WO2014128931A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2014128931A1
WO2014128931A1 PCT/JP2013/054566 JP2013054566W WO2014128931A1 WO 2014128931 A1 WO2014128931 A1 WO 2014128931A1 JP 2013054566 W JP2013054566 W JP 2013054566W WO 2014128931 A1 WO2014128931 A1 WO 2014128931A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
intake
intake passage
inner peripheral
flow
Prior art date
Application number
PCT/JP2013/054566
Other languages
English (en)
French (fr)
Inventor
茨木 誠一
勲 冨田
鈴木 浩
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13875801.6A priority Critical patent/EP2960526B1/en
Priority to PCT/JP2013/054566 priority patent/WO2014128931A1/ja
Priority to CN201611175028.4A priority patent/CN106968989A/zh
Priority to JP2015501196A priority patent/JP6109291B2/ja
Priority to US14/762,138 priority patent/US10167877B2/en
Priority to CN201380070927.6A priority patent/CN104968944B/zh
Publication of WO2014128931A1 publication Critical patent/WO2014128931A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • F04D29/464Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps adjusting flow cross-section, otherwise than by using adjustable stator blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/65Pneumatic actuators

Definitions

  • the present invention relates to a centrifugal compressor having an impeller wheel rotated by a rotating shaft, and more particularly to a centrifugal compressor incorporated in an exhaust turbocharger.
  • Centrifugal compressors used for such exhaust turbochargers are required to have a wide operating range.
  • centrifugal compressors cause an unstable phenomenon called surging when the flow rate decreases, and choking with an impeller or diffuser when the flow rate increases. Occurs and the flow range is limited.
  • variable mechanism such as an inlet variable guide vane or a variable diffuser may be applied to the centrifugal compressor to expand the operating range.
  • variable diffuser by making the passage area variable by rotating and sliding the diffuser blade, it is possible to greatly expand the operating range compared to the casing treatment.
  • a complicated drive mechanism is required, which is expensive.
  • problems such as reliability of the sliding portion, performance deterioration due to the clearance of the sliding portion, and gas leakage.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-127109
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-27931. It has been known.
  • Patent Document 1 in a compressor that takes in a part of air from an inlet slit that opens to an impeller outer peripheral air passage and flows out from the outlet slit to the inlet air passage through the recirculation passage, air outflow from the outlet slit to the inlet air passage A technique is shown in which a center line is inclined at a certain angle so as to face the impeller.
  • Patent Document 2 a circulation channel that communicates the air inlet to the impeller and the shroud of the impeller is provided, and the opening position of the circulation channel on the shroud side is the leading edge of the blade.
  • the technique provided at a predetermined position along the meridian is shown.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-65669 is known as a prior art in which variable vanes are provided in a diffuser section, which is one of techniques for expanding the operating range of a centrifugal compressor. Discloses a technique in which a flow rate adjusting valve is provided in any one of the flow paths by dividing the flow path of the diffuser section.
  • the present invention provides a resistor that squeezes the cross section of the intake passage communicating between the rotary blades of the centrifugal compressor and the intake port in the radial direction, thereby reducing the inflow speed of the impeller wheel to the blades.
  • the purpose is to reduce the surging limit flow rate at low flow rate.
  • the present invention is provided with a housing having an intake port that opens in the direction of the rotation axis and an intake passage connected to the intake port, and is disposed inside the housing so as to be rotatable about the rotation axis.
  • An impeller wheel that compresses the intake gas flowing in from the intake port, and is provided with a resistance to the intake flow in either the inner peripheral wall side portion or the center side portion of the intake passage, The flow rate of the impeller wheel to the blades is increased by reducing the cross-sectional area of the intake passage by the resistor at the time of the flow rate, and the intake air is blown by the inner peripheral resistor provided on the inner peripheral wall side portion of the intake passage.
  • the intake air is biased toward the shroud side of the blades by the central resistor provided at the center side portion and flows.
  • the resistor is provided for the intake air flow in the intake passage, the cross-sectional area of the intake passage is reduced as compared with the case where there is no resistor.
  • the inflow speed is increased.
  • the flow bias due to the influence of the resistor is less than when the flow rate is low, and flows in from the hub side to the tip of the shroud side in the blade height direction of the blade leading edge.
  • the flow rate of the impeller wheel to the blades is increased by the resistor, and the intake air is moved to the hub side of the blade by the inner peripheral resistor provided on the inner peripheral wall side portion of the intake passage.
  • the intake air can be biased toward the shroud side of the blade by biasing or by a central resistor provided in the central portion.
  • the flow rate is low, that is, in a low flow rate region where a surging phenomenon occurs, the air inflow speed to the blades is increased, the stall of the impeller wheel can be suppressed, and the surging limit flow rate can be reduced.
  • the intake flow is biased to flow toward the hub side of the blade, and the central resistor is used to bias the intake flow toward the shroud side of the blade, thereby using a small blade.
  • the use state is the same as that of the present state, and a decrease in performance (pressure ratio) can be suppressed even at a low flow rate.
  • the inner peripheral resistor has an annular shape, and a cylindrical shape or an inflow side flow path extending in an axial direction of the intake passage extends to an inner end of the inner peripheral resistor.
  • a guide portion having a hollow truncated cone shape or a bell mouth shape for narrowing the path may be provided.
  • the guide member has a cylindrical shape extending in the axial direction of the intake passage, a hollow truncated cone shape in which the flow path on the inflow side is widened and the flow path on the outflow side is narrowed, or a bell mouth shape.
  • the directionality of the intake airflow flowing through the portion is stabilized, and the flow toward the hub side of the leading edge of the blade at the time of low flow rate can be reliably formed.
  • an increase in the inflow speed to the wing can be expected by widening the inlet and narrowing the outflow.
  • the inner peripheral resistor is installed at a height of about 50% or more of the leading edge height of the wing.
  • the inner peripheral resistor is installed in an area of about 50% or more of the leading edge height of the wing. If the inner peripheral resistor protrudes to the inner diameter side up to an area of 50% or less, the required flow rate may not be ensured due to an increase in the flow resistance at high flow rates. Yes.
  • the central resistor has a disc shape, and a cylindrical shape extending in the axial direction of the intake passage covering an outer periphery of the disc of the central resistor or an inflow side passage is widened, and the outflow side is expanded. It is preferable to provide a guide portion having a hollow truncated cone shape or a bell mouth shape in which the flow path is narrowed.
  • the central resistor is provided on the inner side of the guide portion and the guide portion is provided on the outer side thereof, so that the direction of the intake flow flowing near the inner peripheral wall of the intake passage is stable, and the leading edge of the blade at the time of low flow rate is stabilized.
  • the flow to the shroud side can be reliably formed.
  • the central resistor is installed at about 50% or less of the leading edge height of the wing.
  • the central resistor is installed in an area of about 50% or less of the wing leading edge height. If the center resistor exists up to a region exceeding 50% of the height of the leading edge, the required flow rate may not be ensured due to an increase in flow path resistance at a high flow rate, thus preventing such performance deterioration.
  • the disk-shaped central resistor is opened and closed to rotate between a fully open state along the intake flow and a fully closed state that blocks the intake flow, with the radial direction of the intake passage as the rotation center axis. It is good to consist of possible valve bodies.
  • the central resistor is constituted by a valve body that can be opened and closed that rotates between the full opening along the intake flow and the full closing that blocks the intake flow, with the radial direction of the intake passage as the rotation central axis.
  • control is performed to increase the inflow speed by closing the valve body to increase the bias to the shroud side of the blade, and at high flow rate
  • the valve body can be opened to control the flow rate.
  • the valve body may be controlled to be fully opened when the intake air flow rate is equal to or higher than a predetermined value, and to be closed as the flow rate decreases. In this way, as the flow rate decreases, the valve body closes, the flow flows into the shroud side, and the flow velocity increases, so that the air inflow speed of the wings is higher than the state in which the valve body is open. As a result, the stall of the turbine wheel can be suppressed and the surging limit flow rate can be reduced.
  • the valve body is constituted by a resistor made of a slit-shaped or mesh-shaped member.
  • a resistor made of a slit-shaped or mesh-shaped member since the valve body is constituted by a resistor made of a slit-shaped or mesh-shaped member, when the valve body is fully closed, a flow is also generated on the hub side, so that the flow is separated downstream of the valve body. The area is reduced and the performance is improved.
  • the inner peripheral resistor and the central resistor are constituted by a perforated plate, a slit shape, or a mesh shape member.
  • a perforated plate or net-like plate with a constant air permeability (squeezing rate) without using a valve opening / closing mechanism without adjusting the throttle range.
  • a simple structure it is possible to secure a flow rate at a high flow rate and prevent surging at a low flow rate.
  • the inner peripheral resistor is formed by a convex annular projection member on an inner diameter side of the inner peripheral wall of the intake passage, and the convex portion of the annular projection member is provided with a low inflow intake air amount. It is preferable to provide a movable means that protrudes toward the inner diameter side of the intake passage at the flow rate.
  • the inner peripheral resistor is formed by the convex annular projection member on the inner diameter side of the inner peripheral wall of the intake passage, and the convex portion of the annular projection member is formed on the inner diameter side of the intake passage when the inflow intake air amount is low.
  • the convex part is formed on the shroud side, and as a result, the flow flows into the hub side as compared with the case where there is no convex part.
  • the inflow speed to the wing is increased, the stall of the wing is suppressed, and the surging limit flow rate can be reduced.
  • the present invention it is possible to reduce the surging limit flow rate at a low flow rate by providing a resistor that squeezes the cross section of the intake passage communicating between the rotary blades of the centrifugal compressor and the intake port in the radial direction. it can.
  • FIG. 2 is an explanatory diagram of an inner peripheral resistor according to the first embodiment, and is a cross-sectional view taken along the line AA in FIG. It is explanatory drawing which shows the modification of an internal peripheral resistor. It is principal part sectional drawing of the rotating shaft direction of the centrifugal compressor concerning 2nd Embodiment of this invention.
  • FIG. 6 is an explanatory diagram of a central resistor according to a second embodiment, and is a cross-sectional view taken along the line BB of FIG. It is explanatory drawing which shows the modification of a center resistor. It is principal part sectional drawing of the rotating shaft direction of the centrifugal compressor which shows 3rd Embodiment of this invention. It is principal part sectional drawing of the rotating shaft direction of the centrifugal compressor which shows 4th Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a main part in the direction of the rotation axis K of a compressor (centrifugal compressor) 3 used in an exhaust turbocharger 1 of an internal combustion engine, and mainly shows an upper half portion.
  • the exhaust turbocharger 1 is configured such that the rotational force of a turbine rotor driven by exhaust gas from an internal combustion engine (not shown) is transmitted to the impeller wheel 7 via the rotary shaft 5.
  • the centrifugal compressor 3 has an impeller wheel 7 supported in a compressor housing 9 so as to be rotatable about a rotation axis K of the rotation shaft 5.
  • An intake passage 11 that guides intake gas, for example, air, before being compressed, to the impeller wheel 7 extends in a cylindrical shape in the direction of the rotation axis K and concentrically with the rotation axis K.
  • An intake port 13 connected to the intake passage 11 opens at an end of the intake passage 11. The intake port 13 is tapered toward the end so that air can be easily introduced.
  • a diffuser 15 extending in a direction perpendicular to the rotation axis K is formed outside the impeller wheel 7, and a spiral air passage (not shown) is provided on the outer periphery of the diffuser 15. This spiral air passage forms an outer peripheral portion of the compressor housing 9.
  • the impeller wheel 7 includes a hub portion 17 that is driven to rotate about the rotation axis K, and a plurality of blades (blades) 19 provided on the outer peripheral surface of the hub portion 17.
  • the hub portion 17 is attached to the rotary shaft 5 so that a plurality of blades 19 are rotationally driven together with the hub portion 17.
  • the blades 19 are rotationally driven to suck air from the air inlet 13 and compress the air that has passed through the air intake passage 11, and the shape is not particularly limited.
  • the blade 19 is provided with a front edge 19a which is an upstream edge, a rear edge 19b which is a downstream edge, and an outer peripheral edge (outer peripheral part) 19c which is a radially outer edge.
  • the outer peripheral edge 19 c is a side edge portion covered by the shroud portion 21 of the compressor housing 9.
  • the outer periphery 19c is arrange
  • the impeller wheel 7 of the compressor 3 is rotationally driven by a rotating shaft 5 that is rotated by a rotational driving force of a turbine rotor (not shown). Then, outside air is drawn in from the air inlet 13 in the direction of the rotation axis K, flows between the plurality of blades 19 of the impeller wheel 7, and is mainly arranged on the radially outer side after the dynamic pressure is increased. Then, a part of the dynamic pressure is converted into a static pressure, and the pressure is increased and discharged through a spiral air passage formed on the outer peripheral side. And it is supplied as intake air of an internal combustion engine.
  • an inner peripheral resistor 25 constituting a resistor against intake air flow is provided on the inner peripheral wall 23 of the intake passage 11.
  • the inner peripheral resistor 25 is provided on the inner peripheral wall 23 between the intake port 13 and the blade 19 of the intake passage 11 and is formed by an annular plate member 27.
  • An outer peripheral end portion of the plate member 27 is attached to the inner peripheral wall 23 of the intake passage 11, and a cylindrical guide portion 29 extending in the axial direction of the intake passage 11 is attached to the inner peripheral end portion.
  • the center line of the guide portion 29 coincides with the rotation axis K, and the guide portion is formed at the center portion of the intake passage 11, so that the directionality of the intake flow flowing through the center portion of the intake passage 11 is stabilized and reduced.
  • the flow toward the hub side of the leading edge of the blade 19 at the time of the flow rate can be reliably formed.
  • a bell frustum-shaped bell mouth guide portion 31 in which a flow path on the inflow side is widened and a flow path on the outflow side is narrowed is formed. Also good. In this way, the inlet portion widens and the outflow portion narrows, so that an increase effect of the inflow speed of the blades 19 to the inlet can also be expected.
  • the plate member 27 is not a plate member that completely blocks the flow, but has a predetermined opening ratio, for example, approximately half (40 to 60%), or the pressure loss coefficient Then, it is desirable to form a perforated plate set to be approximately 0.4 or less, or a lattice (slit) shape or a mesh shape. Moreover, it may be a sponge-like integrated structure having an annular shape instead of a plate shape, and may be any member that functions as a resistor against intake air flow.
  • the opening ratio is smaller than the predetermined value or when the pressure loss coefficient is larger than about 0.4, the intake flow rate at the time of the large flow rate cannot be secured, and the performance as the compressor 3 is deteriorated.
  • the opening ratio is too large or the pressure loss coefficient is too small, the function as a resistor cannot be obtained.
  • the radial height h of the annular plate member 27 is set at a portion having a height of about 50% or more of the leading edge blade height H of the blade 19. That is, it is provided on the inner peripheral wall 23 side of the intake passage 11.
  • the height h if the inner peripheral resistor 25 protrudes to the inner diameter side up to a region less than about 50% of the front edge height of the blade 19 as described above, the flow path resistance is increased at a high flow rate. And the necessary flow rate may not be ensured, so that such performance deterioration is prevented.
  • FIG. 2 (A) shows a high flow rate.
  • a flow flows from the hub side to the shroud side tip in the blade height direction.
  • the flow is biased toward the hub side due to the influence of the plate member 27 which is a shroud side resistor, compared to the case where there is no resistor.
  • the inflow speed of air to the impeller wheel 7 is increased, the stall of the impeller wheel 7 is suppressed, and the surging limit flow rate can be reduced.
  • the intake flow is biased so as to flow into the hub side, so that it does not flow to the tip portion of the blade, i.e., the shroud side, and the use state is the same as the state where a small blade is used, It is possible to cope with a low flow rate without lowering the performance of the compressor.
  • the bias of the intake air flow is less than that at the time of a low flow rate, and the blade height at the leading edge of the blade 19 is increased.
  • the inner peripheral resistor 25 causes the intake air to be biased toward the hub side of the blades 19 and the cross-sectional area of the intake passage 11 is reduced. As a result, the flow rate is increased, and the surging limit flow rate can be reduced without degrading the performance.
  • the second embodiment is provided with a central resistor 41 which is provided in the central portion of the intake passage 11 and constitutes a resistor against intake air flow.
  • the central resistor 41 is provided between the intake port 13 of the intake passage 11 and the blade 19 around the rotation axis K, and is constituted by a disk-shaped plate member 43.
  • a cylindrical guide portion 45 extending in the axial direction of the intake passage 11 is attached so as to cover the outer periphery of the plate member 43.
  • the outer peripheral part of the guide part 45 is attached to the inner peripheral wall 23 of the intake passage 11 by four columns 47 provided in the circumferential direction.
  • the central resistor 41 is provided inside the guide portion 45, and the guide portion 45 can stabilize the directionality of the intake air flow that flows through the central portion of the intake passage 11. Further, by providing the guide portion 45, the directionality of the intake flow flowing near the inner peripheral wall of the intake passage 11 is stabilized, and the flow toward the shroud side of the front edge 19a of the blade 19 at the time of low flow rate can be reliably formed.
  • a hollow frustum shape in which the flow path on the inflow side is widened and the flow path on the outflow side is narrowed, or a bell mouth shape is used.
  • the bell mouth guide 31 may be used.
  • the plate member 43 is not a plate member that completely blocks the flow, as shown in FIGS. 7A and 7B, but has a predetermined aperture ratio, for example, approximately half (40 to 60%).
  • a perforated plate set to be approximately 0.4 or less in the pressure loss system, or a lattice (slit) shape or a mesh shape.
  • it may be a sponge instead of a plate, and may function as a resistor against the intake flow.
  • the magnitude of the opening ratio and the pressure loss coefficient is set in relation to the deterioration of the performance of the compressor 3 as in the first embodiment.
  • the radial height h of the plate member 43 is set to about 50% or less with respect to the leading edge blade height H of the blade 19. That is, it is provided in the central portion of the intake passage 11.
  • the height h is present up to a region exceeding about 50% of the front edge height of the blade 19, the required flow rate may not be ensured due to an increase in flow path resistance at a high flow rate. Is preventing.
  • FIG. 6A shows the time of a large flow rate.
  • a flow flows from the hub side to the shroud side tip in the blade height direction.
  • the flow flows into the shroud side due to the influence of the plate member 43 which is the hub side resistor, and the impeller wheel is compared with the case where there is no resistor.
  • the inflow speed of the air to 7 increases, the stall of the impeller wheel 7 is suppressed, and the surging limit flow rate can be reduced.
  • the bias of the intake air flow is less than that at the time of low flow rate, and the blade height direction of the leading edge of the blade 19
  • the central resistor 41 causes the intake air to be biased toward the shroud side of the blade 19 and the cross-sectional area of the intake passage 11 is reduced. Can increase the flow velocity and reduce the surging limit flow rate.
  • the plate member 43 of the second embodiment is a rotatable valve body 51.
  • the disk-shaped central resistor 53 can be opened and closed to rotate between a fully open state along the intake flow and a fully closed state that blocks the intake flow, with the radial direction of the intake passage 11 being the central axis of rotation.
  • the valve body 51 is constituted.
  • a valve body rotation shaft 55 is connected to the rotation center axis of the valve body 51, and the valve body rotation shaft 55 penetrates the guide portion 45, and further, only one column 47 has an internal penetration structure,
  • the compressor housing 9 penetrates through the compressor housing 9 so as to protrude from the compressor housing 9 instead of being provided in that place. And the end part which penetrated the compressor housing 9 and protruded outside is rotated by the drive mechanism which is not shown in figure.
  • the opening / closing operation of the valve body 51 is controlled based on the rotational speed of the impeller wheel 7 of the compressor 3 so that the valve body 51 is fully closed when it falls to a predetermined low rotation region, that is, a limit low flow region where surging occurs. It is controlled by the device.
  • valve body 51 is controlled to close as the flow rate decreases, that is, the rotational speed of the impeller wheel 7 decreases.
  • the plate member 54 constituting the valve body 51 may be a porous body or a slit-like resistor as in the second embodiment, or may be a completely disc-shaped plate member. Good. In the case of a disk, since the opening degree of the valve body 51 is adjusted, the valve body 51 is fully opened at the time of a high flow rate, so that no problem arises from the viewpoint of securing the flow rate. Further, when the valve body 51 is configured by a resistor made of a slit-shaped or mesh-shaped member, when the valve body 51 is fully closed, a flow also occurs on the hub side. The flow separation region is reduced and the performance is improved.
  • the valve body 51 that can be opened and closed is provided, and the cylindrical guide portion 45 or the bell mouth shape guide portion 45 is provided on the outer peripheral side thereof.
  • the valve body 51 is closed and the flow flows into the shroud side, and the air inflow speed to the impeller wheel 7 is increased compared with the state in which the valve body 51 is opened, and the stall of the impeller wheel 7 is suppressed.
  • the surging limit flow rate can be reduced.
  • an annular projecting member 61 protruding in a convex shape is provided on the inner diameter side of the inner peripheral wall 23 of the intake passage 11.
  • a resistor is formed by the annular projecting member 61, and movable means 64, 66, and 68 for adjusting the amount of protrusion of the projecting portion 63 of the annular projecting member 61 to the inner diameter side of the intake passage 11 according to the inflow intake air amount. It has.
  • FIG. 9A An outline is shown in FIG. 9A, and details thereof are shown in FIGS.
  • the annular projecting member 61 formed in a convex shape on the inner diameter side of the inner peripheral wall 23 of the intake passage 11 is formed of an elastic body (rubber member or resin material) and has a pressing force from the outer peripheral side. By causing F to act on the inner diameter side, the amount of convex protrusions is variably controlled.
  • the movable means 64 is formed with an annular slit 65 on the compressor housing 9 side, an elastic rubber member 67 is disposed on the outer side thereof in the circumferential direction, and a pressure chamber 69 on the outer side of the rubber member 67.
  • the pressure chamber housing 71 formed on the outer peripheral side of the rubber member 67 is attached by bolts 73, 73 so as to form A pressure liquid such as pressurized air is supplied to the pressure chamber 69 via a pressure supply pipe 87.
  • the protruding amount of the convex portion 63 of the annular protruding member 61 is controlled according to the amount of pressurized liquid supplied to the pressure chamber 69.
  • the movable means 66 is formed with an annular slit 65 on the compressor housing 9 side, and an elastic rubber member 67 is disposed on the outer side in the circumferential direction and attached in the circumferential direction with bolts 77.
  • a tightening band 79 is wound around the outer side of the rubber member 67, and the amount of protrusion of the convex portion 63 is controlled by variably controlling the tightening force for tightening the tightening band 79.
  • annular protrusion member 81 formed in a convex shape on the inner peripheral wall 23 of the intake passage 11 is formed of an elastic body (rubber member or resin material), and the amount of the convex protrusion is variable. Be controlled.
  • an annular slit 65 is formed on the compressor housing 9 side, and an elastic rubber member 84 is arranged on the outer side in the circumferential direction, and the rubber member 84 is rotated on one side in the rotation axis K direction.
  • a slide portion 85 that is slidable in the direction of the axis K is provided. By sliding the slide portion 85 with an actuator (not shown), the convex portion 83 protrudes inside the intake passage 11 to form an annular projection member 81. It has a structure. The amount of the convex protrusion is controlled in accordance with the slide amount S of the slide portion 85.
  • the resistor is formed by the convex annular projecting members 61 and 81 projecting toward the inner diameter side of the inner peripheral wall of the intake passage 11, and the projecting of the annular projecting members 61 and 81 is formed.
  • the amount of convex protrusion is not controlled according to the operating state, and a resistor formed by the annular protrusion members 61 and 81 that are convex toward the inner diameter side is simply formed on the inner peripheral wall 23 of the intake passage 11. Even with the structure only provided, the performance of the compressor and the effect of reducing the surging limit flow rate can be obtained by the effect of preventing the backflow and the effect of increasing the flow velocity described in the first embodiment.
  • the present invention it is possible to reduce the surging limit flow rate at a low flow rate by providing a resistor that squeezes the cross section of the intake passage communicating between the rotary blades of the centrifugal compressor and the intake port in the radial direction. Therefore, it is useful as a technology applied to an exhaust turbocharger of an internal combustion engine.

Abstract

【課題】遠心圧縮機の回転羽根と吸気口との間を連通する吸気通路の通路断面を径方向に絞る抵抗体を設けて、インペラーホイールの翼への流入速度を上昇させて、低流量時におけるサージング限界流量を低減することを目的とする。 【解決手段】回転軸方向に開口する吸気口13と吸気通路11とを有するコンプレッサハウジング9と、該ハウジングの内部に、吸気口13から流入する空気を圧縮するインペラーホイール7と、を備え、吸気通路11の内周壁23側部分若しくは中心側部分のいずれかに吸気流に対する抵抗体27、43を設け、低流量時において前記抵抗体27、43によって吸気通路11の断面積を絞ることでインペラーホイールの翼19への流入速度を上昇させるとともに、吸気流を翼19のハブ側もしくはシュラウド側に偏らせて流すことを特徴とする。

Description

遠心圧縮機
 本発明は、回転軸によって回転するインペラーホイールを具えた遠心圧縮機に係り、特に排気ターボ過給機に組み込まれる遠心圧縮機に関する。
 自動車等に用いられるエンジンにおいて、エンジンの出力を向上させるために、エンジンの排気ガスのエネルギでタービンを回転させ、回転軸を介してタービンと直結させた遠心圧縮機で吸入空気を圧縮してエンジンに供給する排気ターボ過給機が広く知られている。
 かかる排気ターボ過給機に用いられる遠心圧縮機には、広い作動範囲が求められるが、遠心圧縮機は流量が減少するとサージングという不安定現象が発生し、流量が増加すると羽根車またはディフューザでチョーキングが発生し、流量範囲が制限される。
 そこで、遠心圧縮機の作動範囲を拡大するために、ケーシングに溝や循環通路を設けるケーシングトリートメントを適用する場合があるが、作動範囲は拡大するものの、大幅な改善は望めない。
 また、遠心圧縮機に入口可変案内翼や可変ディフューザ等の可変機構を適用して、作動範囲を拡大する場合がある。
 可変ディフューザには、ディフューザ翼の回動、スライドにより通路面積を可変にすることで、前記のケーシングトリートメントに対し、大幅に作動範囲を拡大することが可能である。
 しかしながら、複雑な駆動機構が必要となり、コストがかかる。また、摺動部の信頼性、摺動部のすき間による性能低下、ガス漏れ等の課題がある。
 遠心圧縮機の作動範囲の拡大技術の一つであるケーシングに循環通路を設ける先行技術としては、特許文献1(特開2007-127109号公報)、特許文献2(特開2004-27931号公報)が知られている。
 特許文献1には、インペラー外周空気通路に開口する入口スリットから空気の一部を取り入れて、再循環通路を通して出口スリットから入口空気通路に流出するコンプレッサにおいて、出口スリットから入口空気通路への空気流出中心線がインペラーに向かうように、一定角度傾斜して設けられる技術が示されている。
 また、特許文献2においても、羽根車への空気入口部と同羽根車のシュラウド部とを連通する循環流路を設けるとともに、該循環流路のシュラウド部側の開口位置が、羽根の前縁から子午線に沿って所定の位置に設けられる技術が示されている。
 さらに、遠心圧縮機の作動範囲の拡大技術の一つであるディフューザ部に可変翼を設ける先行技術としては、特許文献3(特開2010-65669号公報)が知られており、同特許文献3には、ディフューザ部の流路を分割して何れか一方の流路に流量調整弁を設けられる技術が示されている。
特開2007-127109号公報 特開2004-27931号公報 特開2010-65669号公報
 しかしながら、特許文献1、2のような、循環通路を設けての改善では、低流量時のサージングの改善がなされて作動範囲は多少拡大するが、大幅な改善は望めない。
 また、ディフューザ部に流量調整弁を設けての改善では、流量調整弁の駆動機構が必要になりコスト増を招くとともに、低流量側での作動範囲の大幅な改善は望めない。
 従って、低流量側での更なる改善が必要であった。
 本発明はかかる技術的課題に鑑み、遠心圧縮機の回転羽根と吸気口との間を連通する吸気通路の通路断面を径方向に絞る抵抗体を設けて、インペラーホイールの翼への流入速度を上昇させて、低流量時におけるサージング限界流量を低減することを目的とする。
 本発明はかかる目的を達成するため、回転軸方向に開口する吸気口と該吸気口につながる吸気通路とを有するハウジングと、前記ハウジングの内部に、前記回転軸を中心に回転可能に配置され、前記吸気口から流入する吸気ガスを圧縮するインペラーホイールと、を備えた遠心圧縮機であって、前記吸気通路の内周壁側部分若しくは中心側部分のいずれかに吸気流に対する抵抗体を設け、低流量時において前記抵抗体によって前記吸気通路の断面積を絞ることで前記インペラーホイールの翼への流入速度を上昇させるとともに、前記吸気通路の内周壁側部分に設けた内周抵抗体によって吸気を翼のハブ側に偏らせ、前記中心側部分に設けた中心抵抗体によって吸気を翼のシュラウド側に偏らせて流すことを特徴とする。
 かかる発明によれば、吸気通路の内部に吸気流に対して抵抗体が設けられるため、抵抗体がない場合に比べて、吸気通路の断面積が絞られることによってインペラーホイールの翼前縁への流入速度が上昇される。
 高流量時においては、抵抗体の影響による流れの偏りは低流量時に比べて少なく翼前縁の翼高さ方向にハブ側からシュラウド側先端までの全域に渡って流入するが、流量の低下に従って、低流量時においては、前記抵抗体によって前記インペラーホイールの翼への流入速度が上昇されるとともに、前記吸気通路の内周壁側部分に設けた内周抵抗体によって、吸気を翼のハブ側に偏らせ、または前記中心側部分に設けた中心抵抗体によって、吸気を翼のシュラウド側に偏らせることができる。
 これによって、低流量時、すなわち、サージング現象が生じるような低流量領域においては、翼への空気流入速度が上昇し、インペラーホイールの失速を抑制して、サージング限界流量を低減することができる。
 また、内周抵抗体によって、吸気流を翼のハブ側に偏って流入させ、また、中心抵抗体によって、吸気流を翼のシュラウド側に偏って流入させることで、小型の羽根を使用している状態と同様の使用状態となり、低流量であっても性能(圧力比)低下を抑えることができる。
 また、本発明において好ましくは、前記内周抵抗体は環形状からなり、該内周抵抗体の内周端に吸気通路の軸方向に延びる円筒形状若しくは流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状からなるガイド部が設けられとよい。
 このように、ガイド部材が、吸気通路の軸方向に延びる円筒形状若しくは流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状からなるため、吸気通路の中心部分を流れる吸気流の方向性が安定し、低流量時における翼の前縁のハブ側への流れを確実に形成できる。また、このように入口部が広がり、流出部を狭めることで、翼への流入速度の上昇効果も期待できる
 また、本発明において好ましくは、前記内周抵抗体は前記翼の前縁高さの約50%以上の高さの部分に設置されるとよい。
 このように、翼の前縁高さの約50%以上の領域に、内周抵抗体が設置される。50%以下の領域まで、内周抵抗体が内径側に突出して存在すると、高流量時において流路抵抗の増大によって、必要流量が確保されない恐れがあるため、このような性能悪化を防止している。
 また、本発明において好ましくは、前記中心抵抗体は円板形状からなり、該中心抵抗体の円板の外周を覆って吸気通路の軸方向に延びる円筒形状若しくは流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状からなるガイド部が設けられるとよい。
 このように、ガイド部の内側に中心抵抗体を設け、その外側にガイド部を設けるので、吸気通路の内周壁寄りを流れる吸気流の方向性が安定し、低流量時における翼の前縁のシュラウド側への流れを確実に形成できる。
 また、本発明において好ましくは、前記中心抵抗体は前記翼の前縁高さの約50%以下に設置されるとよい。
 このように、翼の前縁高さの約50%以下の領域に、中心抵抗体が設置される。中心抵抗体が前縁高さの50%を超える領域まで存在すると、高流量時において流路抵抗の増大によって、必要流量が確保されない恐れがあるため、このような性能悪化を防止している。
 また、本発明において好ましくは、前記円板形状の中心抵抗体は、吸気通路の径方向を回動中心軸として、吸気流に沿う全開と吸気流を遮る全閉との間を回動する開閉可能な弁体からなるとよい。
 このように、中心抵抗体を、吸気通路の径方向を回動中心軸として、吸気流に沿う全開と吸気流を遮る全閉との間を回動する開閉可能な弁体によって構成するため、吸気流量の状態に応じて、低流量状態の時にはサージングを防止するために、弁体を閉じて流入速度を高めるように制御して、翼のシュラウド側への偏りを強め、また、高流量時には弁体を開いて流量を確保するように制御できる。
 具体的には、前記弁体は、所定以上の吸気流量のときに全開状態とし、流量の低下に従って、弁体を閉じるように制御されるとよい。
 このように、流量が低下するに従って、弁体を閉めることで流れが、シュラウド側に流入して流速が上昇するようになり、弁体が開いた状態に比べて、翼の空気の流入速度が上昇し、タービンホイールの失速を抑制し、サージング限界流量を低減できる。
 また、本発明において好ましくは、前記弁体が、スリット形状、もしくはメッシュ形状の部材からなる抵抗体によって構成されるとよい。
 このように、弁体が、スリット形状、もしくはメッシュ形状の部材からなる抵抗体によって構成されるため、弁体が全閉時に、ハブ側にも流れが生じるため、弁体下流での流れの剥離領域が低減されて、性能が向上する。
 また、本発明において好ましくは、前記内周抵抗体および前記中心抵抗体は、多孔板、スリット形状、もしくはメッシュ形状部材によって構成されるとよい。
 弁体のように開閉作動することで、絞りの範囲を調整しなくても、一定の空気透過率(絞り率)を有する多孔板若しくは網状板とすることで、弁開閉機構を用いることなく簡単な構造で、高流量時の流量確保と低流量時のサージングの発生を防止できる。
 また、本発明において好ましくは、前記内周抵抗体は、前記吸気通路の内周壁の内径側に凸状の環状突起部材によって形成され、該環状突起部材の凸状部分を、流入吸気量が低流量時に吸気通路の内径側に突出する可動手段を備えているとよい。
 このように、内周抵抗体を吸気通路の内周壁の内径側に凸状の環状突起部材によって形成し、該環状突起部材の凸状部分を、流入吸気量が低流量時に吸気通路の内径側に突出する可動手段を備えているため、流量が低下するに従って、凸状部分がシュラウド側に形成され、その影響で流れがハブ側に流入するようになり、凸状部分がない場合に比べて、翼への流入速度が上昇し、翼の失速を抑制し、サージング限界流量を低減できる。
 本発明によれば、遠心圧縮機の回転羽根と吸気口との間を連通する吸気通路の通路断面を径方向に絞る、抵抗体を設けて、低流量時におけるサージング限界流量を低減することができる。
本発明の第1実施形態にかかる遠心圧縮機の回転軸方向の要部断面図である。 第1実施形態における羽根入口部の流速分布を示す説明図であり、(A)は大流量時、(B)は小流量時を示す。 ガイド部の他の例を示す断面図である。 第1実施形態の内周抵抗体の説明図であり、図1のA-A断面図である。 内周抵抗体の変形例を示す説明図である。 本発明の第2実施形態にかかる遠心圧縮機の回転軸方向の要部断面図である。 第2実施形態における羽根入口部の流速分布を示す説明図であり、(A)は大流量時、(B)は小流量時を示す。 第2実施形態の中心抵抗体の説明図であり、図5のB-B断面図である。 中心抵抗体の変形例を示す説明図である。 本発明の第3実施形態を示す遠心圧縮機の回転軸方向の要部断面図である。 本発明の第4実施形態を示す遠心圧縮機の回転軸方向の要部断面図である。 本発明の第5実施形態を示す遠心圧縮機の回転軸方向の要部断面図である。 第4実施形態の詳細説明図である。 第4実施形態の変形例を示す説明図である。 第4実施形態の変形例を示す説明図である。
 以下、本発明に係る実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。 
 図1は、内燃機関の排気ターボ過給機1に用いられるコンプレッサ(遠心圧縮機)3の回転軸線K方向の要部断面図を示し、主に上半分部分を示している。
 該排気ターボ過給機1は、図示されない内燃機関の排ガスによって駆動されるタービンロータの回転力が、回転軸5を介してインペラーホイール7に伝達されるようになっている。
 遠心圧縮機3は、回転軸5の回転軸線Kを中心として回転可能にインペラーホイール7がコンプレッサハウジング9内に支持されている。圧縮される前の吸気ガス、例えば空気をインペラーホイール7に導く吸気通路11が回転軸線K方向に、且つ回転軸線Kと同心軸状に円筒形状に延びている。そして、該吸気通路11につながる吸気口13が吸気通路11の端部に開口している。吸気口13は空気を導入しやすいように端部に向かってテーパー状に拡径している。
 インペラーホイール7の外側には回転軸線Kと直角方向に延びるディフューザ15が形成され、該ディフューザ15の外周には図示されない渦巻状の空気通路が設けられている。この渦巻状の空気通路は、コンプレッサハウジング9の外周部分を形成している。
 なお、インペラーホイール7は、回転軸線Kを中心に回転駆動されるハブ部17と、該ハブ部17の外周面に設けられた複数枚の羽根(翼)19とを有している。そして、ハブ部17は回転軸5に取り付けられて、複数枚の羽根19がハブ部17とともに回転駆動されるようになっている。
 羽根19は、回転駆動されることによって、吸気口13から吸込み、吸気通路11を通った空気を圧縮するものであり、形状については特に限定するものではない。羽根19には、上流側の縁部である前縁19aと、下流側の縁部である後縁19bと、径方向外側の縁部である外周縁(外周部)19cが設けられている。この外周縁19cは、コンプレッサハウジング9のシュラウド部21によって覆われた側縁の部分をいう。そして、外周縁19cは、シュラウド部21の内表面の近傍を通過するように配置される。
 コンプレッサ3のインペラーホイール7は、図示しないタービンロータの回転駆動力によって回転される回転軸5によって回転駆動される。そして、吸気口13から外部の空気が、回転軸線K方向に引き込まれて、インペラーホイール7の複数枚の羽根19間を流れて、主に動圧が上昇された後に、径方向外側に配置されたディフューザ15に流入して、動圧の一部が静圧に変換されて圧力が高められて外周側に形成された渦巻状の空気通路を通って排出される。そして、内燃機関の吸気として供給される。
 (第1実施形態)
 図1~図4Bを参照して、第1実施形態を説明する。
 第1実施形態は、吸気通路11の内周壁23に、吸気流に対する抵抗体を構成する内周抵抗体25が設けられるものである。
 内周抵抗体25は、吸気通路11の吸気口13と羽根19との間の内周壁23に設けられ、環状の板部材27によって形成されている。この板部材27の外周端部が、吸気通路11の内周壁23に取り付けられおり、内周端部には吸気通路11の軸方向に延びる円筒形状のガイド部29が取り付けられている。
 ガイド部29の中心線は回転軸線Kと一致して、吸気通路11の中心部分にガイド部が形成されていることによって、吸気通路11の中心部分を流れる吸気流の方向性が安定し、低流量時における羽根19の前縁のハブ側への流れを確実に形成できる。
 なお、ガイド部29の円筒形状に代えて、図3に示すように、流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状のベルマウスガイド部31としてもよい。このように入口部が広がり、流出部を狭めることで、羽根19の入口への流入速度の上昇効果も期待できる。
 板部材27は、具体的には、図4A、図4Bに示すように、流れを完全に遮蔽する板部材ではなく、所定の開口率例えば略半分(40~60%)、または、圧力損失系数では略0.4以下になるように設定された多孔板、または格子(スリット)状、メッシュ状に形成されているのが望ましい。
 また、板形状ではなく円環形状をしたスポンジ状の一体構造物でもよく、吸気流に対して抵抗体として機能する部材であればよい。
 開口比率が前記所定の値より小さい場合や、圧力損失係数が前記の略0.4より大きい場合には、大流量時の吸気流量を確保できなくなり、コンプレッサ3としての性能を悪化させ、また逆に、開口比率が大きすぎる場合や圧力損失係数が小さすぎると抵抗体としての機能が得られない。
 さらに、図1に示すように環状の板部材27の径方向高さhは、羽根19の前縁翼高さHの約50%以上の高さの部分に設置されている。すなわち、吸気通路11の内周壁23側に設けられている。この高さhについても、このように、羽根19の前縁高さの約50%未満の領域まで、内周抵抗体25が内径側に突出して存在すると、高流量時において流路抵抗の増大を招き、必要流量が確保されない恐れがあるため、このような性能悪化を防止している。
 次に、この板部材27の設置による羽根19への流入空気の流速分布について図2(A)、(B)を参照して説明する。
 図2(A)は、大流量時を示し、このときには、インペラーホイール7の入口では、翼高さ方向にハブ側からシュラウド側先端間で流れが流入する。流量が低下するに従い、図2(B)に示すように、シュラウド側の抵抗体である板部材27の影響で流れがハブ側に偏って流入するようになり、抵抗体がない場合に比べてインペラーホイール7への空気の流入速度が上昇し、インペラーホイール7の失速を抑制して、サージング限界流量を低減できる。
 また、低流量時には、吸気流をハブ側に流入するように偏流させることによって、羽根の先端部分、すなわちシュラウド側には流れず、小型の羽根を使用している状態と同様の使用状態となり、コンプレッサの性能低下を伴わずに低流量へ対応させることができる。
 以上のように、第1実施形態によれば、高流量時においては、内周抵抗体25が存在しても、吸気流れの偏りは低流量時に比べて少なく羽根19の前縁の翼高さ方向にハブ側からシュラウド側先端までの全域に渡って流入するが、流量の低下に従って、内周抵抗体25によって、吸気を羽根19のハブ側に偏らせるとともに、吸気通路11の断面積が絞られることで流速が高められて、性能低下を伴わずにサージング限界流量を低減することができる。
 (第2実施形態)
 次に、図5~図7Bを参照して、第2実施形態を説明する。
 第2実施形態は、吸気通路11の中心部分に設けられて、吸気流に対する抵抗体を構成する中心抵抗体41が設けられるものである。
 中心抵抗体41は、吸気通路11の吸気口13と羽根19との間に、回転軸線Kを中心としてその周りに設けられ、円板形状の板部材43によって構成されている。
 この板部材43の外周を覆うように吸気通路11の軸方向に延びる円筒形状のガイド部45が取り付けられている。ガイド部45の外周部は、周方向に4箇所設けられた支柱47よって吸気通路11の内周壁23に取り付けられている。
このように、ガイド部45の内側に中心抵抗体41を設け、ガイド部45により、吸気通路11の中心部分を流れる吸気流の方向性を安定化できる。また、ガイド部45を設けることで、吸気通路11の内周壁寄りを流れる吸気流の方向性が安定し、低流量時における羽根19の前縁19aのシュラウド側への流れを確実に形成できる。
 なお、ガイド部45の円筒形状に代えて、第1実施形態(図3)に示すように、流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状のベルマウスガイド部31としてもよい。このように入口部が広がり、流出部を狭めることで、羽根19の入口への流入速度が高められる効果も期待できる。
 板部材43は、第1実施形態で説明したのと同様に、図7A、図7Bに示すように、流れを完全に遮蔽する板部材ではなく、所定の開口率例えば略半分(40~60%)ぐらいに、または、圧力損失系数では略0.4以下になるように設定された多孔板、または格子(スリット)状、メッシュ形状に形成されているのが望ましい。また、板形状ではなくスポンジ状のものでもよく、吸気流に対して抵抗体として機能すればよい。
 この、開口比率や圧力損失係数の大きさは、第1実施形態と同様にコンプレッサ3の性能の悪化との関係で設定される。
 また、図5に示すように板部材43の径方向高さhは、羽根19の前縁翼高さHに対して、約50%以下に設置されている。すなわち、吸気通路11の中心部分に設けられている。この高さhについて、羽根19の前縁高さの約50%を超える領域まで存在すると、高流量時において流路抵抗の増大によって、必要流量が確保されない恐れがあるため、このような性能悪化を防止している。
 次に、この板部材43の設置による羽根19への流入空気の流速分布について図6(A)、(B)を参照して説明する。
 図6(A)は、大流量時を示し、このときには、インペラーホイール7の入口では、翼高さ方向にハブ側からシュラウド側先端間で流れが流入する。流量が低下するに従い、図6(B)に示すように、ハブ側の抵抗体である板部材43の影響で流れがシュラウド側に流入するようになり、抵抗体がない場合に比べてインペラーホイール7への空気の流入速度が上昇し、インペラーホイール7の失速を抑制して、サージング限界流量を低減できる。
 以上のように、第2実施形態によれば、高流量時においては、中心抵抗体41が存在しても、吸気流れの偏りは低流量時に比べて少なく羽根19の前縁の翼高さ方向にハブ側からシュラウド側先端までの全域に渡って流入するが、流量の低下に従って、中心抵抗体41によって、吸気を羽根19のシュラウド側に偏らせるとともに、吸気通路11の断面積が絞られることで流速が高められて、サージング限界流量を低減することができる。
 (第3実施形態)
 次に、図8を参照して第3実施形態について説明する。
 第3実施形態は、第2実施形態の板部材43を回転可能な弁体51としたものである。
 図8のように、円板形状の中心抵抗体53は、吸気通路11の径方向を回動中心軸として、吸気流に沿う全開と吸気流を遮る全閉との間を回動する開閉可能な弁体51から構成されている。
 弁体51の回動中心軸には弁体回動軸55が連結し、該弁体回動軸55はガイド部45を貫通し、さらに一本の支柱47だけ内部貫通構造として、その内部を貫通し、または一本の支柱47に代えてその箇所に設けられ、コンプレッサハウジング9の外側に突出するように該コンプレッサハウジング9を貫通している。
 そして、コンプレッサハウジング9を貫通して外側に突出した端部を、図示しない駆動機構によって回動するようになっている。
 この弁体51の開閉作動は、コンプレッサ3のインペラーホイール7の回転速度に基づいて、所定の低回転領域すなわち、サージングが生じる限界低流量領域に低下した場合に、全閉状態となるように制御装置によって制御されるようになっている。
 また、高回転領域においては、流量を確保するために全開状態に制御される。その他の中間領域においては、流量の低下つまりインペラーホイール7の回転速度の低下に従って、弁体51を閉じるように制御される。
 なお、弁体51を構成する板部材54は、第2実施形態のように、多孔体やスリット状のような抵抗体であっても、完全に円板状の板部材から構成されていてもよい。
 円板状の場合には、弁体51の開度調整がされるため、高流量時に全開されるため流量の確保の点からは問題は生じない。また、弁体51が、スリット形状、もしくはメッシュ形状の部材からなる抵抗体によって構成される場合には、弁体51が全閉時には、ハブ側にも流れが生じるため、弁体51の下流での流れの剥離領域が低減されて性能が向上する。
 以上のように第3実施形態によれば、開閉可能な弁体51を備え、その外周側に円筒形状のガイド部45、若しくは、ベルマウス形状のガイド部45を有し、流量が低下するに従って弁体51を閉じて、流れがシュラウド側に流入するようになり、弁体51が開いた状態に比べて、インペラーホイール7への空気流入速度が上昇し、インペラーホイール7の失速を抑制して、サージング限界流量を低減できる。
 (第4実施形態)
 次に、図9A~図12を参照して第4実施形態について説明する。
 第4実施形態は、吸気通路11の内周壁23の内径側に凸状に突出する環状突起部材61が設けられている。
 この環状突起部材61によって抵抗体が形成され、該環状突起部材61の凸状部分63を、流入吸気量に応じて吸気通路11の内径側に突出する量を調整する可動手段64、66、68を備えている。
 図9Aに概要を示し、その詳細を図10、11に示す。
 図9Aに示すように、吸気通路11の内周壁23の内径側に凸状に形成された環状突起部材61は、弾性体(ゴム部材、若しくは樹脂材)によって形成されて、外周側から押圧力Fを内径側に作用させることで、凸状の突起量を可変制御する。
 可動手段64は、図10のように、コンプレッサハウジング9側に環状のスリット65を形成し、その外側に弾性体のゴム部材67を周方向に配置し、該ゴム部材67の外側に圧力室69を形成するように、ゴム部材67の外周側に形成する圧力室ハウジング71をボルト73、73によって取付ける。圧力室69には、圧力供給管87を介して圧力空気等の圧力液体が供給される。圧力室69に供給される圧力液体量に応じて環状突起部材61の凸状部分63の突出量が制御される。
 また、可動手段66は、図11のように、コンプレッサハウジング9側に環状のスリット65を形成し、その外側に弾性体のゴム部材67を周方向に配置してボルト77によって周方向に取り付ける。
 ゴム部材67の外側に締付けバンド79が、周方向に巻かれており、該締付けバンド79を締め付ける締め付け力を可変制御することで、凸状部分63の突出量が制御される。
 さらに、他の可動手段68の例として図9Bに概要を示し、その詳細を図12に示す。
図9Bに示すように、吸気通路11の内周壁23に凸状に形成された環状突起部材81は、弾性体(ゴム部材、若しくは樹脂材)によって形成されて、該凸状の突起量が可変制御される。
 図12のように、コンプレッサハウジング9側に環状のスリット65を形成し、その外側に弾性体のゴム部材84を周方向に配置し、該ゴム部材84の回転軸線K方向の片側には、回転軸線K方向に摺動可能なスライド部85が設けられ、該スライド部85を図示しないアクチュエータで摺動することで、吸気通路11の内側に凸状部分83が突出して環状突起部材81を形成する構造になっている。
 そして、この凸状の突起量はスライド部85のスライド量Sに応じて制御される。
 以上のように、第4実施形態によれば、吸気通路11の内周壁の内径側に突出する凸状の環状突起部材61、81によって抵抗体が形成され、該環状突起部材61、81の凸状部分63、83の吸気通路11の内径側への突出量を調整する可動手段64、66、68を備えることによって、運転状態に応じた突出量に制御できる。このため、高流量時においては、突出させずに流量を確保し、さらに低流量域では、突出させてサージングを防止できる。
 なお、流量が少ない時には、羽根19へ流入する空気が、羽根19の前縁19aから逆流が生じて吸気流と混合する傾向が見られるため、第4実施形態のように、吸気通路11の内周壁に内径側に凸状の環状突起部材61、81によって、羽根19の前縁からの戻り流れを、せき止める作用が発揮されて、戻り流れによる不安定な運転を防止できる作用も有している。
 従って、第4実施形態のように凸状の突出量を運転状態に応じて制御せずに、単に吸気通路11の内周壁23に内径側に凸状の環状突起部材61、81による抵抗体を設けるだけの構造でも、前記逆流の防止効果と、前記第1実施形態で説明した流速の上昇効果によってコンプレッサの性能向上とともにサージング限界流量低減効果が得られる。
 本発明によれば、遠心圧縮機の回転羽根と吸気口との間を連通する吸気通路の通路断面を径方向に絞る、抵抗体を設けて、低流量時におけるサージング限界流量を低減することができるので、内燃機関の排気ターボ過給機への適用技術として有用である。
 1    ターボ過給機
 3    コンプレッサ(遠心圧縮機)
 5    回転軸
 7    インペラーホイール
 9    コンプレッサハウジング(ハウジング)
 11    吸気通路
 13    吸気口
 17    ハブ
 19    羽根(翼)
 23    内周壁
 25    内周抵抗体(抵抗体)
 27、43 板部材(抵抗体)
 29、45 ガイド部
 31    ベルマウスガイド部
 41    中心抵抗体(抵抗体)
 47    支柱
 51    弁体
 61、81 環状突起部材
 64、66、68 可動手段
 67、84 ゴム部材

Claims (10)

  1.  回転軸方向に開口する吸気口と該吸気口につながる吸気通路とを有するハウジングと、前記ハウジングの内部に、前記回転軸を中心に回転可能に配置され、前記吸気口から流入する吸気ガスを圧縮するインペラーホイールと、を備えた遠心圧縮機であって、
     前記吸気通路の内周壁側部分若しくは中心側部分のいずれかに吸気流に対する抵抗体を設け、低流量時において前記抵抗体によって前記吸気通路の断面積を絞ることで前記インペラーホイールの翼への流入速度を上昇させるとともに、前記吸気通路の内周壁側部分に設けた内周抵抗体によって吸気を翼のハブ側に偏らせ、前記中心側部分に設けた中心抵抗体によって吸気を翼のシュラウド側に偏らせて流すことを特徴とする遠心圧縮機。
  2.  前記内周抵抗体は環形状からなり、該内周抵抗体の内周端に吸気通路の軸方向に延びる円筒形状若しくは流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状からなるガイド部が設けられたことを特徴とする請求項1記載の遠心圧縮機。
  3.  前記内周抵抗体は前記翼の前縁高さの約50%以上の高さの部分に設置されることを特徴とする請求項1または2記載の遠心圧縮機。
  4.  前記中心抵抗体は円板形状からなり、該中心抵抗体の円板の外周を覆って吸気通路の軸方向に延びる円筒形状若しくは流入側の流路が広がり流出側の流路が狭められる中空円錐台形状、あるいはベルマウス形状からなるガイド部が設けられたことを特徴とする請求項1記載の遠心圧縮機。
  5.  前記中心抵抗体は前記翼の前縁高さの約50%以下に設置されることを特徴とする請求項1または4記載の遠心圧縮機。
  6.  前記円板形状の中心抵抗体は、吸気通路の径方向を回動中心軸として、吸気流に沿う全開と吸気流を遮る全閉との間を回動する開閉可能な弁体からなることを特徴とする請求項4記載の遠心圧縮機。
  7.  前記弁体は、所定以上の吸気流量のときに全開状態とし、流量の低下に従って、弁体を閉じるように制御されることを特徴とする請求項6記載の遠心圧縮機。
  8.  前記弁体が、多孔板、スリット形状、もしくはメッシュ形状の部材からなる抵抗体によって構成されることを特徴とする請求項6記載の遠心圧縮機。
  9.  前記内周抵抗体および前記中心抵抗体が、多孔板、スリット形状、もしくはメッシュ形状の部材によって構成されることを特徴とする請求項1記載の遠心圧縮機。
  10.  前記内周抵抗体は、前記吸気通路の内周壁の内径側に凸状の環状突起部材によって形成され、該環状突起部材の凸状部分を、流入吸気量が低流量時に吸気通路の内径側に突出する可動手段を備えていることを特徴とする請求項1記載の遠心圧縮機。
     
     
     
     
     
     
     
PCT/JP2013/054566 2013-02-22 2013-02-22 遠心圧縮機 WO2014128931A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13875801.6A EP2960526B1 (en) 2013-02-22 2013-02-22 Centrifugal compressor with intake resistive element
PCT/JP2013/054566 WO2014128931A1 (ja) 2013-02-22 2013-02-22 遠心圧縮機
CN201611175028.4A CN106968989A (zh) 2013-02-22 2013-02-22 离心压缩机
JP2015501196A JP6109291B2 (ja) 2013-02-22 2013-02-22 遠心圧縮機
US14/762,138 US10167877B2 (en) 2013-02-22 2013-02-22 Centrifugal compressor
CN201380070927.6A CN104968944B (zh) 2013-02-22 2013-02-22 离心压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054566 WO2014128931A1 (ja) 2013-02-22 2013-02-22 遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2014128931A1 true WO2014128931A1 (ja) 2014-08-28

Family

ID=51390756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054566 WO2014128931A1 (ja) 2013-02-22 2013-02-22 遠心圧縮機

Country Status (5)

Country Link
US (1) US10167877B2 (ja)
EP (1) EP2960526B1 (ja)
JP (1) JP6109291B2 (ja)
CN (2) CN106968989A (ja)
WO (1) WO2014128931A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209666A1 (de) * 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft Verdichter
JP2017015025A (ja) * 2015-07-02 2017-01-19 本田技研工業株式会社 コンプレッサ構造
JP2017015026A (ja) * 2015-07-02 2017-01-19 本田技研工業株式会社 コンプレッサ構造
EP3139045A1 (de) * 2015-09-03 2017-03-08 Volkswagen Aktiengesellschaft Verdichter, abgasturbolader und brennkraftmaschine
US20170342997A1 (en) * 2014-11-07 2017-11-30 Cummins Ltd. Compressor and turbocharger
WO2018147128A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
DE102018110557A1 (de) * 2018-05-03 2019-11-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verdichtereintritt mit verstellbarer Eintrittsgeometrie
JPWO2020188763A1 (ja) * 2019-03-19 2020-09-24
JP2020159281A (ja) * 2019-03-26 2020-10-01 三菱重工コンプレッサ株式会社 圧縮機
JPWO2020217847A1 (ja) * 2019-04-26 2020-10-29
US11199198B2 (en) 2018-08-23 2021-12-14 Ihi Corporation Centrifugal compressor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215778A1 (en) 2013-09-12 2016-07-28 Ebara Corporation Apparatus and method for alleviating and preventing cavitation surge of water supply conduit system
DE102013220087A1 (de) * 2013-10-02 2015-04-02 Continental Automotive Gmbh Verdichter mit variablem Verdichtereinlauf
JP6497183B2 (ja) * 2014-07-16 2019-04-10 トヨタ自動車株式会社 遠心圧縮機
US9932885B2 (en) * 2015-02-04 2018-04-03 Bullseye Power, LLC Tunable turbocharger compressor cover
JP6594019B2 (ja) * 2015-04-14 2019-10-23 三菱重工サーマルシステムズ株式会社 入口案内羽根及び遠心圧縮機
JP6551173B2 (ja) * 2015-11-09 2019-07-31 株式会社デンソー 遠心送風機
WO2018069975A1 (ja) * 2016-10-11 2018-04-19 マツダ株式会社 ターボ過給機付エンジンの吸気通路構造
US10502126B2 (en) 2017-03-10 2019-12-10 Garrett Transportation I Inc. Adjustable-trim centrifugal compressor for a turbocharger
KR101850783B1 (ko) * 2017-04-27 2018-04-20 (주)대주기계 공기압축기의 성능향상과 운전 안정성 개선을 위한 팁 분사장치
CN110799759B (zh) * 2017-06-28 2022-02-18 株式会社Ihi 离心压缩机
DE102017122098A1 (de) * 2017-09-25 2019-03-28 Ihi Charging Systems International Gmbh Luftführungsabschnitt für einen Abgasturbolader und Abgasturbolader
CN107882773A (zh) * 2017-10-27 2018-04-06 合肥工业大学 一种带有导气管的离心压气机及其使用的涡轮增压器
CN107795522A (zh) * 2017-11-30 2018-03-13 力坚泵业浙江有限公司 一种增强自吸的多级离心泵
CN107859628A (zh) * 2017-12-04 2018-03-30 力坚泵业浙江有限公司 一种加速自吸的多级离心泵
JP7005393B2 (ja) * 2018-03-09 2022-01-21 三菱重工業株式会社 ディフューザベーン及び遠心圧縮機
DE102018107580A1 (de) * 2018-03-29 2019-10-02 Ihi Charging Systems International Gmbh Luftführungsabschnitt für einen Abgasturbolader und Abgasturbolader
DE102018206432A1 (de) * 2018-04-25 2019-10-31 Volkswagen Aktiengesellschaft Verdichter, Abgasturbolader und Brennkraftmaschine
JP6939989B2 (ja) 2018-05-14 2021-09-22 株式会社Ihi 遠心圧縮機
CN112334667B (zh) 2018-08-07 2022-09-20 株式会社Ihi 离心压缩机及增压器
CN113574281B (zh) * 2019-03-19 2023-08-15 三菱重工发动机和增压器株式会社 离心压缩机以及涡轮增压器
CN111692131A (zh) * 2020-06-22 2020-09-22 北京稳力科技有限公司 压缩机及其进口导叶装置
CN115962153B (zh) * 2023-03-17 2023-06-23 潍柴动力股份有限公司 过渡段子午流道宽度变窄的压气机和发动机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143097U (ja) * 1986-03-06 1987-09-09
JP2003120594A (ja) * 2001-10-12 2003-04-23 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2004027931A (ja) 2002-06-25 2004-01-29 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2004044576A (ja) * 2002-07-13 2004-02-12 Aisin Seiki Co Ltd コンプレッサ
JP2004278386A (ja) * 2003-03-14 2004-10-07 Hitachi Industries Co Ltd ターボ形流体機械
JP2006063961A (ja) * 2004-08-30 2006-03-09 Nikkiso Co Ltd ターボポンプ
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2010065669A (ja) 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2010138765A (ja) * 2008-12-10 2010-06-24 Ihi Corp 遠心圧縮機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2204169A (en) * 1937-02-27 1940-06-11 Linde Eismasch Ag Turbine for the expansion of gas to produce refrigeration
DE961045C (de) * 1955-02-03 1957-03-28 Forschungsgesellschaft Der Wab Druckmittelbetaetigtes Membranabsperrventil
DE1116001B (de) * 1958-07-24 1961-10-26 Ver Armaturen Gmbh Druckmittelbetaetigtes Schlauchventil, insbesondere fuer Fernbetaetigung
CH390451A (de) 1962-01-25 1965-04-15 Sulzer Ag Vorrichtung zur Verschiebung der Pumpgrenze von Verdichtern
GB1006300A (en) * 1962-10-15 1965-09-29 English Electric Co Ltd Improvements in or relating to hydraulic pumps and reversible pump turbines
US3741677A (en) 1971-10-12 1973-06-26 Barodyne Inc Flow control apparatus for a centrifugal compressor
US3922108A (en) * 1974-03-18 1975-11-25 Wallace Murray Corp Pre-whirl turbo charger apparatus
JPS5181001A (ja) 1975-01-13 1976-07-15 Mitsubishi Heavy Ind Ltd Kosuikomiseinohonpuno myakudoboshisochi
JPS54119103A (en) 1978-03-08 1979-09-14 Hitachi Ltd Pump operating method and system
JPS55142998A (en) 1979-04-24 1980-11-07 Ebara Corp Pump with variable throttle body on its suction path
JPS60195997U (ja) * 1984-06-07 1985-12-27 三菱重工業株式会社 コ−ンボルテツクス防止装置
CN1070721A (zh) 1991-09-19 1993-04-07 库恩尔·科普和科什有限公司 压缩机工况区域稳定装置
AUPM289593A0 (en) * 1993-12-10 1994-01-06 Powell, Andrew Robert A catheter/cannula system
JP2005511989A (ja) * 2001-12-04 2005-04-28 ウイリアム エー.クック オーストラリア ピティワイ、リミティド. アクセスバルブ
JP2006112323A (ja) * 2004-10-14 2006-04-27 Toyota Motor Corp 可変容量コンプレッサ及び内燃機関
JP4431531B2 (ja) 2005-09-13 2010-03-17 日産ディーゼル工業株式会社 過給機の気流音低減装置
JP2009236035A (ja) 2008-03-27 2009-10-15 Ihi Corp 遠心圧縮機及び過給機
JP2010071140A (ja) 2008-09-17 2010-04-02 Toyota Motor Corp 可変容量ターボチャージャ
DE102010026176B4 (de) * 2010-07-06 2015-12-17 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung und Verfahren zur Kennfeldstabilisierung eines Verdichters
JP5857421B2 (ja) 2011-03-08 2016-02-10 株式会社Ihi ターボ圧縮機
US9850913B2 (en) * 2012-08-24 2017-12-26 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143097U (ja) * 1986-03-06 1987-09-09
JP2003120594A (ja) * 2001-10-12 2003-04-23 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2004027931A (ja) 2002-06-25 2004-01-29 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2004044576A (ja) * 2002-07-13 2004-02-12 Aisin Seiki Co Ltd コンプレッサ
JP2004278386A (ja) * 2003-03-14 2004-10-07 Hitachi Industries Co Ltd ターボ形流体機械
JP2006063961A (ja) * 2004-08-30 2006-03-09 Nikkiso Co Ltd ターボポンプ
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2010065669A (ja) 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2010138765A (ja) * 2008-12-10 2010-06-24 Ihi Corp 遠心圧縮機

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170342997A1 (en) * 2014-11-07 2017-11-30 Cummins Ltd. Compressor and turbocharger
US10655642B2 (en) 2015-05-27 2020-05-19 Volkswagen Aktiengesellschaft Compressor, exhaust gas turbocharger and internal combustion machine
DE102015209666A1 (de) * 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft Verdichter
WO2016188712A1 (de) 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft Verdichter, abgasturbolader und brennkraftmaschine
JP2017015026A (ja) * 2015-07-02 2017-01-19 本田技研工業株式会社 コンプレッサ構造
JP2017015025A (ja) * 2015-07-02 2017-01-19 本田技研工業株式会社 コンプレッサ構造
EP3139045A1 (de) * 2015-09-03 2017-03-08 Volkswagen Aktiengesellschaft Verdichter, abgasturbolader und brennkraftmaschine
JPWO2018147128A1 (ja) * 2017-02-08 2019-11-07 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
JP7082948B2 (ja) 2017-02-08 2022-06-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
WO2018146753A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
WO2018147128A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
US11168701B2 (en) 2017-02-08 2021-11-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
DE102018110557A1 (de) * 2018-05-03 2019-11-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verdichtereintritt mit verstellbarer Eintrittsgeometrie
US11199198B2 (en) 2018-08-23 2021-12-14 Ihi Corporation Centrifugal compressor
WO2020188763A1 (ja) * 2019-03-19 2020-09-24 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びターボチャージャ
JPWO2020188763A1 (ja) * 2019-03-19 2020-09-24
JP7353354B2 (ja) 2019-03-19 2023-09-29 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びターボチャージャ
JP7461715B2 (ja) 2019-03-26 2024-04-04 三菱重工コンプレッサ株式会社 圧縮機
JP2020159281A (ja) * 2019-03-26 2020-10-01 三菱重工コンプレッサ株式会社 圧縮機
JPWO2020217847A1 (ja) * 2019-04-26 2020-10-29

Also Published As

Publication number Publication date
US20150354591A1 (en) 2015-12-10
EP2960526A4 (en) 2016-07-27
JPWO2014128931A1 (ja) 2017-02-02
EP2960526A1 (en) 2015-12-30
EP2960526B1 (en) 2017-11-08
CN104968944B (zh) 2019-08-23
US10167877B2 (en) 2019-01-01
JP6109291B2 (ja) 2017-04-05
CN104968944A (zh) 2015-10-07
CN106968989A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
JP6109291B2 (ja) 遠心圧縮機
JP6321114B2 (ja) 遠心圧縮機
CN105626239B (zh) 具有带气门罩盖的可调节trim离心压缩机以及具有其的涡轮增压机
JP4909405B2 (ja) 遠心圧縮機
EP3018355B1 (en) Adjustable-trim centrifugal compressor, and turbocharger having same
EP3054123B1 (en) Passive inlet-adjustment mechanism for compressor, and turbocharger having same
US9845723B2 (en) Adjustable-trim centrifugal compressor, and turbocharger having same
EP3480472B1 (en) Centrifugal compressor for a turbocharger, having pressure-balanced adjustable-trim mechanism
JPS5812479B2 (ja) ヨビセンカイタ−ボチヤ−ジヤソウチ
JP6128230B2 (ja) 遠心圧縮機及び過給機
JP2016500416A (ja) タービンの排気ガス案内部及びタービンの制御方法
GB2391265A (en) Compressor inlet with swirl vanes, inner sleeve and shut-off valve
EP3489521B1 (en) Inlet-adjustment mechanism for turbocharger compressor, having sealing means preventing recirculation and/or oil migration into the mechanism
JP2018035806A (ja) Vtg内部バイパス
US11808283B2 (en) Turbocharger having adjustable-trim centrifugal compressor including air inlet wall having cavities for suppression of noise and flow fluctuations
JP5148425B2 (ja) 遠心圧縮機
US20190078507A1 (en) Turbocharger
JP2015165096A (ja) 排気ターボ過給機
JP2017115753A (ja) ターボチャージャ
JP4407262B2 (ja) サージ抑制手段を備えた過給用コンプレッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501196

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013875801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013875801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14762138

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE