WO2014128894A1 - 可変容量型排気ターボ過給機 - Google Patents
可変容量型排気ターボ過給機 Download PDFInfo
- Publication number
- WO2014128894A1 WO2014128894A1 PCT/JP2013/054402 JP2013054402W WO2014128894A1 WO 2014128894 A1 WO2014128894 A1 WO 2014128894A1 JP 2013054402 W JP2013054402 W JP 2013054402W WO 2014128894 A1 WO2014128894 A1 WO 2014128894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- wall
- exhaust turbocharger
- cooling medium
- annular
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/22—Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/141—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
- F01D17/143—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/16—Control of the pumps by bypassing charging air
- F02B37/168—Control of the pumps by bypassing charging air into the exhaust conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/005—Cooling of pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/002—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- This disclosure relates to a variable displacement exhaust turbocharger.
- the exhaust turbocharger is disposed at a nozzle portion between an annular exhaust scroll portion formed in the turbine housing and a turbine wheel rotatably disposed at the center of the turbine housing, and acts on the turbine wheel.
- Many variable capacity mechanisms that control the flow of exhaust gas are used.
- a swing vane type that controls the flow of exhaust gas by rotating a movable vane arranged in the nozzle part, and exhaust by moving a nozzle wall to which the nozzle vane is fixed to the nozzle part is advanced and retracted.
- a slide vane method for controlling the gas flow.
- Patent Document 1 discloses an example of a slide vane variable displacement exhaust turbocharger.
- variable capacity mechanisms such as the swing vane type and the slide vane type, all have a sliding portion, and therefore have specific problems such as wear and sticking due to thermal deformation of the sliding portion. Further, if the gap between the sliding portions is enlarged to solve these problems, there arises a problem that the turbine performance deteriorates. Therefore, the present inventor considered that it is effective to simplify the structure of the sliding portion as much as possible in order to make it less susceptible to thermal deformation of the sliding portion.
- At least one embodiment of the present invention has been made in view of the problems of the prior art as described above, and the object thereof is a variable capacity mechanism in which the structure of the sliding portion is simplified as compared with the conventional one.
- a variable displacement exhaust turbocharger is provided.
- a variable displacement exhaust turbocharger includes: A turbine rotor comprising a rotating shaft and a turbine wheel fixed to one end of the rotating shaft; A bearing housing that houses a bearing device that rotatably supports the rotating shaft; A turbine housing in which the turbine wheel is rotatably accommodated and an annular exhaust scroll portion through which exhaust gas flows is formed around the turbine wheel; A variable capacity mechanism disposed in an annular nozzle portion that guides exhaust gas flowing through the exhaust scroll portion to the turbine wheel; The variable capacity mechanism is: A nozzle vane protruding in a non-rotatable state from at least one of the shroud side and the hub side of the nozzle part toward the nozzle part; An annular nozzle wall configured to be movable back and forth from the hub side of the nozzle part to the shroud side or from the shroud side to the hub side, and to change the nozzle width of the nozzle part over the entire circumference; Drive means for advancing and retreating the nozzle wall.
- the nozzle vane is fixed to the nozzle portion in a non-rotatable state, and only the nozzle wall moves forward and backward. Therefore, the structure of the sliding portion can be simplified as compared with the conventional swing vane type or slide vane type variable capacity mechanism.
- the nozzle vane in the conventional case where the nozzle vane itself swings or slides, since the nozzle vane is a member that directly controls the flow of exhaust gas, high operating accuracy is required for its drive mechanism.
- the nozzle vane is fixed to the nozzle portion as in the present embodiment, and only the nozzle wall is advanced and retracted, so that the operation accuracy of the drive mechanism can be managed loosely compared to the conventional one. Only the cost can be reduced.
- the nozzle wall includes an annular guide wall portion that forms at least a part of a hub side guide wall that defines the nozzle portion with the shroud side guide wall of the turbine housing; An annular outer peripheral side wall portion connected to the outer peripheral side of the flow wall portion and an annular inner peripheral side wall portion connected to the inner peripheral side of the flow guide wall portion, and nozzle vanes are inserted into the flow guide wall portion A possible opening is formed.
- a nozzle wall can be comprised by the simple structure which consists of three cyclic
- the nozzle vane protrudes from the shroud side guide wall toward the nozzle portion.
- the length of the nozzle vane can be made shorter than when the nozzle vane protrudes from the hub side where the recess is formed.
- an annular cooling passage through which a cooling medium flows is formed in the shroud portion of the turbine housing. According to such an embodiment, by flowing a cooling medium such as water, oil, or air through the cooling passage, the shroud side guide wall and the nozzle vane protruding from the shroud side can be cooled.
- a cavity that communicates with the cooling passage is formed in the nozzle vane. According to such an embodiment, a nozzle vane can be cooled more effectively.
- a through hole is formed in the nozzle vane so as to penetrate the nozzle vane in the axial direction. According to such embodiment, a nozzle vane is cooled effectively because a cooling medium flows into a through-hole.
- a cooling medium discharge hole is formed in the shroud portion of the turbine housing to connect the through hole of the nozzle vane and the exhaust outlet portion on the downstream side of the turbine wheel. According to such an embodiment, the cooling medium flowing through the through hole is discharged to the exhaust outlet portion on the downstream side of the turbine wheel through the cooling medium discharge hole, so that the cooling medium is continuously supplied to the through hole. Can do.
- variable displacement exhaust turbocharger is configured to introduce a cooling medium into an internal space of the nozzle wall surrounded by the flow guide wall portion, the outer peripheral side wall portion, and the inner peripheral side wall portion.
- the cooling medium introduction mechanism is provided. According to such an embodiment, since the cooling medium can be introduced into the internal space of the nozzle wall from the cooling medium introduction mechanism, the nozzle wall can be effectively cooled.
- the nozzle wall has a flange portion protruding from the peripheral edge of the opening portion toward the internal space. According to such an embodiment, since the nozzle wall has the flange portion protruding from the peripheral edge of the opening portion toward the internal space, for example, a fluid such as a cooling medium introduced into the internal space leaks into the nozzle portion. This makes it difficult to prevent a decrease in turbine efficiency due to leakage of the cooling medium.
- the cooling medium introduced into the internal space flows through the through hole, so that the nozzle vane can be cooled simultaneously with the nozzle wall.
- the cooling medium introduction mechanism is configured to introduce air flowing through the compressor housing of the variable displacement exhaust turbocharger as a cooling medium. According to such an embodiment, air flowing through the compressor housing can be used as the cooling medium with a simple structure.
- the cooling medium introduction mechanism includes pressure control means for controlling the pressure of air introduced into the internal space of the nozzle wall.
- the pressure of the air introduced into the internal space of the nozzle wall can be controlled. Therefore, it is possible to reduce the driving force of the driving means for moving the nozzle wall forward and backward by controlling the pressure of the air introduced in accordance with the timing of moving the nozzle wall forward and backward.
- the nozzle vane is fixed in a non-rotatable state, and only the nozzle wall is advanced and retracted, so that the structure of the sliding portion is simplified compared to the conventional variable capacity mechanism. It is possible to provide a variable displacement exhaust turbocharger comprising:
- FIG. 1 is a cross-sectional view of a variable displacement exhaust turbocharger according to an embodiment of the present invention. It is the figure which showed the variable capacity mechanism concerning one Embodiment. It is the figure which showed the variable capacity mechanism concerning one Embodiment. It is the figure which showed the nozzle wall concerning one Embodiment. It is the figure which showed the drive means concerning one Embodiment. It is the figure which showed the cooling structure of the variable capacity mechanism concerning one Embodiment. It is the figure which showed the cooling structure of the variable capacity mechanism concerning one Embodiment. It is the figure which showed the nozzle wall concerning one Embodiment. It is the figure which showed the cooling medium introduction mechanism concerning one Embodiment.
- FIG. 1 is a cross-sectional view of a variable displacement exhaust turbocharger 1 according to an embodiment of the present invention. First, based on FIG. 1, a basic configuration of a variable capacity exhaust turbocharger 1 according to an embodiment of the present invention will be described.
- a variable displacement exhaust turbocharger 1 includes a rotating shaft 24 and a turbine rotor 26 including a turbine wheel 12 fixed to one end of the rotating shaft 24.
- a bearing housing 20 that accommodates a bearing device 22 that rotatably supports the rotary shaft 24, and an exhaust scroll portion 16 that rotatably accommodates the turbine wheel 12 and through which exhaust gas flows are formed around the turbine wheel 12.
- the exhaust scroll portion 16 is formed on the outer peripheral side of an annular shroud portion 15 that defines the exhaust outlet portion 14, and is formed in an annular shape when the turbine housing 10 is viewed from the axial direction. Further, the nozzle portion 18 formed between the exhaust scroll portion 16 and the turbine wheel 12 is also formed in an annular shape when viewed in the axial direction.
- a compressor housing 30 that rotatably accommodates a compressor wheel 32 fixed to the other end of the rotary shaft 24 is connected to the bearing housing 20 on the opposite side of the turbine housing 10 with the bearing housing 20 interposed therebetween.
- Hot exhaust gas discharged from an engine flows through the exhaust scroll portion 16 of the turbine housing 10 and is guided to the turbine wheel 12 via the nozzle portion 18 as indicated by arrows in the drawing. .
- the turbine rotor 26 is rotated by performing work on the turbine wheel 12, and then discharged from the exhaust outlet portion 14 to the outside of the supercharger 1.
- the compressor wheel 32 rotates with the rotation of the turbine rotor 26.
- the air introduced from the intake inlet 34 is compressed by the compressor wheel 32 and sent to the intake scroll 36.
- the compressed air is supplied to the engine.
- variable capacity exhaust turbocharger 1 guides exhaust gas flowing through the exhaust scroll portion 16 to the turbine wheel 12 as shown in part a in the figure.
- the variable capacity mechanism 40 disposed in the annular nozzle portion 18 is provided.
- a specific configuration of the variable capacity mechanism 40 according to the embodiment of the present invention will be described with reference to FIGS.
- FIG. 2 is a diagram illustrating a variable capacity mechanism 40A according to an embodiment.
- FIG. 3 is a diagram showing a variable capacity mechanism 40B according to another embodiment.
- the variable capacity mechanism 40 according to the embodiment of the present invention includes a nozzle vane that protrudes toward the nozzle portion 18 from at least one of the shroud side and the hub side of the nozzle portion 18. 42, and a nozzle wall 44 that is accommodated in a recess 56 formed on the hub side of the nozzle portion 18 and is movable forward and backward from the hub side of the nozzle portion 18 toward the shroud side, and the nozzle wall 44 is advanced and retracted.
- Driving means 46 to be operated.
- the nozzle vane 42 has a base end portion 43 fixed to the turbine housing 10 or the bearing housing 20 by welding or bolt fastening or the like, and protrudes from the nozzle portion 18 in a non-rotatable state.
- a plurality of nozzle vanes 42 are provided at intervals in the circumferential direction in the annular nozzle portion 18.
- the nozzle vane 42 projects from the shroud side toward the hub side.
- the nozzle vane 42 projects from the hub side of the nozzle portion 18 toward the shroud side.
- the nozzle wall 44 includes an annular flow guide wall portion 44 a that forms at least a part of the hub side flow guide wall 54 that defines the nozzle portion 18 with the shroud flow guide wall 52 of the turbine housing 10, and a flow guide wall.
- An opening 44d configured to allow the nozzle vane 42 to be inserted is formed in the flow guide wall 44a.
- reference numeral 12a denotes a turbine wheel hub
- reference numeral 12b denotes a moving blade provided on the hub 12a. In the embodiment shown in FIGS.
- the forward / backward direction of the nozzle wall 44 is from the hub side to the shroud side, but the present invention is not limited to this.
- the forward / backward direction of the nozzle wall 44 may be from the shroud side to the hub side.
- FIG. 4A and 4B are views showing the nozzle wall 44.
- FIG. 4A is a plan view
- FIG. 4B is a bb cross-sectional view
- FIG. 4C is a cc cross-sectional view.
- the openings 44 d are formed at intervals in the circumferential direction corresponding to the installation positions of the nozzle vanes 42, and the openings 44 d are formed in the flow guide wall 44 a at locations where the nozzle vanes 42 are not installed. Is not formed.
- the opening shape of the opening 44d is similar to the cross-sectional shape of the nozzle vane 42 so that the gap between the opening vane 42 and the nozzle vane 42 is small.
- FIG. 5 is a diagram showing the driving means 46 according to the embodiment.
- the driving means 46 urges the rod 46b in a direction to move the nozzle wall 44 to the hub side, an annular rear movable body 46a that advances and retracts the nozzle wall 44 from the rear side, a rod 46b that is connected to the rear movable body, and the nozzle wall 44 to the hub side.
- This rod 46b is arrange
- the nozzle wall 44 advances and retreats in the axial direction along the cam profile of the cam 46d.
- the nozzle width B defined as the width between the shroud side guide wall 52 and the hub side guide wall 54 of the nozzle portion 18 extends over the entire circumference of the annular nozzle portion 18. Change. And the flow of the exhaust gas which flows through the nozzle part 18 is controlled by the nozzle width B changing.
- the nozzle vane 42 is fixed to the nozzle portion 18 in a non-rotatable state, and only the nozzle wall 44 advances and retreats.
- the structure of a sliding part is simply comprised compared with the conventional variable capacity mechanism of a swing vane type or a slide vane type.
- the nozzle vane 42 is configured to protrude from the shroud-side flow guide wall 52 toward the nozzle portion 18, so that the nozzle vane 42 protrudes from the hub side where the recess 56 is formed. Also, the length of the nozzle vane 42 can be shortened.
- FIG. 6 is a diagram illustrating a cooling structure of the variable capacity mechanism 40 according to the embodiment.
- the shroud portion 15 of the turbine housing 10 is formed with an annular cooling passage 60 through which a cooling medium flows.
- a cooling medium such as water, oil, or air
- the shroud side guide wall 52 and the nozzle vane 42 protruding therefrom can be cooled. Therefore, for example, the nozzle vane 42 can be formed of normal inexpensive stainless steel without using an expensive material such as a heat-resistant Ni-based alloy for the nozzle vane 42.
- the cooling passage 60 is formed on the back surface of the base end portion 43 of the nozzle vane 42, a high cooling effect can be exerted on the nozzle vane 42.
- a cavity 62 communicating with the cooling passage 60 is formed inside the nozzle vane 42. According to such an embodiment, the nozzle vane 42 can be cooled more effectively.
- FIG. 7 is a diagram illustrating a cooling structure of the variable capacity mechanism 40 according to the embodiment.
- a through hole 64 is formed inside the nozzle vane 42 so as to penetrate the nozzle vane 42 in the axial direction.
- the through hole 64 communicates with the cooling passage 60 as shown in FIG. According to such an embodiment, the nozzle vane 42 is effectively cooled by the flow of a cooling medium such as air through the through hole 64.
- the shroud portion 15 of the turbine housing 10 is formed with a cooling medium discharge hole 66 that communicates the through hole 64 of the nozzle vane 42 and the exhaust outlet portion 14 downstream of the turbine wheel 12. . It is sufficient that at least one cooling medium discharge hole 66 is formed, and a plurality of cooling medium discharge holes 66 may be formed at intervals in the circumferential direction. According to such an embodiment, the cooling medium that has flowed through the through hole 64 is discharged to the exhaust outlet portion 14 on the downstream side of the turbine wheel 12 through the cooling medium discharge hole 66, so that the through hole 64 is continuously cooled. Media can be supplied.
- FIG. 8 is a diagram illustrating a nozzle wall 44 according to an embodiment.
- the variable capacity exhaust turbocharger 1 includes a nozzle wall surrounded by a flow guide wall portion 44a, an outer peripheral side wall portion 44b, and an inner peripheral side wall portion 44c.
- a cooling medium introduction mechanism 70 is provided for introducing the cooling medium into the internal space 44 f of 44.
- the nozzle wall 44 has an annular flange 44e that protrudes from the peripheral edge of the opening 44d toward the internal space 44f.
- the cooling medium can be introduced from the cooling medium introduction mechanism 70 into the internal space 44f of the nozzle wall 44, the nozzle wall 44 can be effectively cooled. Moreover, since the nozzle wall 44 has a flange portion 44e protruding from the peripheral edge of the opening portion 44d toward the hub side, the cooling medium introduced into the internal space 44f is difficult to leak into the nozzle portion 18, and cooling is performed. This prevents a decrease in turbine efficiency due to medium leakage.
- the cooling medium introduced into the internal space 44f flows through the through hole 64 inside the nozzle vane 42.
- the nozzle vanes 42 can be cooled.
- FIG. 9 is a diagram illustrating a cooling medium introduction mechanism 70 according to an embodiment.
- the cooling medium introduction mechanism 70 is configured to introduce air flowing through the compressor housing 30 of the variable displacement exhaust turbocharger 1 as a cooling medium. Yes.
- the cooling medium introduction mechanism 70 has a refrigerant introduction pipe 72 that communicates between the intake scroll portion 36 of the compressor housing 30 and the recess 56 in which the nozzle wall 44 is accommodated, and the air compressed by the compressor wheel 32 is cooled by the cooling medium. It can be introduced into the internal space 44 f of the nozzle wall 44. According to such an embodiment, the air flowing through the compressor housing 30 can be used as the cooling medium with a simple structure.
- the cooling medium introduction mechanism 70 includes a control valve 74 as a pressure control means for controlling the pressure of air introduced into the internal space 44 f of the nozzle wall 44.
- a control valve 74 as a pressure control means for controlling the pressure of air introduced into the internal space 44 f of the nozzle wall 44.
- the air introduced from the intake scroll portion 36 has a higher pressure than the exhaust gas flowing through the nozzle portion 18. Therefore, the control valve 74 is configured as a pressure reducing valve 74, for example.
- variable displacement exhaust turbocharger 1 of this embodiment may include a control device that integrally controls the drive means 46 and the control valve 74.
- variable displacement exhaust turbocharger of at least one embodiment of the present invention is suitably used as a supercharger for an automobile engine, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Supercharger (AREA)
- Control Of Turbines (AREA)
Abstract
Description
例えば特許文献1には、スライドベーン式の可変容量型排気ターボ過給機の一例が開示されている。
そこで本発明者は、摺動部の熱変形による影響を受け難くするために、摺動部の構造を出来るだけ簡素化することが有効と考えた。
回転シャフト及び前記回転シャフトの一端部に固定されるタービンホイールからなるタービンロータと、
前記回転シャフトを回転可能に支持する軸受装置を収容するベアリングハウジングと、
前記タービンホイールを回転可能に収容するとともに、排気ガスが流れる環状の排気スクロール部が前記タービンホイールの周囲に形成されてなるタービンハウジングと、
前記排気スクロール部を流れる排気ガスを前記タービンホイールに導流する環状のノズル部に配置された可変容量機構と、を備え、
前記可変容量機構は、
前記ノズル部のシュラウド側及びハブ側の少なくともいずれか一方側から前記ノズル部に向かって回動不能な状態で突出するノズルベーンと、
前記ノズル部のハブ側からシュラウド側にあるいはシュラウド側からハブ側に向かって進退自在に構成され、且つ前記ノズル部のノズル幅を全周に亘って可変せしめる環状のノズル壁と、
前記ノズル壁を進退させる駆動手段と、を含むことを特徴とする。
このような実施形態によれば、導流壁部、外周側壁部、及び内周側壁部の3つの環状の壁部からなるシンプルな構成によってノズル壁を構成することができる。
このような実施形態によれば、凹部が形成されるハブ側からノズルベーンを突出させる場合よりも、ノズルベーンの長さを短くすることができる。
このような実施形態によれば、冷却通路に水、油、空気などの冷却媒体を流すことで、シュラウド側導流壁やこれから突出するノズルベーンを冷却することができる。
このような実施形態によれば、ノズルベーンをより効果的に冷却することができる。
このような実施形態によれば、貫通孔に冷却媒体が流れることでノズルベーンが効果的に冷却される。
このような実施形態によれば、貫通孔を流れた冷却媒体が冷却媒体排出孔を介してタービンホイール下流側の排気出口部へ排出されるため、貫通孔に連続的に冷却媒体を供給することができる。
このような実施形態によれば、冷却媒体導入機構からノズル壁の内部空間に冷却媒体を導入することができるため、ノズル壁を効果的に冷却することができる。
このような実施形態によれば、ノズル壁は開口部の周縁端から内部空間に向かって突設されたツバ部を有するため、例えば内部空間に導入された冷却媒体などの流体がノズル部に漏れ難い構成となっており、冷却媒体の漏れによるタービン効率の低下を防止することができる。
このような実施形態によれば、簡単な構造によって、上記冷却媒体としてコンプレッサハウジングを流れる空気を利用することができる。
このような実施形態によれば、ノズル壁の内部空間に導入する空気の圧力を制御することができる。したがって、ノズル壁を進退するタイミングに合わせて導入する空気の圧力を制御することで、ノズル壁を進退させる駆動手段の駆動力を小さくすることも可能となる。
以下、本発明の一実施形態にかかる可変容量機構40の具体的な構成について、図2~図5を基に説明する。
図2及び図3に示したように、本発明の一実施形態にかかる可変容量機構40は、ノズル部18のシュラウド側及びハブ側の少なくともいずれか一方側からノズル部18に向かって突出するノズルベーン42と、ノズル部18のハブ側に形成された凹部56に収容されるとともに、ノズル部18のハブ側からシュラウド側に向かって進退自在に構成されるノズル壁44と、このノズル壁44を進退させる駆動手段46と、を含んでいる。
図2に示す可変容量機構40Aでは、ノズルベーン42はシュラウド側からハブ側に向かって突出している。また図3に示す可変容量機構40Bでは、このノズルベーン42はノズル部18のハブ側からシュラウド側に向かって突出している。
なお、図2及び図3において、符号12aはタービンホイールのハブ、符号12bはハブ12aに設けられた動翼である。
また、図2及び図3に示した実施形態では、ノズル壁44の進退方向はハブ側からシュラウド側となっているが、本発明はこれに限定されない。ノズル壁44の進退方向は、シュラウド側からハブ側であってもよい。
図4に示すように、開口部44dはノズルベーン42の設置位置に対応して周方向に間隔を空けて形成されており、ノズルベーン42が設置されていない箇所では導流壁部44aに開口部44dは形成されていない。また開口部44dの開口形状は、ノズルベーン42との間の隙間が小さくなるようにノズルベーン42の断面形状と相似形状をなしている。
幾つかの実施形態では、図6(a)に示したように、タービンハウジング10のシュラウド部15には冷却媒体が流れるための環状の冷却通路60が形成されている。
このような実施形態によれば、冷却通路60に水、油、空気などの冷却媒体を流すことで、シュラウド側導流壁52やこれから突出するノズルベーン42を冷却することができる。したがって、例えばノズルベーン42に耐熱性Ni基合金などの高価な材料を使用せずに、通常の安価なステンレスでノズルベーン42を形成することも可能となる。
このような実施形態によれば、ノズルベーン42をより効果的に冷却することができる。
幾つかの実施形態では、図7に示したように、ノズルベーン42の内部には該ノズルベーン42を軸方向に貫通する貫通孔64が形成されている。そしてこの貫通孔64は、図7に示したように、冷却通路60と連通している。
このような実施形態によれば、貫通孔64に空気などの冷却媒体が流れることでノズルベーン42が効果的に冷却される。
このような実施形態によれば、貫通孔64を流れた冷却媒体が冷却媒体排出孔66を介してタービンホイール12下流側の排気出口部14へ排出されるため、貫通孔64に連続的に冷却媒体を供給することができる。
幾つかの実施形態では、可変容量型排気ターボ過給機1は、図8に示したように、導流壁部44a、外周側壁部44b、及び内周側壁部44cとで囲まれたノズル壁44の内部空間44fに冷却媒体を導入するための冷却媒体導入機構70を備える。また、ノズル壁44は開口部44dの周縁端から内部空間44fに向かって突設された環状のツバ部44eを有する。
幾つかの実施形態では、図9に示したように、上記冷却媒体導入機構70は、可変容量型排気ターボ過給機1のコンプレッサハウジング30を流れる空気を冷却媒体として導入するように構成されている。
このような実施形態によれば、簡単な構造によって、上記冷却媒体としてコンプレッサハウジング30を流れる空気を利用することができる。
10 タービンハウジング
12 タービンホイール
12a ハブ
12b 動翼
14 排気出口部
15 シュラウド部
16 排気スクロール部
18 ノズル部
20 ベアリングハウジング
22 軸受装置
24 回転シャフト
26 タービンロータ
30 コンプレッサハウジング
32 コンプレッサホイール
34 吸気入口部
36 吸気スクロール部
40 可変容量機構
42 ノズルベーン
43 基端部
44 ノズル壁
44a 導流壁部
44b 外周側壁部
44c 内周側壁部
44d 開口部
44e ツバ部
44f 内部空間
46 駆動手段
46a 背面可動体
46b ロッド
46c スプリング
46d カム
46e カム軸
52 シュラウド側導流壁
54 ハブ側導流壁
56 凹部
60 冷却通路
62 空洞部
64 貫通孔
66 冷却ガス排出孔
70 冷却媒体導入機構
72 冷媒導入管
74 制御弁
Claims (11)
- 可変容量型排気ターボ過給機において、
回転シャフト及び前記回転シャフトの一端部に固定されるタービンホイールからなるタービンロータと、
前記回転シャフトを回転可能に支持する軸受装置を収容するベアリングハウジングと、
前記タービンホイールを回転可能に収容するとともに、排気ガスが流れる環状の排気スクロール部が前記タービンホイールの周囲に形成されてなるタービンハウジングと、
前記排気スクロール部を流れる排気ガスを前記タービンホイールに導流する環状のノズル部に配置された可変容量機構と、を備え、
前記可変容量機構は、
前記ノズル部のシュラウド側及びハブ側の少なくともいずれか一方側から前記ノズル部に向かって回動不能な状態で突出するノズルベーンと、
前記ノズル部のハブ側からシュラウド側にあるいはシュラウド側からハブ側に向かって進退自在に構成され、且つ前記ノズル部のノズル幅を全周に亘って可変せしめる環状のノズル壁と、
前記ノズル壁を進退させる駆動手段と、を含むことを特徴とする可変容量型排気ターボ過給機。 - 前記ノズル壁は、
前記タービンハウジングのシュラウド側導流壁との間で前記ノズル部を画定するハブ側導流壁の少なくとも一部を構成する環状の導流壁部と、
前記導流壁部の外周側に連結された環状の外周側壁部と、
前記導流壁部の内周側に連結された環状の内周側壁部と、を有し、
前記導流壁部には、前記ノズルベーンが挿通可能に構成された開口部が形成されていることを特徴とする請求項1に記載の可変容量型排気ターボ過給機。 - 前記ノズルベーンは、前記シュラウド側導流壁から前記ノズル部に向かって突出していることを特徴とする請求項2に記載の可変容量型排気ターボ過給機。
- 前記タービンハウジングのシュラウド部には、冷却媒体が流れるための環状の冷却通路が形成されていることを特徴とする請求項3に記載の可変容量型排気ターボ過給機。
- 前記ノズルベーンの内部には、前記冷却通路と連通する空洞部が形成されていることを特徴とする請求項4に記載の可変容量型排気ターボ過給機。
- 前記ノズルベーンの内部には、該ノズルベーンを軸方向に貫通する貫通孔が形成されていることを特徴とする請求項4に記載の可変容量型排気ターボ過給機。
- 前記タービンハウジングのシュラウド部には、前記ノズルベーンの貫通孔と、前記タービンホイール下流側の排気出口部とを連通する冷却媒体排出孔が形成されていることを特徴とする請求項6に記載の可変容量型排気ターボ過給機。
- 前記可変容量型排気ターボ過給機は、前記導流壁部、前記外周側壁部、及び前記内周側壁部とで囲まれた前記ノズル壁の内部空間に冷却媒体を導入するための冷却媒体導入機構を備えることを特徴とする請求項2乃至7の何れか一項に記載の可変容量型排気ターボ過給機。
- 前記ノズル壁は、前記開口部の周縁端から前記内部空間に向かって突設されたツバ部を有することを特徴とする請求項2乃至8の何れか一項に記載の可変容量型排気ターボ過給機。
- 前記冷却媒体導入機構は、前記可変容量型排気ターボ過給機のコンプレッサハウジングを流れる空気を冷却媒体として導入するように構成されていることを特徴とする請求項8又は9に記載の可変容量型排気ターボ過給機。
- 前記冷却媒体導入機構は、前記ノズル壁の内部空間に導入する空気の圧力を制御するための圧力制御手段を有することを特徴とする請求項10に記載の可変容量型排気ターボ過給機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13875521.0A EP2960460A4 (en) | 2013-02-21 | 2013-02-21 | VARIABLE GEOMETRY TURBOCHARGER |
JP2015501165A JPWO2014128894A1 (ja) | 2013-02-21 | 2013-02-21 | 可変容量型排気ターボ過給機 |
PCT/JP2013/054402 WO2014128894A1 (ja) | 2013-02-21 | 2013-02-21 | 可変容量型排気ターボ過給機 |
US14/764,917 US20150345376A1 (en) | 2013-02-21 | 2013-02-21 | Variable geometry exhaust gas turbocharger |
CN201380070893.0A CN104937234A (zh) | 2013-02-21 | 2013-02-21 | 可变容量式排气涡轮增压机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/054402 WO2014128894A1 (ja) | 2013-02-21 | 2013-02-21 | 可変容量型排気ターボ過給機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014128894A1 true WO2014128894A1 (ja) | 2014-08-28 |
Family
ID=51390722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054402 WO2014128894A1 (ja) | 2013-02-21 | 2013-02-21 | 可変容量型排気ターボ過給機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150345376A1 (ja) |
EP (1) | EP2960460A4 (ja) |
JP (1) | JPWO2014128894A1 (ja) |
CN (1) | CN104937234A (ja) |
WO (1) | WO2014128894A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102034493B1 (ko) * | 2018-07-06 | 2019-10-22 | 클러스터엘앤지(주) | 재액화 시스템용 팽창터빈 |
JP2021105370A (ja) * | 2019-12-26 | 2021-07-26 | トヨタ自動車株式会社 | 過給機 |
WO2021199308A1 (ja) * | 2020-03-31 | 2021-10-07 | 三菱重工エンジン&ターボチャージャ株式会社 | ターボチャージャ |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201408087D0 (en) * | 2014-05-07 | 2014-06-18 | Cummins Ltd | Variable geometry turbine assembly |
WO2017078088A1 (ja) * | 2015-11-06 | 2017-05-11 | カルソニックカンセイ株式会社 | タービンハウジング |
US9739166B1 (en) * | 2016-08-31 | 2017-08-22 | Borgwarner Inc. | VTG internal by-pass |
GB2555872A (en) | 2016-11-15 | 2018-05-16 | Cummins Ltd | Vane arrangement for a turbo-machine |
CN110023589A (zh) * | 2016-12-01 | 2019-07-16 | 曼恩能源方案有限公司 | 涡轮增压器 |
GB2578270B (en) * | 2018-05-15 | 2022-06-29 | Cummins Ltd | Vanes and shrouds for a turbo-machine |
GB2574195B (en) * | 2018-05-15 | 2022-06-08 | Cummins Ltd | Vane and shroud arrangements for a turbo-machine |
US11697997B2 (en) * | 2018-05-15 | 2023-07-11 | Cummins Ltd. | Vanes and shrouds for a turbo-machine |
JP6947304B2 (ja) | 2018-06-29 | 2021-10-13 | 株式会社Ihi | タービンおよび過給機 |
US10907497B2 (en) * | 2018-12-13 | 2021-02-02 | Transportation Ip Holdings, Llc | Method and systems for a variable geometry turbocharger for an engine |
CN113423929B (zh) * | 2019-02-25 | 2023-03-10 | 三菱重工发动机和增压器株式会社 | 喷嘴叶片 |
CN110578562B (zh) * | 2019-08-30 | 2023-08-29 | 上海齐耀动力技术有限公司 | 一种冷却结构及其连接结构 |
US11371374B2 (en) * | 2020-07-22 | 2022-06-28 | Raytheon Technologies Corporation | Seal runner flow damper |
US11686210B2 (en) * | 2021-03-24 | 2023-06-27 | General Electric Company | Component assembly for variable airfoil systems |
DE102021204711A1 (de) | 2021-05-10 | 2022-11-10 | Vitesco Technologies GmbH | Turboladereinrichtung |
CN114307462B (zh) * | 2021-12-02 | 2023-12-15 | 鄂托克旗红缨煤焦化有限责任公司 | 一种焦化烟气与含氨废水一体化处理系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56129705A (en) * | 1980-02-22 | 1981-10-12 | Holset Engineering Co | Radial inward flow turbine |
JPS6185503A (ja) * | 1984-10-04 | 1986-05-01 | Mitsubishi Heavy Ind Ltd | 輻流タ−ボ機械 |
JPH05214949A (ja) * | 1992-01-31 | 1993-08-24 | Mitsubishi Heavy Ind Ltd | 可変容量過給機 |
JPH11350967A (ja) * | 1998-06-12 | 1999-12-21 | Toyota Motor Corp | 排気絞り用可変ノズルベーン付きターボチャージャ |
WO2007031752A1 (en) * | 2005-09-15 | 2007-03-22 | Malcolm George Leavesley | Variable turbocharger apparatus with bypass means for bypassing exhaust gases |
JP2008133924A (ja) | 2006-11-29 | 2008-06-12 | Komatsu Ltd | シルティング防止制御装置および方法 |
JP2008196452A (ja) * | 2007-02-15 | 2008-08-28 | Toyota Industries Corp | 可変容量型ターボチャージャ |
JP2008544126A (ja) * | 2005-06-11 | 2008-12-04 | ダイムラー・アクチェンゲゼルシャフト | 排気ターボチャージャの排気タービン |
JP2010540819A (ja) * | 2007-09-28 | 2010-12-24 | ダイムラー・アクチェンゲゼルシャフト | 内燃機関の排気ガスターボチャージャ |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1138941A (en) * | 1965-01-15 | 1969-01-01 | Stuart Swinford Wilson | Improvements in and relating to radial flow turbines |
DE3377587D1 (en) * | 1982-05-28 | 1988-09-08 | Holset Engineering Co | A variable inlet area turbine |
JPS6119602U (ja) * | 1984-07-10 | 1986-02-04 | トヨタ自動車株式会社 | タ−ボチヤ−ジヤのノズルベ−ン冷却装置 |
US4611969A (en) * | 1985-08-19 | 1986-09-16 | Carrier Corporation | Calibrating apparatus and method for a movable diffuser wall in a centrifugal compressor |
JPH0346186Y2 (ja) * | 1985-10-31 | 1991-09-30 | ||
JPS6434404U (ja) * | 1987-08-25 | 1989-03-02 | ||
GB2218745B (en) * | 1988-05-17 | 1992-07-01 | Holset Engineering Co | Variable geometry turbine actuator assembly |
ITTO20010505A1 (it) * | 2001-05-25 | 2002-11-25 | Iveco Motorenforschung Ag | Turbina a geometria variabile. |
JP2009243277A (ja) * | 2008-03-28 | 2009-10-22 | Toyota Motor Corp | タービンハウジング冷却システム |
JP5370579B2 (ja) * | 2010-02-25 | 2013-12-18 | 株式会社Ihi | 可変容量型ターボチャージャ |
JP5118265B2 (ja) * | 2010-03-01 | 2013-01-16 | 株式会社小松製作所 | 内燃機関の給気制御装置及び給気制御方法 |
-
2013
- 2013-02-21 CN CN201380070893.0A patent/CN104937234A/zh active Pending
- 2013-02-21 WO PCT/JP2013/054402 patent/WO2014128894A1/ja active Application Filing
- 2013-02-21 EP EP13875521.0A patent/EP2960460A4/en not_active Withdrawn
- 2013-02-21 US US14/764,917 patent/US20150345376A1/en not_active Abandoned
- 2013-02-21 JP JP2015501165A patent/JPWO2014128894A1/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56129705A (en) * | 1980-02-22 | 1981-10-12 | Holset Engineering Co | Radial inward flow turbine |
JPS6185503A (ja) * | 1984-10-04 | 1986-05-01 | Mitsubishi Heavy Ind Ltd | 輻流タ−ボ機械 |
JPH05214949A (ja) * | 1992-01-31 | 1993-08-24 | Mitsubishi Heavy Ind Ltd | 可変容量過給機 |
JPH11350967A (ja) * | 1998-06-12 | 1999-12-21 | Toyota Motor Corp | 排気絞り用可変ノズルベーン付きターボチャージャ |
JP2008544126A (ja) * | 2005-06-11 | 2008-12-04 | ダイムラー・アクチェンゲゼルシャフト | 排気ターボチャージャの排気タービン |
WO2007031752A1 (en) * | 2005-09-15 | 2007-03-22 | Malcolm George Leavesley | Variable turbocharger apparatus with bypass means for bypassing exhaust gases |
JP2008133924A (ja) | 2006-11-29 | 2008-06-12 | Komatsu Ltd | シルティング防止制御装置および方法 |
JP2008196452A (ja) * | 2007-02-15 | 2008-08-28 | Toyota Industries Corp | 可変容量型ターボチャージャ |
JP2010540819A (ja) * | 2007-09-28 | 2010-12-24 | ダイムラー・アクチェンゲゼルシャフト | 内燃機関の排気ガスターボチャージャ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2960460A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102034493B1 (ko) * | 2018-07-06 | 2019-10-22 | 클러스터엘앤지(주) | 재액화 시스템용 팽창터빈 |
JP2021105370A (ja) * | 2019-12-26 | 2021-07-26 | トヨタ自動車株式会社 | 過給機 |
WO2021199308A1 (ja) * | 2020-03-31 | 2021-10-07 | 三菱重工エンジン&ターボチャージャ株式会社 | ターボチャージャ |
Also Published As
Publication number | Publication date |
---|---|
US20150345376A1 (en) | 2015-12-03 |
EP2960460A4 (en) | 2016-03-09 |
CN104937234A (zh) | 2015-09-23 |
JPWO2014128894A1 (ja) | 2017-02-02 |
EP2960460A1 (en) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014128894A1 (ja) | 可変容量型排気ターボ過給機 | |
US10125673B2 (en) | Variable nozzle unit and variable geometry turbocharger | |
JP5710452B2 (ja) | ターボチャージャ | |
JPS62139931A (ja) | タ−ボチヤ−ジヤ | |
CN102459823A (zh) | 壳体的部件,尤其是涡轮机的壳体的部件 | |
CN102434229A (zh) | 可变几何涡轮机 | |
EP2325454A1 (en) | Turbocharger equipped with a variable nozzle device | |
KR101244956B1 (ko) | 실링 에어 채널을 가진 안내 장치의 캐리어 링 | |
JP2010001863A (ja) | ターボチャージャ | |
JP5989129B2 (ja) | 排気ガスターボチャージャーのタービン | |
JP5141405B2 (ja) | ターボチャージャ | |
JP2013253519A (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP5747403B2 (ja) | ターボ回転機械及びその運転方法 | |
JP2008095613A (ja) | 過給機 | |
JP2014530992A (ja) | バルブ、特に自動車エンジン用バルブ | |
GB2473274A (en) | Variable geometry turbine | |
JP6146507B2 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP2010163951A (ja) | 自動車用排気タービン発電装置 | |
JP2014047726A (ja) | タービンハウジング及び排気タービン過給機 | |
JP5071283B2 (ja) | ターボチャージャ | |
RU2484259C1 (ru) | Система регулирования расхода воздуха на охлаждение турбины газотурбинного двигателя | |
CN108442981B (zh) | 一种双活塞环可变喷嘴组件 | |
JP2015504135A (ja) | 排気ガスターボチャージャー | |
GB2548393A (en) | Turbine | |
JP6099987B2 (ja) | 可変容量タービン及びこれを備えた過給機並びに可変容量タービンの制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13875521 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015501165 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013875521 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013875521 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14764917 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |