WO2014125900A1 - Cigs膜の製法およびそれを用いるcigs太陽電池の製法 - Google Patents

Cigs膜の製法およびそれを用いるcigs太陽電池の製法 Download PDF

Info

Publication number
WO2014125900A1
WO2014125900A1 PCT/JP2014/051507 JP2014051507W WO2014125900A1 WO 2014125900 A1 WO2014125900 A1 WO 2014125900A1 JP 2014051507 W JP2014051507 W JP 2014051507W WO 2014125900 A1 WO2014125900 A1 WO 2014125900A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cigs
cigs film
film
temperature
Prior art date
Application number
PCT/JP2014/051507
Other languages
English (en)
French (fr)
Inventor
洸人 西井
太一 渡邉
誠喜 寺地
和典 河村
高志 峯元
ジャカパン チャンタナ
雅 村田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480006652.4A priority Critical patent/CN104981913A/zh
Priority to US14/766,066 priority patent/US20160005912A1/en
Publication of WO2014125900A1 publication Critical patent/WO2014125900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a CIGS film used as a light absorption layer of a CIGS solar cell having good characteristics by causing uniform copper diffusion and uniform crystal grains, and a method for producing a CIGS solar cell using the same.
  • Thin film solar cells represented by amorphous silicon solar cells and compound thin film solar cells can greatly reduce material costs and manufacturing costs compared to conventional crystalline silicon solar cells. For this reason, in recent years, these research and development have been advanced rapidly. Especially, it is a compound thin-film solar cell having elements of Group I, III, and VI as constituents, and the light absorption layer is made of copper (Cu), indium (In), gallium (Ga), selenium (Se) alloy.
  • the CIGS solar cell made of is attracting particular attention among thin-film solar cells because it does not use any silicon and has excellent solar conversion efficiency (hereinafter referred to as “conversion efficiency”).
  • the light absorption layer in such a CIGS solar cell can be produced by a selenization method, a non-vacuum process (nanoparticle) method, a vacuum deposition method, or the like.
  • the vacuum evaporation method is a manufacturing method in which Cu, In, Ga, and Se are heated by different evaporation sources to form a film by evaporation, and the film can be formed while controlling the discharge amount of each element. It has the advantage that it can be controlled.
  • the highest conversion efficiency is obtained by a method called a three-stage method which is a kind of multi-source deposition method.
  • the process is separated into three stages.
  • the substrate temperature is raised to 550 ° C., and Cu and Se are deposited to form a CIGS film having an excessive Cu composition.
  • the CIGS film at this stage two phases of liquid phase Cu (2-x) Se and solid phase CIGS coexist, and the crystal suddenly increases in size due to Cu (2-x) Se.
  • the CIGS thin film obtained by the three-stage method has a large crystal grain size, and has a crystallographically high-quality thin film crystal structure as compared with that obtained by the conventional vapor deposition method (for example, Patent Documents). 1).
  • the present invention has been made in view of such circumstances. Even when a large-area element is manufactured, a CIGS film manufacturing method capable of manufacturing a CIGS film having excellent conversion efficiency at low cost and a CIGS solar cell using the CIGS film The purpose is to provide a manufacturing method.
  • the CIGS film production method of the present invention is a CIGS film production method used as a light absorption layer of a CIGS solar cell, comprising a layer (A) containing indium, gallium and selenium, copper, The layer (B) containing selenium was laminated on the substrate in this order in the solid phase in a heated state of more than 250 ° C. and not more than 400 ° C., and the layers (A) and (B) were laminated. The laminated body is further heated to melt the layer (B) to a liquid phase, thereby diffusing the copper in the layer (B) into the layer (A) and crystal growth to obtain a CIGS film.
  • the first gist is to have a heating step.
  • the manufacturing method of the CIGS solar cell which has the process of providing a back electrode layer on a board
  • the second aspect is a CIGS solar cell manufacturing method in which a light absorption layer made of a CIGS film is formed using the CIGS film manufacturing method described in the first aspect. .
  • the present inventors have focused on CIGS solar cells among compound semiconductor solar cells and repeated research. As a result, instead of obtaining the CIGS film, which is the light absorption layer of the CIGS solar cell, by the three-stage method of the conventional method shown in FIG. 9, first, as shown in FIG.
  • the layer (A) containing Cu and the layer (B) containing Cu and Se are laminated together in this order in the solid state, and then, a laminate in which the two layers (A) and (B) are laminated Is heated to melt the compound of Cu and Se in the layer (B) to form a liquid phase, whereby the Cu in the layer (B) is diffused in the layer (A), and crystal growth is performed, whereby CIGS It has been found that when a film is obtained, crystal grains in the film become uniform large grains and excess Cu (2-x) Se is not taken into the film.
  • the layer (A) and the layer (B) are laminated, if the holding temperature of the substrate is set to be higher than 250 ° C. and lower than 400 ° C., CIGS is obtained.
  • the inventors have found that the crystal orientation of the film can be made to have a large (220/204) peak intensity ratio in X-ray diffraction, and have arrived at the present invention.
  • solid phase refers to a phase that is in a solid state at that temperature
  • liquid phase refers to a phase that is in a liquid state at that temperature
  • the layer (A) and the layer (B) are laminated on the substrate means not only the case where these are laminated directly on the substrate, but also the case where these are laminated on the substrate via other layers. Is included.
  • a layer (A) containing In, Ga and Se and a layer (B) containing Cu and Se are laminated in this order on the substrate. It has become. At this time, since the layer (A) and the layer (B) are laminated in a solid phase, both can be laminated with a uniform thickness.
  • the layered body in which the two layers (A) and (B) are stacked is heated to melt the Cu and Se compound in the layer (B) to be in a liquid phase state. Then, Cu in the layer (B) diffuses rapidly.
  • the layer (B) is formed on the layer (A) with a uniform thickness in the previous process, Cu in the layer (B) is uniformly diffused in the layer (A). As a result, large and uniform crystal grains are formed. Moreover, since the layer (B) is once used as a solid phase, Cu (2-x) Se can be prevented from being excessively taken into the CIGS film. Therefore, the CIGS solar cell using the CIGS film obtained by this manufacturing method has high conversion efficiency and hardly causes variations in conversion efficiency for each element. In addition, since excess Cu (2-x) Se is not formed in the film, the battery characteristics are not adversely affected.
  • the substrate is laminated in a heated state of more than 250 ° C. and not more than 400 ° C., so that the crystal orientation of the obtained CIGS film has an (220/204) peak intensity ratio in X-ray diffraction. It is possible to obtain a CIGS solar cell that can be large, has a good pn junction, and has high conversion efficiency.
  • the heating step is performed at a temperature of 520 ° C. or higher, most of the Cu and Se compounds in the layer (B) melt, so that the Cu in the layer (B) is more contained in the layer (A). It can be diffused rapidly and uniformly, and larger and more uniform crystal grains can be formed.
  • the liquid phase of the layer (B) rapidly proceeds, and the layer (A) Further, Cu in the layer (B) diffuses more rapidly, so that larger and more uniform crystals are formed in the film.
  • the heating step when the Se vapor or hydrogen selenide (H 2 Se) is supplied so that the Se partial pressure on the CIGS film surface is maintained higher than the internal Se partial pressure, the heating step The release of Se from the CIGS film can be suppressed, and the composition of the CIGS film can be controlled to be more preferable.
  • H 2 Se hydrogen selenide
  • the CIGS film at the end of the heating step is obtained by the heating step while satisfying the molar ratio of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30 and maintaining the temperature during the heating step.
  • the CIGS film satisfies the molar ratio of 0.70 ⁇ Cu / (In + Ga) ⁇ 0.95 by further depositing In, Ga, and Se on the CIGS film, first, the heating step
  • the composition of the CIGS film at the end satisfies the molar ratio of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30, the Cu component is sufficiently present even at the interface between the layer (A) and the layer (B).
  • the ratio of Cu to (In + Ga) in the CIGS film is determined based on the content of Cu, In, and Ga in the target CIGS film by an energy dispersive X-ray fluorescence apparatus (HORIBA, Ltd., EX-250). And a D-SIMS (Dynamic Sims) evaluation apparatus (manufactured by ULVAC-PHI) and calculated based on the atomic number concentration.
  • HORIBA, Ltd., EX-250 energy dispersive X-ray fluorescence apparatus
  • D-SIMS (Dynamic Sims) evaluation apparatus manufactured by ULVAC-PHI
  • a manufacturing method of a CIGS solar cell including a step of providing a back electrode layer on a substrate, a step of providing a light absorption layer made of a CIGS film, a step of providing a buffer layer, and a step of providing a transparent conductive layer.
  • the step of providing the light absorbing layer when the light absorbing layer made of the CIGS film is formed using the CIGS film manufacturing method as the first gist, the obtained CIGS solar cell is subjected to variation in conversion efficiency for each element. Therefore, the conversion efficiency can be sufficiently high.
  • FIG. 2 is an explanatory diagram of the CIGS film 3 obtained by one embodiment of the present invention.
  • the CIGS film 3 is used for a light absorption layer of a CIGS solar cell, and a back electrode layer 2 made of molybdenum (Mo) is provided on a substrate 1 made of soda-lime glass (SLG).
  • Mo molybdenum
  • SSG soda-lime glass
  • the CIGS film 3 is laminated on the back electrode layer 2.
  • membrane 3 is demonstrated in detail.
  • each part is shown typically and is different from an actual thickness, size, etc. (the same applies to the following figures).
  • the substrate 1 is used as a support substrate, and in addition to SLG, a flexible metal foil or the like can be used as a substrate.
  • a material resistant to a temperature of 520 ° C. or higher so that it can withstand the heating in the subsequent heating step.
  • the back electrode layer 2 is formed by a sputtering method.
  • tungsten, chromium, titanium, or the like can be used, and it can be formed not only in a single layer but also in multiple layers.
  • the thickness is preferably in the range of 100 nm to 1000 nm.
  • the CIGS film 3 is a compound semiconductor containing four elements of Cu, In, Ga, and Se, and has a thickness of 2.0 ⁇ m.
  • the composition ratio of Cu, In and Ga is 22.1: 21.2: 7.5, and Cu / (In + Ga) ⁇ 0.77 (molar ratio).
  • Such a CIGS film 3 can be manufactured as follows. First, a substrate 1 provided with a back electrode layer 2 is prepared. As shown in FIG. 3, from the side where the back electrode layer 2 is formed, the substrate 1 is held at 330 ° C., and In, Ga , Se is vapor-deposited to form a layer (A) 4 on the back electrode layer 2.
  • the laminated body 6 is further heated, the holding temperature of the substrate 1 is set to 550 ° C., and the heated and sublimated Se vapor is supplied for 15 minutes, thereby holding the Cu of the layer (B) 5 and Cu.
  • the Se compound is melted to form a liquid phase.
  • Cu in the layer (B) 5 diffuses into the layer (A) 4, and crystal growth occurs therein.
  • the crystal grows in a direction parallel to the substrate.
  • the layer (A) 4 and the layer (B) 5 are integrated into a CIGS film 3 '(see FIG. 5).
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ is 25.1: 18.5: 6.4, and Cu / (In + Ga) ⁇ 1.00 (molar ratio). .
  • the temperature increase from the lamination process (temperature 330 ° C.) to the heating process (temperature 550 ° C.) is performed at 10 ° C./second. That is, if the rate of temperature rise is too slow, the liquid phase of the layer (B) proceeds slowly, Cu in the layer (B) cannot rapidly diffuse into the layer (A), and crystals are formed. Since there is a tendency that the particles do not become large, the above temperature rise is preferably performed at 10 ° C./second or more.
  • substrate 1 is hold
  • the CIGS film 3 (see FIG. 2) can be obtained by further depositing In, Ga, and Se in a state where the vaporized Se vapor is supplied. Thereby, the whole CIGS film 3 can be made slightly Cu-deficient.
  • a profile of the holding temperature of the substrate 1 in the above embodiment is shown in FIG.
  • the substrate 1 includes a layer (A) 4 containing In, Ga and Se, and a layer (B) containing Cu and Se. 5 are laminated in this order, and then the laminated body 6 in which the upper layer (A) 4 and the layer (B) 5 are laminated is heated, and the holding temperature of the substrate 1 is kept at 550 ° C. for 15 minutes.
  • the compound of Cu and Se in the layer (B) 5 is melted to form a liquid phase, and the Cu in the layer (B) 5 is rapidly diffused into the layer (A) 4. .
  • Cu contained in the layer (B) 5 can be uniformly diffused in the layer (A) 4, and a CIGS film 3 ′ having large and uniform crystal grains can be obtained. Moreover, since Cu contained in the layer (B) 5 is once used as a solid phase (layer (B) 5), it is possible to suppress excessive Cu (2-x) Se incorporation into the film. Since the layer (A) and the layer (B) are stacked in a state where the substrate 1 holding temperature is 330 ° C., the crystal orientation of the CIGS film is determined by (220/204) peak intensity in X-ray diffraction. The ratio can be large.
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ can be set as desired. Can be controlled. Furthermore, since the CIGS film 3 ′ is further vapor-deposited with In, Ga, and Se at the same temperature (550 ° C. or higher) as in the heating step, the CIGS film 3 is slightly changed. In addition, when the CIGS film 3 is used for an element, a more efficient light absorption layer can be obtained.
  • the formation of the layer (A) 4 and the layer (B) 5 is performed in a state where the holding temperature of the substrate 1 is 330 ° C.
  • the present invention is not limited to this. Over 400 ° C. or less.
  • the temperature is preferably in the range of 270 to 380 ° C., more preferably in the range of 280 to 350 ° C. If the temperature is too high, the layer (B) 5 cannot be laminated on the layer (A) 4 as a solid phase. Conversely, if the temperature is too low, it is difficult to obtain a crystal having a specific orientation. This is because there is a tendency.
  • the laminate 6 in which the layers (A) 4 and (B) 5 are laminated is heated for 15 minutes in a state where the holding temperature of the substrate 1 is 550 ° C.
  • the heating temperature is preferably 520 ° C. or higher.
  • the heating time is preferably 1 to 30 minutes, more preferably 2 to 15 minutes. This is because Cu contained in the layer (B) 5 diffuses very rapidly into the layer (A) 4, but requires a certain amount of time for sufficient crystal growth.
  • In, Ga, and Se are further deposited on the CIGS film 3 ′ after the heating step in a state where the substrate 1 holding temperature is 550 ° C., but the CIGS film 3
  • a Cu or Se-based layer that has not been incorporated into the film is not exposed on the surface layer of ′, it is not necessary to further deposit In, Ga, and Se.
  • In, Ga, and Se are further deposited on the CIGS film 3 ′ after the heating step, a Cu—Se phase is not formed in the film, and sufficient crystal growth can be achieved. Since it is easy to make Cu slightly short as the whole film
  • finish of a heating process is 25.1: 18.5: 6.4, and Cu / (In + Ga) ⁇ 1.
  • the composition ratio is not limited to this and can be any composition ratio.
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ is preferably in a range that satisfies the formula of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30 (molar ratio).
  • Cu / (In + Ga) is too low, there is a tendency that the Cu component is insufficient and sufficient crystal growth does not occur.
  • Cu (2-x) is contained in the CIGS film 3 ′. This is because Se is taken in excessively and the device characteristics tend to be deteriorated when the CIGS film 3 'is used for the device.
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 is 22.1: 21.2: 7.5, and Cu / (In + Ga) ⁇ 0.77 (molar ratio).
  • the present invention is not limited to this, and an arbitrary composition ratio can be obtained.
  • the expression 0.70 ⁇ Cu / (In + Ga) ⁇ 0.95 (molar ratio) is satisfied, it is indicated that Cu (2-x) Se is excessively taken into the CIGS film 3. This is preferable in that it can be further prevented and the entire film can be slightly deficient in Cu.
  • the ratio of Ga and In which are homologous elements is in the range of 0.10 ⁇ Ga / (In + Ga) ⁇ 0.40.
  • membrane 3 is formed in 2.0 micrometers, it can be set not only to this but arbitrary thickness.
  • the thickness of the CIGS film 3 is preferably in the range of 1.0 to 3.0 ⁇ m, and more preferably in the range of 1.5 to 2.5 ⁇ m. If the thickness is too thin, the amount of light absorption when used as a light-absorbing layer will decrease, and the performance of the device will tend to be reduced. Conversely, if it is too thick, the time taken to form the film will increase, producing This is because the tendency to be inferior is seen.
  • Se vapor is supplied during the heating process and in the subsequent process of depositing In, Ga, and Se.
  • H 2 Se is supplied. Also good. In this case, the same effect as that of supplying Se vapor can be obtained. Further, when there is little release of Se out of the CIGS film 3 ′ and CIGS film 3 into the system, it is not necessary to supply them.
  • a buffer layer 7, a buffer layer 8, and a transparent conductive layer 9 are laminated in this order on the CIGS film 3.
  • a buffer layer 7 (thickness 50 nm) made of cadmium sulfide (CdS) is formed on the CIGS film 3 obtained as described above by a chemical bath deposition method (CBD method).
  • a buffer layer 8 (thickness 50 nm) made of ZnO is formed by sputtering.
  • These buffer layers (7, 8) are preferably high-resistance n-type semiconductors so that a pn junction can be formed with the CIGS film 3.
  • ZnMgO, Zn (O, S) A single-layer buffer layer such as can be used.
  • the thickness of the buffer layers (7, 8) is preferably 30 to 200 nm.
  • the thickness is preferably in the range of 30 to 200 nm.
  • the buffer layer 7 can be formed by a solution method such as the CBD method, and the buffer layer 8 can be formed by a vacuum film forming method such as a sputtering method.
  • the pn junction with the CIGS film 3 can be improved.
  • a plurality of layers are not necessarily provided. It is not necessary to provide a layer.
  • a transparent conductive layer 9 (thickness 200 nm) made of indium tin oxide (ITO) is formed on the buffer layer 8 by sputtering.
  • the transparent conductive layer 9 is preferably made of a material having high transmittance.
  • ITO indium zinc oxide
  • Al zinc aluminum oxide
  • the thickness is preferably 100 nm to 300 nm.
  • the conversion efficiency is increased and the element is increased.
  • the CIGS solar cell Q can be obtained in which variations in conversion efficiency are less likely to occur.
  • excess Cu (2-x) Se is not formed in the CIGS film 3 as the light absorption layer, the battery characteristics are not deteriorated and the efficiency is improved.
  • the CIGS film 3 as a whole is in a slightly Cu-deficient state, the efficiency can be further increased.
  • the crystal orientation of the CIGS film has the characteristic that the (220/204) peak intensity ratio is large in X-ray diffraction, it is possible to obtain a good pn junction in the CIGS solar cell, Higher efficiency can be achieved.
  • the CIGS solar cell Q includes the substrate 1, the back electrode layer 2, the CIGS film 3, the buffer layer 7, the buffer layer 8, and the transparent conductive layer 9.
  • a metal electrode may be formed on the layer 9.
  • Example 1 A CIGS solar cell was manufactured in the same manner as in the above embodiment. That is, SLG (size 30 ⁇ 30 mm, thickness 0.55 mm) was prepared as the substrate 1, and Mo (thickness 500 nm) was laminated thereon to form the back electrode layer 2. Then, In, Ga, and Se were vapor-deposited in a state where the substrate 1 holding temperature was set to 255 ° C. to form a layer (A). Subsequently, Cu and Se were vapor-deposited on the layer (A) while the substrate 1 holding temperature was maintained at 255 ° C., and the layer (B) was laminated to form a laminate 6.
  • the laminate 6 was heated while supplying a small amount of Se vapor, and the substrate 1 holding temperature was held at 550 ° C. for 15 minutes, and crystal growth was performed to obtain a CIGS film 3 ′. Further, while supplying a small amount of Se gas to this CIGS film 3 ′, In, Ga, and Se are vapor-deposited while maintaining the substrate 1 holding temperature at 550 ° C. 0.0 ⁇ m) was obtained.
  • a CIGS solar cell using this CIGS film 3 was designated as Example 1.
  • Examples 2 to 6 [Comparative Examples 1 to 3] A CIGS solar cell was produced in the same manner as in Example 1 except that the substrate 1 holding temperature at the time of forming the layer (A) and the layer (B) was changed as shown in Table 1 below.
  • the products of Examples 1 to 6 have a CIGS film [(220/204) / (112)] peak intensity ratio of 0.43 to 1.23, and an average conversion efficiency of 14.9. % was a high value. Therefore, it was found that a highly efficient solar cell can be obtained with good reproducibility by the production method of the present invention.
  • the CIGS film [(220/204) / (112)] peak intensity ratio is 0.25 to 0.38, and the average conversion efficiency is 13.3 to 14.4. It was slightly low at 5%.
  • the method for producing a CIGS film of the present invention is suitable for producing a CIGS film used as a light absorption layer of a CIGS solar cell with good characteristics and good reproducibility. Moreover, the manufacturing method of the CIGS solar cell of this invention is suitable for manufacturing a solar cell with high conversion efficiency with sufficient reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 変換効率に優れるCIGS膜を、低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法を提供するため、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に250℃を超え400℃以下の加熱状態で積層する積層工程と、上記層(A)および層(B)が積層された積層体をさらに加熱し、上記層(B)の銅とセレンの化合物を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有するようにした。

Description

CIGS膜の製法およびそれを用いるCIGS太陽電池の製法
 本発明は、均一な銅拡散を引き起こし、結晶粒の均一化を図ることにより、良好な特性を有するCIGS太陽電池の光吸収層として用いるCIGS膜の製法およびそれを用いるCIGS太陽電池の製法に関する。
 アモルファスシリコン太陽電池や化合物薄膜太陽電池に代表される薄膜型太陽電池は、従来の結晶型シリコン太陽電池と比較すると、材料コストや製造コストの大幅な削減が可能である。このため、近年、これらの研究開発が急速に進められている。なかでも、I族、III族、VI族の元素を構成物質とした化合物薄膜太陽電池であって、光吸収層が銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)合金からなるCIGS太陽電池は、シリコンを全く使用せず、しかも優れた太陽光変換効率(以下「変換効率」とする)を有するため、薄膜太陽電池の中でも特に注目されている。
 このようなCIGS太陽電池における光吸収層は、セレン化法、非真空プロセス(ナノ粒子)法、真空蒸着法等により作製することができる。真空蒸着法は、Cu、In、Ga、Seを各々別の蒸着源にて加熱し、蒸着により製膜する製法であり、各元素の吐出量を制御しながら製膜できるため、厚み方向に組成制御が可能であるという利点を有している。
 真空蒸着法のうち、最も高い変換効率が得られるのは、多源蒸着法の一種である3段階法と呼ばれる方法である。この方法は、図9に示すように、工程が3段階に分離されており、まず第1段階目で基板上にIn、Ga、Seを蒸着し、(In,Ga)2Se3膜を形成する。つぎの第2段階目で、この基板温度を550℃に上昇さてCu、Seを蒸着し、Cu過剰組成のCIGS膜を形成する。この段階におけるCIGS膜は、液相Cu(2-x)Seと固相CIGSの2相が共存しており、Cu(2-x)Seにより結晶の急激な大粒化が起きる。
 一方、Cu(2-x)Seは低抵抗であるため、太陽電池特性に悪影響を与えることが知られている。したがって、3段階法では、その第3段階目で、Cu(2-x)Seを低減させるため、さらにIn、Ga、Seを蒸着し、CIGS膜全体として、わずかにIII族が過剰な組成となるようにしている。3段階法で得られたCIGS薄膜は、結晶が大粒径となり、しかも、従来の蒸着法で得られるものと比べ、結晶学的に高品質な薄膜結晶組織になるとされる(例えば、特許文献1参照。)。
 このような3段階法で得られたCIGS膜を太陽電池に適用すると、小面積素子の視点でみた場合には、確かに高い変換効率が得られ良好である。しかし、このCIGS膜は、結晶成長を引き起こすための主成分であるCu(2-x)Seをはじめから液相として供給していることから、膜内へのCuの拡散が必ずしも均一に行われておらず、その結晶粒は厳密には必ずしも均一ではない。また、膜内にこれが過剰に取り込まれ易くなっており、素子の特性が低下するという問題も有している。
特表平10-513606号公報
 本発明は、このような事情に鑑みなされたもので、大面積素子を作製する場合であっても、変換効率に優れるCIGS膜を低コストで製造できるCIGS膜の製法およびそれを用いるCIGS太陽電池の製法の提供をその目的とする。
 上記目的を達成するため、本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いられるCIGS膜の製法であって、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に250℃を超え400℃以下の加熱状態で積層する積層工程と、上記層(A)および層(B)が積層された積層体をさらに加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを第1の要旨とする。
 そして、基板上に、裏面電極層を設ける工程と、CIGS膜からなる光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程において、上記第1の要旨に記載のCIGS膜の製法を用いてCIGS膜からなる光吸収層を形成するようにしたCIGS太陽電池の製法を第2の要旨とする。
 すなわち、本発明者らは、光吸収係数が高く、省資源化に有効な太陽電池を得るため、化合物半導体系太陽電池の中でも、特にCIGS太陽電池に着目し、研究を重ねた。その結果、CIGS太陽電池の光吸収層であるCIGS膜を、図9に示す従来法の3段階法で得るのではなく、図1に示すように、まず、基板に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をともに固相状態で、この順で積層し、つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)の中に上記層(B)中のCuを拡散させ、結晶成長させてCIGS膜を得るようにすると、膜内の結晶粒が均一な大型粒になるとともに、膜内に余剰なCu(2-x)Seが取り込まれないことを見出した。そして、さらに研究を続け、上記の製法において、上記層(A)と層(B)を積層する際に、基板の保持温度が250℃を超え400℃以下であるように設定すると、得られるCIGS膜の結晶配向を、X線回折において、(220/204)ピーク強度比が大きいものにすることができることを見出し、本発明に想到した。
 なお、本発明において、「固相」とは、その温度において固体状態にある相のことをいい、「液相」とは、その温度において液体状態にある相のことを意味する。
 また、本発明において、「基板に層(A)と層(B)を積層する」とは、基板に直接これらを積層する場合だけでなく、基板に他の層を介してこれらを積層する場合を含むことを意味する。
 このように、本発明のCIGS膜の製法は、まず、基板上に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をこの順で積層するようになっている。このとき、層(A)と層(B)は固相状態で積層されるため、両者をそれぞれ均一な厚みで積層することができる。つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中のCuが急速に拡散する。このとき、層(B)は、先の過程で、均一な厚みで層(A)上に形成されているため、上記層(B)中のCuは、層(A)中に均一的に拡散され、大粒で均一な結晶粒が形成される。また、層(B)を一旦、固相として用いるため、Cu(2-x)Seが過剰にCIGS膜内に取り込まれることを抑制できる。したがって、この製法により得られたCIGS膜を用いたCIGS太陽電池は、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくい。しかも、膜内に余剰なCu(2-x)Seが形成されないため、電池特性に悪影響を及ぼすこともない。
 また、上記積層工程において、基板に250℃を超え400℃以下の加熱状態で積層を行っているため、得られるCIGS膜の結晶配向を、X線回折において、(220/204)ピーク強度比が大きいものとすることができ、良好なpn接合を有し、変換効率の高いCIGS太陽電池を得ることができる。
 そして、上記加熱工程を、520℃以上の温度で行うと、層(B)のCuとSeの化合物のほとんどが溶融するため、上記層(A)中に上記層(B)中のCuをより急速、かつ均一に拡散させることができ、より大粒で均一な結晶粒を形成することができる。
 さらに、上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行うと、層(B)の液相化が急速に進み、上記層(A)中に上記層(B)中のCuがより急速に拡散することにより、膜内においてより大粒で均一な結晶が形成されるようになる。
 そして、上記加熱工程において、Se蒸気もしくはセレン化水素(H2Se)を供給し、CIGS膜表面のSe分圧が、内部のSe分圧よりも高い状態で維持されるようにすると、加熱工程におけるCIGS膜からのSeの放出を抑制でき、CIGS膜の組成をより好ましいものに制御できる。
 また、上記加熱工程終了時のCIGS膜が、0.95<Cu/(In+Ga)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着させることにより、上記CIGS膜が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、まず、上記加熱工程終了時のCIGS膜の組成が、0.95<Cu/(In+Ga)<1.30のモル比を満たすことにより、層(A)と層(B)との界面においても、Cu成分が充分に拡散され、結晶成長が起こるとともに、Cu(2-x)SeがCIGS膜内に過剰に取り込まれないため、このCIGS膜を素子に用いた際の素子特性は低下しない。そして、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着し、上記CIGS膜の組成が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、CIGS膜全体において、わずかにCu不足の状態にできるため、このCIGS膜を素子に用いた際に、より高効率の光吸収層とすることができる。
 なお、本発明におけるCIGS膜の(In+Ga)に対するCuの割合は、対象とするCIGS膜のCu、In、Gaの含有量を、エネルギー分散型蛍光X線装置(堀場製作所社製、EX-250)及びD-SIMS(ダイナミックシムス)評価装置(アルバック・ファイ社製)を用いて測定し、これらの原子数濃度に基づいて算出されるものである。
 さらに、基板上に、裏面電極層を設ける工程と、CIGS膜からなる光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程において、上記第1の要旨であるCIGS膜の製法を用いてCIGS膜からなる光吸収層を形成すると、得られたCIGS太陽電池を、素子ごとの変換効率のばらつきが少ない、再現性の高いものとすることができ、しかも、その変換効率を充分に高くできる。
本発明の概略を示す説明図である。 本発明の一実施の形態により得られるCIGS膜の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製造における各工程の温度変化プロファイルである。 本発明の一実施の形態により得られるCIGS太陽電池の説明図である。 従来例の概略を示す説明図である。
 つぎに、本発明を実施するための形態について説明する。
 図2は、本発明の一実施の形態により得られるCIGS膜3の説明図である。図2において、上記CIGS膜3は、CIGS太陽電池の光吸収層に用いられるもので、ソーダ石灰ガラス(SLG)からなる基板1上にモリブデン(Mo)からなる裏面電極層2が設けられ、この裏面電極層2上に、上記CIGS膜3が積層されている。以下に、上記各構成を詳しく説明するとともに、上記CIGS膜3を得る方法を詳細に説明する。なお、図2において、各部分は模式的に示したものであり、実際の厚み,大きさ等とは異なっている(以下の図においても同じ)。
 図2において、上記基板1は、支持基板として用いられるものであり、SLGの他にも、柔軟性のある金属箔等を基板として用いることができる。ただし、後の加熱工程での加熱に耐えられるように、520℃以上の温度に耐性のある材料を用いることが好ましい。
 上記裏面電極層2は、スパッタリング法により形成されたものである。また、Moの他にも、タングステン、クロム、チタン等を用いることができ、単層のみならず複層に形成することもできる。そして、その厚みは、100nm~1000nmの範囲にあることが好ましい。
 上記CIGS膜3は、Cu、In、Ga、Seの4元素を含む化合物半導体であり、その厚みは2.0μmである。また、Cu、In、Gaの組成比は、22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)となっている。
 このようなCIGS膜3は、以下のようにして製造することができる。まず、裏面電極層2が設けられた基板1を準備し、図3に示すように、裏面電極層2が形成された側から、基板1の保持温度を330℃とした状態で、In、Ga、Seを蒸着し、裏面電極層2上に層(A)4を形成する。
 そして、基板1の保持温度を330℃に保ったままで、図4に示すように、上記層(A)4側から、Cu、Seを蒸着し、上記層(A)4上に層(B)5が積層された積層体6を形成する。このとき、上記層(A)4および層(B)5は、いずれも固相状態である。したがって、この段階では、結晶成長は引き起こされない。
 つぎに、上記積層体6をさらに加熱し、基板1の保持温度を550℃とし、加熱昇華させたSe蒸気を供給した状態で、15分間保持することにより、上記層(B)5のCuとSeの化合物を溶融させ、液相状態とする。これにより、上記層(B)5中のCuが上記層(A)4中に拡散し、このなかで結晶成長が起こる。このとき、結晶は基板と平行な方向に成長する。この加熱工程により、上記層(A)4と層(B)5とが一体化し、CIGS膜3’となる(図5参照)。このとき、上記CIGS膜3’のCu、In、Gaの組成比は、25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっている。
 なお、上記積層工程(温度330℃)から加熱工程(温度550℃)への昇温は、10℃/秒で行っている。すなわち、昇温速度が遅すぎると、上記層(B)の液相化がゆっくりと進み、上記層(B)中のCuが層(A)中に急速に拡散することができず、結晶が大粒化しない傾向がみられるため、上記昇温は10℃/秒以上で行うことが好ましい。
 そして、図6に示すように、上記層(A)と層(B)とが一体化したCIGS膜3’に対し、基板1の保持温度を加熱工程時と同じ550℃に保持し、加熱昇華させたSe蒸気を供給した状態で、さらに、In、Ga、Seを蒸着させることにより、上記CIGS膜3(図2参照)を得ることができる。これにより、上記CIGS膜3全体を、わずかにCu不足の状態にできる。なお、上記実施の形態における基板1の保持温度のプロファイルを、図7に示す。
 このCIGS膜の製法によれば、先に述べたように、まず、温度330℃において、基板1にInとGaとSeを含む層(A)4と、CuとSeとを含む層(B)5をこの順で積層し、つぎに、上位層(A)4および層(B)5が積層された積層体6を加熱し、基板1の保持温度を550℃とした状態を、15分間保持するようにして、層(B)5のCuとSeとの化合物を溶融させ液相状態とし、上記層(A)4中に層(B)5中のCuを急速に拡散させるようにしている。このため、層(B)5に含まれるCuを均一的に層(A)4中に拡散でき、大粒で均一な結晶粒を有するCIGS膜3’を得ることができる。また、上記層(B)5に含まれるCuを、一旦、固相(層(B)5)として用いるため、膜内への過剰なCu(2-x)Seの取り込みを抑制できる。そして、層(A)と層(B)の積層を、基板1保持温度を330℃にした状態で行っているため、CIGS膜の結晶配向を、X線回折において、(220/204)ピーク強度比が大きいものにすることができる。また、加熱工程時に、加熱昇華させたSe蒸気が供給されているため、加熱によるSeの系外への放出を抑制でき、上記CIGS膜3’のCu,In,Gaの組成比を所望どおりに制御することができる。さらに、上記CIGS膜3’に対し、加熱工程時と同等の温度(550℃以上)において、In、Ga、Seとをさらに蒸着して、CIGS膜3としているため、CIGS膜3全体を、わずかにCu不足の状態にすることができ、このCIGS膜3を素子に用いた際に、より高効率の光吸収層とすることができる。
 なお、上記の実施の形態では、上記層(A)4および層(B)5の形成を、基板1の保持温度を330℃とした状態で行っているが、これに限らず、それぞれ250℃を超え400℃以下の範囲とした状態で行うことができる。なかでも、270~380℃の範囲の温度にすることが好ましく、280~350℃の範囲の温度にすることがより好ましい。温度が高すぎると、層(B)5を固相として層(A)4上に積層できないためであり、逆に温度が低すぎると、特定の配向性を有する結晶とするのが困難となる傾向がみられるためである。
 また、上記の実施の形態では、上記層(A)4および層(B)5が積層された積層体6に対する加熱を、基板1の保持温度を550℃にした状態で15分間行っているが、これに限らず加熱温度は520℃以上の温度で行うことが好ましい。また、その加熱時間は1~30分間とすることが好ましく、2~15分間とすることがより好ましい。これは、層(B)5に含まれるCuは、層(A)4への拡散は極めて速いが、充分な結晶成長をさせるには、ある程度の時間が必要なためである。
 さらに、上記の実施の形態では、加熱工程終了後のCIGS膜3’に対し、基板1保持温度を550℃にした状態で、さらに、In、Ga、Seを蒸着させているが、CIGS膜3’の表層に、膜内に取り込まれなかったCu、Se系の層が露出していない場合等には、In、Ga、Seをさらに蒸着させる必要はない。しかし、加熱工程終了後のCIGS膜3’に、さらにIn、Ga、Seを蒸着させると、膜内にCu-Se系の相が形成されず、充分な結晶成長をさせることができ、しかも、膜全体としてわずかにCu不足とすることが容易であるため、好適である。
 そして、上記実施の形態では、加熱工程終了後のCIGS膜3’の、Cu、In、Gaの組成比が25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっているが、これに限らず任意の組成比とすることができる。しかし、CIGS膜3’のCu、In、Gaの組成割合は、0.95<Cu/(In+Ga)<1.30(モル比)の式を満たす範囲内にあることが好ましい。Cu/(In+Ga)の値が低すぎると、Cu成分が不足し、充分な結晶成長が起きない傾向がみられ、逆に、高すぎると、CIGS膜3’内に、Cu(2-x)Seが過剰に取り込まれ、上記CIGS膜3’を素子に用いた際の素子特性が低下する傾向がみられるためである。
 さらに、上記実施の形態では、上記CIGS膜3のCu、In、Gaの組成比が22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)になっているが、これに限らず任意の組成比とすることができる。しかし、0.70<Cu/(In+Ga)<0.95(モル比)の式を満たすようになっていると、上記CIGS膜3内にCu(2-x)Seが過剰に取り込まれることをより阻止でき、しかも、膜全体としてわずかにCu不足にできる点で好ましい。また、同族元素であるGaとInとの比は、0.10<Ga/(In+Ga)<0.40の範囲にあることが好ましい。
 そして、上記実施の形態では、上記CIGS膜3の厚みは、2.0μmに形成されているが、これに限らず任意の厚みとすることができる。しかし、上記CIGS膜3の厚みは、1.0~3.0μmの範囲にあることが好ましく、1.5~2.5μmの範囲にあることがより好ましい。厚みが薄すぎると、光吸収層として用いた際の光吸収量が少なくなり、素子の性能が低下する傾向がみられ、逆に、厚すぎると、膜の形成にかかる時間が増加し、生産性に劣る傾向がみられるためである。
 また、上記実施の形態では、加熱工程時およびその後につづくIn、Ga、Seを蒸着させる工程において、Se蒸気を供給するようにしているが、これに代えてH2Seを供給するようにしてもよい。この場合も、Se蒸気を供給するのと同様の効果が得られる。また、上記CIGS膜3’およびCIGS膜3のSeの系外への放出が少ない等の場合には、これらを供給する必要はない。
 つぎに、上記のようにして得られたCIGS膜3を光吸収層として用いたCIGS太陽電池Qの構成およびこれを得る方法を以下に示す。このCIGS太陽電池Qは、図8に示すように、上記CIGS膜3の上に、バッファ層7、バッファ層8、透明導電層9がこの順に積層されている。
 より詳しく説明すると、まず、上記のようにして得られたCIGS膜3上に、化学浴堆積法(CBD法)により、硫化カドミウム(CdS)からなるバッファ層7(厚み50nm)を形成し、さらにスパッタリング法により、ZnOからなるバッファ層8(厚み50nm)を形成する。これらのバッファ層(7、8)は、上記CIGS膜3とpn接合できるよう、高抵抗のn型半導体が好ましく、上記CdSバッファ層およびZnOバッファ層の代わりに、ZnMgO、Zn(O,S)等の単層バッファ層を用いることができる。また、バッファ層(7、8)の厚みは、それぞれ30~200nmであることが好ましい。そして、バッファ層を単層にした場合でも30~200nmの範囲の厚みであることが好ましい。さらに、上記バッファ層7は上記CBD法等の溶液法により、上記バッファ層8はスパッタリング法等の真空製膜法によって形成することができる。なお、このようにバッファ層として複数種類の層を重ねて用いると、上記CIGS膜3とのpn接合をより良好にすることができるが、pn接合が充分に良好である場合には、必ずしも複数層設けなくてもよい。
 そして、上記バッファ層8上に、スパッタリング法により、酸化インジウム錫(ITO)からなる透明導電層9(厚み200nm)を形成する。この透明導電層9は、高透過率を有する材料を用いることが好ましく、上記ITOのほか、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(Al:ZnO)等を用いることができる。また、その厚みは100nm~300nmであることが好ましい。このようにして、基板1上に、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9がこの順に積層されたCIGS太陽電池Qを得ることができる。
 上記CIGS太陽電池の製法によれば、すでに述べたように、光吸収層として、前述のように、特殊な工程により得られたCIGS膜3を用いているため、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくいCIGS太陽電池Qを得ることができる。しかも、光吸収層であるCIGS膜3内に余剰なCu(2-x)Seが形成されないため、電池特性の低下が生じず、高効率となる。また、上記CIGS膜3全体として、わずかにCu不足の状態になっているため、さらに高効率とすることができる。そして、CIGS膜の結晶配向が、X線回折において、(220/204)ピーク強度比が大きいという特性を有しているため、CIGS太陽電池において、良好なpn接合の形成を得ることができ、一層の高効率とすることができる。
 なお、上記実施の形態では、CIGS太陽電池Qは、基板1、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9からなるが、必要であれば、上記透明導電層9上に、金属電極を形成してもよい。
 つぎに、実施例について、比較例と併せて説明する。ただし、本発明はこれに限定されるものではない。
〔実施例1〕
 上記実施の形態と同様にして、CIGS太陽電池を製造した。すなわち、基板1として、SLG(大きさ30×30mm、厚み0.55mm)を用意し、この上に、Mo(厚み500nm)を積層し、裏面電極層2を形成した。そして、基板1保持温度を255℃にした状態で、In、Ga、Seを蒸着し、層(A)を形成した。つづいて、基板1保持温度を255℃に保ったままの状態で、上記層(A)上にCu、Seを蒸着し、層(B)を積層し、積層体6を形成した。この積層体6を、微量のSe蒸気を供給しつつ加熱し、基板1保持温度が550℃の状態を15分間保持し、結晶成長を行いCIGS膜3’を得た。さらに、このCIGS膜3’に、微量のSeガスを供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜3(厚み2.0μm)を得た。このCIGS膜3を用いたCIGS太陽電池を実施例1品とした。
〔実施例2~6〕〔比較例1~3〕
 層(A)および層(B)形成時の基板1保持温度を後記の表1に示すように変更した他は、実施例1と同様にして、CIGS太陽電池を作製した。
 上記実施例品および比較例品をそれぞれ10個製造し、それらの変換効率を下記の手順に従って測定し、それぞれの平均変換効率を算出した。また、実施例品および比較例品に用いたCIGS膜を、X線回折装置を用いて、結晶の特性を測定し、ピーク強度比を算出した。これらの結果を下記の表1に併せて示す。
〔変換効率〕
 擬似太陽光(AM1.5)を各実施例品および比較例品の表面面積以上の領域に照射し、その変換効率をソーラーシミュレーター(セルテスターYSS150、山下電装社製)によって測定した。
〔X線回折〕
 各実施例品および比較例品に用いたCIGS膜について、その結晶配向性を、X線回折装置を用いて測定し、「(112)におけるピーク強度」に対する「(220/204)ピーク強度比」〔(220/204)/(112)〕を算出した。なお、X線回折は、ブルカー社製のXRD D8 DISCOVER with GADTSの装置を用い、入射角5°固定、ディテクタースキャン3°/minの条件で行った。
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、実施例1~6品は、CIGS膜の〔(220/204)/(112)〕ピーク強度比が0.43~1.23を示しており、平均変換効率が14.9%以上の高い値を示していた。したがって、本発明の製法によって、高効率の太陽電池を再現性よく得られることがわかった。一方、比較例1~3品は、CIGS膜の〔(220/204)/(112)〕ピーク強度比が0.25~0.38を示しており、平均変換効率が13.3~14.5%とやや低いものであった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いるCIGS膜を、良好な特性を再現性よく製造するのに適している。また、本発明のCIGS太陽電池の製法は、変換効率の高い太陽電池を、再現性よく製造するのに適している。

Claims (6)

  1.  CIGS太陽電池の光吸収層として用いられるCIGS膜の製法であって、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に250℃を超え400℃以下の加熱状態で積層する積層工程と、上記層(A)および層(B)が積層された積層体をさらに加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを特徴とするCIGS膜の製法。
  2.  上記加熱工程を、520℃以上の温度で行う請求項1記載のCIGS膜の製法。
  3.  上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行う請求項1または2記載のCIGS膜の製法。
  4.  上記加熱工程において、セレン蒸気もしくはセレン化水素を供給し、CIGS膜表面のセレン分圧が、内部のセレン分圧よりも高い状態で維持されるようにする請求項1~3のいずれか一項に記載のCIGS膜の製法。
  5.  上記加熱工程終了時のCIGS膜が、0.95<銅/(インジウム+ガリウム)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにインジウムとガリウムとセレンとを蒸着させることにより、上記CIGS膜が、0.70<銅/(インジウム+ガリウム)<0.95のモル比を満たすようにする請求項1~4のいずれか一項に記載のCIGS膜の製法。
  6.  基板上に、裏面電極層を設ける工程と、CIGS膜からなる光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程において、請求項1に記載のCIGS膜の製法を用いてCIGS膜からなる光吸収層を形成するようにしたことを特徴とするCIGS太陽電池の製法。
PCT/JP2014/051507 2013-02-12 2014-01-24 Cigs膜の製法およびそれを用いるcigs太陽電池の製法 WO2014125900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480006652.4A CN104981913A (zh) 2013-02-12 2014-01-24 Cigs膜的制法以及使用其的cigs太阳能电池的制法
US14/766,066 US20160005912A1 (en) 2013-02-12 2014-01-24 Cigs film production method, and cigs solar cell production method using the cigs film production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024584A JP2014154762A (ja) 2013-02-12 2013-02-12 Cigs膜の製法およびそれを用いるcigs太陽電池の製法
JP2013-024584 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125900A1 true WO2014125900A1 (ja) 2014-08-21

Family

ID=51353910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051507 WO2014125900A1 (ja) 2013-02-12 2014-01-24 Cigs膜の製法およびそれを用いるcigs太陽電池の製法

Country Status (5)

Country Link
US (1) US20160005912A1 (ja)
JP (1) JP2014154762A (ja)
CN (1) CN104981913A (ja)
TW (1) TW201442256A (ja)
WO (1) WO2014125900A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152085A (ja) * 2013-02-12 2014-08-25 Nitto Denko Corp Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
KR101638379B1 (ko) * 2015-01-28 2016-07-11 영남대학교 산학협력단 우선배향 제어된 cigs 박막 태양전지 및 그 제조방법
KR101668181B1 (ko) * 2015-02-06 2016-10-20 영남대학교 산학협력단 2단계 rtp 공정을 이용한 cis계 박막태양전지 제조 방법 및 상기 방법에 의해 제조된 cis계 박막태양전지
CN110649121A (zh) * 2018-06-11 2020-01-03 北京铂阳顶荣光伏科技有限公司 一种太阳能电池吸收层及其制备方法、太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513606A (ja) * 1993-04-12 1998-12-22 ミドウェスト リサーチ インスティチュート 太陽電池用の高効率Cu(In,Ga)(Se,S)2薄膜の製法
JP2003179238A (ja) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
JP2003273135A (ja) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法
WO2013035732A1 (ja) * 2011-09-07 2013-03-14 日東電工株式会社 Cigs膜の製法およびそれを用いるcigs太陽電池の製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167587A1 (en) * 2000-06-30 2002-01-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Preparation of compounds based on phase equilibria of Cu-In-Se
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
JP5246839B2 (ja) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
US20100243043A1 (en) * 2009-03-25 2010-09-30 Chuan-Lung Chuang Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
CN102534491B (zh) * 2011-10-19 2014-08-27 深圳市三海光电技术有限公司 高转化效率铜铟镓硒薄膜太阳能电池吸收层的制备设备及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513606A (ja) * 1993-04-12 1998-12-22 ミドウェスト リサーチ インスティチュート 太陽電池用の高効率Cu(In,Ga)(Se,S)2薄膜の製法
JP2003179238A (ja) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
JP2003273135A (ja) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法
WO2013035732A1 (ja) * 2011-09-07 2013-03-14 日東電工株式会社 Cigs膜の製法およびそれを用いるcigs太陽電池の製法

Also Published As

Publication number Publication date
US20160005912A1 (en) 2016-01-07
JP2014154762A (ja) 2014-08-25
CN104981913A (zh) 2015-10-14
TW201442256A (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
KR20130016281A (ko) 타이 층을 포함하는 광전자 활성 칼코겐계 박막 구조물
US20120222742A1 (en) Compound thin film solar cell and method for manufacturing the same
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
WO2014125900A1 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
JP5764016B2 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
US9614111B2 (en) CIGS film, and CIGS solar cell employing the same
WO2014125902A1 (ja) Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
US10090424B1 (en) Roll-to-roll solution process method for fabricating CIGS solar cells and system for the same
JP2017050337A (ja) Cigs半導体前駆体膜の製造方法およびそれを用いたcigs半導体膜の製造方法並びにそれらを用いたcigs太陽電池の製造方法
JP2014232797A (ja) 半導体前駆構造物およびそれを用いて得られるcigs半導体構造物ならびにそれを用いるcigs太陽電池とその製造方法
JP2016154172A (ja) Cigs太陽電池およびその製造方法
WO2016132637A1 (ja) Cigs太陽電池およびその製造方法
JP5851434B2 (ja) Cigs膜の製法およびその製法を用いたcigs太陽電池の製法
KR101406704B1 (ko) 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법
WO2014125901A1 (ja) Cigs膜およびそれを用いるcigs太陽電池
JP2014154758A (ja) Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
KR20150108539A (ko) 태양전지 제조방법 및 이를 이용하여 제조된 박막 태양전지
TWM471360U (zh) 一種cigs薄膜太陽電池前驅層結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751847

Country of ref document: EP

Kind code of ref document: A1