JP7005393B2 - ディフューザベーン及び遠心圧縮機 - Google Patents

ディフューザベーン及び遠心圧縮機 Download PDF

Info

Publication number
JP7005393B2
JP7005393B2 JP2018043595A JP2018043595A JP7005393B2 JP 7005393 B2 JP7005393 B2 JP 7005393B2 JP 2018043595 A JP2018043595 A JP 2018043595A JP 2018043595 A JP2018043595 A JP 2018043595A JP 7005393 B2 JP7005393 B2 JP 7005393B2
Authority
JP
Japan
Prior art keywords
shape
wing shape
side wing
shroud
hub side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018043595A
Other languages
English (en)
Other versions
JP2019157718A (ja
Inventor
亮祐 齋藤
穣 枡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018043595A priority Critical patent/JP7005393B2/ja
Priority to DE112019001228.2T priority patent/DE112019001228T5/de
Priority to CN201980006526.1A priority patent/CN111480008A/zh
Priority to PCT/JP2019/009341 priority patent/WO2019172422A1/ja
Priority to US16/961,489 priority patent/US11035380B2/en
Publication of JP2019157718A publication Critical patent/JP2019157718A/ja
Application granted granted Critical
Publication of JP7005393B2 publication Critical patent/JP7005393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/50Fluid-guiding means, e.g. diffusers adjustable for reversing fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、ディフューザベーン及び遠心圧縮機に関する。
特許文献1には、ディフューザベーンを有する遠心圧縮機が開示されている。ディフューザベーンは、インペラから圧送される流体を径方向外側に導くディフューザ流路内に設けられている。ディフューザベーンは、遠心圧縮機の軸線方向を翼高さ方向とした翼型をなしている。ディフューザベーンは、径方向外側に向かうに従ってインペラの回転方向前方側に向かって延びている。
ディフューザ流路の下流側には、流体の流れを径方向内側に転向させるように延びる戻り流路が形成されている。ディフューザベーンによって流体が減速されることで、戻り流路での損失が低減されるとともに、戻り流路に設けられたリターンベーンでの剥離が抑制される。
特許第5010722号公報
ところで、コストダウンの要請から遠心圧縮機の小径化が進むと、ディフューザ流路の出口での外径やリターンベーンの入口での外径がそれぞれ小さくなる。その結果、戻り流路での流速が増加する。これに対してディフューザベーンが設けられていれば、該ディフューザベーンによって流速を減少させることができる。これにより、戻り流路での損失、リターンベーンでの剥離を抑えて効率の向上を図ることができる。
しかしながら、ディフューザベーンで流体を減速させ過ぎると、特に小流量時にディフューザベーンで剥離が生じ易くなってしまう。その結果、遠心圧縮機における小流量側での作動範囲が小さくなってしまうという問題があった。
本発明はこのような事情に鑑みてなされたものであって、作動範囲の縮小を抑制することができるリターンベーン及び遠心圧縮機を提供することを目的とする。
本発明は、上記課題を解決するため、以下の手段を採用している。
即ち、本発明の第一態様に係るディフューザベーンは、軸線回りに回転するインペラによって軸線方向一方側から吸い込まれて径方向外側に圧送された流体が流通するディフューザ流路に、前記軸線の周方向に間隔をあけて複数設けられるディフューザベーンであって、前記軸線方向を翼高さ方向とし、該翼高さ方向に直交する断面形状が翼型をなすとともに、径方向内側の端部である前縁から径方向外側に向かうに従って前記インペラの回転方向前方側に向かって延びて、前記径方向外側の端部である後縁に至るベーン本体を有し、前記ベーン本体における前記軸線方向一方側であるシュラウド側の端面の翼型であるシュラウド側翼形状の転向角と、前記ベーン本体における前記軸線方向他方側であるハブ側の端面の翼型であるハブ側翼形状の転向角とが互いに異なるとともに、前記ベーン本体の翼型が前記シュラウド側翼形状と前記ハブ側形状との間で、前記シュラウド側翼形状から前記ハブ側翼形状に向かうにしたがって一方向に捩れるように連続的に遷移する。
このようなディフューザベーンによれば、ハブ側翼形状とシュラウド側翼形状との転向角が異なるため、いずれか一方の転向角が他方の転向角よりも小さくなる。転向角が小さくなることで流体を減速させながらも剥離の発生を抑制することができる。そのため、ディフューザ流路を流れる流体の速度分布に応じてハブ側翼形状とシュラウド側翼形状とを互いに異なるものとすることによって、ディフューザベーン全体としての剥離の発生を抑制することができる。
上記態様のディフューザベーンでは、前記ハブ側翼形状の転向角が、前記シュラウド側翼形状の転向角よりも小さいことが好ましい。
インペラの形状によっては、該インペラから圧送される流体はハブ側とシュラウド側とで流速分布が異なる場合がある。特にインペラから圧送される流体のハブ側の流速が小さい場合には、ディフューザベーンを翼高さ方向に一定の翼形状とすると、ハブ側での流速が減速され過ぎる結果、当該ハブ側の流れで剥離が生じてしまうことがある。
本態様では、ハブ側翼形状の転向角がシュラウド側翼形状の転向角より小さいため、ハブ側の流れの減速を緩めることができる。即ち、ハブ側の流れの過減速を抑制することができるため、当該流れの剥離を回避できる。そのため、特に流量が小さくなった場合であっても、ディフューザベーンの形成範囲内で剥離が生じることを抑制できる。
このディフューザベーンは、前記ハブ側翼形状のコード長が、前記シュラウド側翼形状のコード長よりも大きいことが好ましい。
これによって、単位流路長当たりの流体の転向度合を転向率と定義した場合に、シュラウド側の流体の転向率に比べてハブ側の流体の転向率が小さくなる。即ち、ハブ側ではより流体を緩やかに転向させることになるため、該ハブ側での流体の剥離を一層抑制することができる。
このディフューザベーンでは、前記ハブ側翼形状の前縁羽根角が、前記シュラウド側翼形状の前縁羽根角よりも小さくてもよい。
これにより、ハブ側翼形状の前縁羽根角は、シュラウド側翼形状の前縁羽根角よりも径方向から周方向に倒れた形状となる。これによって、流れをより緩やかに案内することになるため、ディフューザベーンのハブ側での剥離をより一層抑制することができる。
このディフューザベーンは、前記軸線方向から見た軸線方向視にて、前記ハブ側翼形状の前縁と前記シュラウド側翼形状の前縁とは、前記軸線を中心とする同一の第一仮想円上に位置しており、前記ハブ側翼形状の前縁は前記シュラウド側翼形状の前縁よりも前記インペラの回転方向後方側に位置しており、前記ハブ側翼形状の後縁と前記シュラウド側翼形状の後縁とは前記軸線を中心とする同一の第二仮想円上に位置しており、前記ハブ側翼形状の後縁は前記シュラウド側翼形状の後縁よりも前記インペラの回転方向前方側に位置している。
これによって、ベーン本体は、翼高さ方向に向かうにしたがって前縁と後縁との間の肉厚の部分を中心として捩じれた形状をなすことになる。そのため、翼高さ方向に捩じれる際に前縁付近や後縁付近で翼型が過度に反ることがないため、ベーン本体の構造・強度上、無理を強いることのない三次元翼形状を実現できる。
このディフューザベーンでは、前記ベーン本体は、前記シュラウド側の端面からから前記ハブ側に向かって前記シュラウド側翼形状を維持しながら延びる二次元翼型部と、該二次元翼型部のハブ側に接続されて、前記ハブ側端面まで前記軸線方向視で捩じれるように連続して延びることで前記ハブ側翼形状に遷移する三次元翼型部と、を有し、前記三次元翼型部は、前記ベーン本体の翼高さの50%以下の範囲にわたっていることが好ましい。
これにより、インペラから圧送される流体の流速が比較的大きいシュラウド側では、翼高さ方向に一定の転向角で流体を転向させつつ、ハブ側に近づくに連れて流体の流速が小さくなるハブ側の領域では、流体の流速に応じて転向角を小さくすることができる。よって、流れの流速に応じて適切な減速を付与することができる。
本発明の一態様に係る遠心圧縮機は、前記インペラと、該インペラを収容するケーシングであって、前記インペラの出口から径方向外側に向かって延びる前記ディフューザ流路、及び、該ディフューザ流路の径方向外側の端部に接続されて径方向内側に向かって転向するリターン流路を有するケーシングと、上記いずれかのディフューザベーンと、
を備える。
これによって、ディフューザ流路におけるハブ側又はシュラウド側での剥離を抑制することができる。
本発明のディフューザベーン及び遠心圧縮機によれば、作動範囲の縮小を抑制することができる。
第一実施形態に係る遠心圧縮機の縦断面図である。 第一実施形態に係る遠心圧縮機を一部拡大した縦端面図である。 第一実施形態に係る遠心圧縮機のディフューザベーンの第一の斜視図である。 第一実施形態に係る遠心圧縮機のディフューザベーンの第二の斜視図である。 第一実施形態に係る遠心圧縮機のディフューザベーンを軸線方向一方側から見た模式図である。 図5における前縁付近の拡大図である。 図5における後縁付近の拡大図である。 第一実施形態の作用効果を説明する模式図である。 第二実施形態に係るディフューザベーンを軸線方向一方側から見た模式図である。 第二実施形態の作用効果を説明する模式図である。
以下、本発明の第一実施形態に係る遠心圧縮機について図面を参照して説明する。
図1に示すように、遠心圧縮機100は、軸線回りに回転する回転軸1と、この回転軸1の周囲を覆うことで流路2を形成するケーシング3と、回転軸1に設けられた複数のインペラ4と、ケーシング3内に設けられたリターンベーン50及びディフューザベーン60と、を備えている。
ケーシング3は、軸線Oに沿って延びる円筒状をなしている。回転軸1は、このケーシング3の内部を軸線Oに沿って貫通するように延びている。軸線O方向におけるケーシング3の両端部には、それぞれジャーナル軸受5及びスラスト軸受6が設けられている。回転軸1は、これらジャーナル軸受5とスラスト軸受6とによって軸線O回りに回転可能に支持されている。
ケーシング3の軸線O方向一方側には、外部から作動流体Gとしての空気を取り入れるための吸気口7が設けられている。さらに、ケーシング3の軸線O方向他方側には、ケーシング3内部で圧縮された作動流体Gが排気される排気口8が設けられている。
ケーシング3の内側には、これら吸気口7と排気口8とを連通し、縮径と拡径を繰り返す内部空間が形成されている。この内部空間は、複数のインペラ4を収容するとともに、上記の流路2の一部をなしている。なお、以降の説明では、この流路2上における吸気口7が位置する側を上流側と呼び、排気口8が位置する側を下流側と呼ぶ。
回転軸1には、その外周面上で軸線O方向に間隔を空けて複数(6つ)のインペラ4が設けられている。各インペラ4は、図2に示すように、軸線O方向から見て略円形の断面を有するディスク41と、このディスク41の上流側の面に設けられた複数のブレード42と、これら複数のブレード42を上流側から覆うカバー43と、を有している。
ディスク41は、軸線Oと交差する方向から見て、該軸線O方向の一方側から他方側に向かうに従って、径方向の寸法が次第に拡大するように形成されることで、円錐状をなしている。
ブレード42は、上記のディスク41の軸線O方向における両面のうち、上流側を向く円錐面上で、軸線Oを中心として径方向外側に向かって放射状に複数配列されている。より詳しくは、これらブレードは、ディスク41の上流側の面から上流側に向かって立設された薄板によって形成されている。これら複数のブレード42は、軸線O方向から見た場合、周方向の一方側から他方側に向かうように湾曲している。
ブレード42の上流側の端縁には、カバー43が設けられている。言い換えると、上記複数のブレード42は、このカバー43とディスク41とによって軸線O方向から挟持されている。これにより、カバー43、ディスク41、及び互いに隣り合う一対のブレード42同士の間には空間が形成される。この空間は、後述する流路2の一部(圧縮流路22)をなしている。
流路2は、上記のように構成されたインペラ4と、ケーシング3の内部空間を連通する空間である。本実施形態では、1つのインペラ4ごと(1つの圧縮段ごと)に1つの流路2が形成されているものとして説明を行う。すなわち、遠心圧縮機100では、最後段のインペラ4を除く5つのインペラ4に対応して、上流側から下流側に向かって連続する5つの流路2が形成されている。
それぞれの流路2は、吸込流路21と、圧縮流路22と、ディフューザ流路23と、リターン流路30と、を有している。
1段目のインペラ4では、吸込流路21は上記の吸気口7と直接接続されている。この吸込流路21によって、外部の空気が流路2上の各流路に作動流体Gとして取り込まれる。より具体的には、この吸込流路21は、上流側から下流側に向かうにしたがって、軸線O方向から径方向外側に向かって次第に湾曲している。
2段目以降のインペラ4における吸込流路21は、前段の流路2における案内流路25の下流端と連通されている。すなわち、案内流路25を通過した作動流体Gは、上記と同様に、軸線Oに沿って下流側を向くように、その流れ方向が変更される。
圧縮流路22は、ディスク41の上流側の面、カバー43の下流側の面、及び周方向に隣り合う一対のブレード42によって囲まれた流路である。より詳しくは、この圧縮流路22は、径方向内側から外側に向かうに従って、その断面積が次第に減少している。これにより、インペラ4が回転している状態で圧縮流路22中を流通する作動流体Gは、徐々に圧縮されて高圧流体となる。
ディフューザ流路23は、軸線Oの径方向内側から外側に向かって延びる流路である。このディフューザ流路23における径方向内側の端部は、圧縮流路22の径方向外側の端部に連通されている。ケーシング3におけるディフューザ流路23を形成する軸線O方向一方側の壁面は、軸線Oに直交するように延びるシュラウド側壁面23aとされている。ケーシング3におけるディフューザ流路23を形成する軸線O方向他方側の壁面は、軸線Oに直交するように延びるハブ側壁面23bとされている。これらシュラウド側壁面23aとハブ側壁面23bとによって軸線O方向から挟まれるようにしてディフューザ流路23が形成されている。
リターン流路は、径方向外側に向かう作動流体Gを径方向内側に向かって転向させて、次段のインペラ4に流入させる流路である。リターン流路は、リターンベンド部24と案内流路25とから形成されている。
リターンベンド部24は、ディフューザ流路23を経て、径方向の内側から外側に向かって流通した作動流体Gの流れ方向を径方向内側に向かって反転させる。リターンベンド部24の一端側(上流側)は、上記ディフューザ流路23に連通され、他端側(下流側)は、案内流路25に連通されている。リターンベンド部24の中途において、径方向の最も外側に位置する部分は、頂部とされている。この頂部の近傍では、リターンベンド部24の内壁面は、3次元曲面をなすことで、作動流体Gの流動を妨げないようになっている。
案内流路25は、リターンベンド部24の下流側の端部から径方向内側に向かって延びている。案内流路25の径方向外側の端部は、上記のリターンベンド部24と連通されている。案内流路25の径方向内側の端部は、上述のように後段の流路2における吸込流路21に連通されている。
リターンベーン50は、リターン流路30における案内流路25に複数が設けられている。複数のリターンベーン50は、案内流路25中で、軸線Oを中心として放射状に配列されている。言い換えると、これらリターンベーン50は、軸線Oの周囲で周方向に間隔を空けて配列されている。リターンベーン50は、軸線方向の両端が、案内流路25を形成するケーシング3に接している。
次にディフューザベーン60について説明する。ディフューザベーン60(ベーン本体)はディフューザ流路23内に設けられている。ディフューザベーン60は、軸線Oの周方向に間隔をあけて複数が設けられている。ディフューザベーン60は、軸線O方向の両端がシュラウド側壁面23a及びハブ側壁面23bに固定されている。これによってディフューザベーン60は、ケーシング3に一体に設けられている。
ディフューザベーン60は、図3及び図4に示すように、軸線O方向(シュラウド側壁面23aとハブ側壁面23bとの対向方向)を翼高さ方向とした翼型をなしている。即ち、ディフューザベーン60は、軸線Oに直交する断面形状が軸線O方向全域にわたって翼型をなしている。
ディフューザベーン60は、径方向外側に向かうに従ってインペラ4の回転方向R前方側に向かって延びている。これによってディフューザベーン60は、軸線O方向から見た軸線O方向視で軸線Oの径方向に対して傾斜する姿勢で配置されている。
ディフューザベーン60の径方向内側の端部は、該ディフューザベーン60の翼型の前縁61とされている。ディフューザベーン60の径方向外側の端部は後縁62とされている。即ち、ディフューザベーン60は、前縁61から後縁62に向かうに従って、径方向外側かつインペラ4の回転方向R前方側に向かって延びている。
ディフューザベーン60における回転方向R後方側を向く面は、圧力面63とされている。ディフューザベーン60における回転方向R前方側を向く面は負圧面64とされている。これら圧力面63及び負圧面64によってディフューザベーン60の翼型が形成されている。圧力面63と負圧面64との径方向内側の端部での接続箇所がディフューザベーン60の前縁61であり、径方向外側の端部での接続箇所がディフューザベーン60の後縁62である。
圧力面63は、前縁61から後縁62に向かって連続する曲線又は直線によって形成されている。圧力面63は、インペラ4の回転方向R後方側に向かって凸となる凸曲面状をなしている。負圧面64は、前縁61から後縁62に向かって連続する曲線又は直線によって形成されている。負圧面64は、インペラ4の回転方向R前方側に向かって凸となる凸曲面状をなしている。なお、圧力面63及び負圧面64は、一部分又は全部が凹曲面状をなしていてもよい。圧力面63及び負圧面64は、それぞれ翼高さ方向に連続するように形成されている。
ディフューザベーン60は、図4に示すように、二次元翼型部60Aと三次元翼型部60Bとによって構成されている。二次元翼型部60Aは、ディフューザベーン60の翼高さ方向(図4の上下方向)におけるシュラウド側(軸線O方向一方側)の部分である。三次元翼型部60Bは、ディフューザベーン60の翼高さ方向におけるハブ側(軸線O方向他方側)の部分である。二次元翼型部60Aと三次元翼型部60Bとは、互いに連続するように接続されている。本実施形態では、三次元翼型部60Bは、ハブ側壁面23bから翼高さの50%以下の範囲にわたって形成されている。三次元翼型部60Bは、ハブ側壁面23bから翼高さ方向の10%以上の範囲にわたって形成されていることが好ましく、20%以上、さらには30%以上の範囲にわたって形成されていることがより好ましい。
二次元翼型部60Aは、同一形状の翼型をなしながら翼高さ方向に延びる部分である。ここで、二次元翼型部60Aにおける軸線O方向一方側の端面(ディフューザベーン60における軸線O方向一方側の端面)であるシュラウド側端面67の翼型をシュラウド側翼形状Sと定義する。二次元翼型部60Aは、シュラウド側翼形状Sを維持したまま翼高さ方向に延びている。
三次元翼型部60Bは、翼高さ方向に向かうに従って翼型が連続的に変化する部分である。ここで、三次元翼型部60Bにおける軸線O方向他方側の端面(ディフューザベーン60における軸線O方向他方側の端面)であるハブ側端面68の翼型をハブ側翼形状Hと定義する。三次元翼型部60Bは、ハブ側からシュラウド側に向かうに従ってハブ側翼形状Hが連続して変化するように延びて二次元翼型部60Aに接続されている。即ち、三次元翼型部60Bは、二次元翼型部60Aのハブ側に接続されており、該二次元翼型部60Aの翼型であるシュラウド側翼形状Sからハブ側に向かうに従って徐々にハブ側翼形状Hに連続して遷移するように形成されている。ハブ側翼形状Hはディフューザベーン60のハブ側端面68の形状である。
図5を用いてシュラウド側翼形状S及びハブ側翼形状Hについて説明する。図5では、シュラウド側翼形状Sを実線で示しており、ハブ側翼形状Hを破線で示している。
軸線O方向から見た軸線O方向視で、シュラウド側翼形状Sの前縁61sとハブ側翼形状Hの前縁61hとは、軸線Oを中心とした同一の第一仮想円C1上に位置している。ハブ側翼形状Hの前縁61hはシュラウド側翼形状Sの前縁61sよりもインペラ4の回転方向R後方側に位置している。
軸線O方向から見た軸線O方向視で、シュラウド側翼形状Sの後縁62sとハブ側翼形状Hの後縁62hとは、軸線Oを中心とした同一の第二仮想円C2上に位置している。第二仮想円C2の半径は第一仮想円C1よりも大きい。ハブ側翼形状Hの後縁62hはシュラウド側翼形状Sの後縁62sよりもインペラ4の回転方向R前方側に位置している。
シュラウド側翼形状Sの前縁61sとハブ側翼形状Hの前縁61hとの距離は、シュラウド側形状Sの後縁62sとハブ側翼形状Hの後縁62hとの距離と同一であることが好ましい。即ち、前縁61h,61s及び後縁62h,62bのそれぞれの周方向へのシフト量は、同一であることが好ましい。
ハブ側翼形状Hの前縁61hと後縁62hとの距離は、シュラウド側翼形状Sの前縁61sと後縁62sとの距離よりも大きい。即ち、ハブ側翼形状Hのコード長はシュラウド側翼形状Sのコード長よりも大きい。
また、シュラウド側翼形状Sからハブ側翼形状Hへの遷移は、翼型のコード長の中央付近を通る中心線回りに捩じれるようになされている。
ここで、図6に示すように、ハブ側翼形状Hの前縁羽根角αは、シュラウド側翼形状Sの前縁羽根角αよりも小さい。前縁羽根角とは、第一仮想円C1における前縁61s,61hが位置する点での接線L1と、翼型の中心線の前縁61s,61hでの接線P1とがなす鋭角である。
図7に示すように、ハブ側翼形状Hの後縁羽根角βは、シュラウド側翼形状Sの後縁羽根角βよりも小さい。後縁羽根角とは、第二仮想円C2における後縁62が位置する点での接線L2と、翼型の中心線の後縁62での接線P2とがなす鋭角である。
シュラウド側翼形状Sの転向角とハブ側翼形状Hの転向角とは互いに異なっている。本実施形態では、ハブ側翼形状Hの転向角は、シュラウド側翼形状Sの転向角よりも小さい。ハブ側翼形状Hの転向角は、シュラウド側翼形状Sの転向角は、シュラウド側翼形状Sの前縁羽根角と後縁羽根角との差分(α-β)で求められる。ハブ側翼形状Hの転向角は、ハブ側翼形状Hの前縁羽根角と後縁羽根角との差分(α-β)で求められる。
次に第一実施形態の作用効果について説明する。
上記構成のディフューザベーン60を備えた遠心圧縮機100によれば、ハブ側翼形状Hとシュラウド側翼形状Sとの転向角が異なるため、いずれか一方の転向角が他方の転向角よりも小さくなる。転向角が小さくなることで作動流体Gを減速させながらも剥離の発生を抑制することができる。そのため、ディフューザ流路23を流れる流体の速度分布に応じてハブ側翼形状Hとシュラウド側翼形状Sとを互いに異なるものとすることによって、ディフューザベーン60全体としての剥離の発生を抑制することができる。
ここで、遠心圧縮機100のインペラ4の形状によっては、該インペラ4から圧送される作動流体Gはハブ側とシュラウド側とで流速分布が異なる場合がある。例えばインペラ4から圧送される作動流体Gのハブ側の流速が相対的に小さく、シュラウド側の流速が相対的に大きい場合、ディフューザ流路23におけるディフューザベーン60の形成領域に導入される作動流体Gの流速は、シュラウド側からハブ側に向かうに従って作動流体Gの流速が小さくなる。
この場合、仮にディフューザベーン60を翼高さ方向に一律の翼形状の翼型とした場合、ハブ側での流速が減速され過ぎる結果、当該ハブ側の流れで剥離が生じてしまうことがある。即ち、シュラウド側とハブ側とで同様の比率で減速が進めば、シュラウド側に比べてハブ側での流速が先に小さくなり過ぎ、その結果、ハブ側壁面23bとの間の境界層を形成できなくなってしまう。
これに対して本実施形態では、ディフューザベーン60の翼型は、ハブ側翼形状Hの転向角がシュラウド側翼形状Sの転向角より小さく設定されている。転向角が小さい程、速度の減速率が小さい。したがって、ハブ側の作動流体Gの減速を緩めることができる。即ち、図8に示すように、ハブ側の作動流体Gの過減速を抑制することができるため、当該作動流体Gの流れの剥離を抑制できる。そのため、インペラ4から圧送される作動流体Gの流量が小さくなった場合であっても、ディフューザベーン60の形成範囲内で剥離が生じることを抑制できる。これにより、このディフューザベーン60を用いた遠心圧縮機100における作動範囲が特に小流量側で縮小してしまうことを抑制できる。
さらに本実施形態のディフューザベーン60では、ハブ側翼形状Hのコード長が、シュラウド側翼形状Sのコード長よりも大きい。これによって、単位流路長当たりの作動流体Gの転向度合を転向率と定義した場合に、シュラウド側の作動流体Gの転向率に比べてハブ側の流体の転向率が小さくなる。即ち、ハブ側ではより流体を緩やかに転向させることになるため、ハブ側での過減速をさらに抑え、該ハブ側での作動流体Gの剥離を一層抑制することができる。
また、本実施形態のディフューザベーン60では、ハブ側翼形状Hの前縁羽根角αが、シュラウド側翼形状Sの前縁羽根角αよりも小さい。これにより、ハブ側翼形状Hの前縁羽根角は、シュラウド側翼形状Sの前縁羽根角よりも径方向から周方向に倒れた形状、即ち、寝た形状となる。これによって、流れをより緩やかに案内することになるため、ディフューザベーン60のハブ側での剥離をより一層抑制することができる。
さらに、本実施形態ではディフューザベーン60は、翼高さ方向に向かうにしたがって前縁61と後縁62との間の肉厚の部分(コード長の中央付近)を中心として捩じれた形状をなすことになる。仮に、翼型の捩じれの中心を前縁61付近、後縁62付近とした場合、これら前縁61付近又は後縁62付近で極端に翼型を反らせる必要がある。これに対して本実施形態では、捩じれの中心と肉厚の部分としているため、翼型が過度に反ることがない。そのため、ディフューザベーン60の構造・強度上、無理を強いることのない三次元翼形状を実現できる。
また、本実施形態では、三次元翼型部60Bは、ディフューザベーン60のハブ側の領域における翼高さの50%以下の範囲にわたっている。これにより、インペラ4から圧送される作動流体Gの流速が比較的大きいシュラウド側では、翼高さ方向に一定の転向角で流体を転向させつつ、ハブ側に近づくに連れて作動流体Gの流速が小さくなるハブ側の領域では、流体の流速に応じて転向角を小さくすることができる。よって、作動流体Gの流速に応じて適切な減速を付与することができる。
次に第二実施形態のディフューザベーン160について図9及び図10を参照して説明する。第二実施形態のディフューザベーン160(ベーン本体)は、第一実施形態のディフューザベーン160に対して、シュラウド側翼形状Sとハブ側翼形状Hとが逆転した関係にある。
第二実施形態のディフューザベーン160では、第一実施形態において図4で示した三次元翼型部60Bがシュラウド側に位置しており、二次元翼型部60Aがハブ側に位置している。三次元翼型部60Bの翼高さ方向の範囲は、シュラウド側壁面23aを基準として翼高さの50%以下、10%以上、好ましくは30%以上の領域とされている。
また、図9に示すように、第二実施形態のディフューザベーン160では、第一仮想円C1上にあるシュラウド側翼形状Sの前縁161sとハブ側翼形状Hの前縁161hとでは、シュラウド側翼形状Sの前縁161sが回転方向R後方側に位置している。第二仮想円C2上にあるシュラウド側翼形状Sの後縁162sとハブ側翼形状Hとの後縁162hとでは、シュラウド側翼形状Sの後縁62sが回転方向R前方側に位置している。したがって、シュラウド側翼形状Sのコード長はハブ側翼形状Hのコード長よりも大きい。また、シュラウド側翼形状Sからハブ側翼形状Hへの遷移は、翼型のコード長の中央付近を通る中心線回りに捩じれるようになされている。
さらに、第二実施形態では、シュラウド側翼形状Sの前縁羽根角は、ハブ側翼形状Hの前縁羽根角よりも小さい。シュラウド側翼形状Sの後縁羽根角は、ハブ側翼形状Hの後縁羽根角よりも小さい。シュラウド側翼形状Sの転向角は、ハブ側翼形状Hの転向角よりも小さい。
ここで、ディフューザ流路23の下流側に、作動流体Gの流れを径方向内側に転向させるリターン流路30がある場合、ディフューザ流路23の出口、即ち、リターン流路30におけるリターンベンド部24の入口では、ハブ側の作動流体Gの流速に比べてシュラウド側の作動流体Gの流速が小さくなる場合がある。このような場合に、仮に図10(a)に示すように翼高さ方向に一律の翼形状のディフューザベーン260を用いれば、ディフューザベーン260にてシュラウド側での流速が減速され過ぎる結果、当該シュラウド側の流れで剥離が生じてしまうことがある。
これに対して第二実施形態のディフューザベーン160では、シュラウド側翼形状Sの転向角がハブ側翼形状Hの転向角より小さいため、シュラウド側の流れの減速を緩めることができる。即ち、シュラウド側の流れの過減速を抑制することができるため、図10(b)に示すように、ディフューザベーン160の出口付近でのシュラウド側における流れが極端に減速されてしまうことはない。その結果、ディフューザベーン160付近での剥離を回避できる。そのため、特にインペラ4から圧送される作動流体Gの流量が小さくなった場合であっても、ディフューザベーン160の形成範囲内で剥離が生じることを抑制できる。
また、第二実施形態のディフューザベーン160では、シュラウド側翼形状Sのコード長が、ハブ側翼形状Hのコード長よりも大きいため、ハブ側での転向率に比べてシュラウド側での転向率が小さくなる。即ち、シュラウド側ではより流体を緩やかに転向させることになるため、該シュラウド側での作動流体Gの剥離を一層抑制することができる。
さらに第二実施形態のディフューザベーン160では、シュラウド側翼形状Sの前縁羽根角がハブ側翼形状Hの前縁羽根角よりも小さいため、シュラウド側翼形状Sの前縁羽根角が、ハブ側翼形状Hの前縁羽根角よりも径方向から周方向に倒れるように寝た形状となる。これによって、流れをより緩やかに案内することになるため、ディフューザベーン160のシュラウド側での剥離をより一層抑制することができる。
以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
1 回転軸
2 流路
3 ケーシング
4 インペラ
5 ジャーナル軸受
6 スラスト軸受
7 吸気口
8 排気口
21 吸込流路
22 圧縮流路
23 ディフューザ流路
23a シュラウド側壁面
23b ハブ側壁面
24 リターンベンド部
25 案内流路
30 リターン流路
41 ディスク
42 ブレード
43 カバー
50 リターンベーン
60 ディフューザベーン
61 前縁
61h 前縁
61s 前縁
62 後縁
62h 後縁
62s 後縁
63 圧力面
64 負圧面
60A 二次元翼型部
60B 三次元翼型部
67 シュラウド側端面
68 ハブ側端面
100 遠心圧縮機
160 ディフューザベーン
161h 前縁
161s 前縁
162h 後縁
162s 後縁
260 ディフューザベーン
R 回転方向
G 作動流体
S シュラウド側翼形状
H ハブ側翼形状
C1 第一仮想円
L1 接線
P1 接線
C2 第二仮想円
L2 接線
P1 接線
α シュラウド側翼形状の前縁羽根角
α ハブ側翼形状の前縁羽根角
β シュラウド側翼形状の後縁羽根角
β ハブ側翼形状の後縁羽根角

Claims (7)

  1. 軸線回りに回転するインペラによって軸線方向一方側から吸い込まれて径方向外側に圧送された流体が流通するディフューザ流路に、前記軸線の周方向に間隔をあけて複数設けられるディフューザベーンであって、
    前記軸線方向を翼高さ方向とし、該翼高さ方向に直交する断面形状が翼型をなすとともに、径方向内側の端部である前縁から径方向外側に向かうに従って前記インペラの回転方向前方側に向かって延びて、前記径方向外側の端部である後縁に至るベーン本体を有し、
    前記ベーン本体における前記軸線方向一方側であるシュラウド側の端面の翼型であるシュラウド側翼形状の転向角と、前記ベーン本体における前記軸線方向他方側であるハブ側の端面の翼型であるハブ側翼形状の転向角とが互いに異なるとともに、前記ベーン本体の翼型が前記シュラウド側翼形状と前記ハブ側形状との間で、前記シュラウド側翼形状から前記ハブ側翼形状に向かうにしたがって一方向に捩れるように連続的に遷移するディフューザベーン。
  2. 前記ハブ側翼形状の転向角が、前記シュラウド側翼形状の転向角よりも小さい請求項1に記載のディフューザベーン。
  3. 前記ハブ側翼形状のコード長が、前記シュラウド側翼形状のコード長よりも大きい請求項2に記載のディフューザベーン。
  4. 前記ハブ側翼形状の前縁羽根角が、前記シュラウド側翼形状の前縁羽根角よりも小さい請求項2又は3に記載のディフューザベーン。
  5. 前記軸線方向から見た軸線方向視にて、
    前記ハブ側翼形状の前縁と前記シュラウド側翼形状の前縁とは、前記軸線を中心とする同一の第一仮想円上に位置しており、前記ハブ側翼形状の前縁は前記シュラウド側翼形状の前縁よりも前記インペラの回転方向後方側に位置しており、
    前記ハブ側翼形状の後縁と前記シュラウド側翼形状の後縁とは、前記軸線を中心とする同一の第二仮想円上に位置しており、前記ハブ側翼形状の後縁は前記シュラウド側翼形状の後縁よりも前記インペラの回転方向前方側に位置している請求項2から4のいずれか一項に記載のディフューザベーン。
  6. 前記ベーン本体は、
    前記シュラウド側の端面からから前記ハブ側に向かって前記シュラウド側翼形状を維持しながら延びる二次元翼型部と、
    該二次元翼型部のハブ側に接続されて、前記ハブ側端面まで翼型が変化するように連続して延びることで前記ハブ側翼形状に遷移する三次元翼型部と、
    を有し、
    前記三次元翼型部は、前記ベーン本体の翼高さの50%以下の範囲にわたっている請求項2から5のいずれか一項に記載のディフューザベーン。
  7. 前記インペラと、
    該インペラを収容するケーシングであって、前記インペラの出口から径方向外側に向かって延びる前記ディフューザ流路、及び、該ディフューザ流路の径方向外側の端部に接続されて径方向内側に向かって転向するリターン流路を有するケーシングと、
    請求項1からのいずれか一項に記載のディフューザベーンと、
    を備える遠心圧縮機。
JP2018043595A 2018-03-09 2018-03-09 ディフューザベーン及び遠心圧縮機 Active JP7005393B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018043595A JP7005393B2 (ja) 2018-03-09 2018-03-09 ディフューザベーン及び遠心圧縮機
DE112019001228.2T DE112019001228T5 (de) 2018-03-09 2019-03-08 Diffusorschaufel und Zentrifugalkompressor
CN201980006526.1A CN111480008A (zh) 2018-03-09 2019-03-08 扩压叶片及离心压缩机
PCT/JP2019/009341 WO2019172422A1 (ja) 2018-03-09 2019-03-08 ディフューザベーン及び遠心圧縮機
US16/961,489 US11035380B2 (en) 2018-03-09 2019-03-08 Diffuser vane and centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043595A JP7005393B2 (ja) 2018-03-09 2018-03-09 ディフューザベーン及び遠心圧縮機

Publications (2)

Publication Number Publication Date
JP2019157718A JP2019157718A (ja) 2019-09-19
JP7005393B2 true JP7005393B2 (ja) 2022-01-21

Family

ID=67846204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043595A Active JP7005393B2 (ja) 2018-03-09 2018-03-09 ディフューザベーン及び遠心圧縮機

Country Status (5)

Country Link
US (1) US11035380B2 (ja)
JP (1) JP7005393B2 (ja)
CN (1) CN111480008A (ja)
DE (1) DE112019001228T5 (ja)
WO (1) WO2019172422A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193683A1 (ja) * 2018-04-04 2019-10-10 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
JP7161419B2 (ja) * 2019-02-05 2022-10-26 三菱重工コンプレッサ株式会社 遠心回転機械の製造方法、及び遠心回転機械
IT201900006674A1 (it) * 2019-05-09 2020-11-09 Nuovo Pignone Tecnologie Srl Paletta statorica per un compressore centrifugo

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089460A (ja) 2009-10-22 2011-05-06 Hitachi Plant Technologies Ltd ターボ型流体機械
JP2012052432A (ja) 2010-08-31 2012-03-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機
JP2013519035A (ja) 2010-02-05 2013-05-23 キャメロン インターナショナル コーポレイション 遠心圧縮機のディフューザのベーンレット
JP2013531186A (ja) 2010-07-19 2013-08-01 キャメロン インターナショナル コーポレイション 取外し可能な羽根を用いたディフューザ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010722B1 (ja) 1971-02-12 1975-04-24
US3957392A (en) * 1974-11-01 1976-05-18 Caterpillar Tractor Co. Self-aligning vanes for a turbomachine
US3997281A (en) * 1975-01-22 1976-12-14 Atkinson Robert P Vaned diffuser and method
JPS5469811A (en) * 1977-11-14 1979-06-05 Hitachi Ltd Diffuser for centrifugal compressor
DE19502808C2 (de) * 1995-01-30 1997-02-27 Man B & W Diesel Ag Radialströmungsmaschine
WO1996028662A1 (fr) * 1995-03-13 1996-09-19 Hitachi, Ltd. Machine hydraulique centrifuge
EP0886070B1 (en) * 1996-03-06 2003-05-28 Hitachi, Ltd. Centrifugal compressor and diffuser for the centrifugal compressor
JP5314255B2 (ja) * 2007-06-06 2013-10-16 三菱重工業株式会社 回転流体機械のシール装置および回転流体機械
EP2020509B1 (en) * 2007-08-03 2014-10-15 Hitachi, Ltd. Centrifugal compressor, impeller and operating method of the same
US8632302B2 (en) * 2009-12-07 2014-01-21 Dresser-Rand Company Compressor performance adjustment system
JP5675121B2 (ja) * 2010-01-27 2015-02-25 三菱重工業株式会社 遠心圧縮機、および洗浄方法
JP5608062B2 (ja) * 2010-12-10 2014-10-15 株式会社日立製作所 遠心型ターボ機械
JP5680396B2 (ja) * 2010-12-13 2015-03-04 三菱重工業株式会社 遠心圧縮機の羽根車
JP6109291B2 (ja) * 2013-02-22 2017-04-05 三菱重工業株式会社 遠心圧縮機
JP6133801B2 (ja) * 2014-02-05 2017-05-24 三菱重工業株式会社 ダイアフラム、および遠心回転機械
US20190178259A1 (en) * 2017-12-12 2019-06-13 Honeywell International Inc. Variable return channel vanes to extend the operating flow range of a vapor cycle centrifugal compressor
US10851801B2 (en) * 2018-03-02 2020-12-01 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor system and diffuser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089460A (ja) 2009-10-22 2011-05-06 Hitachi Plant Technologies Ltd ターボ型流体機械
JP2013519035A (ja) 2010-02-05 2013-05-23 キャメロン インターナショナル コーポレイション 遠心圧縮機のディフューザのベーンレット
JP2013531186A (ja) 2010-07-19 2013-08-01 キャメロン インターナショナル コーポレイション 取外し可能な羽根を用いたディフューザ
JP2012052432A (ja) 2010-08-31 2012-03-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機

Also Published As

Publication number Publication date
CN111480008A (zh) 2020-07-31
US20200386241A1 (en) 2020-12-10
DE112019001228T5 (de) 2020-12-10
WO2019172422A1 (ja) 2019-09-12
JP2019157718A (ja) 2019-09-19
US11035380B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
US9163642B2 (en) Impeller and rotary machine
JP5611307B2 (ja) 遠心回転機械のインペラ、遠心回転機械
US4531890A (en) Centrifugal fan impeller
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
WO2015053051A1 (ja) インペラ及びこれを備える回転機械
JP7005393B2 (ja) ディフューザベーン及び遠心圧縮機
CN111577655B (zh) 叶片及使用其的轴流叶轮
WO2018181343A1 (ja) 遠心圧縮機
CN109312758A (zh) 叶轮以及轴流送风机
JP3949663B2 (ja) 遠心羽根車
JP2024086911A (ja) インペラ、及び遠心圧縮機
JP2016133105A (ja) 電動送風機
JP6763804B2 (ja) 遠心圧縮機
CN110939603A (zh) 叶片及使用其的轴流叶轮
JP6005256B2 (ja) 羽根車及びこれを用いた軸流送風機
US11572890B2 (en) Blade and axial flow impeller using same
JP7161419B2 (ja) 遠心回転機械の製造方法、及び遠心回転機械
JP2018141422A (ja) インペラ及び回転機械
JP6935312B2 (ja) 多段遠心圧縮機
JPH01247798A (ja) 高速遠心圧縮機
JP2021156223A (ja) インペラ、及び遠心圧縮機
JP3276011B2 (ja) 遠心ポンプの羽根車
JP6768172B1 (ja) 遠心圧縮機
US11236758B2 (en) Impeller and rotary machine
KR102558158B1 (ko) 부분개방 측판을 갖는 전곡깃 원심 임펠러

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350