の領域におけるひずみに対する応力の勾配(応力-ひずみ勾配)が一定である弾性変形域を小さくするため、降伏曲面半径を小さくとり、この領域の大半を加工硬化(塑性変形)域とすることをまず考えた。
 図2は、材料に引張変形を与えて除荷および圧縮(以下、「除荷・圧縮」と表記する)した後、再引張変形を与えた際の応力-ひずみ関係を示している。図2において、曲線L1は実験値を示し、曲線L2は降伏曲面の半径を小さくした場合の吉田-上森モデルの計算値を示している。図2を見ると分かるように、実験値と計算値とは大きく乖離している。本発明者は、この乖離の仕方について検討し、2つの点に着目した。まず、着目点1は、実験値の除荷・圧縮と再引張の応力-ひずみ勾配はほぼ同じ値であるのに対し、計算値では除荷・圧縮と再引張との応力-ひずみ勾配が異なっていることである。次に、着目点2は、除荷・圧縮と再引張ともに、あるひずみ量における計算値の応力は実験値の応力より小さいことである。以下、この着目点1、2について説明する。
<着目点1について>
 着目点1を検討するため、除荷・圧縮を受けた後に再引張を受けた際のひずみに対する応力の勾配(dσ/dε)(すなわち、図2における線分(segment)の傾き)の変化を調べた。具体的に、図3に示すように、横軸を応力(σ)、縦軸をひずみに対する応力の勾配(dσ/dε)としたグラフに整理した。図3において、曲線L3は実験値における除荷・圧縮過程での応力-ひずみ勾配の変化を示し、曲線L4は実験値における再引張過程での応力-ひずみ勾配の変化を示す。また、曲線L5は吉田-上森モデルの計算値における除荷・圧縮過程での応力-ひずみ勾配の変化を示し、曲線L6は吉田-上森モデルの計算値における再引張過程での応力-ひずみ勾配の変化を示す。図3を見ると、実験での除荷・圧縮の応力-ひずみ勾配の変化を示す曲線L3と、実験での再引張の応力-ひずみ勾配の変化を示す曲線L4とは、曲線L3と曲線L4との交点を通る垂直軸に対して線対称(axial symmetry)となることが分かる。これに対し、計算値での除荷・圧縮の応力-ひずみ勾配の変化を示す曲線L5と、計算値での再引張の応力-ひずみ勾配の変化を示す曲線L6とは、曲線L5と曲線L6との交点を通る垂直軸に対して線対称から大きく異なっていることが顕著に表れていることが分かる。
 そこで、本発明者らは、除荷・圧縮と再引張の応力-ひずみ勾配の性質を解明するため、応力反転からの応力変化量と応力-ひずみ勾配(dσ/dε)との関係を、除荷・圧縮と再引張とについて整理することを考えた。応力反転からの応力変化量とは、すなわち、応力反転(図17における点Bからの除荷、または、点Cからの再引張)からどれだけ応力が変化したかを表す応力変化量Δσである。図4は、縦軸を勾配(dσ/dε)、横軸を応力変化量Δσとして、除荷・圧縮過程と再引張過程とにおけるこれらの関係を示す図である。図4において、曲線L7は除荷・圧縮過程での関係を示し、曲線L8は再引張過程での関係を示す。図4を見ると、除荷・圧縮過程(曲線L7)と再引張過程(曲線L8)とで応力-ひずみ勾配がほぼ一致している。本発明者は、このことから、圧縮、再引張のいずれかに関わらず、応力反転から応力がどれだけ変化したかによって応力-ひずみ関係の勾配すなわち材料の硬化挙動(加工硬化時の挙動)が決まるとの知見を得た。
 本発明者らは、上記の知見を前提として、吉田-上森モデルの問題点について検討した。本発明者らは、弾塑性構成式において、降伏曲面の移動(背応力)に着目した。降伏曲面の移動は、材料の加工硬化に直接起因する。そのため、その移動の程度を変化させることで応力-ひずみ関係に変化が与えられる。以下に示す式(4)は、吉田-上森モデルの降伏曲面の移動ベクトルα ijの増分式を示している。
Figure JPOXMLDOC01-appb-M000013
 ここで、式(4)中の係数Cは降伏曲面の移動硬化の収束速さを規定する材料定数、aは限界曲面(bounding surface)と降伏曲面との半径差、Yは降伏応力、α eqはα ijの相当値、dε eqは相当塑性ひずみ増分である。
 圧縮、再引張のいずれかに関わらず、応力反転からどれだけ応力が変化したかが材料の硬化挙動(hardening behavior)を決めているという上記の知見から、本発明者らは、α ijの増分式中の減少項を修正することを考えた。減少項に含まれるα ijは原点からの変化量を規定しているため、この減少項の影響で圧縮と再引張とで硬化挙動の差が生じていた。
 そこで、本発明者らは、本発明の弾塑性構成式において、降伏曲面の移動ベクトルα ijの増分式における減少項を、式(5)に示すように、応力反転時からの降伏曲面の移動硬化量を表すベクトルXijを用いて表すことを考えた。
Figure JPOXMLDOC01-appb-M000014
 さらに、本発明者らは、式(5)中のρとXijとを材料が受けている応力によって切り替えることを考えた。ここで、切り替え方について説明する。変形過程において、3次元で材料が受けている現在の応力の相当値(単軸引張応力(uniaxial tensile stress)への換算値)σeqが最大の場合、すなわち現在の応力がそれまでの応力の最大値σeqmax(等方硬化(isotorpic hardening)を仮定した際の相当応力(equivalent stress)の最大値)より大きい場合と、そうでない場合とで、式(5)中の変数を以下に示す式(6)のように場合分けをすることとした。
Figure JPOXMLDOC01-appb-M000015
 ここで、α*tmp ijは応力反転した時点での背応力(降伏曲面ベクトル)であり、次の応力反転が起こるまで変化しない値である。これらの式により、応力反転時からの移動硬化量で材料の硬化挙動が決まるという応力-ひずみ関係の特性が表現された。
 なお、式(6)中における「σeq≧σeqmaxのときσeq=σeqmaxとなる」とは、現在受けている応力がそれまでに受けた応力よりも大きい場合であるから、現在受けている応力が過去の最大値となるという意味である。そして、上記のような場合とは、例えば材料が除荷・圧縮の後、再引張を受けて、応力が除荷時の値に戻った後、さらに引張を受けるような場合であり、図1BのC点以降の場合をいう(A点とC点とでは応力が等しい)。
 また、式(6)中における「σeq<σeqmaxのとき」とは、現在受けている応力がそれまでに受けた応力よりも小さいときであるから、例えば材料が除荷・圧縮から再引張を受けるまでの状態をいい、図1BでA点からB点へ移動し、B点からC点に移動する場合をいう。この場合、σeqmaxはA点での応力をいう。
 上記のように、式(5)、式(6)を用いることで、材料の硬化挙動が応力反転時点からの応力の変化量によって定式化される。
<着目点2について>
 次に、本発明者らは、上記の着目点2の「除荷・圧縮、再引張ともに、あるひずみ量における計算値の応力は実験値の応力より小さい」という問題を解決するため、式(4)中の係数Cに着目した。係数Cは降伏曲面の移動硬化の収束速さを規定する材料定数である。降伏曲面の移動硬化の収束速さが大きければ、応力反転後の応力-ひずみ勾配は大きくなる。図2を見ると、計算値の曲線L2の勾配が実験値の曲線L1の勾配より小さいために計算値の応力が実験値の応力よりも小さくなっていると考えることができる。そこで、計算値の曲線L2の誤差を小さくするためには、降伏曲面の移動硬化の収束速さを大きくする、すなわち加工硬化率を大きくすることが考えられる。しかしながら、降伏曲面の移動硬化の収束速さを大きくするために単純に係数Cを大きくしても、計算値は実験値とうまく整合しない。
 そこで、本発明者らは、除荷・圧縮過程および再引張過程で応力-ひずみ関係の計算値が実験値に一致するための係数Cの理想値(ideal value)を算出し、この理想値を基に検討することを考えた。まず、式(5)を変形し、次式(7)とした。
Figure JPOXMLDOC01-appb-M000016
 式(5)の[]内に着目すると、降伏曲面の移動硬化の収束速さを大きくするには、増加項を大きくすればよいので、本発明者らは、減少項に関しては、吉田-上森モデルにおいて同定される係数と同じ定数であるCとして固定した式(8)を考えた。
Figure JPOXMLDOC01-appb-M000017
 理想値は、実験値と式(8)とを用いて、式(8)によって計算される応力-ひずみ関係が実験値に一致するための係数Cを求めることで算出された。図5は、算出された係数Cの理想値を縦軸に、応力σを横軸にして示したものである。図5中、曲線L9は除荷・圧縮過程における係数Cの理想値を示し、曲線L10は再引張過程における係数Cの理想値を示している。
 本発明者らは、係数Cの理想値の性質を解明するため、応力反転からの応力変化量、すなわち、応力反転からどれだけ応力が変化したかを表す応力変化量Δσと係数Cの理想値との関係を除荷・圧縮過程および再引張過程で整理した。図6は、縦軸を係数Cの理想値、横軸を応力変化量Δσとして、除荷・圧縮過程および再引張過程におけるこれらの関係を示す図である。図6において、曲線L11は除荷・圧縮過程での関係を示し、曲線L12は再引張過程での関係を示す。
 図6をみると、除荷・圧縮過程の曲線L11と再引張過程の曲線L12とはほぼ一致している。図6において、係数Cは、除荷・圧縮過程および再引張過程の初期には高い値を示し、応力反転からの応力変化量が大きくなるにつれて低い値に漸近(asymptotic)する挙動を示しており、指数関数(exponential function)のグラフに近似(approximate)できると考えられる。そこで、本発明の発明者らは、係数Cを応力変化量の関数として次式(2)のように記述することとした。
Figure JPOXMLDOC01-appb-M000018
 ここで、XeqはXijの相当値(equivalent value)、C,C,A,A,n,nは材料定数である。係数Cは、係数Cの収束値に係る材料定数であり、吉田-上森モデルで同定された材料定数Cが代入される。また、係数Cは、係数Cの増加量に係る材料定数であり、係数A、A、n、nは係数Cの収束速さ(加工硬化率)に係る材料定数である。
 なお、降伏曲面の移動硬化の収束速さを表す係数Cの定義にあたり、前述したように、特許文献1においてはひずみの関数を用いたため、変化の範囲が小さく、実験で求めるにはばらつきが大きかった。これに対して、本発明では、係数Cを応力の関数としているため、変化の範囲が大きく、ばらつきが小さくて、精度良い結果を得られる。
 以上のように、本発明においては、除荷・圧縮過程および再引張過程における応力-ひずみ関係を、応力反転時からの応力の変化量によって規定するようにしたので、除荷・圧縮過程と再引張過程とでの実験値が示す関係と乖離なく表現することができる。つまり、本発明によれば、除荷・圧縮過程および再引張過程(および圧縮過程)で応力-ひずみ関係の計算値を実験値に一致させることができ、結果としてスプリングバック量も精度高く予測することができる。
 なお、上記の説明では、応力および背応力の関数として定義される弾塑性構成式として、吉田-上森モデルを例に挙げて説明した。そのため、移動硬化増分ベクトルdαijの表記として、吉田-上森モデルで使用されているdα ijという表記(「」を用いた表記)が用いられている。しかしながら、本発明は吉田-上森モデルを前提とするものではなく、従来提案されている弾塑性構成式における降伏曲面の移動硬化増分ベクトルとして本発明の移動硬化増分ベクトルdαijを用いることができる。また、弾塑性構成式を移動硬化増分ベクトルdαijのみで構成することもできる。また、吉田-上森モデル(式(4)参照)において、aは、前述したとおり、限界曲面と降伏曲面との半径差を表している。これに対し、移動硬化増分ベクトル(式(8)参照)を次式(1)のように一般化した本発明において、aは、降伏曲面の移動硬化量の最大値となる。
Figure JPOXMLDOC01-appb-M000019
[実施の形態1]
〔応力-ひずみ関係シミュレート方法〕
 次に、図7を参照して、本発明の一実施形態である応力-ひずみ関係シミュレート方法について説明する。図7は、本実施の形態1である応力-ひずみ関係シミュレート方法の流れを示すフローチャートである。ステップS1の処理では、オペレータが、弾塑性材料の応力-ひずみ関係の実験値を取得する。実験値を取得するために、オペレータは、弾塑性材料に対して引張方向に応力を加えて塑性変形させた後に除荷し、圧縮方向に応力を加えて塑性変形させる(引張→除荷→圧縮)試験を行う。また、オペレータは、引張方向に応力を加えて塑性変形させた後に除荷し、再び引張方向に応力を加えて塑性変形させる(引張→除荷→再引張)試験を行う。
 なお、本実施形態では、引張→除荷→圧縮試験と引張→除荷→再引張試験とを行うことによって弾塑性材料の応力-ひずみ関係の実験値を取得することとしたが、この2つの試験のうちいずれか一方の試験のみを行うようにしてもよい。また、この2つの試験の代わりに、引張方向に応力を加えて塑性変形させた後に除荷する試験(引張→除荷試験)を行うこととしてもよい。
 ステップS2の処理では、PC(パーソナルコンピュータ)などの計算機が、ステップS1の処理によって得られた応力-ひずみ関係の実験値を利用して、吉田-上森モデルに含まれる非特許文献1記載の他の材料定数Y,B,C,b,m,Rsat,hを同定する。
 ステップS3の処理では、計算機が、ステップS1の処理によって得られた応力-ひずみ関係の実験値を利用して、応力とひずみとの接線勾配dσ/dεが低下しはじめる応力(降伏曲面半径)を材料定数Y(降伏応力)として再同定する。
 ステップS4の処理では、計算機が、ステップS2およびステップS3の処理により同定された材料定数を用いた本発明の弾塑性構成式である式(1)を利用して、応力反転直後の特性を決める材料定数C,A,A,n,nを同定する。なお、式(1)中の係数Cには、ステップS2で同定された吉田-上森モデルにおける係数Cが用いられる。
 ステップS5の処理では、ステップS2乃至ステップS4の処理によって同定された材料定数が弾塑性構成式(1)(2)に代入されると、計算機が、定数が代入された弾塑性構成式を用いて弾塑性材料の応力-ひずみ関係を算出する。これらステップS1乃至ステップS5により、一連の応力-ひずみ関係シミュレート処理は終了する。
[実施の形態2]
〔スプリングバック量予測方法〕
 次に、図8を参照して、本発明の一実施形態であるスプリングバック量予測方法について説明する。図8は、本実施の形態であるスプリングバック量予測方法の流れを示すフローチャートである。ステップS1~ステップS4の処理は、図7と同様であるのでその説明を省略する。ステップS6の処理では、ステップS2乃至ステップS4の処理によって同定された材料定数が弾塑性構成式(1)(2)に代入されると、計算機が、材料定数が代入された弾塑性構成式を用いてスプリングバック解析を実行し、スプリングバック量を予測する。
[実施の形態3]
 実施の形態1で作成された移動硬化増分ベクトルdαijを含む弾塑性構成式を、有限要素法(finite element method)解析ソフトウェアに組み込むことで、スプリングバック解析装置が構成される。以下、図9に示すブロック図に基づいて、このようなスプリングバック解析装置1の構成を説明する。
[スプリングバック解析装置]
 スプリングバック解析装置1は、図9に示すように、PC(パーソナルコンピュータ)等によって構成され、表示装置(display device)3と入力装置(input device)5と主記憶装置(memory storage)7と補助記憶装置9と演算処理(arithmetic processing)部11とを有する。演算処理部11には、表示装置3と入力装置5と主記憶装置7と補助記憶装置9とが接続され、演算処理部11の指令によって各機能が実行される。表示装置3は、液晶モニター等で構成され、計算結果の表示等に用いられる。入力装置5は、キーボードやマウス等で構成され、オペレータからの入力等に用いられる。
 主記憶装置7は、RAM等で構成され、演算処理部11で使用されるデータの一時保存や演算等に用いられる。補助記憶装置9は、ハードディスク等で構成され、データの記憶等に用いられる。演算処理部11は、PC等のCPU(central processing unit)等によって構成され、演算処理部11内には、プレス成形解析手段13と、スプリングバック解析手段15とを有する。これらの手段(13,15)は、演算処理部11のCPU等が所定のプログラムを実行することによって実現される。以下にこれらの手段(13,15)について詳細に説明する。
<プレス成形解析手段>
 プレス成形解析手段13は、プレス成形品についてプレス成形解析を行い、プレス成形後(離型前)の形状情報、応力分布およびひずみ分布を取得する。プレス成形解析手段13には、応力および背応力の関数として定義される弾塑性構成式が入力されているが、その移動硬化増分ベクトルdαijは上記式(1)に示すものである。
<スプリングバック解析手段>
 スプリングバック解析手段15は、プレス成形解析手段13で得られた離型前の形状情報、応力分布、ひずみ分布、および与えられた物性値に基づいてスプリングバック解析を行い、離型後のスプリングバック量を取得する。スプリングバック解析手段15にも、プレス成形解析手段13と同様に応力および背応力の関数として定義される弾塑性構成式が入力されており、その移動硬化増分ベクトルdαijは上記の式(1)と同様である。
 プレス成形解析手段13およびスプリングバック解析手段15が有する弾塑性構成式における材料定数は、図7に示したステップS1~ステップS4の処理を実行することで同定される。したがって、本実施の形態のスプリングバック解析装置1がスプリングバック解析を行う場合には、プレス成形に用いられる材料についてステップS1~ステップS4の処理を実行して式(1)(2)の材料定数を同定し、プレス成形解析手段13およびスプリングバック解析手段15が有する弾塑性構成式に代入するようにすればよい。
 上記のようなスプリングバック解析装置1を用いることで、プレス成形過程において材料に与えられる除荷・圧縮、再引張における応力-ひずみ関係を精度よく再現でき、これによってスプリングバック量も精度高く予測することができる。
 次に、図10を参照し、上記のスプリングバック解析装置1を用いてスプリングバック解析を行う方法を説明する。演算処理部11が、上述のステップS1乃至ステップS4の処理を実行することによって弾塑性構成式(1)(2)に含まれる材料定数を同定する(ステップS11)。
 ステップS12の処理では、演算処理部11が、ステップS11の処理によって同定された材料定数の他、成形解析(press forming analysis)に必要なデータ、例えば金型に関するデータ、ブランクに関するデータ、成形速度等のデータを準備して、入力データとして作成する。
 ステップS13の処理では、ステップS12の処理によって作成された入力データが入力されることによって、スプリングバック解析装置1にインストールされているプレス成形解析手段13が、成形解析を実行する。
 ステップS14の処理では、スプリングバック解析手段15が、ステップS13の成形解析の結果に基づいてスプリングバック解析を行い、プレス成形時の弾塑性材料のスプリングバック量を予測する。これらステップS11乃至ステップS14により、一連のスプリングバック量予測処理は終了する。
[実施例1]
 実施例1では、板厚1.2mmの鋼板(steel sheet)JSC980Yに対して(1)引張→除荷試験、(2)引張→除荷→圧縮試験、および(3)引張→除荷→再引張試験の各試験を行い、各試験において鋼板JSC980Yの応力-ひずみ関係の実験値を取得した。また、各試験において取得された実験値を利用して弾塑性構成式の材料定数を同定し、材料定数が同定された弾塑性構成式を用いて鋼板JSC980Yの応力-ひずみ関係を算出した。
 図11は、各応力-ひずみ関係を示す図である。曲線L13は、従来の吉田-上森モデルを用いて算出された応力-ひずみ関係を示す。曲線L14は、引張→除荷試験から得られた応力-ひずみ関係の実験値P1に基づいて算出された本発明の応力-ひずみ関係を示す。曲線L15は、引張→除荷→圧縮試験から得られた応力-ひずみ関係の実験値P1に基づいて算出された本発明の応力-ひずみ関係を示す。図11から明らかなように、実験値P1に基づいて算出された応力-ひずみ関係の曲線L14、L15は、吉田-上森モデルを用いて算出された応力-ひずみ関係を示す曲線L13よりも高い精度で実験値P1と整合している。
 以上のように、本実施例では、(1)引張→除荷試験、(2)引張→除荷→圧縮試験、および(3)引張→除荷→再引張試験のうちのいずれかの試験から得られた応力-ひずみ関係の実験値を利用して本発明の弾塑性構成式の材料定数を同定する。そして、同定された材料定数を用いて式(2)によって表される降伏曲面の移動硬化の収束速さを規定する係数Cを算出する。さらに、算出された材料定数と係数Cとを弾塑性構成式に代入する。このように、本実施例によって、応力-ひずみ関係を高精度に算出できることが確認された。
[実施例2]
 実施例2では、成形解析におけるスプリングバック量予測に対する本発明の有用性を検証するために、板厚1.2mmの鋼板JSC980Yに対して単純曲げ試験(simple bending test)を行った。図12A,12Bは、単純曲げ試験の内容を説明するための模式図である。この単純曲げ試験では、始めに、図12Aに示すように、パンチ(punch)21とダイ(die)23およびパッド(pad)25との間に鋼板27を配置し、ダイ23およびパッド25を矢印D1方向に移動させることによって、曲げ角度θ1(=30°~75°)で鋼板27に対して単純曲げ成形(一次曲げ(first bending(1st bending)))を施した。次に、図12Bに示すように、曲げ角度θ1より大きな曲げ角度θ2(=45°~75°)で鋼板27に対して再度単純曲げ成形(二次曲げ(second bending(2nd bending)))を施した。これにより、鋼板27の曲げ部には、負荷→除荷→再負荷→再除荷変形が加えられたことになる。
 スプリングバック後の鋼板27の曲げ角度φを図13に示すように定義した。図14は、一次曲げ後と二次曲げ後との曲げ角度φにおける、予測解析結果の角度差(予測解析結果のスプリングバック量)と実験結果の角度差(実験結果のスプリングバック量)との差(スプリングバック量差)を示す。図14に示すように、一次曲げおよび二次曲げ共に、本発明によって予測された角度差は、従来の等方硬化モデルおよび吉田-上森モデルによって予測された角度差よりも、実験値の角度差との差が小さいことが確認された。以上のことから、本発明によれば、スプリングバック量を精度高く予測できることが確認された。
 以上説明したように、本発明の応力-ひずみ関係シミュレート方法では、弾塑性材料の応力-ひずみ関係の実験値を用いて、弾塑性構成式に含まれる弾塑性材料の材料定数を算出する。そして、算出された材料定数を用いて式(2)によって表される降伏曲面の移動硬化の収束速さを規定する係数Cを算出する。さらに、算出された材料定数と係数Cとを弾塑性構成式に代入することによって、弾塑性材料の応力-ひずみ関係を算出する。このような応力-ひずみ関係シミュレート方法によれば、降伏曲面の移動硬化の収束速さを規定する係数Cが応力状態によって変化することになるので、弾塑性材料の応力-ひずみ関係を精度高く算出することができる。また、本発明に係るスプリングバック量予測方法では、本発明に係る応力-ひずみ関係シミュレート方法によって算出された応力-ひずみ関係を用いて計算機がスプリングバック量を予測するので、プレス成形時の弾塑性材料のスプリングバック量を精度高く予測することができる。
 また、特許文献1に記載の方法では、応力-ひずみ関係の表現性について応力が反転した場合のみしか検討されていない。しかしながら、実際のプレス成形では、図15に示すように、除荷した後に再度同じ方向に負荷を与えるような変形(正転変形)が必要な場合がある。このため、従来の特許文献1に記載の方法では、正転変形を含むプレス成形における応力-ひずみ関係およびスプリングバック量の予測精度が低下する可能性がある。これに対して、本発明では、引張→除荷→再引張試験によって得られた弾塑性材料の応力-ひずみ関係の実験値も利用して弾塑性構成式の材料定数を決定する。そのため、正転変形を含むプレス成形における応力-ひずみ関係およびスプリングバック量も精度高く予測することができる。
 本発明は、弾塑性材料の応力-ひずみ関係を評価する処理に適用することができる。これにより、弾塑性材料の応力-ひずみ関係を精度よくシミュレートできる。
 1 スプリングバック解析装置
 3 表示装置
 5 入力装置
 7 主記憶装置
 9 補助記憶装置
 11 演算処理部
 13 プレス成形解析手段
 15 スプリングバック解析手段
 21 パンチ
 23 ダイ
 25 パッド
 27 鋼板 

Claims (8)

  1.  弾塑性材料を塑性変形させて応力-ひずみ関係の実験値を取得する実験値取得ステップと、
     計算機が、応力および背応力の関数として定義される弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijを式(1)として、該弾塑性構成式に含まれる材料定数を、前記実験値取得ステップで取得された実験値を用いて同定する第1材料定数同定ステップと、
     計算機が、該第1材料定数同定ステップで同定された材料定数が代入された前記式(1)と、前記実験値取得ステップで取得された実験値とに基づいて式(2)に含まれる材料定数を同定する第2材料定数同定ステップと、
     計算機が、同定された材料定数が代入された前記式(1)、前記式(2)、および前記弾塑性構成式を用いて弾塑性材料の応力-ひずみ関係をシミュレートするステップと、
     を含むことを特徴とする応力-ひずみ関係シミュレート方法。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記式(1)(2)における変数Xij,ρ,A,nが式(3)によって表されることを特徴とする請求項1に記載の応力-ひずみ関係シミュレート方法。 
    Figure JPOXMLDOC01-appb-M000002
  3.  前記実験値取得ステップにおける弾塑性材料に塑性変形を与える方法として、前記弾塑性材料に対して引張方向に応力を加えて塑性変形させた後に除荷する方法、前記弾塑性材料に引張方向に応力を加えて塑性変形させた後に除荷し、圧縮方向に応力を加えて塑性変形させる方法、または引張方向に応力を加えて塑性変形させた後に除荷し、再び引張方向に応力を加えて塑性変形させる方法のうちのいずれかの方法で行うことを特徴とする請求項1または2に記載の応力-ひずみ関係シミュレート方法。
  4.  弾塑性材料を塑性変形させて応力-ひずみ関係の実験値を取得する実験値取得ステップと、
     計算機が、応力および背応力の関数として定義される弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijを式(1)として、該弾塑性構成式に含まれる材料定数を、前記実験値取得ステップで取得された実験値を用いて同定する第1材料定数同定ステップと、
     計算機が、該第1材料定数同定ステップで同定された材料定数が代入された前記式(1)と、前記実験値取得ステップで取得された実験値とに基づいて式(2)に含まれる材料定数を同定する第2材料定数同定ステップと、
     計算機が、同定された材料定数が代入された前記式(1)、前記式(2)および前記弾塑性構成式を用いてスプリングバック量を予測するステップと、
     を含むことを特徴とするスプリングバック量予測方法。 
    Figure JPOXMLDOC01-appb-M000003
  5.  前記式(1)(2)における変数Xij,ρ,A,nが式(3)によって表されることを特徴とする請求項4に記載のスプリングバック量予測方法。
    Figure JPOXMLDOC01-appb-M000004
  6.  前記実験値取得ステップにおける弾塑性材料に塑性変形を与える方法として、前記弾塑性材料に対して引張方向に応力を加えて塑性変形させた後に除荷する方法、前記弾塑性材料に引張方向に応力を加えて塑性変形させた後に除荷し、圧縮方向に応力を加えて塑性変形させる方法、または引張方向に応力を加えて塑性変形させた後に除荷し、再び引張方向に応力を加えて塑性変形させる方法のうちのいずれかの方法で行うことを特徴とする請求項4または5に記載のスプリングバック量予測方法。
  7.  計算機が、プレス成形品のスプリングバック量を予測するスプリングバック解析装置であって、
     プレス成形解析によって前記プレス成形品の離型前の解析の形状、残留応力分布およびひずみ分布を取得するプレス成形解析手段と、
     前記プレス成形品の形状、残留応力分布およびひずみ分布に基づいて、スプリングバック解析によって前記プレス成形品の離型後のスプリングバック量を取得するスプリングバック解析手段と、を有し、
     前記プレス成形解析手段および前記スプリングバック解析手段が有する弾塑性構成式における降伏曲面の移動硬化増分ベクトルdαijが式(1)(2)で表されることを特徴とするスプリングバック解析装置。
    Figure JPOXMLDOC01-appb-M000005
  8.  前記式(1)(2)における変数Xij,ρ,A,nが式(3)によって表されることを特徴とする請求項7に記載のスプリングバック解析装置。
    Figure JPOXMLDOC01-appb-M000006
PCT/JP2014/053069 2013-03-14 2014-02-10 応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置 WO2014141794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480013384.9A CN105122033B (zh) 2013-03-14 2014-02-10 应力‑应变关系模拟方法、回弹量预测方法以及回弹解析装置
EP14765635.9A EP2975377B1 (en) 2013-03-14 2014-02-10 Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device
MX2015012272A MX343944B (es) 2013-03-14 2014-02-10 Metodo de simulacion de una relacion tension-deformacion, metodo de prediccion de una cantidad de recuperacion elastica, y analizador de recuperacion elastica.
US14/765,208 US10089422B2 (en) 2013-03-14 2014-02-10 Stress-strain relation simulation method, springback-amount prediction method, and springback analyzer
KR1020157023248A KR101819474B1 (ko) 2013-03-14 2014-02-10 응력-스트레인 관계 시뮬레이트 방법, 스프링백량 예측 방법 및 스프링백 해석 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051385 2013-03-14
JP2013051385A JP5582211B1 (ja) 2013-03-14 2013-03-14 応力−ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置

Publications (1)

Publication Number Publication Date
WO2014141794A1 true WO2014141794A1 (ja) 2014-09-18

Family

ID=51536470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053069 WO2014141794A1 (ja) 2013-03-14 2014-02-10 応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置

Country Status (7)

Country Link
US (1) US10089422B2 (ja)
EP (1) EP2975377B1 (ja)
JP (1) JP5582211B1 (ja)
KR (1) KR101819474B1 (ja)
CN (1) CN105122033B (ja)
MX (1) MX343944B (ja)
WO (1) WO2014141794A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802562A (zh) * 2020-12-29 2021-05-14 中国航空工业集团公司西安飞机设计研究所 一种材料塑性应力应变数据获取方法
JP7211461B1 (ja) 2021-09-03 2023-01-24 Jfeスチール株式会社 金属材料の引張圧縮反転負荷挙動予測方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784481B (zh) * 2016-03-23 2018-06-19 西南交通大学 圆盘试样压缩获取材料单轴应力-应变关系的方法
CN107305174B (zh) * 2016-04-20 2020-12-11 中国特种设备检测研究院 一种材料应力应变本构关系的数值表征方法及系统
JP6649187B2 (ja) * 2016-06-27 2020-02-19 株式会社神戸製鋼所 引張特性の推定方法
CN106295086A (zh) * 2016-10-18 2017-01-04 山东理工大学 端部接触式少片抛物线型主副簧限位挠度的设计方法
JP6547763B2 (ja) * 2017-01-05 2019-07-24 Jfeスチール株式会社 スプリングバック量予測方法
CN106769555B (zh) * 2017-01-19 2019-04-19 北京工业大学 一种拉扭载荷下的高温多轴应力应变关系建模方法
CN107220485B (zh) * 2017-05-12 2018-02-23 华中科技大学 一种适用于多道次压缩的本构模型的建立方法
CN107478189B (zh) * 2017-07-03 2019-10-22 航天材料及工艺研究所 一种适用于层合板载荷-变形映射关系的测量装置及方法
US10508978B2 (en) * 2017-11-03 2019-12-17 Saudi Arabian Oil Company Strain energy-based method and apparatus to determine the coefficient of resilience of lost circulation materials
CN107908917B (zh) * 2017-12-29 2020-05-05 清华大学 一种高强板冲压成形回弹预测方法
JP6988599B2 (ja) * 2018-03-14 2022-01-05 トヨタ自動車株式会社 解析装置
CN108664727B (zh) * 2018-05-10 2022-02-11 浙江师范大学 一种车身钣金凹陷快速修复模型的构建方法及系统
JP6958521B2 (ja) * 2018-09-14 2021-11-02 Jfeスチール株式会社 応力−ひずみ関係推定方法
KR102163021B1 (ko) 2018-09-28 2020-10-07 대주코레스(주) 차량용 중공형 알루미늄 범퍼빔의 프레스 성형해석 방법
CN109317543B (zh) * 2018-10-11 2020-03-20 福建工程学院 一种薄板自由曲面弯曲回弹预测方法
CN109446731A (zh) * 2018-12-11 2019-03-08 哈工大机器人(合肥)国际创新研究院 一种基于abaqus的岩土工程数值模拟方法
CN109684753A (zh) * 2018-12-28 2019-04-26 西北工业大学 一种管材弯曲回弹角逆向预测和补偿方法
TWI677383B (zh) * 2019-02-12 2019-11-21 中國鋼鐵股份有限公司 拉直機之拉直率的調整方法
WO2020168211A1 (en) * 2019-02-14 2020-08-20 Northwestern University In-situ springback compensation in incremental sheet forming
JP6852750B2 (ja) * 2019-04-25 2021-03-31 Jfeスチール株式会社 スプリングバック量乖離要因部位特定方法および装置
CN110096841B (zh) * 2019-05-19 2023-04-25 北京工业大学 多轴热机械加载下缺口根部应力-应变状态评估方法
CN110303070B (zh) * 2019-05-28 2020-06-26 太原科技大学 一种双金属复合板矫直工艺新方法
CN110208099B (zh) * 2019-06-05 2021-06-08 重庆大学 一种液体作用下预应力圆形薄膜的弹性能的确定方法
CN110231215B (zh) * 2019-06-05 2021-06-08 重庆大学 挠度受弹性限制的预应力圆形薄膜的最大挠度的确定方法
CN111143975B (zh) * 2019-12-11 2023-05-26 南京理工大学 一种锻造的碳纤维复合材料压缩力学本构计算方法
CN111090957B (zh) * 2019-12-23 2024-04-12 北京工业大学 一种高温结构危险点应力-应变计算方法
CN111210509B (zh) * 2020-01-16 2022-07-26 厦门理工学院 一种拉伸回弹后电机罩壳形状确定方法及装置
CN111539071B (zh) * 2020-04-27 2023-06-02 武汉工程大学 一种差厚板晶体塑性本构模型建立方法、系统及电子设备
CN111929156B (zh) * 2020-07-15 2022-05-20 中国核动力研究设计院 一种核能设备安全性能的测试方法及系统
CN112161865A (zh) * 2020-08-28 2021-01-01 中国科学院金属研究所 一种高强钢的室温拉伸试验方法
JP6981521B1 (ja) * 2020-12-08 2021-12-15 Jfeスチール株式会社 残留応力の算出方法
CN112872118B (zh) * 2020-12-18 2023-12-12 内蒙古大学 大口径直缝焊管的精密弯曲成形工艺
KR102454216B1 (ko) * 2020-12-31 2022-10-14 한국화학연구원 고분자 소재의 응력-변형률 선도를 모사하는 방법
CN113010995B (zh) * 2021-01-26 2022-11-25 陕西科技大学 二维多孔芯材共面冲击响应应力时间曲线的预测方法
CN112924305B (zh) * 2021-01-27 2022-06-21 中国地质大学(北京) 获取被动桩板拦石墙在崩塌落石地质灾害中动态响应数据的方法
CN113139238B (zh) * 2021-04-29 2022-09-27 四川大学 基于材料本构优化模型的汽车高强度钢冲压回弹优化方法
CN113486471B (zh) * 2021-07-23 2023-06-20 中国核动力研究设计院 一种弹簧金属c形环的密封特性数值模拟分析方法
CN113764056B (zh) * 2021-09-06 2023-04-07 北京理工大学重庆创新中心 一种获得材料多应变率下高精度硬化模型参数的方法
CN114861395A (zh) * 2022-03-30 2022-08-05 西北核技术研究所 一维杆中弹塑性应力波参量和能量解析方法及模型
JP7414179B1 (ja) 2022-08-24 2024-01-16 Jfeスチール株式会社 応力-ひずみ関係推定方法及びスプリングバック予測方法、並びにプレス成形品の製造方法
JP7447957B1 (ja) * 2022-09-29 2024-03-12 Jfeスチール株式会社 残留応力分布の算出方法、装置及びプログラム
CN117476142B (zh) * 2023-03-21 2024-04-19 哈尔滨理工大学 基于切削力逆向识别修正本构参数的解算方法
CN116467781B (zh) * 2023-04-21 2023-09-22 合肥工业大学 一种公路桥梁经济性准隔震体系设计方法
CN117371296B (zh) * 2023-12-07 2024-03-01 中铝材料应用研究院有限公司 型材拉弯成形的工艺方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809374B2 (ja) 2001-12-27 2006-08-16 トヨタ自動車株式会社 応力−ひずみ関係シミュレート方法および除荷過程における降伏点を求める方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009378A (en) * 1997-10-14 1999-12-28 Ford Global Technologies, Inc. Method of applying an anisotropic hardening rule of plasticity to sheet metal forming processes
US20020077795A1 (en) * 2000-09-21 2002-06-20 Woods Joseph Thomas System, method and storage medium for predicting impact performance of thermoplastic
US20020065613A1 (en) * 2000-09-21 2002-05-30 Woods Joseph Thomas System, method and storage medium for predicting impact performance of painted thermoplastic
DE10116773A1 (de) * 2001-04-04 2002-10-17 Bayer Ag Verfahren zur Ermittlung von Spannungs-Dehnungskurven mittels Splineinterpolation auf Basis charakteristischer Punkte und unter dem Einsatz neuronaler Netze
US6631647B2 (en) 2001-04-26 2003-10-14 Joseph B. Seale System and method for quantifying material properties
WO2003087746A2 (en) * 2002-04-09 2003-10-23 The Board Of Trustees Of The University Of Illinois Methods and systems for modeling material behavior
US7027048B2 (en) * 2002-05-31 2006-04-11 Ugs Corp. Computerized deformation analyzer
CN201548449U (zh) 2009-10-28 2010-08-11 宝山钢铁股份有限公司 钢板冲压后扭曲回弹特性实验模具
US20130238301A1 (en) * 2012-03-07 2013-09-12 Amit Kumar Kaushik Systems and Methods for Material Modeling and Prediction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809374B2 (ja) 2001-12-27 2006-08-16 トヨタ自動車株式会社 応力−ひずみ関係シミュレート方法および除荷過程における降伏点を求める方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G.S HEGDE ET AL.: "Interface driven optimisation of springback in stretch bending of autobody panels", ARCHIVES OF COMPUTATIONAL MATERIALS SCIENCE AND SURFACE ENGINEERING, vol. 1, 2009, pages 168 - 173, XP055221146 *
SATOSHI SUMIKAWA ET AL.: "Dansei Oyobi Sosei Ihosei to Bauschinger Koka o Koryo shita Springback Kaiseki", DAI 63 KAI THE PROCEEDINGS OF JAPANESE JOINT CONFERENCE FOR THE TECHNOLOGY OF PLASTICITY, 15 October 2012 (2012-10-15), pages 109 - 110, XP008177936 *
TORU YOSHIDA ET AL.: "Material Modeling for Improving the Springback Prediction of High Strength Steel Sheets", SHIN NITTETSU GIHO, no. 392, March 2012 (2012-03-01), pages 65 - 71, XP008177932 *
YOSHIDA, F.; UEMORI, T., INT. J. PLASTICITY, vol. 18, 2002, pages 661 - 686

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802562A (zh) * 2020-12-29 2021-05-14 中国航空工业集团公司西安飞机设计研究所 一种材料塑性应力应变数据获取方法
CN112802562B (zh) * 2020-12-29 2024-05-24 中国航空工业集团公司西安飞机设计研究所 一种材料塑性应力应变数据获取方法
JP7211461B1 (ja) 2021-09-03 2023-01-24 Jfeスチール株式会社 金属材料の引張圧縮反転負荷挙動予測方法
WO2023032370A1 (ja) * 2021-09-03 2023-03-09 Jfeスチール株式会社 金属材料の引張圧縮反転負荷挙動予測方法
JP2023037100A (ja) * 2021-09-03 2023-03-15 Jfeスチール株式会社 金属材料の引張圧縮反転負荷挙動予測方法

Also Published As

Publication number Publication date
MX2015012272A (es) 2016-01-25
EP2975377A4 (en) 2016-03-30
JP2014178168A (ja) 2014-09-25
US20150370936A1 (en) 2015-12-24
JP5582211B1 (ja) 2014-09-03
US10089422B2 (en) 2018-10-02
MX343944B (es) 2016-11-30
EP2975377A1 (en) 2016-01-20
KR101819474B1 (ko) 2018-01-17
CN105122033A (zh) 2015-12-02
CN105122033B (zh) 2018-01-02
EP2975377B1 (en) 2019-04-03
KR20150110780A (ko) 2015-10-02

Similar Documents

Publication Publication Date Title
WO2014141794A1 (ja) 応力-ひずみ関係シミュレート方法、スプリングバック量予測方法およびスプリングバック解析装置
JP5866892B2 (ja) 応力−歪み関係評価方法およびスプリングバック量予測方法
Eggertsen et al. On constitutive modeling for springback analysis
Eggertsen et al. On the identification of kinematic hardening material parameters for accurate springback predictions
Džugan et al. Identification of ductile damage parameters for pressure vessel steel
JP3897477B2 (ja) 応力−ひずみ関係シミュレート方法およびスプリングバック量予測方法
JP3809374B2 (ja) 応力−ひずみ関係シミュレート方法および除荷過程における降伏点を求める方法
JP2008142774A (ja) 応力−ひずみ関係シミュレート方法、応力−ひずみ関係シミュレーションシステム、応力−ひずみ関係シミュレーションプログラム、及び当該プログラムを記録した記録媒体
Wang et al. An experimental-numerical combined method to determine the true constitutive relation of tensile specimens after necking
JP5932290B2 (ja) 塑性に伴う体積変化に関係するパラメータを考慮した機械特性作成方法
Chatti et al. A study of the variations in elastic modulus and its effect on springback prediction
JP2016004543A (ja) 有限要素解析装置、該方法及び該プログラム
CN110348055B (zh) Chaboche粘塑性本构模型材料参数获取与优化方法
Kosel et al. Elasto-plastic springback of beams subjected to repeated bending/unbending histories
Peters et al. A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments
Chatti Modeling of the elastic modulus evolution in unloading-reloading stages
Haque et al. Stress based prediction of formability and failure in incremental sheet forming
CN111539071B (zh) 一种差厚板晶体塑性本构模型建立方法、系统及电子设备
JP2014077700A (ja) 力学的物理量の算出方法及び装置
Abdollahi et al. Ratcheting behaviour of stainless steel 316L with interference fitted holes in low-cycle fatigue region
Hora et al. Damage dependent stress limit model for failure prediction in bulk forming processes
Halama et al. Cyclic plastic properties of class C steel emphasizing on ratcheting: testing and modelling
Manopulo et al. Assessment of anisotropic hardening models for conventional deep drawing processes
Saxena et al. Evaluating the geometric variation of critical SZW in Mod9Cr1Mo Steel
CN111159932B (zh) 一种针对Mullins效应参数的优化反演方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765208

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157023248

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014765635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201505598

Country of ref document: ID

Ref document number: MX/A/2015/012272

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE