WO2014125703A1 - アキュムレータ - Google Patents

アキュムレータ Download PDF

Info

Publication number
WO2014125703A1
WO2014125703A1 PCT/JP2013/082656 JP2013082656W WO2014125703A1 WO 2014125703 A1 WO2014125703 A1 WO 2014125703A1 JP 2013082656 W JP2013082656 W JP 2013082656W WO 2014125703 A1 WO2014125703 A1 WO 2014125703A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
accumulator
bellows
liquid chamber
pressure
Prior art date
Application number
PCT/JP2013/082656
Other languages
English (en)
French (fr)
Inventor
大介 兵頭
三宅 邦明
松喜 山下
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to US14/421,167 priority Critical patent/US9328746B2/en
Priority to EP13875034.4A priority patent/EP2957776B1/en
Priority to JP2015500099A priority patent/JP6165833B2/ja
Priority to CN201380042811.1A priority patent/CN104583606B/zh
Publication of WO2014125703A1 publication Critical patent/WO2014125703A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • F15B1/103Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means the separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/007Overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3153Accumulator separating means having flexible separating means the flexible separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3157Sealings for the flexible separating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/865Prevention of failures

Definitions

  • the present invention relates to an accumulator used as a pressure accumulator or a pulse pressure attenuator.
  • the accumulator of the present invention is used, for example, for hydraulic piping in vehicles such as automobiles.
  • a bellows 9 and a bellows cap 10 are arranged inside an accumulator housing 2 having a port hole 5 connected to a pressure pipe of a device, and high pressure gas is sealed in the internal space of the housing 2.
  • An accumulator is known which is divided into a gas chamber 11 and a liquid chamber 12 communicating with the port hole 5.
  • the liquid (oil) is gradually discharged from the port hole 5, and the bellows 9 is gradually expanded by the enclosed gas pressure, and the bellows cap 10 comes into contact with the seal portion 15 to be in a so-called zero down state.
  • the seal portion 15 is composed of a lip seal provided at the peripheral edge of the inner opening of the port hole 5.
  • the liquid chamber 12 is closed by the bellows cap 10 coming into contact with the seal portion 15, a part of the liquid is confined in the liquid chamber 12, and the pressure of the confined liquid and the gas in the gas chamber 11 are Since the pressure is balanced, an excessive stress does not act on the bellows 9, and thus plastic deformation of the bellows 9 is suppressed (see FIG. 6 of Patent Document 1).
  • the seal member 31 is held on the port hole 5 side of the bellows cap 10 via the seal holder 21, and the seal member 31 contacts the seal portion 15 when zero-down.
  • the seal member 31 is made of a disc-shaped rigid plate, and the outer diameter dimension thereof is set larger than the inner diameter dimension of the flange portion 21 b of the seal holder 21, so that the seal member 31 is held by the seal holder 21. Further, since the thickness dimension of the seal member 31 is set smaller than the distance dimension between the flange portion 21b and the bellows cap 10, the seal member 31 is relative to the seal holder 21 and the bellows cap 10 within the range of the dimension difference. It is possible to move. Since the spring member 41 that presses the seal member 31 is incorporated between the flange portion 21b and the seal member 31, the seal member 31 is pressed against the bellows cap 10 as an initial state.
  • the accumulator is connected to the equipment pressure piping and operates as follows.
  • the seal member 31 is moved away from the seal portion 15 by moving together with the bellows cap 10 while being held by the seal holder 21.
  • the opened port hole 5 is open, so that the port hole 5 communicates with the liquid chamber 12. Therefore, since liquid having a pressure at that time is introduced from the port hole 5 to the liquid chamber 12 at any time, the bellows cap 10 is moved together with the seal member 31 so that the liquid pressure and the enclosed gas pressure are balanced.
  • a zero-down state that is, in a state where the seal member 31 is in contact with the seal portion 15 and the liquid chamber 12 is closed
  • the accumulator compresses the spring member 41 in the direction in which the bellows cap 10 is separated from the seal portion 15 in response to this pressure difference, as shown in FIG. Move while. Accordingly, since the state in which the liquid pressure and the sealed gas pressure are balanced is maintained, no pressure difference is generated between the inside and outside of the bellows 9, and the occurrence of plastic deformation in the bellows 9 is suppressed.
  • the pressure receiving area of the seal member 31 in contact with the seal portion 15 is larger on the surface on the bellows cap 10 side than on the surface on the seal portion 15 side. It does not move while in contact with the seal portion 15. Therefore, the port hole 5 opened to the inner peripheral side of the seal portion 15 is kept closed.
  • the pressure difference generated by the difference in thermal expansion coefficient when the liquid confined in the liquid chamber 12 and the sealed gas thermally expand at the time of zero down can be reduced.
  • the occurrence of plastic deformation in the bellows 9 can be suppressed (see FIGS. 1 to 3 of Patent Document 1).
  • the seal member 31 contacts the seal portion 15 in order to reduce the pressure difference caused by the difference in thermal expansion coefficient when the liquid confined in the liquid chamber 12 and the filled gas are thermally expanded at zero down. Accordingly, an operation occurs in which only the bellows cap 10 moves away from the seal portion 15 without moving, and the seal member 31 is moved relative to the seal holder 21 and the bellows cap 10.
  • a clearance dimension for moving the seal member 31 relative to the seal holder 21 is set, that is, a distance dimension between the flange portion 21b of the seal holder 21 and the bellows cap 10 is set larger than a thickness dimension of the seal member 31.
  • the flange portion 21b and the seat Spring member 41 is incorporated between the member 31.
  • the length dimension of the seal holder 21 it is necessary to set the length dimension of the seal holder 21 to be larger than the thickness dimension of the seal member 31 and to incorporate the spring member 41 together with the seal member 31 in the seal holder 21.
  • the situation is that the size is large and the number of parts is large.
  • the parts can be reduced in size and the number of parts can be reduced, the pressure difference reducing structure becomes more useful.
  • the present invention reduces the pressure difference caused by the difference in coefficient of thermal expansion when the liquid confined in the liquid chamber and the sealed gas are thermally expanded at the time of zero down, and thus plastic deformation occurs in the bellows.
  • An object of the present invention is to provide an accumulator having a structure in which the number of parts is small and the number of parts is small.
  • an accumulator according to claim 1 of the present invention includes an accumulator housing having a port hole connected to a pressure pipe of an apparatus, and a high-pressure gas disposed in the housing so as to pass through the internal space of the housing.
  • a bellows and a bellows cap for partitioning into a gas chamber for sealing the gas chamber and a liquid chamber communicating with the port hole, and a seal member held via a seal holder on the port hole side of the bellows cap,
  • the seal member moves together with the bellows cap, and when the operation of the device stops and the pressure in the pressure pipe decreases, the seal member comes into contact with a seal portion provided in the housing and the liquid chamber
  • the seal is The material moves in a direction in which the bellows cap moves away from the seal portion while being in contact with the seal portion, and the seal member is formed by attaching a flexible portion made of a rubber-like elastic body to the outer peripheral surface of the rigid plate. And the said flexible part permits the relative movement of the said bellows cap by carrying out the shear deformation by engagement with the said seal holder, It is characterized by the above-mentioned.
  • An accumulator according to claim 2 of the present invention is the accumulator according to claim 1, wherein the rigid plate has an outer diameter dimension set smaller than an inner diameter dimension of a flange portion provided in the seal holder.
  • the flexible part is characterized in that the outer diameter dimension is set larger than the inner diameter dimension of the flange part.
  • An accumulator according to a third aspect of the present invention is the accumulator according to the first or second aspect, wherein a circumferentially continuous or discontinuous outer peripheral projection that abuts on a flange portion provided on the seal holder is the flexible portion. It is provided on one surface in the thickness direction.
  • An accumulator according to a fourth aspect of the present invention is the accumulator according to the first, second, or third aspect described above, wherein the groove portion for thinning the flexible portion at a part in the radial direction is both in the thickness direction of the flexible portion. Alternatively, it is provided on one surface.
  • the accumulator according to claim 5 of the present invention is the accumulator according to claim 1, 2, 3 or 4, wherein the seal protrusion made of a rubber-like elastic body in contact with the seal portion is in the thickness direction of the rigid plate. Provided on one surface, the seal projection is formed integrally with the flexible portion.
  • the sealing member is formed by attaching a flexible portion made of a rubber-like elastic body to the outer peripheral surface of the rigid plate, and the flexible portion is sheared by engagement with the seal holder. Since the deformation of the bellows cap allows the relative movement of the bellows cap, the seal holder and the bellows cap move relative to the seal member due to shear deformation of the seal member. It is not necessary to set a clearance dimension for relative movement to the seal holder, and accordingly, it is not necessary to incorporate a spring member into the seal holder. Therefore, it is possible to reduce the size of the parts by shortening the length of the seal holder as compared to the prior art of FIG. 13, and it is possible to reduce the number of parts by omitting the spring member.
  • the accumulator of the present invention having the above configuration is connected to the pressure pipe of the device and operates as follows.
  • the seal member moves away with the bellows cap while being held by the seal holder, so that the port hole communicates with the liquid chamber. Accordingly, since liquid having a pressure at that time is introduced from the port hole to the liquid chamber as needed, the bellows cap moves together with the seal member so that the liquid pressure and the enclosed gas pressure are balanced.
  • a zero-down state i.e., when the sealing member is in contact with the sealing portion and the liquid chamber is closed, the liquid confined in the liquid chamber due to an increase in the ambient temperature or the like and the filled gas thermally expands. Since the degree of increase is large, a pressure difference is generated. In the accumulator, the bellows cap moves in a direction away from the seal portion in response to the pressure difference. Therefore, since the liquid pressure and the filled gas pressure are kept in a balanced state, no pressure difference is generated between the inside and outside of the bellows, and thus the plastic deformation of the bellows is suppressed.
  • the seal member since the pressure receiving area of the seal member in contact with the seal portion is larger on the surface on the bellows cap side than on the surface on the seal portion side, the seal member contacts the seal portion due to the difference in pressure receiving area on both surfaces. Do not move. The port hole is therefore kept closed.
  • the sealing member since the sealing member is formed by attaching a flexible portion made of a rubber-like elastic body to the outer peripheral surface of the rigid plate, the flexible portion is shear-deformed by engagement with the seal holder. By doing so, relative movement of the bellows cap is allowed, that is, the seal holder and the bellows cap move in a direction away from the seal portion while shearing the flexible portion.
  • the outer diameter of the rigid plate is smaller than the inner diameter of the flange provided on the seal holder and to set the outer diameter of the flexible portion to be larger than the inner diameter of the flange. According to the above, the flexible portion is easily sheared by engagement with the seal holder.
  • a circumferentially continuous or discontinuous outer peripheral protrusion that contacts the flange portion provided on the seal holder may be provided on one surface in the thickness direction of the flexible portion, or may be allowed. It is preferable to provide a groove portion that thins the bending portion in a part in the radial direction on both or one surface in the thickness direction of the flexible portion, and according to these, the shear deformation amount of the flexible portion is increased, It is possible to increase the relative movement amount of the seal member, the seal holder, and the bellows cap.
  • the seal member may be provided with a seal protrusion made of a rubber-like elastic body in contact with the seal portion on one surface in the thickness direction of the rigid plate. Even when it is made of a metal surface such as an end surface portion of the oil port, it is possible to sufficiently ensure the sealing performance against the liquid. In this case, if the seal protrusion and the flexible part are integrally formed, the number of times of forming the elastic body during the production of the component can be reduced.
  • the sealing member is formed by attaching a flexible portion made of a rubber-like elastic body to the outer peripheral surface of the rigid plate, and the flexible portion is sheared by engagement with the seal holder. Since the deformation allows the relative movement of the bellows cap, it is not necessary to set a clearance dimension for moving the seal member relative to the seal holder, and it is not necessary to incorporate a spring member. Accordingly, it is possible to reduce the length of the seal holder to reduce the size of the component, and it is possible to reduce the number of components by omitting the spring member.
  • the pressure difference generated when the liquid confined in the liquid chamber and the sealed gas are thermally expanded at the time of zero down is not moved while the seal member is in contact with the seal portion, and only the bellows cap is moved. Therefore, it can be reduced. Therefore, as the intended purpose of the present invention, it is possible to suppress the plastic deformation of the bellows when the liquid confined in the liquid chamber and the enclosed gas are thermally expanded at the time of zero down, and the parts are small and the number of parts is small.
  • An accumulator having a small structure can be provided.
  • the outer diameter of the rigid plate is set smaller than the inner diameter of the flange provided on the seal holder, and the outer diameter of the flexible part is set larger than the inner diameter of the flange so that the flexible portion When engaged, shear deformation easily occurs, and by providing an outer peripheral projection or groove in the flexible portion, the relative movement amount of the seal member, the seal holder, and the bellows cap can be increased. Therefore, even when the pressure difference generated when the liquid confined in the liquid chamber and the sealed gas are thermally expanded at the time of zero down is large, the pressure difference can be quickly reduced.
  • a sufficient sealing performance can be ensured even when the seal portion is made of a metal surface such as an end surface portion of the stay or an end surface portion of the oil port.
  • the part manufacturing process can be facilitated by integrally forming the flexure.
  • Sectional drawing of the accumulator which concerns on 1st Example of this invention Enlarged sectional view of a seal member provided in the accumulator The principal part expanded sectional view which shows the state at the time of steady operation of the accumulator The principal part expanded sectional view which shows the state at the time of zero down of the accumulator The principal part expanded sectional view which shows the state at the time of the thermal expansion in the zero down state of the accumulator Sectional drawing of the principal part which shows the state at the time of steady operation of the accumulator which concerns on 2nd Example of this invention.
  • the present invention includes the following embodiments.
  • a seal member is provided on the bellows cap side in order to seal the liquid (backup fluid (BF)) confined in the liquid chamber during zero down.
  • a gasket seal in which a rubber part (elastic body part) is provided on the outer peripheral part of the metal plate is used as the seal member.
  • the gasket seal is between the bellows cap and the seal holder, and the rubber portion on the outer periphery of the seal is deformed by the seal holder when the temperature is raised in the zero down state. By this deformation, the seal holder and the bellows cap to which the seal holder is joined are displaced in a direction in which the bellows is contracted, and the volume of the BF is enlarged.
  • a seal protrusion may be provided on one side of the metal plate.
  • a rubber (elastic body) protrusion or / and a groove may be provided on the rubber portion of the outer peripheral portion of the seal.
  • First embodiment 1 to 5 show an accumulator 1 according to a first embodiment of the present invention.
  • the accumulator 1 according to this embodiment is a metal bellows type accumulator using a metal bellows as the bellows 9 and is configured as follows.
  • an accumulator housing 2 having a port hole 5 connected to a pressure pipe of a device (not shown) is provided, and a bellows 9 and a bellows cap 10 are disposed inside the housing 2.
  • the internal space 2 is partitioned into a gas chamber 11 that encloses a high-pressure gas (for example, nitrogen gas) and a liquid chamber 12 that communicates with the port hole 5.
  • the housing 2 has a bottomed cylindrical shell 3, an oil port 4 that is fixed (welded) to the center of the bottom of the shell 3 and provided with the port hole 5, and is fixed (welded) to the upper end opening of the shell 3.
  • the part split structure of the housing 2 is not particularly limited.
  • the shell 3 and the oil port 4 may be integrated,
  • the shell 3 and the gas end cover 6 may be integrated.
  • the gas end cover 6 or a component corresponding thereto is provided with a gas injection port 7 for injecting gas into the gas chamber 11. After the injection, the gas plug 8 is closed.
  • the bellows 9 has a fixed end 9a fixed (welded) to the inner surface of the gas end cover 6 which is the inner surface on the opposite port side of the housing 2, and a disk-shaped bellows cap 10 fixed (welded) to the free end 9b. Therefore, the accumulator 1 is an internal gas type accumulator in which the gas chamber 11 is set on the inner peripheral side of the bellows 9 and the liquid chamber 12 is disposed on the outer peripheral side of the bellows 9.
  • a vibration damping ring 13 is attached to the outer periphery of the bellows cap 10 so that the bellows 9 and the bellows cap 10 do not come into contact with the inner surface of the housing 2, but the vibration damping ring 13 does not exhibit a sealing action.
  • Reference numeral 14 denotes a protection ring.
  • a seal holder 21 is fixed to the port side surface of the bellows cap 10, and a disc-shaped seal member 31 is held by the seal holder 21.
  • the seal holder 21 is formed by integrally forming an annular flange portion 21b radially inward at the port side end portion of the cylindrical portion 21a, and has the bellows cap 10 with the end portion on the opposite port side of the cylindrical portion 21a. It is fixed (welded or fitted).
  • the seal member 31 is obtained by attaching (vulcanizing and bonding) a rubber-like elastic body 33 to the surface of a disk-like rigid plate 32 made of metal or hard resin.
  • a rubber-like elastic body 33 By this rubber-like elastic body 33, an annular flexible portion 34 attached to the outer peripheral surface of the rigid plate 32, and a thin film-like anti-port side covering portion 35 attached to the non-port side end surface of the rigid plate 32 Similarly, the same thin film port side covering portion 36 attached to the port side end surface of the rigid plate 32 is formed integrally, and an annular seal projection 37 is formed integrally on the port side end surface of the rigid plate 32. ing.
  • the seal protrusion 37 contacts the inner end surface of the oil port 4 that acts as the seal portion 15 of the accumulator 1 so as to be able to contact and separate.
  • the rigid plate 32 is entirely covered with a rubber-like elastic body 33.
  • the dimensions of the seal holder 21 and the seal member 31 are set as follows.
  • the outer diameter dimension of the rigid plate 32 is set smaller than the inner diameter dimension of the seal holder 21, that is, the inner diameter dimension of the flange portion 21b.
  • the outer diameter dimension of the flexible portion 34 that is, the outer diameter dimension of the seal member 31, is set to be the same or substantially the same as the inner diameter dimension of the cylindrical portion 21a of the seal holder 21, and is set slightly smaller than the inner diameter dimension.
  • the inner diameter dimension of the seal holder 21, that is, the inner diameter dimension of the flange portion 21b is set larger.
  • the thickness dimension of the flexible portion 34 is equal to or substantially the same as the sum of the thickness dimension of the rigid plate 32, the thickness dimension of the anti-port side covering portion 35, and the thickness dimension of the port side covering portion 36. Is set. Further, the thickness dimension of the rigid plate 32, the sum of the thickness dimension of the anti-port side covering portion 35 and the thickness dimension of the port side covering portion 36, and the thickness dimension of the flexible portion 34 are the distance between the flange portion 21b and the bellows cap 10, respectively. However, since it is necessary to apply the pressure of the liquid confined in the liquid chamber 12 at the time of zero down to the port side end surface of the bellows cap 10 and the non-port side end surface of the seal member 31, respectively. In order to form a small gap c 1 (FIG. 3) between the bellows cap 10 and the seal member 31, it is preferable that these thickness dimensions are set slightly smaller than the distance dimension between the flange portion 21 b and the bellows cap 10.
  • this connection there is a communication path that allows the liquid chamber 12 and the gap c 1 to communicate with each other so that the pressure of the liquid confined in the liquid chamber 12 at the time of zero down is introduced into the gap c 1 between the bellows cap 10 and the seal member 31.
  • This communication path is a bellows via a gap between the flexible portion 34 and the seal holder 21 (a gap between the liquid chamber 12 and the flexible portion 34 and the flange portion 21b and a gap between the flexible portion 34 and the cylindrical portion 21a). may be a communication path) leading to the clearance c 1 between the cap 10 and the seal member 31.
  • this communication path may be formed by a notch provided in the notch, a notch provided in a part of the circumference of the flexible portion 34, or a through hole provided so as to penetrate the seal member 31 in the thickness direction. .
  • the seal holder 21 holds only the seal member 31, and the seal holder 21 does not hold a kind of spring member (including a spring made of a rubber-like elastic body in addition to a spring made of metal).
  • FIG. 3 shows the state of the accumulator 1 during steady operation.
  • the port hole 5 is connected to a pressure pipe of a device (not shown).
  • the seal member 31 is separated from the seal portion 15 by moving with the bellows cap 10 while being held by the seal holder 21, so that the port hole 5 communicates with the liquid chamber 12. Therefore, since liquid having a pressure at that time is introduced from the port hole 5 to the liquid chamber 12 at any time, the bellows cap 10 is moved together with the seal member 31 so that the liquid pressure and the enclosed gas pressure are balanced.
  • the pressure receiving area of the seal member 31 in contact with the seal portion 15 is larger on the surface on the bellows cap 10 side than on the surface on the seal portion 15 side (this is the seal protrusion 37 on the surface on the seal portion 15 side).
  • the seal member 31 does not move while being in contact with the seal portion 15 due to the difference in pressure receiving area on both surfaces thereof (because the inner peripheral portion does not act as a pressure receiving surface). Accordingly, the port hole 5 is kept closed, and the size of the gap between the bellows cap 10 and the seal member 31 is enlarged (c 1 ⁇ c 2 ).
  • the sealing member 31 is formed by attaching the flexible portion 34 made of a rubber-like elastic body to the outer peripheral surface of the rigid plate 32, and the flexible portion 34 is engaged with the seal holder 21. Since the relative deformation of the bellows cap 10 is allowed by shear deformation, the clearance dimension for moving the seal member 31 relative to the seal holder 21 does not need to be set, and the spring member 41 is There is no need to incorporate it. Accordingly, the length of the seal holder 21 is shortened as compared with the prior art of FIG. 13, so that the part can be made smaller, and the spring member 41 is omitted, so that the number of parts is reduced. It is possible.
  • the pressure difference generated when the liquid confined in the liquid chamber 12 and the sealed gas are thermally expanded at the time of zero down is moved while the seal member 31 is in contact with the seal portion 15. It is possible to reduce only the bellows cap 10 without moving.
  • the seal projection 37 is attached to the rigid plate 32, sufficient sealing performance is ensured even when the seal portion 15 is made of a metal surface such as an end surface portion of the stay or an end surface portion of the oil port 4.
  • the seal projection 37 and the flexible portion 34 are integrally formed, the part manufacturing process can be facilitated.
  • an outer peripheral projection 38 that contacts and engages with the inner end surface of the flange portion 21b of the seal holder 21 is integrally formed on the port side end surface of the flexible portion 34 of the seal member 31. Mold. According to this configuration, the amount of shear deformation of the flexible portion 34 can be increased, and the amount of relative movement between the seal member 31 and the seal holder 21 and between the seal member 31 and the bellows cap 10 can be increased.
  • the outer peripheral projection 38 is provided on the outermost peripheral portion of the port side end surface of the flexible portion 34.
  • the outer peripheral projections 38 are provided continuously (annularly) on the circumference, but may be provided discontinuously on the circumference.
  • the thickness dimension of the flexible portion 34 is thin at a part in the radial direction on the port side end surface and the non-port side end surface of the flexible portion 34 in the sealing member 31.
  • a groove 39 is provided. According to this configuration, the amount of shear deformation of the flexible portion 34 is increased as in the second embodiment, and the relative movement between the seal member 31 and the seal holder 21 and between the seal member 31 and the bellows cap 10 is increased. Can be increased.
  • the groove 39 is provided on the inner peripheral side of the outer peripheral projection 38 on the port side end surface. Yes.
  • the groove 39 is provided continuously (annularly) on the circumference, but may be provided discontinuously on the circumference.
  • the groove 39 may be provided only on one of the port side end surface and the non-port side end surface of the flexible portion 34.
  • the accumulator 1 is an internal gas type accumulator in which the gas chamber 11 is set on the inner peripheral side of the bellows 9 and the liquid chamber 12 is disposed on the outer peripheral side of the bellows 9.
  • an external gas type accumulator in which the gas chamber 11 is set on the outer peripheral side of the bellows 9 and the liquid chamber 12 is disposed on the inner peripheral side of the bellows 9 may be used. That is, the present invention includes both an inner gas type accumulator and an outer gas type accumulator.
  • the seal portion 15 with which the seal member 31 comes into contact with and away from is used as the inner end surface of the oil port 4, but the seal portion 15 has an inner opening of the port hole as shown in FIG.
  • a lip seal made of a rubber-like elastic body provided at the peripheral edge may be used.
  • a stay member may be installed on the inner side of the bellows 9 inside the oil port 4 (on the bellows cap side) in order to increase the height position of the seal portion 15.
  • the seal portion 15 may be an end surface portion of the stay member.
  • the seal member 31 may have a configuration in which the rigid plate 32 is in direct contact with the lip seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

 ゼロダウン時に液室に閉じ込められた液体および封入ガスが熱膨張したとき熱膨張率の差により発生する圧力差を低減し、よってベローズに塑性変形が発生するのを抑制することができ、しかも部品が小型で、部品点数が少ない構造のアキュムレータを提供する。この目的を達成するため、ベローズキャップのポート穴側にシールホルダーを介して保持されたシール部材を有する。機器の運転が停止して圧力配管内の圧力が低下するとシール部材はシール部に接触して液室を閉塞する。液室が閉塞された状態で液室に閉じ込められた液体が熱膨張するとシール部材はシール部に接触したままでベローズキャップがシール部から離れる方向へ移動する。シール部材は剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したもので、可撓部がシールホルダーとの係合によりせん断変形することによりベローズキャップの相対移動を許容する。

Description

アキュムレータ
 本発明は、蓄圧装置または脈圧減衰装置等として用いられるアキュムレータに関する。本発明のアキュムレータは例えば、自動車等車両における油圧配管等に用いられる。
 従来から図12に示すように、機器の圧力配管に接続されるポート穴5を備えたアキュムレータハウジング2の内部にベローズ9およびベローズキャップ10を配置してハウジング2の内部空間を高圧ガスを封入するガス室11とポート穴5に連通する液室12とに仕切るようにしたアキュムレータが知られており、このアキュムレータでは、機器の運転が停止して圧力配管内の圧力が低下すると液室12内の液体(油)がポート穴5から徐々に排出され、これに伴って封入ガス圧によりベローズ9が徐々に伸長し、ベローズキャップ10がシール部15に接触して所謂ゼロダウン状態となる。シール部15は、ポート穴5の内側開口周縁部に設けられたリップシールよりなる。そしてこのゼロダウン状態では、ベローズキャップ10がシール部15に接触することにより液室12が閉塞され、液室12に一部の液体が閉じ込められ、この閉じ込められた液体の圧力とガス室11のガス圧力とが均衡するので、ベローズ9に過大な応力が作用せず、よってベローズ9に塑性変形が発生するのが抑制される(特許文献1の図6参照)。
 しかしながら、このような機器の運転停止によるゼロダウン状態が低温下で発生し、その後、温度が上昇した場合、液室12に閉じ込められた液体および封入ガスはそれぞれ熱膨張し、圧力が上昇する。この場合、液体は封入ガスに比べて圧力の上昇度合いが大きいが、ベローズキャップ10における受圧面積が封入ガス側に比べて小さく設定されているので、液体圧がガス圧よりもかなり大きくならないとベローズキャップ10は移動せずシール部15から離れない。したがってベローズ9内外の液体圧とガス圧とに数MPa程度にも及ぶ大きな圧力差が発生することがあり、このように大きな圧力差が発生するとベローズ9に塑性変形が発生する虞がある。
 上記不都合を解消するため、本願発明者らは先に、以下の対策を備えたアキュムレータを提案している。
 すなわち図13に示すように、このアキュムレータでは、ベローズキャップ10のポート穴5側にシールホルダー21を介してシール部材31が保持されており、このシール部材31がゼロダウン時、シール部15に接触する。シール部材31は、円盤状の剛性プレートよりなり、その外径寸法がシールホルダー21のフランジ部21bの内径寸法より大きく設定されているので、シール部材31はシールホルダー21により保持されている。またシール部材31は、その厚み寸法がフランジ部21bおよびベローズキャップ10間の間隔寸法より小さく設定されているので、この寸法差の範囲内でシール部材31はシールホルダー21およびベローズキャップ10に対し相対移動することが可能とされている。またフランジ部21bおよびシール部材31間にシール部材31を押圧するバネ部材41が組み込まれているので、シール部材31は初期状態としてベローズキャップ10に押し付けられている。
 上記アキュムレータは、機器の圧力配管に接続されて、以下のように作動する。
定常作動時・・・
 図13に示すようにアキュムレータの定常作動時、シール部材31はシールホルダー21に保持された状態でベローズキャップ10とともに移動することによりシール部15から離れているので、シール部15の内周側に開口したポート穴5は開いており、よってポート穴5は液室12と連通している。したがってポート穴5から液室12へそのときどきの圧力を備えた液体が随時導入されるので、ベローズキャップ10がシール部材31とともに液体圧および封入ガス圧が均衡するように随時移動する。
ゼロダウン時・・・
 機器の運転が停止して圧力配管内の圧力が低下すると液室12内の液体がポート穴5から徐々に排出され、これに伴って封入ガス圧によりベローズキャップ10がシール部15に近付く方向へ移動し、図14に示すようにシール部材31がシール部15に接触して所謂ゼロダウン状態となる。したがって液室12が閉塞され、この液室12に一部の液体が閉じ込められるので、液室12の更なる圧力低下は発生しなくなり、よってベローズ9内外で液体圧および封入ガス圧が均衡した状態となる。
ゼロダウン状態における熱膨張時・・・
 ゼロダウン状態すなわちシール部材31がシール部15に接触して液室12が閉塞された状態で、雰囲気温度の上昇によって液室12に閉じ込められた液体および封入ガスが熱膨張すると、液体のほうがガスよりも圧力の上昇度合いが大きいので圧力差が発生するが、当該アキュムレータでは図15に示すように、この圧力差を受けてベローズキャップ10がシール部15から離れる方向へ向けてバネ部材41を圧縮しながら移動する。したがって液体圧および封入ガス圧が均衡した状態が維持されるので、ベローズ9内外に圧力差が発生せず、よってベローズ9に塑性変形が発生するのが抑制される。尚このとき、シール部15に接触した状態にあるシール部材31の受圧面積はシール部15側の面よりベローズキャップ10側の面のほうが大きいため、シール部材31はその両面における受圧面積の差によりシール部15に接触したままで移動しない。したがってシール部15の内周側に開口したポート穴5は閉じたままとされる。
 以上説明したように上記図13のアキュムレータによれば、ゼロダウン時に液室12に閉じ込められた液体および封入ガスが熱膨張したとき熱膨張率の差によって発生する圧力差を低減させることができ、よってベローズ9に塑性変形が発生するのを抑制することができる(特許文献1の図1ないし図3参照)。
 しかしながらこの図13のアキュムレータには、今なお、以下の点で改良の余地がある。
 すなわち上記図13のアキュムレータでは、ゼロダウン時に液室12に閉じ込められた液体および封入ガスが熱膨張したとき熱膨張率の差によって発生する圧力差を低減させるため、シール部材31はシール部15に接触したまま移動せずベローズキャップ10のみがシール部15から離れる方向へ移動すると云う作動が生じ、このためシール部材31はシールホルダー21およびベローズキャップ10に対し相対移動するものとされ、この相対移動を可能にするためシールホルダー21にシール部材31を相対移動させるための、ゆとり寸法が設定され、すなわちシールホルダー21のフランジ部21bおよびベローズキャップ10間の間隔寸法がシール部材31の厚み寸法より大きく設定され、そのうえでフランジ部21bおよびシール部材31間にバネ部材41が組み込まれている。
 したがって上記図13のアキュムレータによると、シールホルダー21の長さ寸法をシール部材31の厚み寸法より大きく設定したうえでシールホルダー21内にシール部材31とともにバネ部材41を組み込む必要があるため、部品が大型で、かつ部品点数が多いと云う状況にあり、これに対し、部品を小型にし、かつ部品点数を減らすことができれば、当該圧力差低減構造は一層有用なものとなる。
特開2009-092145号公報
 本発明は以上の点に鑑みて、ゼロダウン時に液室に閉じ込められた液体および封入ガスが熱膨張したとき熱膨張率の差により発生する圧力差を低減し、よってベローズに塑性変形が発生するのを抑制することができ、しかも部品が小型で部品点数が少ない構造のアキュムレータを提供することを目的とする。
 上記目的を達成するため、本発明の請求項1によるアキュムレータは、機器の圧力配管に接続されるポート穴を備えたアキュムレータハウジングと、前記ハウジングの内部に配置されて前記ハウジングの内部空間を高圧ガスを封入するガス室および前記ポート穴に連通する液室に仕切るベローズおよびベローズキャップと、前記ベローズキャップのポート穴側にシールホルダーを介して保持されたシール部材とを有し、定常作動時、前記シール部材は前記ベローズキャップとともに移動し、前記機器の運転が停止して前記圧力配管内の圧力が低下したとき、前記シール部材は、前記ハウジングの内部に設けたシール部に接触して前記液室を閉塞し、前記液室が閉塞された状態で前記液室に閉じ込められた液体が熱膨張したとき、前記シール部材は前記シール部に接触したままで前記ベローズキャップが前記シール部から離れる方向へ移動し、前記シール部材は、剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したものであって、前記可撓部が前記シールホルダーとの係合によりせん断変形することにより前記ベローズキャップの相対移動を許容することを特徴とする。
 また、本発明の請求項2によるアキュムレータは、上記した請求項1記載のアキュムレータにおいて、前記剛性プレートは、その外径寸法が前記シールホルダーに設けたフランジ部の内径寸法より小さく設定され、前記可撓部は、その外径寸法が前記フランジ部の内径寸法より大きく設定されていることを特徴とする。
 また、本発明の請求項3によるアキュムレータは、上記した請求項1または2記載のアキュムレータにおいて、前記シールホルダーに設けたフランジ部に当接する円周上連続または不連続の外周突起が前記可撓部の厚み方向一方の面に設けられていることを特徴とする。
 また、本発明の請求項4によるアキュムレータは、上記した請求項1、2または3記載のアキュムレータにおいて、前記可撓部を径方向の一部で薄肉化する溝部が前記可撓部の厚み方向両方または一方の面に設けられていることを特徴とする。
 更にまた、本発明の請求項5によるアキュムレータは、上記した請求項1、2、3または4記載のアキュムレータにおいて、前記シール部に接触するゴム状弾性体よりなるシール突起が前記剛性プレートの厚み方向一方の面に設けられ、前記シール突起は前記可撓部と一体に成形されていることを特徴とする。
 上記構成を備える本発明のアキュムレータにおいては、シール部材が剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したものであって、可撓部がシールホルダーとの係合によりせん断変形することによりベローズキャップの相対移動を許容するものとされているため、シールホルダーおよびベローズキャップはシール部材がせん断変形することによりシール部材に対し相対移動し、よって上記図13の先行技術のように相対移動するためのゆとり寸法をシールホルダーに設定する必要がなく、これに伴い、バネ部材をシールホルダーに組み込む必要もない。したがって上記図13の先行技術に対しシールホルダーの長さ寸法を短縮することにより部品を小型にすることが可能とされ、バネ部材を省略することにより部品点数を少なくすることが可能とされる。
 また、上記構成を備える本発明のアキュムレータは、機器の圧力配管に接続されて、以下のように作動する。
定常作動時・・・
 アキュムレータの定常作動時、シール部材はシールホルダーに保持された状態でベローズキャップとともに移動することによりシール部から離れているので、ポート穴は液室と連通している。したがってポート穴から液室へそのときどきの圧力を備えた液体が随時導入されるので、ベローズキャップがシール部材とともに液体圧および封入ガス圧が均衡するように随時移動する。
ゼロダウン時・・・
 機器の運転が停止する等して圧力配管内の圧力が低下すると液室内の液体がポート穴から徐々に排出され、これに伴って封入ガス圧によりベローズキャップがシール部に近付く方向へ移動し、シール部材がシール部に接触して所謂ゼロダウン状態となる。したがって液室が閉塞され、この液室に一部の液体が閉じ込められるので、液室の更なる圧力低下は発生しなくなり、よってベローズ内外で液体圧および封入ガス圧が均衡した状態となる。
ゼロダウン状態における熱膨張時・・・
 ゼロダウン状態すなわちシール部材がシール部に接触して液室が閉塞された状態で、雰囲気温度の上昇等によって液室に閉じ込められた液体および封入ガスが熱膨張すると、液体のほうがガスよりも圧力の上昇度合いが大きいので圧力差が発生するが、当該アキュムレータでは、この圧力差を受けてベローズキャップがシール部から離れる方向へ移動する。したがって液体圧および封入ガス圧が均衡した状態が維持されるので、ベローズ内外に圧力差が発生せず、よってベローズに塑性変形が発生するのが抑制される。尚このとき、シール部に接触した状態にあるシール部材の受圧面積はシール部側の面よりベローズキャップ側の面のほうが大きいため、シール部材はその両面における受圧面積の差によりシール部に接触したままで移動しない。したがってポート穴は閉じたままとされる。またこのとき、上記したようにシール部材は剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したものとされているため、可撓部がシールホルダーとの係合によりせん断変形することによりベローズキャップの相対移動を許容し、すなわちシールホルダーおよびベローズキャップは可撓部をせん断変形させながらシール部から離れる方向へ向けて移動する。
 シール部材は、剛性プレートの外径寸法をシールホルダーに設けたフランジ部の内径寸法より小さく設定するとともに可撓部の外径寸法をフランジ部の内径寸法より大きく設定するのが好適であり、これによれば可撓部がシールホルダーとの係合によりせん断変形しやすいものとされる。
 また、可撓部をせん断変形しやすくするには、シールホルダーに設けたフランジ部に当接する円周上連続または不連続の外周突起を可撓部の厚み方向一方の面に設けたり、あるいは可撓部を径方向の一部で薄肉化する溝部を可撓部の厚み方向両方または一方の面に設けたりするのが好適であり、これらによれば可撓部のせん断変形量を増大させ、シール部材とシールホルダーおよびベローズキャップとの相対移動量を増大させることが可能とされる。
 また、シール部材は、シール部に接触するゴム状弾性体よりなるシール突起を剛性プレートの厚み方向一方の面に設けたものであっても良く、これによればシール部がステイの端面部やオイルポートの端面部等の金属面よりなる場合であっても、液体に対するシール性を十分に確保することが可能とされる。またこの場合、シール突起と可撓部を一体に成形すれば、部品製作時の弾性体成形回数が少なくて済む。
 以上説明したように本発明によれば、シール部材が剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したものであって、可撓部がシールホルダーとの係合によりせん断変形することによりベローズキャップの相対移動を許容するものとされているため、シールホルダーにシール部材を相対移動させるためのゆとり寸法を設定する必要がなく、バネ部材を組み込む必要もない。したがってシールホルダーの長さ寸法を短縮して部品を小型にすることが可能とされ、バネ部材を省略して部品点数を少なくすることが可能とされている。また、併せて本発明では、ゼロダウン時に液室に閉じ込められた液体および封入ガスが熱膨張したときに発生する圧力差を、シール部材はシール部に接触したまま移動せずベローズキャップのみが移動することにより、低減させることが可能とされている。したがって本発明所期の目的どおり、ゼロダウン時に液室に閉じ込められた液体および封入ガスが熱膨張したときにベローズに塑性変形が発生するのを抑制することができ、しかも部品が小型で部品点数が少ない構造のアキュムレータを提供することができる。
 また、剛性プレートの外径寸法をシールホルダーに設けたフランジ部の内径寸法より小さく設定するとともに可撓部の外径寸法をフランジ部の内径寸法より大きく設定することにより可撓部がシールホルダーと係合したときにせん断変形しやすくなり、可撓部に外周突起や溝を設けることによりシール部材とシールホルダーおよびベローズキャップとの相対移動量を増大させることができる。したがってゼロダウン時に液室に閉じ込められた液体および封入ガスが熱膨張したときに発生する圧力差が大きな場合であっても圧力差を速やかに低減させることができる。
 また、剛性プレートにシール突起を設けることによりシール部がステイの端面部やオイルポートの端面部等の金属面よりなる場合であってもシール性を十分に確保することができ、シール突起および可撓部を一体に成形することにより部品の製作工程を容易化することができる。
本発明の第1実施例に係るアキュムレータの断面図 同アキュムレータに備えられるシール部材の拡大断面図 同アキュムレータの定常作動時の状態を示す要部拡大断面図 同アキュムレータのゼロダウン時の状態を示す要部拡大断面図 同アキュムレータのゼロダウン状態における熱膨張時の状態を示す要部拡大断面図 本発明の第2実施例に係るアキュムレータの定常作動時の状態を示す要部断面図 同アキュムレータのゼロダウン時の状態を示す要部断面図 同アキュムレータのゼロダウン状態における熱膨張時の状態を示す要部断面図 本発明の第3実施例に係るアキュムレータの定常作動時の状態を示す要部断面図 同アキュムレータのゼロダウン時の状態を示す要部断面図 同アキュムレータのゼロダウン状態における熱膨張時の状態を示す要部断面図 従来例に係るアキュムレータの断面図 他の従来例に係るアキュムレータの定常作動時の状態を示す要部断面図 同アキュムレータのゼロダウン時の状態を示す要部断面図 同アキュムレータのゼロダウン状態における熱膨張時の状態を示す要部断面図
 本発明には、以下の実施形態が含まれる。
(1)ゼロダウン時、液室に閉じ込められる液体(バックアップフルード(BF))をシールするために、ベローズキャップ側にシール部材を設ける。
(2)シール部材として、金属板の外周部にゴム部(弾性体部)を設けたガスケットシールを用いる。
(3)ガスケットシールは、ベローズキャップとシールホルダーの間にあって、ゼロダウン状態での昇温時にはシール外周部のゴム部がシールホルダーによって変形する。この変形によって、シールホルダーおよびそれが接合するベローズキャップがベローズを収縮させる方向に変位し、BFの容積を拡大させる。
(4)金属板の片面に、シール突起を設けても良い。
(5)シール外周部のゴム部に、ゴム(弾性体)突起または/および溝部を設けても良い。
 つぎに本発明の実施例を図面にしたがって説明する。
第1実施例・・・
 図1ないし図5は、本発明の第1実施例に係るアキュムレータ1を示している。当該実施例に係るアキュムレータ1は、ベローズ9として金属ベローズを用いる金属ベローズ型アキュムレータであって、以下のように構成されている。
 すなわち図1に示すように、図示しない機器の圧力配管に接続されるポート穴5を備えたアキュムレータハウジング2が設けられており、このハウジング2の内部にベローズ9およびベローズキャップ10が配置されてハウジング2の内部空間が高圧ガス(例えば窒素ガス)を封入するガス室11と、ポート穴5に連通する液室12とに仕切られている。ハウジング2としては有底円筒状のシェル3と、このシェル3の底部中央に固定(溶接)されるとともに上記ポート穴5を設けたオイルポート4と、シェル3の上端開口部に固定(溶接)されたガスエンドカバー6との組み合わせよりなるものが描かれているが、ハウジング2の部品割り構造は特に限定されるものではなく、例えばシェル3とオイルポート4は一体であっても良く、またシェル3とガスエンドカバー6は一体であっても良く、何れにしてもガスエンドカバー6またはこれに相当する部品に、ガス室11にガスを注入するためのガス注入口7が設けられ、ガス注入後、ガスプラグ8で閉じられている。
 ベローズ9は、その固定端9aをハウジング2の反ポート側内面であるガスエンドカバー6の内面に固定(溶接)するとともにその遊動端9bに円盤状のベローズキャップ10を固定(溶接)しており、よって当該アキュムレータ1はベローズ9の内周側にガス室11を設定するとともにベローズ9の外周側に液室12を配置する内ガスタイプのアキュムレータとされている。ベローズキャップ10の外周部には、ハウジング2の内面に対してベローズ9およびベローズキャップ10が接触しないよう制振リング13が取り付けられているが、この制振リング13はシール作用を奏するものではない。符号14はプロテクションリングである。
 ベローズキャップ10におけるポート側の面にシールホルダー21が固定され、このシールホルダー21によって円盤状のシール部材31が保持されている。
 シールホルダー21は、筒状部21aのポート側端部に径方向内方へ向けて環状のフランジ部21bを一体成形したものであって、筒状部21aの反ポート側端部をもってベローズキャップ10に固定(溶接または嵌合など)されている。
 シール部材31は、図2の単品図に示すように、金属または硬質樹脂等よりなる円盤状の剛性プレート32の表面にゴム状弾性体33を被着(加硫接着)したものであって、このゴム状弾性体33によって、剛性プレート32の外周面に被着された環状の可撓部34と、剛性プレート32の反ポート側端面に被着された薄膜状の反ポート側被覆部35と、剛性プレート32のポート側端面に被着された同じく薄膜状のポート側被覆部36が一体に成形され、さらに剛性プレート32のポート側端面に位置して環状のシール突起37が一体に成形されている。シール突起37は、当該アキュムレータ1のシール部15として作用するオイルポート4の内側端面に接離可能に接触する。剛性プレート32はゴム状弾性体33によって全表面を被覆されている。
 シールホルダー21およびシール部材31において、各寸法諸元は、以下のように設定されている。
 すなわち先ず、径方向の寸法について、剛性プレート32の外径寸法は、シールホルダー21の内径寸法すなわちフランジ部21bの内径寸法より小さく設定されている。これに対し可撓部34の外径寸法すなわちシール部材31の外径寸法は、シールホルダー21の筒状部21aの内径寸法と同等または略同等であって同内径寸法より少々小さく設定され、かつシールホルダー21の内径寸法すなわちフランジ部21bの内径寸法より大きく設定されている。
 また、厚み方向の寸法について、可撓部34の厚み寸法は、剛性プレート32の厚み寸法、反ポート側被覆部35の厚み寸法およびポート側被覆部36の厚み寸法の和と同等または略同等に設定されている。また剛性プレート32の厚み寸法、反ポート側被覆部35の厚み寸法およびポート側被覆部36の厚み寸法の和ならびに可撓部34の厚み寸法はそれぞれ、フランジ部21bおよびベローズキャップ10間の間隔寸法と同等または略同等に設定されているが、ゼロダウン時に液室12に閉じ込められた液体の圧力をベローズキャップ10のポート側端面およびシール部材31の反ポート側端面にそれぞれ作用させる必要があるので、ベローズキャップ10およびシール部材31間に少々の隙間c(図3)を形成すべくこれらの厚み寸法はこれをフランジ部21bおよびベローズキャップ10間の間隔寸法より少々小さく設定するのが好ましい。
 また、これに関連して、ゼロダウン時に液室12に閉じ込められた液体の圧力をベローズキャップ10およびシール部材31間の隙間cに導入すべく液室12および隙間cを連通させる連通路が設けられている。この連通路は、可撓部34およびシールホルダー21間の隙間(液室12から可撓部34およびフランジ部21b間の隙間ならびに可撓部34および筒状部21a間の隙間を経由してベローズキャップ10およびシール部材31間の隙間cへ至る連通路)であっても良いが、これで不足の場合、連通路はこれを、何れも図示しないものの、シールホルダー21の円周上一部に設けられた切り欠き、可撓部34の円周上一部に設けられた切り欠き、またはシール部材31を厚み方向に貫通するように設けられた貫通穴などにより形成することにしても良い。
 シールホルダー21が保持しているのは、シール部材31のみであり、シールホルダー21はバネ部材の類(金属よりなるバネのほかにゴム状弾性体よりなるバネも含む)を保持していない。
 つぎに、上記構成のアキュムレータ1の作動を説明する。
定常作動時・・・
 図3はアキュムレータ1の定常作動時の状態を示している。ポート穴5は図示しない機器の圧力配管に接続されている。この定常作動時において、シール部材31はシールホルダー21に保持された状態でベローズキャップ10とともに移動することによりシール部15から離れているので、ポート穴5は液室12と連通している。したがってポート穴5から液室12へそのときどきの圧力を備えた液体が随時導入されるので、ベローズキャップ10がシール部材31とともに液体圧および封入ガス圧が均衡するように随時移動する。
ゼロダウン時・・・
 図3の状態から、機器の運転が停止する等して圧力配管内の圧力が低下すると液室12内の液体がポート穴5から徐々に排出され、これに伴って図4に示すように、封入ガス圧によりベローズキャップ10がシール部15に近付く方向へ移動し、シール部材31がシール突起37にてシール部15に接触して所謂ゼロダウン状態となる。したがって液室12が閉塞され、この液室12に一部の液体が閉じ込められるので、液室12の更なる圧力低下は発生しなくなり、よってベローズ9の内外で液体圧および封入ガス圧が均衡した状態となる。液室12に閉じ込められた液体はこれをバックアップフルード(BF)と称することもある。
ゼロダウン状態における熱膨張時・・・
 図4のゼロダウン状態すなわちシール部材31がシール突起37にてシール部15に接触して液室12が閉塞された状態で、雰囲気温度の上昇等によって液室12に閉じ込められた液体および封入ガスが熱膨張すると、液体のほうがガスよりも圧力の上昇度合いが大きいので圧力差が発生するが、当該アキュムレータ1では図5に示すように、この圧力差を受けてベローズキャップ10がシール部15から離れる方向へ向けて可撓部34をせん断変形させながら移動する。したがって液体圧および封入ガス圧が均衡した状態が維持されるので、ベローズ9の内外に圧力差が発生せず、よってベローズ9に塑性変形が発生するのを抑制することができる。尚このとき、シール部15に接触した状態にあるシール部材31の受圧面積はシール部15側の面よりベローズキャップ10側の面のほうが大きいため(これはシール部15側の面においてシール突起37より内周側の部分が受圧面として作用しないことによる)、シール部材31はその両面における受圧面積の差によりシール部15に接触したままで移動しない。したがってポート穴5は閉じたままとされ、ベローズキャップ10およびシール部材31間の隙間はその大きさが拡大される(c<c)。
ゼロダウン解消時・・・
 図4または図5の状態から、機器の運転が再開する等して圧力配管内の圧力が上昇すると、この圧力がポート穴5からシール部材31に作用してシール部材31をシール部15から離間させる。したがってポート穴5が開き、液体が液室12に導入され、図3の定常作動時の状態に復帰する。
 上記構成のアキュムレータ1によれば、シール部材31が剛性プレート32の外周面にゴム状弾性体よりなる可撓部34を被着したものであって、可撓部34がシールホルダー21との係合によりせん断変形することによりベローズキャップ10の相対移動を許容するものとされているために、シールホルダー21にシール部材31を相対移動させるためのゆとり寸法を設定する必要がなく、バネ部材41を組み込む必要もない。したがって上記図13の先行技術と比較してシールホルダー21の長さ寸法が短縮されるために当該部品を小型にすることが可能とされ、バネ部材41が省略されるために部品点数を少なくすることが可能とされている。
 また、併せて上記構成のアキュムレータ1によれば、ゼロダウン時に液室12に閉じ込められた液体および封入ガスが熱膨張したときに発生する圧力差を、シール部材31はシール部15に接触したまま移動せずにベローズキャップ10のみが移動することにより、低減させることが可能とされている。
 したがって以上により本発明所期の目的どおり、ゼロダウン時に液室12に閉じ込められた液体および封入ガスが熱膨張したときにベローズ9に塑性変形が発生するのを抑制することができ、しかも部品が小型で、部品点数が少ない構造のアキュムレータを提供することができる。また、剛性プレート32にシール突起37が被着されているために、シール部15がステイの端面部やオイルポート4の端面部等の金属面よりなる場合であってもシール性を十分に確保することができ、シール突起37および可撓部34が一体に成形されているために、部品の製作工程を容易化することができる。
 上記第1実施例に係るアキュムレータ1については、その構成を以下のように付加・変更することが考えられる。
(1)第2実施例・・・
 第2実施例として図6ないし図8に示すように、シール部材31における可撓部34のポート側端面に、シールホルダー21のフランジ部21bの内側端面に当接し係合する外周突起38を一体成形する。この構成によれば可撓部34のせん断変形の変形量を増大させ、シール部材31およびシールホルダー21間延いてはシール部材31およびベローズキャップ10間の相対移動量を増大させることができる。外周突起38は可撓部34のポート側端面の最外周部に設けられている。外周突起38は円周上連続(環状)に設けられているが、円周上不連続に設けられても良い。
(2)第3実施例・・・
 第3実施例として図9ないし図11に示すように、シール部材31における可撓部34のポート側端面および反ポート側端面にそれぞれ、可撓部34の厚み寸法を径方向の一部で薄肉化する溝部39を設ける。この構成によれば上記第2実施例と同様に可撓部34のせん断変形の変形量を増大させ、シール部材31およびシールホルダー21間延いてはシール部材31およびベローズキャップ10間の相対移動量を増大させることができる。尚、図では可撓部34のポート側端面に上記第2実施例に係る外周突起38が併せ設けられているので、このポート側端面において溝部39は外周突起38の内周側に設けられている。溝部39は円周上連続(環状)に設けられているが、円周上不連続に設けられても良い。溝部39は可撓部34のポート側端面および反ポート側端面の何れか一方のみに設けられても良い。
(3)
 上記第1実施例では、アキュムレータ1を、ベローズ9の内周側にガス室11を設定するとともにベローズ9の外周側に液室12を配置する内ガスタイプのアキュムレータとしたが、アキュムレータ1のタイプとしては上記図13に示されるような、ベローズ9の外周側にガス室11を設定するとともにベローズ9の内周側に液室12を配置する外ガスタイプのアキュムレータであっても良い。すなわち本発明には、内ガスタイプのアキュムレータおよび外ガスタイプのアキュムレータが双方共に含まれる。
(4)
 上記第1実施例では、シール部材31が接離可能に接触するシール部15をオイルポート4の内側端面としたが、シール部15としては上記図13に示されるような、ポート穴の内側開口周縁部に設けられたゴム状弾性体よりなるリップシールであっても良い。また、上記外ガスタイプのアキュムレータではシール部15の高さ位置を嵩上げするためオイルポート4の内側(ベローズキャップ側)であってベローズ9の内周側にステイ部材を設置することがあるが、この場合、シール部15はこのステイ部材の端面部であっても良い。また、シール部15が上記リップシールとされる場合、シール部材31は剛性プレート32がこのリップシールに直接接触する構成であっても良い。
 1 アキュムレータ
 2 ハウジング
 3 シェル
 4 オイルポート
 5 ポート穴
 6 ガスエンドカバー
 7 ガス注入口
 8 ガスプラグ
 9 ベローズ
 9a 固定端
 9b 遊動端
 10 ベローズキャップ
 11 ガス室
 12 液室
 13 制振リング
 14 プロテクションリング
 15 シール部
 21 シールホルダー
 21a 筒状部
 21b フランジ部
 31 シール部材
 32 剛性プレート
 33 ゴム状弾性体
 34 可撓部
 35,36 被覆部
 37 シール突起
 38 外周突起
 39 溝部

Claims (5)

  1.  機器の圧力配管に接続されるポート穴を備えたアキュムレータハウジングと、前記ハウジングの内部に配置されて前記ハウジングの内部空間を高圧ガスを封入するガス室および前記ポート穴に連通する液室に仕切るベローズおよびベローズキャップと、前記ベローズキャップのポート穴側にシールホルダーを介して保持されたシール部材とを有し、
     定常作動時、前記シール部材は前記ベローズキャップとともに移動し、前記機器の運転が停止して前記圧力配管内の圧力が低下したとき、前記シール部材は、前記ハウジングの内部に設けたシール部に接触して前記液室を閉塞し、前記液室が閉塞された状態で前記液室に閉じ込められた液体が熱膨張したとき、前記シール部材は前記シール部に接触したままで前記ベローズキャップが前記シール部から離れる方向へ移動し、
     前記シール部材は、剛性プレートの外周面にゴム状弾性体よりなる可撓部を被着したものであって、前記可撓部が前記シールホルダーとの係合によりせん断変形することにより前記ベローズキャップの相対移動を許容することを特徴とするアキュムレータ。
  2.  請求項1記載のアキュムレータにおいて、
     前記剛性プレートは、その外径寸法が前記シールホルダーに設けたフランジ部の内径寸法より小さく設定され、
     前記可撓部は、その外径寸法が前記フランジ部の内径寸法より大きく設定されていることを特徴とするアキュムレータ。
  3.  請求項1または2記載のアキュムレータにおいて、
     前記シールホルダーに設けたフランジ部に当接する円周上連続または不連続の外周突起が前記可撓部の厚み方向一方の面に設けられていることを特徴とするアキュムレータ。
  4.  請求項1、2または3記載のアキュムレータにおいて、
     前記可撓部を径方向の一部で薄肉化する溝部が前記可撓部の厚み方向両方または一方の面に設けられていることを特徴とするアキュムレータ。
  5.  請求項1、2、3または4記載のアキュムレータにおいて、
     前記シール部に接触するゴム状弾性体よりなるシール突起が前記剛性プレートの厚み方向一方の面に設けられ、前記シール突起は前記可撓部と一体に成形されていることを特徴とするアキュムレータ。
PCT/JP2013/082656 2013-02-15 2013-12-05 アキュムレータ WO2014125703A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/421,167 US9328746B2 (en) 2013-02-15 2013-12-05 Accumulator
EP13875034.4A EP2957776B1 (en) 2013-02-15 2013-12-05 Accumulator
JP2015500099A JP6165833B2 (ja) 2013-02-15 2013-12-05 アキュムレータ
CN201380042811.1A CN104583606B (zh) 2013-02-15 2013-12-05 蓄能器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027631 2013-02-15
JP2013-027631 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014125703A1 true WO2014125703A1 (ja) 2014-08-21

Family

ID=51353722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082656 WO2014125703A1 (ja) 2013-02-15 2013-12-05 アキュムレータ

Country Status (5)

Country Link
US (1) US9328746B2 (ja)
EP (1) EP2957776B1 (ja)
JP (1) JP6165833B2 (ja)
CN (1) CN104583606B (ja)
WO (1) WO2014125703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167580A (ja) * 2020-04-10 2021-10-21 株式会社Ihiエアロスペース 液体推進薬供給装置と衛星用推進装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077787B2 (en) 2014-03-11 2018-09-18 Eagle Industry Co., Ltd. Accumulator
CN107532615B (zh) * 2015-06-22 2019-07-09 伊格尔工业股份有限公司 蓄压器
EP3404271B1 (en) * 2016-01-13 2021-01-27 Eagle Industry Co., Ltd. Accumulator
JP6896763B2 (ja) 2016-12-02 2021-06-30 イーグル工業株式会社 アキュムレータ
CN106523569B (zh) * 2017-01-12 2019-06-25 常州万安汽车部件科技有限公司 油气减震系统
WO2018143065A1 (ja) * 2017-02-03 2018-08-09 イーグル工業株式会社 アキュムレータ
CN106764222B (zh) * 2017-02-03 2018-09-14 北京华德创业环保设备有限公司 列管式流体稳流器
EP3578829B1 (en) 2017-02-03 2022-07-20 Eagle Industry Co., Ltd. Accumulator
WO2018143030A1 (ja) * 2017-02-03 2018-08-09 イーグル工業株式会社 アキュムレータ
DE102018007279A1 (de) * 2018-09-14 2020-03-19 Hydac Technology Gmbh Balgspeicher
CN109505809A (zh) * 2018-12-28 2019-03-22 中国航空工业集团公司西安飞行自动控制研究所 一种波纹管蓄能器的耐压壳体结构
CN111140557A (zh) * 2019-12-19 2020-05-12 安徽威迈光机电科技有限公司 一种新型结构的s型波纹管式蓄能器
CN112879485B (zh) * 2020-04-27 2022-11-25 北京京西重工有限公司 空气悬架组件和用于空气悬架组件的波纹管
CN112535913B (zh) * 2020-11-19 2022-06-03 无锡市添彩环保科技有限公司 一种具有防爆功能的防爆除尘器及其防爆控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092145A (ja) 2007-10-10 2009-04-30 Nok Corp アキュムレータ
JP2009127664A (ja) * 2007-11-20 2009-06-11 Nok Corp アキュムレータ
JP2010112431A (ja) * 2008-11-05 2010-05-20 Nok Corp アキュムレータ
JP2010151286A (ja) * 2008-12-26 2010-07-08 Nok Corp 金属ベローズ式アキュムレータ
JP2011226557A (ja) * 2010-04-20 2011-11-10 Nok Corp アキュムレータ
JP2013194871A (ja) * 2012-03-22 2013-09-30 Eagle Industry Co Ltd アキュムレータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026173A (ja) * 1996-07-08 1998-01-27 Nobuyuki Kobayashi 制振用ダンパ
JP4718129B2 (ja) * 2003-07-30 2011-07-06 日本発條株式会社 車両用ブレーキシステム部品
JP5201722B2 (ja) * 2008-03-26 2013-06-05 イーグル工業株式会社 金属ベローズ式アキュムレータ
JP5108733B2 (ja) * 2008-11-27 2012-12-26 Nok株式会社 アキュムレータ
EP2860406B1 (en) * 2012-06-11 2020-01-15 Eagle Industry Co., Ltd. Accumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092145A (ja) 2007-10-10 2009-04-30 Nok Corp アキュムレータ
JP2009127664A (ja) * 2007-11-20 2009-06-11 Nok Corp アキュムレータ
JP2010112431A (ja) * 2008-11-05 2010-05-20 Nok Corp アキュムレータ
JP2010151286A (ja) * 2008-12-26 2010-07-08 Nok Corp 金属ベローズ式アキュムレータ
JP2011226557A (ja) * 2010-04-20 2011-11-10 Nok Corp アキュムレータ
JP2013194871A (ja) * 2012-03-22 2013-09-30 Eagle Industry Co Ltd アキュムレータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167580A (ja) * 2020-04-10 2021-10-21 株式会社Ihiエアロスペース 液体推進薬供給装置と衛星用推進装置
JP7373453B2 (ja) 2020-04-10 2023-11-02 株式会社Ihiエアロスペース 液体推進薬供給装置と衛星用推進装置

Also Published As

Publication number Publication date
US20150204357A1 (en) 2015-07-23
CN104583606B (zh) 2017-03-29
EP2957776A1 (en) 2015-12-23
CN104583606A (zh) 2015-04-29
JP6165833B2 (ja) 2017-07-19
JPWO2014125703A1 (ja) 2017-02-02
EP2957776B1 (en) 2018-09-19
EP2957776A4 (en) 2016-02-24
US9328746B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP6165833B2 (ja) アキュムレータ
JP5102576B2 (ja) アキュムレータ
US7770599B2 (en) Accumulator
US8371336B2 (en) Accumulator
US9188139B2 (en) Accumulator
WO2013140637A1 (ja) アキュムレータ
US7810522B1 (en) Accumulator
JP5374435B2 (ja) アキュムレータ
JP6416875B2 (ja) アキュムレータ
JP5224323B2 (ja) アキュムレータ
JP4956362B2 (ja) アキュムレータ
JP5685076B2 (ja) アキュムレータ
JP4956361B2 (ja) アキュムレータ
JP5876638B2 (ja) 流体式変速機用クラッチピストン
JP2003074503A (ja) アキュムレータ
JP5685103B2 (ja) アキュムレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14421167

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015500099

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013875034

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE