WO2014119492A1 - 電気自動車用同期モータの制御装置 - Google Patents

電気自動車用同期モータの制御装置 Download PDF

Info

Publication number
WO2014119492A1
WO2014119492A1 PCT/JP2014/051583 JP2014051583W WO2014119492A1 WO 2014119492 A1 WO2014119492 A1 WO 2014119492A1 JP 2014051583 W JP2014051583 W JP 2014051583W WO 2014119492 A1 WO2014119492 A1 WO 2014119492A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current command
synchronous motor
torque ripple
electric vehicle
Prior art date
Application number
PCT/JP2014/051583
Other languages
English (en)
French (fr)
Inventor
中島明生
張瑩捷
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201480005465.4A priority Critical patent/CN104937834B/zh
Priority to EP14745846.7A priority patent/EP2953261B1/en
Publication of WO2014119492A1 publication Critical patent/WO2014119492A1/ja
Priority to US14/807,553 priority patent/US9787230B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the present invention relates to a control device for a synchronous motor used for a motor for traveling in an electric vehicle whose traveling drive source is only a motor or a hybrid electric vehicle equipped with a motor and an engine.
  • a synchronous motor that is an AC-driven permanent magnet motor such as an IPM (Inter Permanent Magnet) motor or an SPM (Surface Permanent Magnet) motor is often used as a running motor.
  • IPM Inter Permanent Magnet
  • SPM Surface Permanent Magnet
  • These synchronous motors for electric vehicles are driven by a vector control type inverter device in order to improve the control performance.
  • the harmonics of the field flux are generated. There are six times the power supply frequency generated by the waves.
  • the motor torque Te output with respect to the target current value Iref given to the motor 2 includes a torque ripple as schematically shown in the torque waveform.
  • An object of the present invention is to provide a control device for a synchronous motor for an electric vehicle excellent in practicality that can suppress torque ripple with a simple calculation.
  • An electric vehicle synchronous motor control device 1 is an electric vehicle synchronous motor control device 1 that applies a motor drive current i corresponding to a motor drive command T to a traveling drive synchronous motor 2. And a torque ripple compensation means 3 having a frequency six times the rotational speed of the motor 2 and having a sine wave correction current ⁇ i having a phase opposite to that of the torque ripple generated in the motor 2. It is characterized by. With this configuration, the control device is excellent in practicality and can suppress torque ripple with a simple calculation.
  • the torque ripple compensating means 3 has a sine wave correction current ⁇ i having a frequency six times the motor rotation speed and having a phase opposite to that of the torque ripple generated in the synchronous motor 2 as the motor driving current i. Add. For this reason, the torque ripple is canceled by the correction current ⁇ i. Further, the torque ripple compensation means 3 adds a sine wave correction current ⁇ i having a phase opposite to that of the torque ripple. Therefore, the control device 1 for the synchronous motor for an electric vehicle is based on the control theory model formula of the conventional motor.
  • control device 1 for an electric vehicle synchronous motor is a practical control device for an electric vehicle synchronous motor that can suppress torque ripple with a simple calculation.
  • control device 1 for an electric vehicle synchronous motor includes a current command generation unit 8 that generates an AC waveform current command corresponding to an input motor drive command T, and the current command generation unit 8.
  • a basic control unit 9 that converts the output current command into a three-phase AC motor drive current and applies the same to the synchronous motor 2, and has a frequency that is six times the motor rotation speed and is generated in the synchronous motor 2 It is assumed that there is provided torque ripple compensation means 3 for applying a sine wave correction current command having an opposite phase to the current command input to the basic control unit 9.
  • a q-axis current command generating unit 8a that generates a q-axis current command having an AC waveform corresponding to an input motor drive command T and a d-axis current command are output.
  • the d-axis current command unit 8b and the current command composed of the q-axis current command iq and the d-axis current command id output from the current command generation units 8a and 8b are converted into a three-phase AC motor drive current to perform the synchronization.
  • a vector control type basic control unit 9 applied to the motor 2, and the torque ripple compensation means 3 may add the sine wave correction current command iq_c to the q-axis current command iq.
  • the vector control is divided into q-axis current (torque current) and d-axis current (field current (also referred to as magnetic flux current)) and is controlled independently to achieve high-speed response and high-precision control.
  • q-axis current torque current
  • d-axis current field current (also referred to as magnetic flux current)
  • the torque ripple compensation means 3 is expressed by the following equation (1).
  • iq_c Kcos (6 ⁇ + ⁇ ) (1)
  • K constant
  • motor rotation angle
  • phase compensation value
  • the correction current command iq_c may be determined according to
  • the control device 1 for the synchronous motor for an electric vehicle implements control for adding a sine wave correction current having a phase opposite to that of the torque ripple to the motor drive current.
  • K constant
  • ⁇ ′ predicted angle after one sampling time of the detected value of the motor rotation angle
  • phase compensation value
  • the prediction control for determining the correction current command iq_c may be performed according to the above.
  • control based on the above equation (1) is fundamental, there is a risk of control delay due to calculation.
  • the control device 1 for the synchronous motor for an electric vehicle has no control delay. More effective torque ripple compensation can be performed.
  • the torque ripple compensating means 3 may be provided with a correction limiting unit 16 that stops the output of the correction current command iq_c when the rotation speed of the synchronous motor 2 becomes equal to or higher than a set rotation speed. Since the torque ripple has a frequency that is six times the motor rotation speed, it is difficult to calculate and generate the correction current command iq_c having the same frequency as the torque ripple frequency as the motor rotation speed increases. For this reason, the correction current command iq_c may become noise due to a delay in calculation. For this reason, it is desirable to stop the output of the correction current command iq_c when the rotation speed of the motor is increased to some extent.
  • the “set rotation speed” that serves as a threshold value for determining whether or not to output the corrected current command command iq_c may be set to an appropriate value according to the arithmetic processing capability of the control device 1.
  • the torque ripple compensation means 3 includes a correction limiting unit 16 that gradually brings the output of the correction current command iq_c closer to zero as the rotation speed of the synchronous motor 2 increases within a range determined for the motor rotation speed. It is good to have. As described above, it is difficult to calculate and generate a correction current command having the same frequency as the torque ripple frequency as the motor rotation speed increases. However, if the control for compensating for the torque ripple is suddenly stopped, the passenger may feel uncomfortable. On the other hand, if the output of the correction current command iq_c is gradually made closer to zero as the motor rotation speed increases, control of torque ripple compensation can be stopped without a sense of incongruity.
  • the constant K may be a function of the motor rotational speed or the motor output torque.
  • K may be K ⁇ torque or K ⁇ (1 / frequency).
  • the magnitude of the generated torque ripple varies depending on the motor rotation speed and the motor output torque. For this reason, torque ripple can be more effectively suppressed by setting the constant K as a function of the motor rotational speed or the motor output torque as described above.
  • the phase correction value ⁇ may be a function of the motor rotational speed or the motor output torque.
  • the appropriate phase correction value differs depending on the relationship between the motor rotation speed and motor output torque and the calculation time in the control device. Therefore, torque ripple can be more effectively suppressed by making the phase correction value ⁇ a function of the motor rotational speed or the motor output torque.
  • FIG. 4 is a block diagram showing a specific example of torque ripple compensation means in the control device having the configuration of FIG. 3.
  • FIG. 6 is a block diagram showing another specific example of torque ripple compensation means in the control device having the configuration of FIG. 3.
  • the synchronous motor control device 1 for an electric vehicle is a device that gives a motor drive current i according to a motor drive command to a synchronous motor 2 for driving driving.
  • Torque ripple compensation means 3 having a frequency six times the rotational speed of the motor 2 and applying a sine wave correction current ⁇ i having a phase opposite to that of the torque ripple generated in the motor 2 to the motor drive current i is provided.
  • the torque ripple compensation means 3 includes a correction current generation unit 4 that generates a correction current ⁇ i, and an addition unit 5 that adds the generated correction current ⁇ i to the motor drive current i and sets the target current Iref.
  • the motor 2 is an AC-driven permanent magnet motor such as an IPM motor or an SPM motor.
  • the adding unit 5 is illustrated as adding the motor driving current i and the correction current ⁇ i by the current itself, but specifically, as shown in FIG.
  • the correction current command may be added to the current command before power conversion, and power conversion may be performed according to the added current command, so that the correction current ⁇ i is added to the motor drive current i as a result.
  • the output torque Te with respect to the target current Iref input to the motor 2 has a torque ripple. It will have.
  • the torque ripple has a frequency six times the motor rotation speed regardless of the number of magnetic poles.
  • the torque ripple compensation means 3 adds a sine wave correction current ⁇ i having a frequency six times the motor rotation speed and having a phase opposite to that of the torque ripple generated in the motor 2 to the motor drive current i. . For this reason, the torque ripple is canceled by the correction current ⁇ i.
  • the torque ripple compensation means 3 adds a sine wave correction current having a phase opposite to that of the torque ripple, the processing is simpler than that in which the correction corresponding to the conventional motor control model is performed.
  • the torque ripple can be effectively suppressed with a simple configuration.
  • the electric vehicle motor control apparatus is excellent in practicality and capable of suppressing torque ripple with a simple calculation.
  • this electric motor synchronous motor control device 1 is specifically composed of an inverter device which is a subordinate control means of a main ECU (electric control unit) 6 in the electric vehicle.
  • the control device 1 for an electric vehicle synchronous motor composed of this inverter device outputs a current command generator 8 that generates an AC waveform current command corresponding to an input motor drive command T, and is output from the current command generator 8.
  • a basic control unit 9 that converts the current command into a three-phase AC motor drive current and applies the same to the motor 2.
  • the motor drive command T is given from the ECU 6 to the current command generation unit 8 as a torque command corresponding to the operation amount of the accelerator 7.
  • the current command generator 8 converts the torque command into a current command.
  • the basic control unit 9 performs various controls according to the input current command and the state of the motor 2 to generate each phase command based on the voltage value, and the generated each phase command
  • the power conversion unit 12 converts the power and supplies it to the motor 2.
  • the power conversion unit 12 includes a plurality of switching elements and the like, an inverter 13 that converts DC power of a battery (not shown) into AC power, a PWM driver (not shown) that performs PWM control on the inverter 13, and the like. It becomes.
  • torque ripple compensation means 3 for adding a correction current command to a current command input from the current command generation unit 8 to the basic control unit 9 is provided.
  • the correction current command output by the torque ripple compensation means 3 is a sine wave current command having a frequency six times the motor rotation speed and having a phase opposite to that of the torque ripple generated in the motor 2.
  • the torque ripple compensation means 3 includes a compensation control unit 15 that generates the correction current command and a correction limiting unit 16 that limits the output of the compensation control unit 15.
  • the drive control unit 11 of the basic control unit 9 performs vector control, and the current command generation unit 8 and the drive control unit 11 are configured, for example, as shown in FIG.
  • the current command generation unit 8 is a means for converting the motor drive command T composed of the input torque command into a q-axis current command iq and a d-axis current command id.
  • the q-axis current command generation unit 8a and the d-axis current command It consists of the production
  • the q-axis current command generator 8a converts the motor drive command T, which is an input torque command, into a current and outputs a q-axis current command iq.
  • the d-axis current command generation unit 8b outputs a fixed d-axis current command (for example, zero) id set appropriately, or a d-axis current command id having a magnitude corresponding to the input motor drive command T. Is output.
  • a fixed d-axis current command for example, zero
  • a d-axis current command id having a magnitude corresponding to the input motor drive command T. Is output.
  • the drive control unit 11 of the basic control unit 9 includes a PID control unit 17, which is a deviation control unit, a 2-phase ⁇ 3-phase conversion unit 18, a 3-phase ⁇ 2-phase conversion unit 19, a q-axis subtraction unit 21, and a d-axis calculation. Part 22.
  • three-phase ⁇ two-phase conversion unit 19 performs three-phase ⁇ two-phase conversion from the three-phase current values detected by the current sensor 24 attached to the motor 2 to q
  • the two-phase detection currents iq_fb and id_fb of the axis and d-axis are obtained.
  • the PID controller 17 performs proportional / integral / differential control based on the differences ⁇ iq and ⁇ id. Since the output of the PID control unit 17 is two-phase, the command values VW, VV, and VU of the voltages for driving the three-phase motor 2 are obtained by the two-phase ⁇ three-phase conversion unit 18 to obtain the power conversion unit. 12 is output.
  • the synchronous motor control device 1 has such a basic control unit 11 and is provided with the torque ripple compensation means 3 provided thereon.
  • the correction current command iq_c generated by the compensation control unit 15 of the torque ripple compensation unit 3 is added to the q-axis current command iq output from the current command generation unit 8 by the adding unit 23.
  • the q-axis subtractor 21 takes a difference ⁇ iq from the detected current iq_fb with respect to the added corrected q-axis current command iq_ref,
  • the PID control unit 17 performs PID control.
  • the compensation controller 15 of the torque ripple compensation means 3 is a means for generating a correction current command iq_c having a frequency six times the motor rotation speed and having a sine wave opposite in phase to the torque ripple generated in the motor 2.
  • the configuration is as shown in FIG. 4 or FIG.
  • the compensation control unit 15 has the following equation (1).
  • iq_c Kcos (6 ⁇ + ⁇ ) (1)
  • K constant
  • motor rotation angle
  • phase compensation value
  • the correction current command iq_c is generated according to The motor rotation angle ⁇ is obtained from an angle detector 25 attached to the motor 2.
  • the torque ripple compensation means 3 thus has a frequency six times the motor rotation speed and has a sine wave having a phase opposite to that of the torque ripple generated in the motor 2. Add correction current to motor drive current. For this reason, the torque ripple is canceled by the correction current. Further, since the torque ripple compensation means 3 adds a sine wave correction current having a phase opposite to that of the torque ripple, the processing is simpler than that in which the correction corresponding to the conventional motor control model is performed. The torque ripple can be effectively suppressed with a simple configuration. In this way, the control device for a synchronous motor for an electric vehicle excellent in practicality capable of suppressing torque ripple with a simple calculation.
  • the embodiment of FIG. 5 takes into account the dead time of control in order to further increase the calculation accuracy. That is, the compensation control unit 15 obtains the angular velocity ⁇ d by the differentiator 15b from the rotation angle ⁇ obtained by the angle detector 25, and adds the angular velocity ⁇ d to the current rotation angle ⁇ by the prediction unit 15c. The feedforward control is performed so as to predict the rotation angle ⁇ ′ after one sampling.
  • the constant K may be a function of the motor rotation speed (frequency) or the motor output torque.
  • K ⁇ torque or K ⁇ (1 / frequency) may be used.
  • the magnitude of the generated torque ripple varies depending on the motor rotation speed and the motor output torque. For this reason, torque ripple can be more effectively suppressed by setting the constant K as a function of the motor rotational speed or the motor output torque as described above.
  • the phase correction value ⁇ may be a function of the motor rotation speed or the motor output torque.
  • the appropriate phase correction value differs depending on the relationship between the motor rotation speed and motor output torque and the calculation time in the control device. Therefore, torque ripple can be more effectively suppressed by making the phase correction value ⁇ a function of the motor rotational speed or the motor output torque.
  • the correction by the torque ripple compensating means 3 may be limited by the correction limiting unit 16 as follows.
  • the correction limiting unit 16 stops the output of the correction current command when the rotation speed of the motor 2 becomes equal to or higher than a set rotation speed.
  • the “set rotation speed” that serves as a threshold for whether or not to output the correction current command may be set to an appropriate value according to the performance of the control device.
  • the set rotational speed is set to a value appropriately determined in the range of 1500 to 2500 min ⁇ 1, for example.
  • the correction limiting unit 16 may gradually bring the output of the correction current command iq_c closer to zero as the rotation speed of the motor 2 increases within a range determined for the motor rotation speed. Also in this case, it is desirable to stop the output of the correction current command when the rotation speed of the motor 2 becomes equal to or higher than the set rotation speed. As described above, it is difficult to calculate and generate a correction current command having the same frequency as the torque ripple frequency as the motor rotation speed increases. However, if the control for compensating for the torque ripple is suddenly stopped, the passenger may feel uncomfortable. On the other hand, when the output of the correction current command is gradually made closer to zero as the rotational speed of the motor 2 increases, control of torque ripple compensation can be stopped without a sense of incongruity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 簡単な演算でトルクリップルを抑制することができる実用性に優れた電気自動車用同期モータの制御装置を提供する。走行駆動用の同期型のモータ2を制御する同期モータ制御装置1において、モータ2の回転速度の6倍の周波数を持ちかつモータ2に発生するトルクリップルと逆位相の正弦波の補正電流をモータ駆動電流に加えるトルクリップル補償手段3を設ける。具体的には、ベクトル制御の基本制御部9を持つ構成の場合、トルクリップル補償手段3は、補正電流指令iq_cを出力し、これをq軸電流指令に加えた値iq_ref を制御に用いる。

Description

電気自動車用同期モータの制御装置 関連出願
 本出願は、2013年 1月31日出願の特願2013-016441の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、走行駆動源がモータのみである電気自動車や、モータおよびエンジンを搭載したハイブリッド形式の電気自動車において、前記走行用のモータに用いられる同期モータの制御装置に関する。
 電気自動車では、走行用のモータとしてIPM(Inter Permanent Magnet)モータやSPM(Surface Permanent Magnet)モータ等の、交流駆動の永久磁石モータである同期モータが用いられることが多い。これらの電気自動車用の同期モータは、その制御性能を高めるために、ベクトル制御方式のインバータ装置で駆動されるが、永久磁石を持つモータの構造上で発生するトルクリップルとして、界磁磁束の高調波により発生する電源周波数の6倍の周波数が存在する。
 図1Bで説明すると、モータ2に対して与えられる目標電流値Iref に対し、出力されるモータトルクTeは、トルク波形を模式的に示すように、トルクリップルを含んだものとなる。
 このようにモータにトルクリップルが発生すると、電気自動車の場合には、トルクリップルが車体の振動に直接に繋がり、乗り心地が悪くなってしまう。
 トルクリップルを抑制する技術として、IPMモータ出力のトルクリップルを打ち消す補償をすること、具体的にはIPMモータのベクトル制御理論モデル式に対応して、d,q軸電流指令、またはトルク指令を加えることが提案されている(例えば、特許文献1)。
特開2007-267466号公報
 特許文献1等におけるIPMモータのベクトル制御理論モデル式に対応して補償信号を加える技術は、理論的には優れている。しかし、計算量が多くて、各パラメータを求めることが簡単ではないため、実用性が低い。特に、中高速の走行中は、上記のような複雑な演算式で計算する場合では、計算が追いつかず、加えられた補償信号が逆にノイズになってしまう恐れがある。
 この発明の目的は、簡単な演算でトルクリップルを抑制することができる実用性に優れた電気自動車用同期モータの制御装置を提供することである。
 以下、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の電気自動車用同期モータの制御装置1は、走行駆動用の同期型のモータ2に対して、モータ駆動指令Tに応じたモータ駆動電流iを与える電気自動車用同期モータの制御装置1において、前記モータ2の回転速度の6倍の周波数を持ちかつ前記モータ2に発生するトルクリップルと逆位相の正弦波の補正電流Δiを前記モータ駆動電流iに加えるトルクリップル補償手段3を設けたことを特徴とする。この構成により、簡単な演算でトルクリップルを抑制することができる実用性に優れた制御装置となる。
 同期モータは、交流駆動の永久磁石モータであるため、モータ回転速度の6倍の周波数を持つトルクリップルが発生する。トルクリップルは、磁極数などにかかわらずに、モータ回転速度の6倍の周波数となる。これに対して、前記トルクリップル補償手段3は、モータ回転速度の6倍の周波数を持ちかつ前記同期モータ2に発生するトルクリップルと逆位相の正弦波の補正電流Δiを前記モータ駆動電流iに加える。このため、補正電流Δiによりトルクリップルが打ち消される。また、前記トルクリップル補償手段3は、トルクリップルと逆位相の正弦波の補正電流Δiを加えるものであるため、この電気自動車用同期モータの制御装置1は、従来のモータの制御理論モデル式に対応した補正を行うものに比べて、処理が簡単で高速に行え、簡単な構成でトルクリップルの抑制を効果的に行うことができる。
 このように、この電気自動車用同期モータの制御装置1は、簡単な演算でトルクリップルを抑制することができる実用性に優れた電気自動車用同期モータの制御装置となる。
 この電気自動車用同期モータの制御装置1は、より具体的には、入力されるモータ駆動指令Tに応じた交流波形の電流指令を生成する電流指令生成部8と、この電流指令生成部8から出力された電流指令を3相交流のモータ駆動電流に変換して前記同期モータ2に与える基本制御部9とを備え、モータ回転速度の6倍の周波数を持ち前記同期モータ2に発生するトルクリップルと逆位相の正弦波の補正電流指令を、前記基本制御部9に入力される前記電流指令に加えるトルクリップル補償手段3を設けたものとされる。
 この発明の電気自動車用同期モータの制御装置1において、入力されるモータ駆動指令Tに応じた交流波形のq軸電流指令を生成するq軸電流指令生成部8aと、d軸電流指令を出力するd軸電流指令部8bと、これらの電流指令生成部8a,8bから出力されたq軸電流指令iqおよびd軸電流指令idからなる電流指令を3相交流のモータ駆動電流に変換して前記同期モータ2に与えるベクトル制御方式の基本制御部9とを備え、前記トルクリップル補償手段3は、前記q軸電流指令iqに前記正弦波の補正電流指令iq_cを加えるものとしても良い。
 ベクトル制御は、q軸電流(トルク電流)と、d軸電流(界磁電流(磁束電流とも言う))に分け、各々を独立に制御することで高速応答および高精度制御を実現する制御方式であるが、補正電流指令を加える場合、q軸電流指令iqに加えることが、トルクリップルの抑制に効果的となる。
 この発明における、上記ベクトル制御を行う形式の電気自動車用同期モータの制御装置1において、前記トルクリップル補償手段3は、次式(1)
 iq_c=Kcos(6θ+α)    …(1)
   ここで、K:定数、θ:モータ回転角度、α:位相補償値、
に従って前記補正電流指令iq_cを定めるようにしても良い。
 これにより、この電気自動車用同期モータの制御装置1は、トルクリップルと逆位相の正弦波の補正電流をモータ駆動電流に加える制御が実現される。
 この発明における、上記ベクトル制御を行う形式の電気自動車用同期モータの制御装置1において、前記トルクリップル補償手段3は、次式(2)
 iq_c=Kcos(6θ′+α)    …(2)
   ここで、K:定数、θ′:モータ回転角度検出値の1サンプリング時間後の予測角度、α:位相補償値、
に従って前記補正電流指令iq_cを定める予測制御を行うようにしても良い。
 なお、θ′は、例えば、モータ回転角度θから求められた角速度θdを用いて、θ′=θ+θdで定められる。
 上記(1)式による制御が基本となるが、計算による制御の遅れが生じる恐れがある。これに対して、モータ回転角度検出値の1サンプリング時間後の予測角度により前記補正電流指令iq_cを定める予測制御を行うことで、この電気自動車用同期モータの制御装置1は、制御の遅れのないより効果的なトルクリップルの補償が行える。
 この発明において、前記トルクリップル補償手段3は、前記同期モータ2の回転速度が設定回転速度以上になると前記補正電流指令iq_cの出力を止める補正制限部16を設けても良い。
 トルクリップルはモータ回転速度の6倍の周波数を持つため、このトルクリップルの周波数と同じ周波数の補正電流指令iq_cを演算して生成することは、モータ回転速度が速くなると困難になる。そのため、演算の遅れによって補正電流指令iq_cが却ってノイズとなる恐れがある。このため、モータの回転速度がある程度速くなると、補正電流指令iq_cの出力を止めることが望ましい。この補正電流指令令iq_cを出力するか否かの閾値となる上記「設定回転速度」は、この制御装置1の演算処理能力等に応じて適宜の値に設定すれば良い。
 この発明において、前記トルクリップル補償手段3は、前記モータ回転速度について定められた範囲で、前記同期モータ2の回転速度の上昇に従って前記補正電流指令iq_cの出力を次第に零に近づける補正制限部16を持つものとしても良い。
 上記のように、トルクリップルの周波数と同じ周波数の補正電流指令を演算して生成することは、モータ回転速度が速くなると困難になる。しかし、トルクリップルを補償するための制御を急に止めると、乗員に違和感を与えることがある。これに対して、モータの回転速度の上昇に従って補正電流指令iq_cの出力を次第に零に近づけるようにすると、違和感なくトルクリップルの補償の制御を止めることができる。
 この発明において、上記の(1)式または(2)式に従って補正電流指令iq_cを定める場合、前記定数Kを、前記モータ回転速度またはモータ出力トルクの関数にしても良い。例えば、Kを、K∝トルク、またはK∝(1/周波数)としても良い。
 モータ回転速度やモータ出力トルクによって、生じるトルクリップルの大きさが異なる。このため、上記のように前記定数Kを、前記モータ回転速度またはモータ出力トルクの関数とすることで、より一層効果的にトルクリップルを抑制することができる。
 この発明において、上記の(1)式または(2)式に従って補正電流指令iq_cを定める場合、前記位相補正値αを、前記モータ回転速度またはモータ出力トルクの関数にしても良い。
 モータ回転速度やモータ出力トルクと、制御装置における計算時間との関係等により、適切な位相の補正値は異なる。そのため、前記位相補正値αを、前記モータ回転速度またはモータ出力トルクの関数にすることで、より一層効果的にトルクリップルを抑制することができる。
 なお、これら定数Kをモータ回転速度の関数にする処理と、定数Kをモータ出力トルクの関数にする処理と、位相補正値αをモータ回転速度の関数にする処理と、位相補正値αモータ出力トルクの関数にする処理とは、任意に組み合わされても良い。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る電気自動車用同期モータの制御装置の概要を示すブロック図である。 従来のモータ制御の問題を説明するためのブロック図である。 同実施形態の同期モータの制御装置の全体およびその周囲の構成を示すブロック図である。 同同期モータの制御装置の具体的構成例を示すブロック図である。 図3の構成の制御装置においてトルクリップル補償手段の具体例を示したブロック図である。 図3の構成の制御装置においてトルクリップル補償手段の他の具体例を示したブロック図である。
 この発明の実施形態を図面と共に説明する。図1Aに概要を示すように、この電気自動車用同期モータの制御装置1は、走行駆動用の同期型のモータ2に対して、モータ駆動指令に応じたモータ駆動電流iを与える装置において、前記モータ2の回転速度の6倍の周波数を持ちかつ前記モータ2に発生するトルクリップルと逆位相の正弦波の補正電流Δiを前記モータ駆動電流iに加えるトルクリップル補償手段3を設けたものである。トルクリップル補償手段3は、補正電流Δiを生成する補正電流生成部4と、この生成した補正電流Δiを前記モータ駆動電流iに加えて目標電流Iref とする加算部5とでなる。前記モータ2は、IPMモータやSPMモータ等の、交流駆動の永久磁石モータである。
 なお、図1Aでは概要を説明するために、加算部5をモータ駆動電流iと補正電流Δiとを、電流そのもので加算するように図示したが、具体的には、図2以降に示すように、電力変換前の電流指令に補正電流指令を加え、その加えられた電流指令に従って電力変換することで、結果としてモータ駆動電流iに補正電流Δiが加えられるようにしても良い。
 作用を説明すると、前記モータ2は、交流駆動の永久磁石モータであるため、図1Bに示すように、モータ2に入力される目標電流Iref に対して、出力されるトルクTeは、トルクリップルを有するものとなる。トルクリップルは、磁極数などにかかわらずに、モータ回転速度の6倍の周波数となる。
 これに対して、前記トルクリップル補償手段3は、モータ回転速度の6倍の周波数を持ちかつ前記モータ2に発生するトルクリップルと逆位相の正弦波の補正電流Δiを前記モータ駆動電流iに加える。このため、補正電流Δiによりトルクリップルが打ち消される。また、前記トルクリップル補償手段3は、トルクリップルと逆位相の正弦波の補正電流を加えるものであるため、従来のモータの制御理論モデル式に対応した補正を行うものに比べて、処理が簡単で高速に行え、簡単な構成でトルクリップルの抑制を効果的に行うことができる。
 このように、簡単な演算でトルクリップルを抑制することができる実用性に優れた電気自動車用モータの制御装置となる。
 図2において、この電気自動車用同期モータの制御装置1は、具体的には、電気自動車におけるメインのECU(電気制御ユニット)6の下位の制御手段となるインバータ装置からなる。このインバータ装置からなる電気自動車用同期モータの制御装置1は、入力されるモータ駆動指令Tに応じた交流波形の電流指令を生成する電流指令生成部8と、この電流指令生成部8から出力された電流指令を3相交流のモータ駆動電流に変換して前記モータ2に与える基本制御部9とを備える。モータ駆動指令Tは、アクセル7の操作量に応じたトルク指令としてECU6から電流指令生成部8に与えられる。電流指令生成部8は、上記トルク指令を電流指令に変換する。基本制御部9は、入力される電流指令とモータ2の状況とに応じて各種の制御を行って電圧値による各相指令を生成する駆動制御部11と、この生成された各相指令を電力変換してモータ2に与える電力変換部12とでなる。電力変換部12は、複数のスイッチング素子等で構成されてバッテリ(図示せず)の直流電力を交流電力に変換するインバータ13と、このインバータ13をPWM制御するPWMドライバ(図示せず)等とでなる。
 この基本構成において、電流指令生成部8から基本制御部9に入力される電流指令に補正電流指令を加えるトルクリップル補償手段3を設けている。トルクリップル補償手段3が出力する補正電流指令は、モータ回転速度の6倍の周波数を持ちモータ2に発生するトルクリップルと逆位相の正弦波の電流指令である。このトルクリップル補償手段3は、上記補正電流指令を生成する補償制御部15と、この補償制御部15の出力を制限する補正制限部16とからなる。
 基本制御部9の駆動制御部11は、ベクトル制御を行うものであり、電流指令生成部8および駆動制御部11は、例えば図3に示す構成とされる。
 電流指令生成部8は、入力されたトルク指令からなるモータ駆動指令Tをq軸電流指令iqとd軸電流指令idとに変換する手段であり、q軸電流指令生成部8aとd軸電流指令生成部8bとからなる。q軸電流指令生成部8aは、入力されるトルク指令からなるモータ駆動指令Tを電流変換してq軸電流指令iqを出力する。d軸電流指令生成部8bは、適宜に設定された一定のd軸電流指令(例えば零)idを出力し、または前記の入力されたモータ駆動指令Tに応じた大きさのd軸電流指令idを出力する。
 基本制御部9の駆動制御部11は、偏差対応制御手段であるPID制御部17、2相→3相変換部18、3相→2相変換部19、q軸減算部21、およびd軸演算部22を有する。
 この駆動制御部11では、基本的には、モータ2に付いている電流センサー24で検出される3相の各電流値から3相→2相変換部19で3相→2相変換してq軸およびd軸の2相の検出電流iq_fb,id_fbを求める。これら検出電流iq_fb,id_fbと、電流指令生成部8から出力されるq軸電流指令iqから算出される後述の補正後q軸電流指令iq_ref およびd軸電流指令idとの差分Δiq,Δidを、前記q軸減算部21およびd軸減算部22で得る。この差分Δiq,ΔidによりPID制御部17で比例・積分・微分制御を行う。PID制御部17の出力は2相であるため、3相のモータ2の駆動のための各相の電圧の指令値VW,VV,VUを2相→3相変換部18で得て電力変換部12に出力する。
 この同期モータの制御装置1は、このような基本制御部11を持ち、これに前記トルクリップル補償手段3を設けて構成される。トルクリップル補償手段3の補償制御部15で生成した補正電流指令iq_cは、電流指令生成部8から出力されるq軸電流指令iqに加算部23で加算される。この実施形態のようにトルクリップル補償手段3を設けた場合は、この加算された補正後q軸電流指令iq_ref に対して、前記検出電流iq_fbとの差分Δiqを前記q軸減算部21により取り、PID制御部17でPID制御する。
 トルクリップル補償手段3の補償制御部15は、モータ回転速度の6倍の周波数を持ちモータ2に発生するトルクリップルと逆位相の正弦波となる補正電流指令iq_cを生成する手段であり、具体的には、図4または図5の構成とされる。
 図4の例では、補償制御部15は、次式(1)
 iq_c=Kcos(6θ+α)    …(1)
   ここで、K:定数、θ:モータ回転角度、α:位相補償値、
に従って前記補正電流指令iq_cを生成する。
 モータ回転角度θは、モータ2に付属の角度検出器25から得る。
 この実施形態の同期モータの制御装置1によると、このように、トルクリップル補償手段3により、モータ回転速度の6倍の周波数を持ちかつ前記モータ2に発生するトルクリップルと逆位相の正弦波の補正電流をモータ駆動電流に加える。このため、補正電流によりトルクリップルが打ち消される。また、前記トルクリップル補償手段3は、トルクリップルと逆位相の正弦波の補正電流を加えるものであるため、従来のモータの制御理論モデル式に対応した補正を行うものに比べて、処理が簡単で高速に行え、簡単な構成でトルクリップルの抑制を効果的に行うことができる。このように、簡単な演算でトルクリップルを抑制することができる実用性に優れた電気自動車用同期モータの制御装置となる。
 図5の実施形態は、さらに計算精度を上げるために、制御の無駄時間を配慮している。すなわち、補償制御部15は、角度検出器25で得た回転角度θから微分器15bにより角速度θdを求め、予測部15cで現在の回転角度θに角速度θdを加算することで、角度検出器25の1サンプリング後の回転角度θ′を予測するようにフィードフォワード制御を行う。
 このように予測した角度θ′で、次式(2)
 iq_c=Kcos(6θ′+α)    …(2)
   ここで、K:定数、θ′:モータ回転角度検出値の1サンプリング時間後の予測角度、α:位相補償値、
に従って算出部15aで前記補正電流指令iq_cを算出し、算出部15aは前記補正電流指令iq_cを定める予測制御を行う。
 上記(1)式による制御が基本となるが、計算による制御の遅れが生じる恐れがある。これに対して、モータ回転角度検出値の1サンプリング時間後の予測角度で前記補正電流指令iq_cを定める予測制御を行うことで、制御の遅れのないより効果的なトルクリップルの補償が行える。
 上記の(1)式または(2)式に従って補正電流指令iq_cを定める場合、前記定数Kを、前記モータ回転速度(周波数)またはモータ出力トルクの関数にしても良い。例えば、K∝トルク、またはK∝(1/周波数)としても良い。
 モータ回転速度やモータ出力トルクによって、生じるトルクリップルの大きさが異なる。このため、上記のように前記定数Kを、前記モータ回転速度またはモータ出力トルクの関数とすることで、より一層効果的にトルクリップルを抑制することができる。
 上記の(1)式または(2)式に従って補正電流指令iq_cを定める場合、前記位相補正値αを、前記モータ回転速度またはモータ出力トルクの関数にしても良い。
 モータ回転速度やモータ出力トルクと、制御装置における計算時間との関係等により、適切な位相の補正値は異なる。そのため、前記位相補正値αを、前記モータ回転速度またはモータ出力トルクの関数にすることで、より一層効果的にトルクリップルを抑制することができる。
 また、前記トルクリップル補償手段3による補正は、次のように補正制限部16で制限を加えても良い。例えば、前記補正制限部16は、モータ2の回転速度が設定回転速度以上になると前記補正電流指令の出力を止めるようにする。
 トルクリップルはモータ回転速度の6倍の周波数を持つため、このトルクリップルの周波数と同じ周波数の補正電流指令を演算して生成することは、モータ回転速度が速くなると困難になる。そのため、演算の遅れによって補正電流指令が却ってノイズとなる恐れがある。このため、モータの回転速度がある程度速くなると、補正電流指令の出力を止めることが望ましい。この補正電流指令を出力するか否かの閾値となる上記「設定回転速度」は、この制御装置の性能等に応じて適宜の値に設定すれば良い。前記設定回転速度は、例えば、1500~2500min-1の範囲で適宜定めた値とする。
 また、前記補正制限部16は、前記モータ回転速度について定められた範囲で、前記モータ2の回転速度の上昇に従って前記補正電流指令iq_cの出力を次第に零に近づけるようにしても良い。この場合も、モータ2の回転速度が設定回転速度以上になると前記補正電流指令の出力を止めるようにすることが望ましい。
 上記のように、トルクリップルの周波数と同じ周波数の補正電流指令を演算して生成することは、モータ回転速度が速くなると困難になる。しかし、トルクリップルを補償するための制御を急に止めると、乗員に違和感を与えることがある。これに対して、モータ2の回転速度の上昇に従って補正電流指令の出力を次第に零に近づけるようにすると、違和感なくトルクリップルの補償の制御を止めることができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…同期モータの制御装置
2…モータ
3…トルクリップル補償手段
5…ECU
8…電流指令生成部8
9…基本制御部
11…駆動制御部
12…電力変換部
15…補償制御部
16…補正制限部

Claims (10)

  1.  走行駆動用の同期型のモータに対して、モータ駆動指令に応じたモータ駆動電流を与える電気自動車用同期モータの制御装置において、
     前記モータの回転速度の6倍の周波数を持ちかつ前記モータに発生するトルクリップルと逆位相の正弦波の補正電流を前記モータ駆動電流に加えるトルクリップル補償手段を設けたことを特徴とする電気自動車用同期モータの制御装置。
  2.  請求項1に記載の電気自動車用同期モータの制御装置において、入力されるモータ駆動指令に応じた交流波形のq軸電流指令を生成するq軸電流指令生成部と、d軸電流指令を出力するd軸電流指令部と、これらの電流指令生成部から出力されたq軸電流指令およびd軸電流指令からなる電流指令を3相交流のモータ駆動電流に変換して前記同期モータに与えるベクトル制御方式の基本制御部とを備え、前記トルクリップル補償手段は、前記q軸電流指令に正弦波の補正電流指令を加える電気自動車用同期モータの制御装置。
  3.  請求項2に記載の電気自動車用同期モータの制御装置において、前記トルクリップル補償手段は、次式(1)
     iq_c=Kcos(6θ+α)    …(1)
       ここで、K:定数、θ:モータ回転角度、α:位相補償値、
    に従って前記補正電流指令iq_cを定める、
    電気自動車用同期モータの制御装置。
  4.  請求項2に記載の電気自動車用同期モータの制御装置において、前記トルクリップル補償手段は、次式(2)
     iq_c=Kcos(6θ′+α)    …(2)
       ここで、K:定数、θ′:モータ回転角度検出値の1サンプリング時間後の予測角度、α:位相補償値、
    に従って前記補正電流指令iq_cを定める予測制御を行う、
    電気自動車用同期モータの制御装置。
  5.  請求項4に記載の電気自動車用同期モータの制御装置において、前記予測角度θ′は、モータ回転角度θから求められた角速度θdを用いて、θ′=θ+θdで定められる電気自動車用同期モータの制御装置。
  6.  請求項2ないし請求項5のいずれか1項に記載の電気自動車用同期モータの制御装置において、前記トルクリップル補償手段は、前記モータの回転速度が設定回転速度以上になると前記補正電流指令の出力を止める補正制限部を有する電気自動車用同期モータの制御装置。
  7.  請求項2ないし請求項6のいずれか1項に記載の電気自動車用同期モータの制御装置において、前記トルクリップル補償手段は、前記モータ回転速度について定められた範囲で、前記モータの回転速度の上昇に従って前記補正電流指令の出力を次第に零に近づける補正制限部を有する電気自動車用同期モータの制御装置。
  8.  請求項3ないし請求項5のいずれか1項に記載の電気自動車用同期モータの制御装置において、前記定数Kを、前記モータ回転速度またはモータ出力トルクの関数にする電気自動車用同期モータの制御装置。
  9.  請求項8に記載の電気自動車用同期モータの制御装置において、前記定数Kを、前記モータ回転速度に反比例する関数または前記モータ出力トルクに比例する関数にする電気自動車用同期モータの制御装置。
  10.  請求項3ないし請求項5および請求項8のいずれか1項に記載の電気自動車用同期モータの制御装置において、前記位相補正値αを、前記モータ回転速度またはモータ出力トルクの関数にする電気自動車用同期モータの制御装置。
PCT/JP2014/051583 2013-01-31 2014-01-24 電気自動車用同期モータの制御装置 WO2014119492A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480005465.4A CN104937834B (zh) 2013-01-31 2014-01-24 电动汽车用同步电动机的控制装置
EP14745846.7A EP2953261B1 (en) 2013-01-31 2014-01-24 Synchronous motor control device for electric automobile
US14/807,553 US9787230B2 (en) 2013-01-31 2015-07-23 Synchronous motor control device for electric automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013016441A JP6279211B2 (ja) 2013-01-31 2013-01-31 電気自動車用同期モータの制御装置
JP2013-016441 2013-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/807,553 Continuation US9787230B2 (en) 2013-01-31 2015-07-23 Synchronous motor control device for electric automobile

Publications (1)

Publication Number Publication Date
WO2014119492A1 true WO2014119492A1 (ja) 2014-08-07

Family

ID=51262207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051583 WO2014119492A1 (ja) 2013-01-31 2014-01-24 電気自動車用同期モータの制御装置

Country Status (5)

Country Link
US (1) US9787230B2 (ja)
EP (1) EP2953261B1 (ja)
JP (1) JP6279211B2 (ja)
CN (1) CN104937834B (ja)
WO (1) WO2014119492A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210229735A1 (en) * 2018-08-07 2021-07-29 Nidec Corporation Drive controller, drive unit, and power steering

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436005B2 (ja) * 2015-07-02 2018-12-12 株式会社デンソー 回転電機制御装置
US20170077854A1 (en) * 2015-09-15 2017-03-16 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine
JP2017123726A (ja) 2016-01-07 2017-07-13 Ntn株式会社 電動モータ装置
JP6521881B2 (ja) * 2016-02-05 2019-05-29 トヨタ自動車株式会社 駆動装置
US9912266B2 (en) * 2016-08-02 2018-03-06 Otis Elevator Company Motor torque ripple reduction using DC bus harmonics
DE102016122105A1 (de) * 2016-11-17 2018-05-17 Abb Schweiz Ag Verfahren zur Verringerung von Gleichlaufschwankungen eines Permanentmagneterregten Elektromotors
JP2018109859A (ja) * 2017-01-04 2018-07-12 日立ジョンソンコントロールズ空調株式会社 制御装置、電力変換装置、モータ駆動装置、及び、それを用いた冷凍機器
EP3605829B1 (en) * 2017-03-31 2021-09-08 Kabushiki Kaisha Yaskawa Denki Electric motor control device, compressor, and electric motor control method
JPWO2019163587A1 (ja) * 2018-02-20 2021-02-12 日本電産株式会社 モータ制御システム、およびパワーステアリングシステム
US11251731B2 (en) 2018-02-20 2022-02-15 Nidec Corporation Motor control system and power steering system
WO2019163553A1 (ja) * 2018-02-20 2019-08-29 日本電産株式会社 モータ制御システム、およびパワーステアリングシステム
DE112019000877T5 (de) * 2018-02-20 2020-11-05 Nidec Corporation Motorsteuerungssystem und Servolenkungssystem
JP7338620B2 (ja) * 2018-05-11 2023-09-05 ニデック株式会社 モータ制御装置、駆動装置およびパワーステアリング装置
FR3083339B1 (fr) * 2018-06-28 2021-01-22 Valeo Equip Electr Moteur Procede de pilotage d'une machine electrique tournante pour compenser les oscillations de couple d'une chaine de traction de vehicule automobile
CN109713970B (zh) * 2018-12-21 2023-04-11 南京工程学院 一种基于预测控制的电动汽车用永磁同步电机控制方法
JP7321385B2 (ja) * 2020-09-11 2023-08-04 三菱電機株式会社 回転機の制御装置
CN114337417B (zh) * 2021-12-30 2023-10-31 海信空调有限公司 电机控制方法、空调器以及计算机可读存储介质
EP4375118A1 (en) * 2022-11-22 2024-05-29 TVS Motor Company Limited A system and method for reducing torque ripples in electric vehicles
GB2625070A (en) * 2022-12-02 2024-06-12 Dyson Technology Ltd A method of controlling a brushless permanent magnet motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439269A (en) * 1987-08-05 1989-02-09 Fuji Electric Co Ltd Controller for reversible converter
WO2006106642A1 (ja) * 2005-03-31 2006-10-12 Toshiba Elevator Kabushiki Kaisha 制御装置
JP2007267466A (ja) 2006-03-28 2007-10-11 Meidensha Corp Ipmモータのベクトル制御装置
JP2009106069A (ja) * 2007-10-23 2009-05-14 Aisin Aw Co Ltd 電動機制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035333A1 (ja) * 2003-10-07 2005-04-21 Jtekt Corporation 電動パワーステアリング装置
EP2012424A1 (en) * 2006-04-11 2009-01-07 NSK Ltd. Motor control device and motor-driven power steering device using the same
DE102008062515A1 (de) * 2007-12-21 2009-06-25 Denso Corporation, Kariya Vorrichtung zum Steuern eines Drehmoments einer elektrischen Drehmaschine
US7952308B2 (en) * 2008-04-04 2011-05-31 GM Global Technology Operations LLC Method and apparatus for torque ripple reduction
US7768220B2 (en) * 2008-04-24 2010-08-03 Gm Global Technology Operations, Inc. Harmonic torque ripple reduction at low motor speeds
JP5295680B2 (ja) * 2008-08-04 2013-09-18 株式会社ニューロン 磁気カード発券機及び磁気カード供給ユニット
JP4835959B2 (ja) * 2009-03-30 2011-12-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
US8436504B2 (en) * 2010-01-11 2013-05-07 Ford Global Technologies, Llc Stator for an electric machine
JP5446988B2 (ja) * 2010-02-25 2014-03-19 株式会社明電舎 回転電気機械のトルクリプル抑制制御装置および制御方法
JP2011211815A (ja) * 2010-03-30 2011-10-20 Kokusan Denki Co Ltd 永久磁石モータの制御装置
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
JP5920769B2 (ja) * 2011-09-27 2016-05-18 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439269A (en) * 1987-08-05 1989-02-09 Fuji Electric Co Ltd Controller for reversible converter
WO2006106642A1 (ja) * 2005-03-31 2006-10-12 Toshiba Elevator Kabushiki Kaisha 制御装置
JP2007267466A (ja) 2006-03-28 2007-10-11 Meidensha Corp Ipmモータのベクトル制御装置
JP2009106069A (ja) * 2007-10-23 2009-05-14 Aisin Aw Co Ltd 電動機制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210229735A1 (en) * 2018-08-07 2021-07-29 Nidec Corporation Drive controller, drive unit, and power steering
US11496077B2 (en) * 2018-08-07 2022-11-08 Nidec Corporation Drive controller, drive unit, and power steering

Also Published As

Publication number Publication date
EP2953261A1 (en) 2015-12-09
US20150333670A1 (en) 2015-11-19
US9787230B2 (en) 2017-10-10
CN104937834B (zh) 2018-03-27
EP2953261B1 (en) 2019-04-17
CN104937834A (zh) 2015-09-23
JP6279211B2 (ja) 2018-02-14
JP2014150604A (ja) 2014-08-21
EP2953261A4 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2014119492A1 (ja) 電気自動車用同期モータの制御装置
JP4082444B1 (ja) 永久磁石同期電動機のベクトル制御装置
US9143081B2 (en) Motor control system having bandwidth compensation
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
US11196377B2 (en) Motor drive system
JP3515460B2 (ja) 交流モータの制御装置
JPWO2007119755A1 (ja) モータ制御装置及びこれを使用した電動パワーステアリング装置
EP1460758B1 (en) Vector control method and apparatus
JP5939316B2 (ja) 誘導モータ制御装置および誘導モータ制御方法
JP2016111788A (ja) 回転電機の制御装置
JPWO2018087917A1 (ja) モータ制御装置、およびそのモータ制御装置を備えた電動パワーステアリングの制御装置
WO2018139298A1 (ja) 交流電動機の制御装置
JP6728633B2 (ja) 電動車両の制御方法、及び、制御装置
JP5808199B2 (ja) モータ制御装置及びモータ駆動システム
WO2015005016A1 (ja) インバータの制御装置及びインバータの制御方法
JP2007143276A (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP6950409B2 (ja) 駆動装置
JP2006121855A (ja) 交流モータ制御装置
KR101786200B1 (ko) 모터 제어 방법
JP6128017B2 (ja) 交流電動機の制御装置
JP2012235556A (ja) モータ制御装置
JP2023177096A (ja) 電動車両の制御方法、及び電動車両の制御装置
JP2022121269A (ja) モータ制御方法及びモータ制御装置
JP5172437B2 (ja) 電動機の制御装置
JP2012191780A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014745846

Country of ref document: EP