WO2013035732A1 - Cigs膜の製法およびそれを用いるcigs太陽電池の製法 - Google Patents

Cigs膜の製法およびそれを用いるcigs太陽電池の製法 Download PDF

Info

Publication number
WO2013035732A1
WO2013035732A1 PCT/JP2012/072590 JP2012072590W WO2013035732A1 WO 2013035732 A1 WO2013035732 A1 WO 2013035732A1 JP 2012072590 W JP2012072590 W JP 2012072590W WO 2013035732 A1 WO2013035732 A1 WO 2013035732A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cigs
cigs film
film
solar cell
Prior art date
Application number
PCT/JP2012/072590
Other languages
English (en)
French (fr)
Inventor
洸人 西井
成紀 森田
誠喜 寺地
細川 和人
高志 峯元
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US14/241,007 priority Critical patent/US8962379B2/en
Priority to EP12830489.6A priority patent/EP2755242B1/en
Priority to KR1020147006884A priority patent/KR101785771B1/ko
Priority to CN201280042573.XA priority patent/CN103765604B/zh
Publication of WO2013035732A1 publication Critical patent/WO2013035732A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a CIGS film used as a light absorption layer of a CIGS solar cell having good characteristics by causing uniform copper diffusion and uniform crystal grains, and a method for producing a CIGS solar cell using the same.
  • Thin film solar cells represented by amorphous silicon solar cells and compound thin film solar cells can greatly reduce material costs and manufacturing costs compared to conventional crystalline silicon solar cells. For this reason, in recent years, these research and development have been advanced rapidly. Especially, it is a compound thin-film solar cell having elements of Group I, III, and VI as constituents, and the light absorption layer is made of copper (Cu), indium (In), gallium (Ga), selenium (Se) alloy.
  • the CIGS solar cell made of is attracting particular attention among thin-film solar cells because it does not use any silicon and has excellent solar conversion efficiency (hereinafter referred to as “conversion efficiency”).
  • the light absorption layer in such a CIGS solar cell can be manufactured by a selenization method, a non-vacuum process (nanoparticle) method, a vacuum deposition method, or the like.
  • the vacuum evaporation method is a manufacturing method in which Cu, In, Ga, and Se are heated by different evaporation sources to form a film by evaporation, and the film can be formed while controlling the discharge amount of each element. It has the advantage that it can be controlled.
  • the highest conversion efficiency is obtained by a method called a three-stage method which is a kind of multi-source deposition method.
  • the process is divided into three stages. First, in the first stage, In, Ga, and Se are vapor-deposited on the substrate, and (In, Ga) 2 A Se 3 film is formed. In the next second stage, the substrate temperature is raised to 550 ° C., and Cu and Se are further deposited to form a CIGS film having an excessive Cu composition. In the CIGS film at this stage, two phases of liquid phase Cu (2-x) Se and solid phase CIGS coexist, and the crystal suddenly increases in size due to Cu (2-x) Se.
  • the CIGS thin film obtained by the three-stage method has a large crystal grain size, and has a crystallographically high-quality thin film crystal structure as compared with that obtained by the conventional vapor deposition method (for example, Patent Documents). 1.).
  • the present invention has been made in view of such circumstances, and includes a CIGS film manufacturing method capable of manufacturing a CIGS film excellent in conversion efficiency at low cost with high reproducibility even when a large-area element is manufactured, and the same.
  • the purpose is to provide a method for producing a CIGS solar cell.
  • the CIGS film production method of the present invention is a CIGS film production method used as a light absorption layer of a CIGS solar cell, comprising a layer (A) containing indium, gallium and selenium, copper and A layering step of laminating a layer (B) containing selenium on a substrate in this order in a solid state, and heating the layered body in which the layer (A) and the layer (B) are layered, the layer (B) And a heating step of obtaining a CIGS film by diffusing copper in the layer (B) into the layer (A) to cause crystal growth by melting in a liquid phase state.
  • the second gist is a CIGS solar cell production method that uses the CIGS film production method as the first gist.
  • the present inventors have focused on CIGS solar cells among compound semiconductor solar cells and repeated research. As a result, instead of obtaining the CIGS film as the light absorption layer of the CIGS solar cell by the conventional three-step method shown in FIG. 8B, first, as shown in FIG.
  • a layer (A) containing In, Ga and Se and a layer (B) containing Cu and Se are laminated together in this order on the substrate in this order, and then the two layers (A) , (B) is heated to melt the compound of Cu and Se in the layer (B) to form a liquid phase, whereby the layer (B) contains the layer (B) in the layer (B). It is found that when Cu is diffused and crystal is grown to obtain a CIGS film, the crystal grains in the film become uniform large grains and excessive Cu (2-x) Se is not taken into the film. The present invention has been reached.
  • the crystal grains of the CIGS film as a light absorption layer are large and uniform, so that the conversion efficiency increases and each element A CIGS solar cell in which variations in the conversion efficiency are unlikely to occur can be obtained.
  • excess Cu (2-x) Se is not formed in the CIGS film, the battery characteristics are not adversely affected. Therefore, a highly efficient CIGS solar cell can be obtained with good reproducibility.
  • solid phase refers to a phase that is in a solid state at that temperature
  • liquid phase refers to a phase that is in a liquid state at that temperature
  • the layer (A) and the layer (B) are laminated on the substrate means not only the case where these are laminated directly on the substrate, but also the case where these are laminated on the substrate via other layers. Is included.
  • a layer (A) containing In, Ga and Se and a layer (B) containing Cu and Se are laminated in this order on the substrate. It has become. For this reason, the layer (B) can be laminated with a uniform thickness on the layer (A) which is also in the solid phase in the solid phase. At this stage, mutual diffusion of each layer is suppressed.
  • the layered body in which the two layers (A) and (B) are stacked is heated to melt the Cu and Se compound in the layer (B) to be in a liquid phase state. Then, Cu in the layer (B) diffuses rapidly.
  • the layer (B) is formed on the layer (A) with a uniform thickness in the previous process, Cu in the layer (B) is uniformly diffused in the layer (A). As a result, large and uniform crystal grains are formed. Moreover, since the layer (B) is once used as a solid phase, Cu (2-x) Se can be prevented from being excessively taken into the CIGS film. Therefore, the CIGS solar cell using the CIGS film obtained by this manufacturing method has high conversion efficiency and hardly causes variations in conversion efficiency for each element. In addition, since excess Cu (2-x) Se is not formed in the film, the battery characteristics are not adversely affected.
  • the above-described lamination step is performed at a temperature in the range of 100 to 250 ° C., mutual diffusion at the interface between the layer (A) and the layer (B) can be suppressed to a minimum.
  • By heating the laminate larger and more uniform crystal grains can be formed.
  • the heating step is performed at a temperature of 520 ° C. or higher, most of the Cu and Se compounds in the layer (B) melt, so that the Cu in the layer (B) is more contained in the layer (A). It can be diffused rapidly and uniformly, and larger and more uniform crystal grains can be formed.
  • the liquid phase of the layer (B) rapidly proceeds, and the layer (A) Further, Cu in the layer (B) diffuses more rapidly, so that larger and more uniform crystals are formed in the film.
  • the heating step when the Se vapor or hydrogen selenide (H 2 Se) is supplied so that the Se partial pressure on the CIGS film surface is maintained higher than the internal Se partial pressure, the heating step The release of Se from the CIGS film can be suppressed, and the composition of the CIGS film can be made more preferable.
  • H 2 Se hydrogen selenide
  • the CIGS film at the end of the heating step is obtained by the heating step while satisfying the molar ratio of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30 and maintaining the temperature during the heating step.
  • the CIGS film satisfies the molar ratio of 0.70 ⁇ Cu / (In + Ga) ⁇ 0.95 by further depositing In, Ga, and Se on the CIGS film, first, the heating step
  • the composition of the CIGS film at the end satisfies the molar ratio of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30, the Cu component is sufficiently present even at the interface between the layer (A) and the layer (B).
  • the CIGS solar cell which has the process of providing a back surface electrode layer on a board
  • the CIGS film manufacturing method as the first gist is used as the step of providing, the obtained CIGS solar cell can be made highly reproducible with little variation in conversion efficiency for each element, The conversion efficiency can be sufficiently increased.
  • FIG. 1 is an explanatory diagram of a CIGS film 3 obtained according to an embodiment of the present invention.
  • the CIGS film 3 is used for a light absorption layer of a CIGS solar cell.
  • a back electrode layer 2 made of molybdenum (Mo) is provided on a substrate 1 made of soda-lime glass (SLG).
  • the CIGS film 3 is laminated on the back electrode layer 2.
  • the substrate 1 is used as a support substrate, and in addition to SLG, a flexible metal foil or the like can be used as a substrate.
  • a material resistant to a temperature of 520 ° C. or higher so that it can withstand the heating in the subsequent heating step.
  • the back electrode layer 2 is formed by a sputtering method.
  • tungsten, chromium, titanium, or the like can be used, and it can be formed not only in a single layer but also in multiple layers.
  • the thickness is preferably in the range of 100 nm to 1000 nm.
  • the CIGS film 3 is a compound semiconductor containing four elements of Cu, In, Ga, and Se, and has a thickness of 2.0 ⁇ m.
  • the composition ratio of Cu, In and Ga is 22.1: 21.2: 7.5, and Cu / (In + Ga) ⁇ 0.77 (molar ratio).
  • Such a CIGS film 3 can be manufactured as follows. First, a substrate 1 provided with a back electrode layer 2 is prepared. As shown in FIG. 2, from the side where the back electrode layer 2 is formed, with the holding temperature of the substrate 1 being 200 ° C., In, Ga , Se is vapor-deposited to form a layer (A) 4 on the back electrode layer 2.
  • the laminated body 6 is heated, the holding temperature of the substrate 1 is set to 550 ° C., and the heated and sublimated Se vapor is supplied for 15 minutes, whereby the compound of Cu and Se in the layer (B) is obtained.
  • the layer (A) and the layer (B) are integrated into a CIGS film 3 '(see FIG. 4).
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ is 25.1: 18.5: 6.4, and Cu / (In + Ga) ⁇ 1.00 (molar ratio). .
  • the temperature increase from the above-described lamination process (temperature 200 ° C.) to the heating process (temperature 550 ° C.) is performed at 10 ° C./second. That is, if the rate of temperature rise is too slow, the liquid phase of the layer (B) proceeds slowly, Cu in the layer (B) cannot rapidly diffuse into the layer (A), and crystals are formed. Since there is a tendency that the particles do not become large, the above temperature rise is preferably performed at 10 ° C./second or more.
  • substrate 1 is hold
  • the CIGS film 3 (see FIG. 1) can be obtained by further depositing In, Ga, and Se in a state where the vaporized Se vapor is supplied. Thereby, the whole CIGS film 3 can be made slightly Cu-deficient.
  • a profile of the holding temperature of the substrate 1 in the above embodiment is shown in FIG.
  • the layer (A) 4 containing In, Ga and Se on the substrate 1 and the layer (B) containing Cu and Se. 5 are laminated in this order, and then the laminated body 6 in which the layer (A) 4 and the layer (B) 5 are laminated is heated to hold the substrate 1 at a holding temperature of 550 ° C. for 15 minutes.
  • the compound of Cu and Se in the layer (B) 5 is melted to form a liquid phase, and the Cu in the layer (B) 5 is rapidly diffused into the layer (A) 4. .
  • Cu contained in the layer (B) 5 can be uniformly diffused into the layer (A) 4, and a CIGS film 3 ′ in which large and uniform crystal grains are formed can be obtained.
  • Cu contained in the layer (B) 5 is once used as a solid phase (layer (B) 5), it is possible to suppress excessive Cu (2-x) Se incorporation into the film.
  • the Se vapor heated and sublimated is supplied during the heating process, it is possible to suppress the release of Se out of the system due to heating, and the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ is as desired. Can be adjusted.
  • the CIGS film 3 ′ is further vapor-deposited with In, Ga, and Se at the same temperature (550 ° C. or higher) as in the heating step, the CIGS film 3 is slightly formed.
  • a more efficient light absorption layer can be obtained.
  • the formation of the layer (A) 4 and the layer (B) 5 is performed in a state where the holding temperature of the substrate 1 is set to 200 ° C.
  • the temperature can be set to an arbitrary temperature.
  • the formation of the layer (A) 4 and the layer (B) 5 is preferably carried out in a state where the holding temperature of the substrate 1 is set to a temperature in the range of 100 to 250 ° C., respectively. It is preferable to carry out at a temperature in the range. If the temperature is too high, the layer (B) 5 cannot be laminated on the layer (A) 4 as a solid phase. Conversely, if the temperature is too low, formation of each layer by vapor deposition tends to be difficult. It is.
  • the laminate 6 in which the layers (A) 4 and (B) 5 are laminated is heated for 15 minutes in a state where the holding temperature of the substrate 1 is 550 ° C.
  • the heating temperature is preferably 520 ° C. or higher.
  • the heating time is preferably 1 to 30 minutes, more preferably 2 to 15 minutes. This is because Cu contained in the layer (B) 5 diffuses very rapidly into the layer (A) 4 but requires a certain amount of time for sufficient crystal growth to occur.
  • In, Ga, and Se are further deposited on the CIGS film 3 ′ after the heating step in a state where the substrate 1 holding temperature is 550 ° C., but the CIGS film 3
  • a Cu or Se-based layer that has not been incorporated into the film is not exposed on the surface layer of ′, it is not necessary to further deposit In, Ga, and Se.
  • In, Ga, and Se are further deposited on the CIGS film 3 ′ after the heating step, a Cu—Se phase is not formed in the film, and sufficient crystal growth can be achieved. Since it is easy to make Cu slightly short as the whole film
  • finish of a heating process is 25.1: 18.5: 6.4, and Cu / (In + Ga) ⁇ 1.
  • the composition ratio is not limited to this and can be any composition ratio.
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 ′ is preferably in a range that satisfies the formula of 0.95 ⁇ Cu / (In + Ga) ⁇ 1.30 (molar ratio).
  • Cu / (In + Ga) is too low, there is a tendency that the Cu component is insufficient and sufficient crystal growth does not occur.
  • Cu (2-x) is contained in the CIGS film 3 ′. This is because Se is taken in excessively and the device characteristics tend to be deteriorated when the CIGS film 3 'is used for the device.
  • the composition ratio of Cu, In, and Ga in the CIGS film 3 is 22.1: 21.2: 7.5, and Cu / (In + Ga) ⁇ 0.77 (molar ratio).
  • the present invention is not limited to this, and an arbitrary composition ratio can be obtained.
  • the expression 0.70 ⁇ Cu / (In + Ga) ⁇ 0.95 (molar ratio) is satisfied, it is indicated that Cu (2-x) Se is excessively taken into the CIGS film 3. This is preferable in that it can be further prevented and the entire film can be slightly deficient in Cu.
  • the ratio of Ga and In which are homologous elements is in the range of 0.10 ⁇ Ga / (In + Ga) ⁇ 0.40.
  • membrane 3 is formed in 2.0 micrometers, it can be set not only to this but arbitrary thickness.
  • the thickness of the CIGS film 3 is preferably in the range of 1.0 to 3.0 ⁇ m, and more preferably in the range of 1.5 to 2.5 ⁇ m. If the thickness is too thin, the amount of light absorption when used as a light-absorbing layer will decrease, and the performance of the device will tend to be reduced. Conversely, if it is too thick, the time taken to form the film will increase, producing This is because the tendency to be inferior is seen.
  • Se vapor is supplied during the heating process and in the subsequent process of depositing In, Ga, and Se.
  • H 2 Se is supplied. Also good. In this case, the same effect as that of supplying Se vapor can be obtained. Further, when there is little release of Se out of the CIGS film 3 ′ and CIGS film 3 into the system, it is not necessary to supply them.
  • a buffer layer 7, a buffer layer 8, and a transparent conductive layer 9 are laminated in this order on the CIGS film 3.
  • a buffer layer 7 (thickness 50 nm) made of cadmium sulfide (CdS) is formed on the obtained CIGS film 3 by a chemical bath deposition method (CBD method), and further by a sputtering method, A buffer layer 8 (thickness 50 nm) made of ZnO is formed.
  • These buffer layers (7, 8) are preferably high-resistance n-type semiconductors so that they can be pn-junction with the CIGS film 3.
  • a single layer such as ZnMgO, Zn (O, S), etc. Can be used.
  • the thickness of the buffer layers (7, 8) is preferably 30 to 200 nm.
  • the thickness is preferably in the range of 30 to 200 nm.
  • the buffer layer 7 can be formed by the CBD method, which is a solution method
  • the buffer layer 8 can be formed by a sputtering method, which is a vacuum film forming method.
  • the pn junction with the CIGS film 3 can be improved.
  • a plurality of layers are not necessarily provided. It is not necessary to provide a layer.
  • a transparent conductive layer 9 (thickness 200 nm) made of indium tin oxide (ITO) is formed on the buffer layer 8 by sputtering.
  • the transparent conductive layer 9 is preferably made of a material having high transmittance.
  • ITO indium zinc oxide
  • Al zinc aluminum oxide
  • the thickness is preferably 100 nm to 300 nm.
  • the CIGS solar since the CIGS film 3 is used as the light absorption layer, the CIGS solar has high conversion efficiency and hardly causes variation in conversion efficiency for each element. Battery Q can be obtained.
  • excess Cu (2-x) Se is not formed in the CIGS film 3 as the light absorption layer, the battery characteristics are not deteriorated and the efficiency is improved.
  • the efficiency can be further increased.
  • the solar cell Q includes the substrate 1, the back electrode layer 2, the CIGS film 3, the buffer layer 7, the buffer layer 8, and the transparent conductive layer 9. If necessary, the transparent conductive layer A metal electrode may be formed on 9.
  • Example 1 A CIGS solar cell was manufactured in the same manner as in the above embodiment. That is, SLG (size 30 ⁇ 30 mm, thickness 0.55 mm) was prepared as the substrate 1, and Mo (thickness 500 nm) was laminated thereon to form the back electrode layer 2. Then, In, Ga, and Se were vapor-deposited in a state where the substrate 1 holding temperature was 200 ° C. to form a layer (A). Subsequently, Cu and Se were vapor-deposited on the layer (A) while the substrate 1 holding temperature was kept at 200 ° C., and the layer (B) was laminated to form a laminate 6.
  • the laminate 6 was heated while supplying a small amount of Se vapor, and the substrate 1 holding temperature was held at 550 ° C. for 15 minutes, and crystal growth was performed to obtain a CIGS film 3 ′. Further, while supplying a small amount of Se gas to this CIGS film 3 ′, In, Ga, and Se are vapor-deposited while maintaining the substrate 1 holding temperature at 550 ° C., the target CIGS film 3 (thickness 2 0.0 ⁇ m) was obtained. A CIGS solar cell using this CIGS film 3 was designated as Example 1. In addition, the schematic for obtaining Example 1 goods is shown in FIG. 8 (a).
  • Example 1 Similarly to Example 1, a substrate 1 on which a back electrode layer 2 was formed was prepared. Then, Cu, In, Ga, and Se were vapor-deposited in a state where the holding temperature of the substrate 1 was set to 200 ° C., and a layer made of Cu, In, Ga, and Se that slightly increased Cu was formed. This was heated while supplying a small amount of Se gas, held for 15 minutes at a substrate 1 holding temperature of 550 ° C., and crystal growth was performed to obtain a CIGS film ′ (not shown).
  • the target CIGS film (thickness 2.0 ⁇ m) is deposited by depositing In, Ga, and Se while maintaining the substrate 1 holding temperature at 550 ° C. )
  • the CIGS solar cell using this CIGS film was designated as one comparative example.
  • a schematic diagram for obtaining one product of Comparative Example is shown in FIG.
  • Example 2 Similarly to Example 1, a substrate 1 on which a back electrode layer 2 was formed was prepared. Then, In, Ga, and Se were vapor-deposited in a state where the holding temperature of the substrate 1 was 350 ° C., and a layer made of In, Ga, and Se was formed. Next, in a state where the holding temperature of the substrate 1 is heated to 550 ° C., Cu and Se are deposited on this layer, and crystal growth is performed to obtain a CIGS film ′′ (not shown). .
  • composition ratio of Cu / (In + Ga) The contents of Cu, In, and Ga in the CIGS films used in each of the examples and comparative examples were measured using an energy dispersive X-ray fluorescence apparatus (EX-250, Horiba Seisakusho). Based on the above, the composition ratio of Cu / (In + Ga) was calculated.
  • the product of Example 1 shows a high average conversion efficiency of 14.7%, and the variation in the conversion efficiency between the elements is only 2.5, which is the production method of the present invention.
  • the product of Comparative Example 1 had a relatively small variation in conversion efficiency of 3.0, the average conversion efficiency was as low as 9.5%.
  • the two comparative examples had a relatively high average conversion efficiency of 13.6%, but had a large conversion efficiency variation of 3.6.
  • the method for producing a CIGS film of the present invention is suitable for producing a CIGS film used as a light absorption layer of a CIGS solar cell with good characteristics and good reproducibility. Moreover, the manufacturing method of the CIGS solar cell of this invention is suitable for manufacturing a solar cell with high conversion efficiency with sufficient reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 大面積素子を製造する場合であっても、変換効率に優れるCIGS膜を、低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法を提供するため、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)の銅とセレンの化合物を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有するようにした。

Description

CIGS膜の製法およびそれを用いるCIGS太陽電池の製法
 本発明は、均一な銅拡散を引き起こし、結晶粒の均一化を図ることにより、良好な特性を有するCIGS太陽電池の光吸収層として用いるCIGS膜の製法およびそれを用いるCIGS太陽電池の製法に関する。
 アモルファスシリコン太陽電池や化合物薄膜太陽電池に代表される薄膜型太陽電池は、従来の結晶型シリコン太陽電池と比較すると、材料コストや製造コストの大幅な削減が可能である。このため、近年、これらの研究開発が急速に進められている。なかでも、I族、III族、VI族の元素を構成物質とした化合物薄膜太陽電池であって、光吸収層が銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)合金からなるCIGS太陽電池は、シリコンを全く使用せず、しかも優れた太陽光変換効率(以下「変換効率」とする)を有するため、薄膜太陽電池の中でも特に注目されている。
 このようなCIGS太陽電池における光吸収層は、セレン化法、非真空プロセス(ナノ粒子)法、真空蒸着法等により製造することができる。真空蒸着法は、Cu、In、Ga、Seを各々別の蒸着源にて加熱し、蒸着により製膜する製法であり、各元素の吐出量を制御しながら製膜できるため、厚み方向に組成制御が可能であるという利点を有している。
 真空蒸着法のうち、最も高い変換効率が得られるのは、多源蒸着法の一種である3段階法と呼ばれる方法である。この方法は、〔図8(b)〕に示すように、工程が3段階に分離されており、まず第1段階目で基板上にIn、Ga、Seを蒸着し、(In,Ga)2Se3膜を形成する。つぎの2段階目で、この基板温度を550℃に上昇させ、さらにCu、Seを蒸着し、Cu過剰組成のCIGS膜を形成する。この段階におけるCIGS膜は、液相Cu(2-x)Seと固相CIGSの2相が共存しており、Cu(2-x)Seにより結晶の急激な大粒化が起きる。
 一方、Cu(2-x)Seは低抵抗であるため、太陽電池特性に悪影響を与えることが知られている。したがって、3段階法では、その第3段階目で、Cu(2-x)Seを低減させるため、さらにIn、Ga、Seを蒸着し、CIGS膜全体として、わずかにIII族が過剰な組成となるようにしている。3段階法で得られたCIGS薄膜は、結晶が大粒径となり、しかも、従来の蒸着法で得られるものと比べ、結晶学的に高品質な薄膜結晶組織になるとされる(例えば、特許文献1。)。
 このような3段階法で得られたCIGS膜を太陽電池に適用すると、小面積素子の視点でみた場合には、確かに高い変換効率が得られ良好である。しかし、このCIGS膜は、結晶成長を引き起こすための主成分であるCu(2-x)Seをはじめから液相として供給していることから、膜内へのCuの拡散が必ずしも均一に行われておらず、その結晶粒は厳密には必ずしも均一ではない。したがって、このCIGS膜を用いて大面積素子を製造する場合には、素子ごとの変換効率にばらつきが生じ、再現性に劣る。また、Cu(2-x)Seを液相として供給していることから、膜内にこれが過剰に取り込まれ易くなっており、素子の特性が低下するという問題も有している。
特表平10-513606号公報
 本発明は、このような事情に鑑みなされたもので、大面積素子を製造する場合であっても、変換効率に優れるCIGS膜を低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法の提供をその目的とする。
 上記目的を達成するため、本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いられるCIGS膜の製法であって、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを第1の要旨とする。
 そして、基板上に、裏面電極層を設ける工程と、光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程として、上記第1の要旨であるCIGS膜の製法を用いるCIGS太陽電池の製法を第2の要旨とする。
 すなわち、本発明者らは、光吸収係数が高く、省資源化に有効な太陽電池を得るため、化合物半導体系太陽電池の中でも、特にCIGS太陽電池に着目し、研究を重ねた。その結果、CIGS太陽電池の光吸収層であるCIGS膜を、〔図8(b)〕に示す従来法の3段階法で得るのではなく、〔図8(a)〕に示すように、まず、基板に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をともに固相状態で、この順で積層し、つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)の中に上記層(B)中のCuを拡散させ、結晶成長させてCIGS膜を得るようにすると、膜内の結晶粒が均一な大型粒になるとともに、膜内に余剰なCu(2-x)Seが取り込まれないことを見い出し、本発明に到達した。そして、本発明のCIGS膜製法をその一部に用いてCIGS太陽電池を製造すると、光吸収層であるCIGS膜の結晶粒が大粒でしかも均一になるため、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくいCIGS太陽電池を得ることができる。しかも、上記CIGS膜内に余剰なCu(2-x)Seが形成されないため、電池特性に悪影響を及ぼさない。したがって、高効率のCIGS太陽電池を再現性よく得ることができる。
 なお、本発明において、「固相」とは、その温度において固体状態にある相のことをいい、「液相」とは、その温度において液体状態にある相のことを意味する。
 また、本発明において、「基板に層(A)と層(B)を積層する」とは、基板に直接これらを積層する場合だけでなく、基板に他の層を介してこれらを積層する場合を含むことを意味する。
 このように、本発明のCIGS膜の製法は、まず、基板上に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をこの順で積層するようになっている。このため、層(B)を固相状態で、同じく固相状態の層(A)上に均一な厚みで積層できる。なお、この段階では各層の相互拡散は抑制されている。つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中のCuが急速に拡散する。このとき、層(B)は、先の過程で、均一な厚みで層(A)上に形成されているため、上記層(B)中のCuは、層(A)中に均一的に拡散され、大粒で均一な結晶粒が形成される。また、層(B)を一旦、固相として用いるため、Cu(2-x)Seが過剰にCIGS膜内に取り込まれることを抑制できる。したがって、この製法により得られたCIGS膜を用いたCIGS太陽電池は、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくい。しかも、膜内に余剰なCu(2-x)Seが形成されないため、電池特性に悪影響を及ぼすこともない。
 また、上記積層工程を、100~250℃の範囲の温度で行うと、層(A)と層(B)の互いの界面における相互拡散を最小に抑制することができるため、後の工程でこの積層体を加熱することにより、より大粒で均一な結晶粒を形成することができる。
 そして、上記加熱工程を、520℃以上の温度で行うと、層(B)のCuとSeの化合物のほとんどが溶融するため、上記層(A)中に上記層(B)中のCuをより急速、かつ均一に拡散させることができ、より大粒で均一な結晶粒を形成することができる。
 さらに、上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行うと、層(B)の液相化が急速に進み、上記層(A)中に上記層(B)中のCuがより急速に拡散することにより、膜内においてより大粒で均一な結晶が形成されるようになる。
 そして、上記加熱工程において、Se蒸気もしくはセレン化水素(H2Se)を供給し、CIGS膜表面のSe分圧が、内部のSe分圧よりも高い状態で維持されるようにすると、加熱工程におけるCIGS膜からのSeの放出を抑制でき、CIGS膜の組成をより好ましいものにできる。
 また、上記加熱工程終了時のCIGS膜が、0.95<Cu/(In+Ga)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着させることにより、上記CIGS膜が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、まず、上記加熱工程終了時のCIGS膜の組成が、0.95<Cu/(In+Ga)<1.30のモル比を満たすことにより、層(A)と層(B)との界面においても、Cu成分が充分に拡散され、結晶成長が起こるとともに、Cu(2-x)SeがCIGS膜内に過剰に取り込まれないため、このCIGS膜を素子に用いた際の素子特性は低下しない。そして、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着し、上記CIGS膜の組成が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、CIGS膜全体において、わずかにCu不足の状態にできるため、このCIGS膜を素子に用いた際に、より高効率の光吸収層とすることができる。
 さらに、基板上に、裏面電極層を設ける工程と、CIGS膜を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記CIGS膜を設ける工程として、上記第1の要旨であるCIGS膜の製法を用いると、得られたCIGS太陽電池を、素子ごとの変換効率のばらつきが少ない、再現性の高いものとすることができ、しかも、その変換効率を充分に高くできる。
本発明の一実施の形態により得られるCIGS膜の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 上記CIGS膜の製法の説明図である。 本発明の一実施の形態により得られるCIGS太陽電池の説明図である。 (a)は本発明の概略を示す説明図であり、(b)は従来例の概略を示す説明図である。 比較例1の概略を示す説明図である。
 つぎに、本発明を実施するための形態について説明する。
 図1は、本発明の一実施の形態により得られるCIGS膜3の説明図である。図1において、上記CIGS膜3は、CIGS太陽電池の光吸収層に用いられるもので、ソーダ石灰ガラス(SLG)からなる基板1上にモリブデン(Mo)からなる裏面電極層2が設けられ、この裏面電極層2上に、上記CIGS膜3が積層されている。以下に、上記各構成を詳しく説明するとともに、上記CIGS膜3を得る方法を詳細に説明する。なお、図1において、各部分は模式的に示したものであり、実際の厚み,大きさ等とは異なっている(以下の図においても同じ)。
 図1において、上記基板1は、支持基板として用いられるものであり、SLGの他にも、柔軟性のある金属箔等を基板として用いることができる。ただし、後の加熱工程での加熱に耐えられるように、520℃以上の温度に耐性のある材料を用いることが好ましい。
 上記裏面電極層2は、スパッタリング法により形成されたものである。また、Moの他にも、タングステン、クロム、チタン等を用いることができ、単層のみならず複層に形成することもできる。そして、その厚みは、100nm~1000nmの範囲にあることが好ましい。
 上記CIGS膜3は、Cu、In、Ga、Seの4元素を含む化合物半導体であり、その厚みは2.0μmである。また、Cu、In、Gaの組成比は、22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)となっている。
 このようなCIGS膜3は、以下のようにして製造することができる。まず、裏面電極層2が設けられた基板1を準備し、図2に示すように、裏面電極層2が形成された側から、基板1の保持温度を200℃とした状態で、In、Ga、Seを蒸着し、裏面電極層2上に層(A)4を形成する。
 そして、基板1の保持温度を200℃に保ったままで、図3に示すように、上記層(A)4側から、Cu、Seを蒸着し、上記層(A)4上に層(B)5が積層された積層体6を形成する。このとき、上記層(A)4および層(B)5は、いずれも固相状態であるため、両層間の拡散は最小レベルに抑えられている。したがって、この段階では、結晶成長は引き起こされない。
 さらに、上記積層体6を加熱し、基板1の保持温度を550℃とし、加熱昇華させたSe蒸気を供給した状態で、15分間保持することにより、上記層(B)のCuとSeの化合物を溶融させ、液相状態とする。これにより、上記層(B)中のCuが上記層(A)中に拡散し、このなかで結晶成長が起こる。このとき、結晶は基板と平行な方向に成長する。この加熱工程により、上記層(A)と層(B)とが一体化し、CIGS膜3’となる(図4参照)。このとき、上記CIGS膜3’のCu、In、Gaの組成比は、25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっている。
 なお、上記積層工程(温度200℃)から加熱工程(温度550℃)への昇温は、10℃/秒で行っている。すなわち、昇温速度が遅すぎると、上記層(B)の液相化がゆっくりと進み、上記層(B)中のCuが層(A)中に急速に拡散することができず、結晶が大粒化しない傾向がみられるため、上記昇温は10℃/秒以上で行うことが好ましい。
 そして、図5に示すように、上記層(A)と層(B)とが一体化したCIGS膜3’に対し、基板1の保持温度を加熱工程時と同じ550℃に保持し、加熱昇華させたSe蒸気を供給した状態で、さらに、In、Ga、Seを蒸着させることにより、上記CIGS膜3(図1参照)を得ることができる。これにより、上記CIGS膜3全体を、わずかにCu不足の状態にできる。なお、上記実施の形態における基板1の保持温度のプロファイルを、図6に示す。
 このCIGS膜の製法によれば、先に述べたように、まず、温度200℃において、基板1にInとGaとSeを含む層(A)4と、CuとSeとを含む層(B)5をこの順で積層し、つぎに、上記層(A)4および層(B)5が積層された積層体6を加熱し、基板1の保持温度を550℃とした状態を、15分間保持するようにして、層(B)5のCuとSeとの化合物を溶融させ液相状態とし、上記層(A)4中に層(B)5中のCuを急速に拡散させるようにしている。このため、層(B)5に含まれるCuを均一的に層(A)4中に拡散でき、大粒で均一な結晶粒が形成されたCIGS膜3’を得ることができる。また、上記層(B)5に含まれるCuを、一旦、固相(層(B)5)として用いるため、膜内への過剰なCu(2-x)Seの取り込みを抑制できる。そして、加熱工程時に、加熱昇華させたSe蒸気が供給されているため、加熱によるSeの系外への放出を抑制でき、上記CIGS膜3’のCu,In,Gaの組成比を所望どおりに調整することができる。さらに、上記CIGS膜3’に対し、加熱工程時と同等の温度(550℃以上)において、In、Ga、Seとをさらに蒸着して、CIGS膜3としているため、CIGS膜3全体を、わずかにCu不足の状態にでき、このCIGS膜3を素子に用いた際に、より高効率の光吸収層とすることができる。
 なお、上記の実施の形態では、上記層(A)4および層(B)5の形成を、基板1の保持温度を200℃とした状態で行っているが、これに限らず基板1の保持温度を任意の温度とした状態で行うことができる。しかし、上記層(A)4および層(B)5の形成は、基板1の保持温度をそれぞれ100~250℃の範囲の温度とした状態で行うことが好ましく、なかでも、150~200℃の範囲の温度とした状態で行うことが好ましい。温度が高すぎると、層(B)5を固相として層(A)4上に積層できないためであり、逆に温度が低すぎると、蒸着による各層の形成が困難になる傾向がみられるためである。
 また、上記の実施の形態では、上記層(A)4および層(B)5が積層された積層体6に対する加熱を、基板1の保持温度を550℃にした状態で15分間行っているが、これに限らず加熱温度は520℃以上の温度で行うことが好ましい。また、その加熱時間は1~30分間とすることが好ましく、2~15分間とすることがより好ましい。これは、層(B)5に含まれるCuは、層(A)4への拡散は極めて速いが、充分な結晶成長が起きるには、ある程度の時間が必要なためである。
 さらに、上記の実施の形態では、加熱工程終了後のCIGS膜3’に対し、基板1保持温度を550℃にした状態で、さらに、In、Ga、Seを蒸着させているが、CIGS膜3’の表層に、膜内に取り込まれなかったCu、Se系の層が露出していない場合等には、In、Ga、Seをさらに蒸着させる必要はない。しかし、加熱工程終了後のCIGS膜3’に、さらにIn、Ga、Seを蒸着させると、膜内にCu-Se系の相が形成されず、充分な結晶成長をさせることができ、しかも、膜全体としてわずかにCu不足とすることが容易であるため、好適である。
 そして、上記実施の形態では、加熱工程終了後のCIGS膜3’の、Cu、In、Gaの組成比が25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっているが、これに限らず任意の組成比とすることができる。しかし、CIGS膜3’のCu、In、Gaの組成割合は、0.95<Cu/(In+Ga)<1.30(モル比)の式を満たす範囲内にあることが好ましい。Cu/(In+Ga)の値が低すぎると、Cu成分が不足し、充分な結晶成長が起きない傾向がみられ、逆に、高すぎると、CIGS膜3’内に、Cu(2-x)Seが過剰に取り込まれ、上記CIGS膜3’を素子に用いた際の素子特性が低下する傾向がみられるためである。
 さらに、上記実施の形態では、上記CIGS膜3のCu、In、Gaの組成比が22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)になっているが、これに限らず任意の組成比とすることができる。しかし、0.70<Cu/(In+Ga)<0.95(モル比)の式を満たすようになっていると、上記CIGS膜3内にCu(2-x)Seが過剰に取り込まれることをより阻止でき、しかも、膜全体としてわずかにCu不足にできる点で好ましい。また、同族元素であるGaとInとの比は、0.10<Ga/(In+Ga)<0.40の範囲にあることが好ましい。
 そして、上記実施の形態では、上記CIGS膜3の厚みは、2.0μmに形成されているが、これに限らず任意の厚みとすることができる。しかし、上記CIGS膜3の厚みは、1.0~3.0μmの範囲にあることが好ましく、1.5~2.5μmの範囲にあることがより好ましい。厚みが薄すぎると、光吸収層として用いた際の光吸収量が少なくなり、素子の性能が低下する傾向がみられ、逆に、厚すぎると、膜の形成にかかる時間が増加し、生産性に劣る傾向がみられるためである。
 また、上記実施の形態では、加熱工程時およびその後につづくIn、Ga、Seを蒸着させる工程において、Se蒸気を供給するようにしているが、これに代えてH2Seを供給するようにしてもよい。この場合も、Se蒸気を供給するのと同様の効果が得られる。また、上記CIGS膜3’およびCIGS膜3のSeの系外への放出が少ない等の場合には、これらを供給する必要はない。
 つぎに、上記CIGS膜3を光吸収層として用いたCIGS太陽電池Qの構成およびこれを得る方法を以下に示す。このCIGS太陽電池Qは、図7に示すように、上記CIGS膜3の上に、バッファ層7、バッファ層8、透明導電層9がこの順に積層されている。
 より詳しく説明すると、まず、上記得られたCIGS膜3上に、化学浴堆積法(CBD法)により、硫化カドミウム(CdS)からなるバッファ層7(厚み50nm)を形成し、さらにスパッタリング法により、ZnOからなるバッファ層8(厚み50nm)を形成する。これらのバッファ層(7、8)は、上記CIGS膜3とpn接合できるよう、高抵抗のn型半導体が好ましく、上記CdS、ZnOのほか、単層で、ZnMgO、Zn(O,S)等を用いることができる。また、バッファ層(7、8)の厚みは、それぞれ30~200nmであることが好ましい。そして、バッファ層を単層にした場合でも30~200nmの範囲の厚みであることが好ましい。さらに、上記バッファ層7は溶液法である上記CBD法等、上記バッファ層8は真空製膜法であるスパッタリング法等によって形成することもできる。なお、このようにバッファ層として複数種類の層を重ねて用いると、上記CIGS膜3とのpn接合をより良好にすることができるが、pn接合が充分に良好である場合には、必ずしも複数層設けなくてもよい。
 そして、上記バッファ層8上に、スパッタリング法により、酸化インジウム錫(ITO)からなる透明導電層9(厚み200nm)を形成する。この透明導電層9は、高透過率を有する材料を用いることが好ましく、上記ITOのほか、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(Al:ZnO)等を用いることができる。また、その厚みは100nm~300nmであることが好ましい。このようにして、基板1上に、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9がこの順に積層されたCIGS太陽電池Qを得ることができる。
 上記CIGS太陽電池の製法によれば、すでに述べたように、光吸収層として、上記CIGS膜3を用いているため、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくいCIGS太陽電池Qを得ることができる。しかも、光吸収層であるCIGS膜3内に余剰なCu(2-x)Seが形成されないため、電池特性の低下が生じず、高効率となる。また、上記CIGS膜3全体として、わずかにCu不足の状態になっているため、さらに高効率とすることができる。
 なお、上記実施の形態では、太陽電池Qは、基板1、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9からなるが、必要であれば、上記透明導電層9上に、金属電極を形成してもよい。
 つぎに、実施例について、比較例と併せて説明する。ただし、本発明はこれに限定されるものではない。
〔実施例1〕
 上記実施の形態と同様にして、CIGS太陽電池を製造した。すなわち、基板1として、SLG(大きさ30×30mm、厚み0.55mm)を用意し、この上に、Mo(厚み500nm)を積層し、裏面電極層2を形成した。そして、基板1保持温度を200℃にした状態で、In、Ga、Seを蒸着し、層(A)を形成した。つづいて、基板1保持温度を200℃に保ったままの状態で、上記層(A)上にCu、Seを蒸着し、層(B)を積層し、積層体6を形成した。この積層体6を、微量のSe蒸気を供給しつつ加熱し、基板1保持温度が550℃の状態を15分間保持し、結晶成長を行いCIGS膜3’を得た。さらに、このCIGS膜3’に、微量のSeガスを供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜3(厚み2.0μm)を得た。このCIGS膜3を用いたCIGS太陽電池を実施例1品とした。なお、実施例1品を得るための概略図を〔図8(a)〕に示す。
〔比較例1〕
 実施例1と同様に、裏面電極層2が形成された基板1を準備した。そして、基板1の保持温度を200℃にした状態で、Cu、In、Ga、Seを蒸着し、わずかにCu過剰となるCu、In、Ga、Seからなる層を形成した。これを微量のSeガスを供給しつつ加熱し、基板1保持温度が550℃の状態で15分間保持し、結晶成長を行いCIGS膜’(図示せず)を得た。さらに、このCIGS膜’に、微量のSe蒸気を供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜(厚み2.0μm)を得た。このCIGS膜を用いたCIGS太陽電池を比較例1品とした。なお、比較例1品を得るための概略図を〔図9〕に示す。
〔比較例2〕
 実施例1と同様に、裏面電極層2が形成された基板1を準備した。そして、基板1の保持温度を350℃にした状態で、In、Ga、Seを蒸着し、In、Ga、Seからなる層を形成した。つぎに、基板1の保持温度が550℃の状態となるよう加熱した状態で、この層の上に、Cu、Seを蒸着させ、結晶成長を行いCIGS膜''(図示せず)を得た。さらに、このCIGS膜''に、微量のSe蒸気を供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜(厚み2.0μm)を得た。このCIGS膜を用いたCIGS太陽電池を比較例2品とした。なお、比較例2品を得るための概略図を〔図8(b)〕に示す。
 上記実施例品および比較例品をそれぞれ10個製造し、それらの変換効率を下記の手順に従って測定するとともに、それらの実施例品および比較例品に用いたCIGS膜のCu/(In+Ga)の組成比を下記の手順に従って測定し、算出した。測定および算出した結果を下記の〔表1〕に併せて示す。
〔変換効率の測定〕
 擬似太陽光(AM1.5)を各実施例品および比較例品の表面面積以上の領域に照射し、その変換効率をソーラーシミュレーター(セルテスターYSS150、山下電装社)によって測定した。
〔Cu/(In+Ga)の組成比の算出〕
 各実施例品および比較例品に用いたCIGS膜のCu、In、Gaの含有量を、エネルギー分散型蛍光X線装置(EX-250、堀場製作所)を用いて測定し、これらの原子数濃度を元にCu/(In+Ga)の組成比を算出した。
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、実施例1品は平均変換効率が14.7%と高い値を示し、しかも、各素子間における変換効率のばらつきは、わずか2.5と少なくなっており、本発明の製法によって、高効率の太陽電池を再現性よく得られることがわかった。一方、比較例1品は変換効率のばらつきは、3.0と比較的少ないものの、平均変換効率は9.5%と低いものであった。また、比較例2品は、平均変換効率は13.6%と比較的高いものの、変換効率のばらつきは3.6と多いものであった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いるCIGS膜を、良好な特性を再現性よく製造するのに適している。また、本発明のCIGS太陽電池の製法は、変換効率の高い太陽電池を、再現性よく製造するのに適している。

Claims (7)

  1.  CIGS太陽電池の光吸収層として用いられるCIGS膜の製法であって、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを特徴とするCIGS膜の製法。
  2.  上記積層工程を、100~250℃の範囲の温度で行う請求項1記載のCIGS膜の製法。
  3.  上記加熱工程を、520℃以上の温度で行う請求項1または2記載のCIGS膜の製法。
  4.  上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行う請求項1~3のいずれか一項に記載のCIGS膜の製法。
  5.  上記加熱工程において、セレン蒸気もしくはセレン化水素を供給し、CIGS膜表面のセレン分圧が、内部のセレン分圧よりも高い状態で維持されるようにする請求項1~4のいずれか一項に記載のCIGS膜の製法。
  6.  上記加熱工程終了時のCIGS膜が、0.95<銅/(インジウム+ガリウム)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにインジウムとガリウムとセレンとを蒸着させることにより、上記CIGS膜が、0.70<銅/(インジウム+ガリウム)<0.95のモル比を満たすようにする請求項1~5のいずれか一項に記載のCIGS膜の製法。
  7.  基板上に、裏面電極層を設ける工程と、光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程として、上記請求項1に記載のCIGS膜の製法を用いることを特徴とするCIGS太陽電池の製法。
PCT/JP2012/072590 2011-09-07 2012-09-05 Cigs膜の製法およびそれを用いるcigs太陽電池の製法 WO2013035732A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/241,007 US8962379B2 (en) 2011-09-07 2012-09-05 Method of producing CIGS film, and method of producing CIGS solar cell by using same
EP12830489.6A EP2755242B1 (en) 2011-09-07 2012-09-05 Method for producing cigs film, and method for manufacturing cigs solar cell using same
KR1020147006884A KR101785771B1 (ko) 2011-09-07 2012-09-05 Cigs막의 제법 및 그것을 이용하는 cigs 태양 전지의 제법
CN201280042573.XA CN103765604B (zh) 2011-09-07 2012-09-05 Cigs膜的制法和使用其的cigs太阳能电池的制法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194933 2011-09-07
JP2011194933A JP5764016B2 (ja) 2011-09-07 2011-09-07 Cigs膜の製法およびそれを用いるcigs太陽電池の製法

Publications (1)

Publication Number Publication Date
WO2013035732A1 true WO2013035732A1 (ja) 2013-03-14

Family

ID=47832177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072590 WO2013035732A1 (ja) 2011-09-07 2012-09-05 Cigs膜の製法およびそれを用いるcigs太陽電池の製法

Country Status (6)

Country Link
US (1) US8962379B2 (ja)
EP (1) EP2755242B1 (ja)
JP (1) JP5764016B2 (ja)
KR (1) KR101785771B1 (ja)
CN (1) CN103765604B (ja)
WO (1) WO2013035732A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125900A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs膜の製法およびそれを用いるcigs太陽電池の製法
WO2014125902A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
WO2014202624A2 (en) 2013-06-19 2014-12-24 Dsm Ip Assets B.V. Rasamsonia gene and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061062A (ja) * 2013-09-20 2015-03-30 株式会社東芝 光電変換素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156517A (ja) * 1998-09-10 2000-06-06 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法およびこれを用いた太陽電池
JP2004342678A (ja) * 2003-05-13 2004-12-02 Rikogaku Shinkokai Cu(In1−xGax)Se2膜の製造方法及び太陽電池
JP2009541991A (ja) * 2006-06-19 2009-11-26 イン−ソーラー−テック カンパニー,リミテッド 太陽電池用光吸収層の製造方法
JP2011060891A (ja) * 2009-09-08 2011-03-24 Optorun Co Ltd 多源蒸着薄膜の組成制御方法および製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356839A (en) 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5441897A (en) 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5436204A (en) 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US20070169809A1 (en) * 2004-02-19 2007-07-26 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
FR2886460B1 (fr) * 2005-05-25 2007-08-24 Electricite De France Sulfurisation et selenisation de couches de cigs electrodepose par recuit thermique
CN101438416B (zh) * 2006-02-23 2011-11-23 耶罗恩·K·J·范杜伦 从金属间微米薄片颗粒的半导体前体层的高生产量印刷
WO2007146964A2 (en) * 2006-06-12 2007-12-21 Robinson Matthew R Thin-film devices fromed from solid particles
US20090183675A1 (en) * 2006-10-13 2009-07-23 Mustafa Pinarbasi Reactor to form solar cell absorbers
US8415559B2 (en) * 2008-02-08 2013-04-09 Solopower, Inc. Method for forming copper indium gallium chalcogenide layer with shaped gallium profile
US8115095B2 (en) * 2009-02-20 2012-02-14 Miasole Protective layer for large-scale production of thin-film solar cells
US8153469B2 (en) * 2009-12-07 2012-04-10 Solopower, Inc. Reaction methods to form group IBIIIAVIA thin film solar cell absorbers
US20110174363A1 (en) * 2010-01-21 2011-07-21 Aqt Solar, Inc. Control of Composition Profiles in Annealed CIGS Absorbers
CN101768729B (zh) * 2010-03-05 2012-10-31 中国科学院上海硅酸盐研究所 磁控溅射法制备铜铟镓硒薄膜太阳电池光吸收层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156517A (ja) * 1998-09-10 2000-06-06 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法およびこれを用いた太陽電池
JP2004342678A (ja) * 2003-05-13 2004-12-02 Rikogaku Shinkokai Cu(In1−xGax)Se2膜の製造方法及び太陽電池
JP2009541991A (ja) * 2006-06-19 2009-11-26 イン−ソーラー−テック カンパニー,リミテッド 太陽電池用光吸収層の製造方法
JP2011060891A (ja) * 2009-09-08 2011-03-24 Optorun Co Ltd 多源蒸着薄膜の組成制御方法および製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2755242A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125900A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs膜の製法およびそれを用いるcigs太陽電池の製法
WO2014125902A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
WO2014202624A2 (en) 2013-06-19 2014-12-24 Dsm Ip Assets B.V. Rasamsonia gene and use thereof

Also Published As

Publication number Publication date
CN103765604A (zh) 2014-04-30
CN103765604B (zh) 2016-08-17
EP2755242A1 (en) 2014-07-16
KR20140066189A (ko) 2014-05-30
EP2755242A4 (en) 2016-02-17
EP2755242B1 (en) 2018-06-27
JP2013058540A (ja) 2013-03-28
US8962379B2 (en) 2015-02-24
US20140220729A1 (en) 2014-08-07
KR101785771B1 (ko) 2017-10-16
JP5764016B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
KR20150051181A (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
JP2011129631A (ja) Cis系薄膜太陽電池の製造方法
JP5764016B2 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
WO2014125900A1 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
US9614111B2 (en) CIGS film, and CIGS solar cell employing the same
WO2014125902A1 (ja) Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
JP2017050337A (ja) Cigs半導体前駆体膜の製造方法およびそれを用いたcigs半導体膜の製造方法並びにそれらを用いたcigs太陽電池の製造方法
KR20130114826A (ko) ZnS/CIGS 박막태양전지 및 제조방법
WO2016132637A1 (ja) Cigs太陽電池およびその製造方法
JP5851434B2 (ja) Cigs膜の製法およびその製法を用いたcigs太陽電池の製法
JP2014232797A (ja) 半導体前駆構造物およびそれを用いて得られるcigs半導体構造物ならびにそれを用いるcigs太陽電池とその製造方法
US9472708B2 (en) Method of fabricating copper indium gallium selenide (CIGS) thin film for solar cell using simplified co-vacuum evaporation and copper indium gallium selenide (CIGS) thin film for solar cell fabricated by the same
JP2016154172A (ja) Cigs太陽電池およびその製造方法
JP5710368B2 (ja) 光電変換素子および太陽電池
WO2014125901A1 (ja) Cigs膜およびそれを用いるcigs太陽電池
JP5575163B2 (ja) Cis系薄膜太陽電池の製造方法
JP2014154758A (ja) Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
Romeo et al. Investigation of a Suitable Back Contact for CdTe/CdS Solar Cells Prepared in the Substrate Configuration.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012830489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147006884

Country of ref document: KR

Kind code of ref document: A