JP7321385B2 - 回転機の制御装置 - Google Patents

回転機の制御装置 Download PDF

Info

Publication number
JP7321385B2
JP7321385B2 JP2022547324A JP2022547324A JP7321385B2 JP 7321385 B2 JP7321385 B2 JP 7321385B2 JP 2022547324 A JP2022547324 A JP 2022547324A JP 2022547324 A JP2022547324 A JP 2022547324A JP 7321385 B2 JP7321385 B2 JP 7321385B2
Authority
JP
Japan
Prior art keywords
correction value
torque
order
component
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022547324A
Other languages
English (en)
Other versions
JPWO2022054232A5 (ja
JPWO2022054232A1 (ja
Inventor
知也 立花
義彦 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022054232A1 publication Critical patent/JPWO2022054232A1/ja
Publication of JPWO2022054232A5 publication Critical patent/JPWO2022054232A5/ja
Application granted granted Critical
Publication of JP7321385B2 publication Critical patent/JP7321385B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本願は、回転機の制御装置に関するものである。
回転機の発生トルクには、回転周波数より高い周波成のトルクリプル成分が含まれる。このリプル成分は、2つに大別することができる。一つ目は、ステータと、永久磁石が設けられたロータとの相互位置関係によって発生するコギングトルクリプル成分である。二つ目は、インバータによる巻線の通電とロータの回転に伴って発生する通電トルクリプル成分である。
電動車両の駆動力源に用いられた回転機の制御装置は、運転者に快適な乗り心地を提供するために、回転機が発生するコギングトルクリプル成分及び通電トルクリプル成分に起因して共振周波数近傍で生じる車両の振動を抑制している。
特許文献1の技術では、トルク検出値又はトルク指令値と回転機の回転角度とに応じて基本波周波数の6倍のトルクリプルの補償データを発生し、補償データに対して、トルク制御の応答特性による補償トルクの遅れを位相補正して補償信号を生成し、補償信号をトルク指令値に加算している。
特許文献2の技術では、回転機を車体に支持する支持部のマウントゴムの特性のバラツキ、及び回転機から車輪までの駆動伝達系の構造に起因して、車両の前進と後進とで発生するトルクリプル成分が異なる課題に対して、回転機の出力トルクの正負を判定する正負判定部を有し、出力トルクの正負に応じて異なる位相のリプル補正波を生成し、回転機の回転速度に応じてリプル補正値の振幅を設定し、リプル補正値により出力トルクを補正することで、車両の振動を抑制している。
特許文献3には、ロータコアの領域に発生する応力を低減しつつ、磁石トルクとリラクタンストルクとの合成トルクのピーク値を大きくできる回転機が開示されている。
特許第4910444号公報 特許第4835959号公報 特許第6671553号公報
しかしながら、特許文献1の技術では、基本波周波数の6倍の6次のトルクリプル成分以外のトルクリプル成分を抑制できない問題があった。また、トルク制御の応答特性以外の要因により、回転角度に対する補償トルクの位相を変化させることが考慮されておらず、例えば、回転速度に応じて、回転角度に対するリプル成分の位相が変化する場合には、対応できず、補償精度が低下する問題があった。
特許文献2の技術では、回転速度に応じてリプル補正値の振幅を設定しているが、回転速度に応じて、回転角度に対するリプル成分の位相が変化する場合には、対応できず、補償精度が低下する問題があった。
特許文献3の技術では、回転機は、各磁極において、複数の永久磁石が周方向に非対称に配置され、ロータコアにスリットが設けられており、回転方向及び回転速度に応じて出力特性及びリプル成分の出力特性が変化する。しかし、特許文献2及び3の技術では、回転速度に応じて、トルク補正値の位相を変化させることが考慮されておらず、回転方向及び回転速度が変化する場合にも、対応できず補償精度が低下する問題があった。
そこで、本願は、回転速度に応じて、回転角度に対するリプル成分の位相が変化する場合でも、回転機の出力トルクを補正することで、精度よくリプル成分を低減できる回転機の制御装置を提供することを目的とする。
本願に係る回転機の制御装置は、複数相の巻線が設けられたステータと、ロータとを有する回転機を制御する回転機の制御装置であって、
前記ロータの回転角度及び回転速度を検出する回転検出部と、
前記回転機のトルクに生じるリプル成分を低減するためのトルク補正値を算出するトルク補正値算出部と、
トルク指令値を前記トルク補正値で補正して、補正後のトルク指令値を算出するトルク指令値算出部と、
前記補正後のトルク指令値に基づいて、前記複数相の巻線に電圧を印加する電圧印加部と、を備え、
前記ロータには、周方向に複数の磁極を形成する複数の永久磁石が埋め込まれ、各前記磁極において、単数又は複数の前記永久磁石が周方向に非対称に配置され、
前記トルク補正値算出部は、前記回転角度に応じて前記トルク補正値を周期的に変化させると共に、前記回転速度に基づいて、前記回転角度に対する前記トルク補正値の位相及び振幅の一方又は双方を変化させ、前記ロータの回転方向に応じて、前記回転速度の変化に対する前記トルク補正の位相及び振幅の一方又は双方の変化の傾向を異ならせるものである。
本願に係る回転機の制御装置によれば、回転速度に応じて、回転角度に対するリプル成分の位相が変化する場合でも、回転速度に基づいて、トルク指令値を補正するトルク補正値の位相を変化させるので、トルク補正値により出力されるトルク成分によりリプル成分を精度よく低減することができる。
実施の形態1に係る回転機、インバータ及び回転機の制御装置の概略構成図である。 実施の形態1に係る回転機の制御装置の概略ブロック図である。 実施の形態1に係る回転機の制御装置の概略ハードウェア構成図である。 実施の形態1に係るトルク補正値算出部のブロック図である。 実施の形態1に係る異なる回転速度条件におけるリプル成分の挙動を示す図である。 実施の形態1に係る回転速度に対する各次数のリプル成分の位相の特性を示す図である。 実施の形態1に係る回転速度に応じた6次の補正値成分の位相の設定値を示す図である。 実施の形態1に係る回転速度に応じた6次の補正値成分の振幅の設定値を示す図である。 実施の形態2に係るトルク補正値算出部のブロック図である。 実施の形態2に係る異なるトルク条件におけるリプル成分の挙動を示す図である。 実施の形態2に係る異なるトルク条件における回転速度に応じた6次の補正値成分の位相の設定値を示す図である。 実施の形態2に係る異なるトルク条件における回転速度に応じた6次の補正値成分の振幅の設定値を示す図である。 実施の形態3に係るロータの断面図である。 実施の形態3に係る回転速度の正負における、回転速度に応じた6次の補正値成分の位相の設定値を示す図である。 実施の形態3に係る回転速度の正負における、回転速度に応じた6次の補正値成分の振幅の設定値を示す図である。
1.実施の形態1
以下、実施の形態1に係る回転機の制御装置30(以下、単に、制御装置30と称す)について図面を参照して説明する。図1は、回転機1、インバータ4、及び制御装置30等の概略構成図である。
1-1.回転機1
回転機1は、ステータと、ステータの径方向内側に配置されたロータと、を備えている。ステータには、複数相の巻線(本例では、U相、V相、W相の3相の巻線Cu、Cv、Cw)が設けられている。3相の巻線は、スター結線されてもよいし、デルタ結線されてもよい。ロータには、磁石が設けられている。本実施の形態では、磁石は永久磁石であり、回転機1は、永久磁石式の同期回転機とされている。永久磁石には、ネオジム、サマリウムコバルトといった希土類磁石が用いられているが、安価なフェライト磁石が用いられてもよい。なお、磁石は、界磁巻線を有する電磁石であってもよい。
ロータには、ロータの回転角度を検出するための回転センサ2が備えられている。回転センサ2には、レゾルバ、エンコーダ、MRセンサ等が用いられる。回転センサ2の出力信号は、制御装置30に入力される。
1-2.インバータ4
インバータ4は、直流電源3の正極側に接続される正極側のスイッチング素子SPと直流電源3の負極側に接続される負極側のスイッチング素子SNとが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。
具体的には、U相の直列回路では、U相の正極側のスイッチング素子SPuとU相の負極側のスイッチング素子SNuとが直列接続され、2つのスイッチング素子の接続点がU相の巻線Cuに接続されている。V相の直列回路では、V相の正極側のスイッチング素子SPvとV相の負極側のスイッチング素子SNvとが直列接続され、2つのスイッチング素子の接続点がV相の巻線Cvに接続されている。W相の直列回路では、Wの正極側のスイッチング素子SPwとW相の負極側のスイッチング素子SNwとが直列接続され、2つのスイッチング素子の接続点がW相の巻線Cwに接続されている。平滑コンデンサ5が、直流電源3の正極側と負極側との間に接続されている。
スイッチング素子には、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置30に接続されている。各スイッチング素子は、制御装置30から出力されたスイッチング信号によりオン又はオフされる。
直流電源3は、インバータ4に直流電圧Vdcを出力する。直流電源3として、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧Vdcを出力する機器であれば、どのような機器であってもよい。直流電源3には、直流電圧Vdcを検出する電圧センサが設けられ、電圧センサの出力信号が制御装置30に入力されてもよい。制御装置30は、検出した直流電圧Vdcを用いて、制御を行ってもよい。
各相の巻線に流れる電流を検出するための電流センサ6が設けられている。電流センサ6は、シャント抵抗又はホール素子等の電流センサとされる。電流センサ6の出力信号は、制御装置30に入力される。
本実施の形態では、電流センサ6は、各相の2つのスイッチング素子の直列回路と巻線とをつなぐ各相の電線上に備えられている。なお、電流センサ6は、各相の2つのスイッチング素子の直列回路に備えられてもよい。
1-3.制御装置30
制御装置30は、インバータ4を介して回転機1を制御する。図2に示すように、制御装置30は、回転検出部31、電流検出部32、トルク補正値算出部33、トルク指令値算出部34、及び電圧印加部35を備えている。制御装置30の各機能は、制御装置30が備えた処理回路により実現される。具体的には、制御装置30は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転センサ2、電流センサ6等の各種のセンサが接続され、これらセンサの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御装置30が備える図2の各制御部31~35等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置30の他のハードウェアと協働することにより実現される。なお、各制御部31~35等が用いる各次数の位相設定データ及び振幅設定データ等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置30の各機能について詳細に説明する。
1-3-1.回転検出部31
回転検出部31は、ロータの回転角度θ及び回転速度Nを検出する。本実施の形態では、回転検出部31は、回転センサ2の出力信号に基づいて、回転角度θ及び回転速度Nを検出する。回転検出部31は、ロータの回転角度θとして、電気角でのロータの磁極(N極)の角度(磁極位置θ)を検出する。回転検出部31は、回転検出部31は、電気角での回転角速度ω[rad/s]に所定の換算定数を乗算して、機械角での回転速度N[rpm]を算出する。なお、回転検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度θ(磁極位置θ)を推定するように構成されてもよい(いわゆる、センサレス方式)。
1-3-2.電流検出部32
電流検出部32は、3相各相の巻線に流れる電流Iur、Ivr、Iwrを検出する。電流検出部32は、電流センサ6の出力信号に基づいて、U相の巻線に流れる電流Iurを検出し、V相の巻線に流れる電流Ivrを検出し、W相の巻線に流れる電流Iwrを検出する。なお、電流センサ6が2相の巻線電流を検出するように構成され、残りの1相の巻線電流が、2相の巻線電流の検出値に基づいて算出されてもよい。例えば、電流センサ6が、V相及びW相の巻線電流Ivr、Iwrを検出し、U相の巻線電流Iurが、Iur=-Ivr-Iwrにより算出されてもよい。
1-3-3.トルク指令値算出部34
トルク指令値算出部34は、トルク指令値Toを、後述するトルク補正値算出部33により算出されたトルク補正値ΔTocで補正して、補正後のトルク指令値Tocを算出する。本実施の形態では、トルク指令値算出部34は、トルク指令値Toにトルク補正値ΔTocを加算した値を、補正後のトルク指令値Tocとして算出する。トルク指令値Toは、制御装置30の内部で演算されてもよいし、制御装置30の外部から伝達されてもよい。
Toc=To+ΔToc ・・・(1)
1-3-4.電圧印加部35
電圧印加部35は、補正後のトルク指令値Tocに基づいて、3相巻線に電圧を印加する。すなわち、電圧印加部35は、回転機1が、補正後のトルク指令値Tocのトルクを出力するように、3相巻線に電圧を印加する。本実施の形態では、電圧印加部35は、電流指令値算出部351、電圧指令値算出部352、及びスイッチング制御部353を備えている。
電流指令値算出部351は、補正後のトルク指令値Tocに基づいて、電流指令値を算出する。本実施の形態では、電流指令値算出部351は、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。d軸は、ロータの磁極(N極、磁極位置θ)の方向に定められ、q軸は、d軸より電気角で90°進んだ方向に定められている。dq軸の回転座標系は、ロータの磁極位置θの回転に同期して回転する。
電流指令値算出部351は、最大トルク電流制御、弱め界磁制御、Id=0制御などの公知のベクトル制御方法に従って、補正後のトルク指令値Toc、回転速度N、及び直流電圧Vdc等に基づいて、d軸及びq軸の電流指令値Ido、Iqoを算出する。
電圧指令値算出部352は、電流指令値に基づいて3相の電圧指令値Vuo、Vvo、Vwoを算出する。本実施の形態では、電圧指令値算出部352は、d軸及びq軸の電流検出値Idr、Iqrが、d軸及びq軸の電流指令値Ido、Iqoに近づくように、d軸及びq軸の電圧指令値Vdo、Vqoを変化させる電流フィードバック制御を行う。
電圧指令値算出部352は、3相巻線の電流検出値Iur、Ivr、Iwrを、磁極位置θに基づいて3相2相変換及び回転座標変換を行って、d軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。
そして、電圧指令値算出部352は、d軸及びq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoに変換する。
スイッチング制御部353は、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、PWM制御(Pulse Width Modulation)により、インバータ4が有するスイッチング素子をオンオフ制御することにより、3相の巻線に電圧を印加する。スイッチング制御部353は、3相の電圧指令値Vuo、Vvo、Vwoのそれぞれとキャリア波とを比較することにより、複数のスイッチング素子をオンオフ制御する。キャリア波は、PWM周期で直流電圧Vdcの振幅で振動する三角波とされている。
1-3-5.トルク補正値算出部33
回転機1のトルクには、コギングトルクリプル及び通電トルクリプルといった回転角度θに応じて周期的に変化するリプル成分が重畳する。回転機1に、トルクのリプル成分とは逆位相(又は、正負反転値)のトルク成分を出力させれば、リプル成分を打ち消すことができる。
そこで、トルク補正値算出部33は、回転機1のトルクに生じるリプル成分を低減するためのトルク補正値ΔTocを算出する。トルク補正値算出部33は、回転角度θに応じてトルク補正値ΔTocを周期的に変化させる。トルク補正値算出部33は、回転速度Nに基づいて、回転角度θに対するトルク補正値ΔTocの位相αを変化させる。
例を用いて後述するように、発明者は、トルクのリプル成分の位相が、回転速度Nに応じて変化することを発見した。上記の構成によれば、回転速度Nに基づいて、トルク補正値ΔTocの位相αを変化させるので、位相を合わせて、リプル成分を精度よく低減することができる。
トルク補正値ΔTocにより回転機1から出力されるトルク成分の位相が、リプル成分の位相の逆位相に一致又は近くなるように、回転速度Nに基づいてトルク補正値ΔTocの位相αが変化される。トルク補正値ΔTocの位相αは、電圧印加部35の周波数応答特性(電流フィードバック制御の周波数応答特性、演算遅れ等)による、トルク補正値ΔTocから回転機1から出力されるトルク成分までの位相遅れを考慮して設定される。すなわち、トルク補正値ΔTocの位相αは、リプル成分の位相の逆位相よりも、電圧印加部35の応答遅れによる位相遅れ分、進み側に設定される。
本実施の形態では、トルク補正値算出部33は、回転速度Nに基づいて、トルク補正値ΔTocの振幅Aを変化させる。
例を用いて後述するように、発明者は、トルクのリプル成分の振幅が、回転速度Nに応じて変化することを発見した。上記の構成によれば、回転速度Nに基づいて、トルク補正値ΔTocの振幅Aを変化させるので、振幅を合わせて、リプル成分を精度よく低減することができる。
トルク補正値ΔTocにより回転電機から出力されるトルク成分の振幅が、リプル成分の振幅に一致又は近くなるように、回転速度Nに基づいてトルク補正値ΔTocの振幅Aが変化される。トルク補正値ΔTocの振幅Aは、電圧印加部35の周波数応答特性(電流フィードバック制御の周波数応答特性等)による、トルク補正値ΔTocの振幅に対する回転機1から出力されるトルク成分の振幅のゲインを考慮して設定される。すなわち、トルク補正値ΔTocの振幅Aは、リプル成分の振幅よりも、電圧印加部35の周波数応答特性によるゲイン低下分、増加側に設定される。
<複数の次数の補正値成分の合計>
トルク補正値算出部33は、トルク補正値ΔTocとして、電気角でのロータの回転角周波数ωを自然数倍した複数の次数nの角周波数ωnの補正値成分ΔTocnを合計した値を算出する。そして、トルク補正値算出部33は、複数の次数nのそれぞれについて、回転速度Nに基づいて、回転角度θに対する補正値成分ΔTocnの位相αnを変化させる。
トルクに複数の次数の角周波数のリプル成分が含まれる場合は、各次数nによって、リプル成分の発生挙動が異なり、回転角度θに対する各次数の角周波数ωnのリプル成分の位相αが異なる。上記の構成によれば、各次数nについて、回転速度Nに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの位相αnを変化させることで、各次数の角周波数ωnのリプル成分を精度よく低減することができる。
各次数の角周波数ωnの補正値成分ΔTocnにより回転機1から出力される各次数の角周波数ωnのトルク成分の位相が、各次数の角周波数ωnのリプル成分の位相の逆位相に一致又は近くなるように、回転速度Nに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの位相αnが変化される。
また、各次数の角周波数ωnにより、補正値成分ΔTocnから回転機1の出力トルクまでの電圧印加部35の位相遅れが異なる場合は、各次数の角周波数ωnの補正値成分ΔTocnの位相αnは、各次数の角周波数ωnのリプル成分の位相の逆位相よりも、電圧印加部35の応答遅れによる各次数の角周波数ωnの位相遅れ分、進み側に設定される。
また、トルク補正値算出部33は、複数の次数nのそれぞれについて、回転速度Nに基づいて、補正値成分ΔTocnの振幅Anを変化させる。
各次数nによって、リプル成分の発生挙動が異なり、各次数の角周波数ωnのリプル成分の振幅が異なる。上記の構成によれば、各次数nについて、回転速度Nに基づいて、補正値成分ΔTocnの振幅Anを変化させることで、各次数の角周波数ωnのリプル成分を精度よく低減することができる。
各次数の角周波数ωnの補正値成分ΔTocnにより回転機1から出力される各次数の角周波数ωnのトルク成分の振幅が、各次数の角周波数ωnのリプル成分の振幅に一致又は近くなるように、回転速度Nに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの振幅Anが変化される。
また、各次数の角周波数ωnにより、補正値成分ΔTocnから回転機1の出力トルクまでの電圧印加部35のゲインが異なる場合は、各次数の角周波数ωnの補正値成分ΔTocnの振幅Anは、各次数の角周波数ωnのリプル成分の振幅よりも、電圧印加部35の周波数応答特性による各次数の角周波数ωnのゲイン低下分、増加側に設定される。
<3つの次数の例>
本実施の形態では、複数の次数nは、n=6の6次、n=12の12次、及びn=18の18次の3つの次数に設定されている。6次の角周波数ω6は、ロータの回転角周波数ωを6倍した周波数(ω6=6×ω)であり、電気角での1回転周期あたり6周期で変化する。12次の角周波数ω12は、ロータの回転角周波数ωを12倍した周波数(ω12=12×ω)であり、電気角での1回転周期あたり12周期で変化する。18次の角周波数ω18は、ロータの回転角周波数ωを18倍した周波数(ω18=18×ω)であり、電気角での1回転周期あたり18周期で変化する。
そして、トルク補正値算出部33は、次式に示すように、6次の角周波数ω6の補正値成分ΔToc6、12次の角周波数ω12の補正値成分ΔToc12、及び18次の角周波数ω18の補正値成分ΔToc18を算出し、それらを合計した値を、トルク補正値ΔTocとして算出する。
ΔToc=ΔToc6+ΔToc12+ΔToc18
ΔToc6=A6×sin(6×θ+α6) ・・・(2)
ΔToc12=A12×sin(12×θ+α12)
ΔToc18=A18×sin(18×θ+α18)
ここで、A6は、6次の補正値成分ΔToc6の振幅であり、α6は、回転角度θに対する6次の補正値成分ΔToc6の位相である。A12は、12次の補正値成分ΔToc12の振幅であり、α12は、回転角度θに対する12次の補正値成分ΔToc12の位相である。A18は、18次の補正値成分ΔToc18の振幅であり、α18は、回転角度θに対する18次の補正値成分ΔToc18の位相である。
図4に示すように、トルク補正値算出部33は、6次の補正値成分ΔToc6を算出する6次成分演算部331、12次の補正値成分ΔToc12を算出する12次成分演算部332、18次の補正値成分ΔToc18を算出する18次成分演算部333、及び複数の次数の補正値成分を合計してトルク補正値ΔTocを算出する合計補正値演算部334を備えている。
<6次成分演算部331>
6次成分演算部331は、6次の補正値成分ΔToc6を算出する。6次成分演算部331は、電気角での回転角度θに6を乗算して、回転角度の6倍値6×θを算出する。6次成分演算部331は、回転速度Nと回転角度θに対する6次の補正値成分の位相α6との関係が予め設定された6次位相設定データを参照し、現在の回転速度Nに対応する6次の補正値成分の位相α6を算出する。6次位相設定データは、回転速度Nと位相α6との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
6次成分演算部331は、回転角度の6倍値6×θに、6次の補正値成分の位相α6を加算した値を、6次の角度θ6として算出する。そして、6次成分演算部331は、6次の角度θ6の正弦関数の値sin(θ6)を算出する。正弦関数の代わりに、余弦関数が用いられてもよい。或いは、入力角度が2π[rad]変化する周期が1周期として設定された任意の周期関数が用いられてもよい。周期関数は、入力角度と出力値との関係が予め設定されたマップデータであってもよい。
6次成分演算部331は、回転速度Nと6次の補正値成分の振幅A6との関係が予め設定された6次振幅設定データを参照し、現在の回転速度Nに対応する6次の補正値成分の振幅A6を算出する。6次振幅設定データは、回転速度Nと振幅A6との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、6次成分演算部331は、6次の角度θ6の正弦関数の値sin(θ6)に、6次の補正値成分の振幅A6を乗算した値を、6次の補正値成分ΔToc6として算出する。
<12次成分演算部332>
12次成分演算部332は、12次の補正値成分ΔToc12を算出する。12次成分演算部332は、電気角での回転角度θに12を乗算して、回転角度の12倍値12×θを算出する。12次成分演算部332は、回転速度Nと回転角度θに対する12次の補正値成分の位相α12との関係が予め設定された12次位相設定データを参照し、現在の回転速度Nに対応する12次の補正値成分の位相α12を算出する。12次位相設定データは、回転速度Nと位相α12との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
12次成分演算部332は、回転角度の12倍値12×θに、12次の補正値成分の位相α12を加算した値を、12次の角度θ12として算出する。そして、12次成分演算部332は、12次の角度θ12の正弦関数の値sin(θ12)を算出する。6次と同様に、正弦関数の代わりに、余弦関数、又は任意の周期関数が用いられてもよい。
12次成分演算部332は、回転速度Nと12次の補正値成分の振幅A12との関係が予め設定された12次振幅設定データを参照し、現在の回転速度Nに対応する12次の補正値成分の振幅A12を算出する。12次振幅設定データは、回転速度Nと振幅A12との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、12次成分演算部332は、12次の角度θ12の正弦関数の値sin(θ12)に、12次の補正値成分の振幅A12を乗算した値を、12次の補正値成分ΔToc12として算出する。
<18次成分演算部333>
18次成分演算部333は、18次の補正値成分ΔToc18を算出する。18次成分演算部333は、電気角での回転角度θに18を乗算して、回転角度の18倍値18×θを算出する。18次成分演算部333は、回転速度Nと回転角度θに対する18次の補正値成分の位相α18との関係が予め設定された18次位相設定データを参照し、現在の回転速度Nに対応する18次の補正値成分の位相α18を算出する。18次位相設定データは、回転速度Nと位相α18との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
18次成分演算部333は、回転角度の18倍値18×θに、18次の補正値成分の位相α18を加算した値を、18次の角度θ18として算出する。そして、18次成分演算部333は、18次の角度θ18の正弦関数の値sin(θ18)を算出する。6次と同様に、正弦関数の代わりに、余弦関数、又は任意の周期関数が用いられてもよい。
18次成分演算部333は、回転速度Nと18次の補正値成分の振幅A18との関係が予め設定された18次振幅設定データを参照し、現在の回転速度Nに対応する18次の補正値成分の振幅A18を算出する。18次振幅設定データは、回転速度Nと振幅A18との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、18次成分演算部333は、18次の角度θ18の正弦関数の値sin(θ18)に、18次の補正値成分の振幅A18を乗算した値を、18次の補正値成分ΔToc18として算出する。
合計補正値演算部334は、6次の補正値成分ΔToc6、12次の補正値成分ΔToc12、及び18次の補正値成分ΔToc18を合計した値を、トルク補正値ΔTocとして算出する。
<位相、振幅の設定例>
図5に、回転機1のトルクから抽出した6次の角周波数のリプル成分の波形を示す。図5には、第1回転速度N1の条件における6次のリプル成分を中抜き線で示し、第1回転速度N1よりも高い第2回転速度N2の条件における6次のリプル成分を破線で示す。なお、第1回転速度N1の条件と第2回転速度N2の条件とでは、同じトルクである。横軸は、電気角での回転角度θ[deg]であり、縦軸は、リプル成分である。図5の例に示すように、回転速度Nが異なると、6次のリプル成分の位相及び振幅が異なり、回転速度が高くなると、6次のリプル成分の位相が遅れ、振幅が大きくなっている。
図6に、回転速度Nと、回転角度θに対する6次、12次、及び18次のリプル成分の位相との関係を示す。6次のリプル成分の位相を実線で示し、12次のリプル成分の位相を破線で示し、18次のリプル成分の位相を中抜き線で示す。図6に示すように、回転速度Nが増加するに従って、6次、12次、及び18次の各次数のリプル成分の位相の進み度合いが次第に増加している。また、次数によって、リプル成分の位相が異なっている。
上述したように、各次数の補正値成分の位相αnは、各次数のリプル成分の位相の逆位相よりも、電圧印加部35の応答遅れによる位相遅れ分を進ませた位相に設定されるとよい。具体的には、6次の補正値成分の位相α6は、図6の6次のリプル成分の位相に、π及び電圧印加部35の位相遅れ分を加算した値に設定されればよい。12次の補正値成分の位相α12は、図6の12次のリプル成分の位相に、π及び電圧印加部35の位相遅れ分を加算した値に設定されればよい。18次の補正値成分の位相α18は、図6の18次のリプル成分の位相に、π及び電圧印加部35の位相遅れ分を加算した値に設定されればよい。
図7に、6次の補正値成分の位相α6の設定例を示す。回転速度Nが増加するに従って、6次の補正値成分の位相α6の進み度合いが次第に増加されている。6次位相設定データには、図7のデータが予め設定される。このように、回転速度Nが増加するに従って、各次数の補正値成分の位相αnの進み度合いが次第に増加される。図7の例のように、全ての回転速度の領域でなく、一部の予め設定された回転速度の領域において、回転速度Nが増加するに従って、各次数の補正値成分の位相αnの進み度合いが次第に増加されてもよい。
上述したように、各次数の補正値成分の振幅Anは、各次数のリプル成分の振幅に、電圧印加部35の周波数応答特性によるゲイン低下分を加算した振幅に設定されるとよい。図8に、6次の補正値成分の振幅A6の設定例を示す。回転速度Nが増加するに従って、6次の補正値成分の振幅A6が次第に増加されている。6次振幅設定データには、図8のデータが予め設定される。このように、回転速度Nが増加するに従って、各次数の補正値成分の振幅Anが次第に増加される。図8の例のように、全ての回転速度の領域でなく、一部の予め設定された回転速度の領域において、回転速度Nが増加するに従って、各次数の補正値成分の振幅Anが次第に増加されてもよい。一方、特許文献2では、特許文献2の図9に示されているように、回転速度がS1よりも小さい領域では、リップル補正波の振幅に比例する速度係数が一定値に設定されており、回転速度がS1よりも大きい領域では、回転速度が増加するに従って、リップル補正波の振幅が低下するように速度係数が次第に減少されている。よって、特許文献2には、いずれの回転速度の領域においても、本願のように、回転速度が増加するに従って、リップル補正波の振幅が次第に増加するように設定されていない。
なお、高回転速度の領域では、リプル成分が、動力伝達機構で減衰される等の理由で、問題にならない場合がある。そのため、所定の回転速度(例えば、定格回転速度の1/20倍)よりも大きい回転速度の領域では、回転速度Nが増加するに従って、各次数の補正値成分の振幅が0まで次第に減少されてもよい。
上記の各次数の補正値成分の位相αn及び振幅Anの設定例では、回転速度N及びトルク指令値Toが正の値である場合について示されていたが、回転速度N及びトルク指令値Toの一方又は双方が負の値である場合についても、同様に、位相αn及び振幅Anが、実機検証結果及び解析結果により予め設定される。また、回転速度Nが負の値である場合は、回転速度Nが正の値である場合の位相αn及び振幅Anの設定値が、回転速度Nの正負を入れ替えて用いられてもよい。正回転、正トルクの場合だけでなく、逆回転、負トルクの場合でも、各次数のリプル成分を低減するように各次数の補正値成分の位相αn及び振幅Anが設定される。
<転用例>
複数の次数として、3つ以外の次数(例えば、2つ、又は4つ以上の次数)の補正値成分ΔTocnが算出され、合計値がトルク補正値ΔTocとして算出されてもよい。また、6次、12次、18次以外の自然数の次数が設定されてもよい。また、1つの次数の補正値成分ΔTocnが算出され、トルク補正値ΔTocとして算出されてもよい。
ステータに3相以外の複数相(例えば、2相、4相)の巻線が設けられてもよい。
また、ステータに複数組(例えば2組)の3相の巻線が設けられ、各組の3相の巻線に対応してインバータ及び制御装置の各部が設けられ、複数組の巻線に、分散又は集中して、トルク補正値ΔTocのトルクを出力させてもよい。
回転機1は、永久磁石式の同期回転機だけでなく、電磁石式の同期回転機とされてもよく、ロータにかご型の電気導電体が設けられた誘導機とされてもよい。
回転機1は、電気車両又はハイブリッド車両の車輪の駆動力源だけでなく、各種の駆動力源とされてもよい。
2.実施の形態2
実施の形態2に係る制御装置30について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機1及び制御装置30の基本的な構成は実施の形態1と同様であるが、回転速度Nに加えてトルク指令値Toに基づいてトルク補正値ΔTocの位相αを変化させる点が実施の形態1と異なる。
本実施の形態では、トルク補正値算出部33は、回転速度N及びトルク指令値Toに基づいて、回転角度θに対するトルク補正値ΔTocの位相αを変化させる。
例を用いて後述するように、発明者は、トルクのリプル成分の位相が、回転速度Nに加えてトルクに応じて変化することを発見した。上記の構成によれば、回転速度Nに加えてトルク指令値Toに基づいて、トルク補正値ΔTocの位相αを変化させるので、位相を合わせて、リプル成分を精度よく低減することができる。
トルク補正値ΔTocにより回転機1から出力されるトルク成分の位相が、リプル成分の位相の逆位相に一致又は近くなるように、回転速度N及びトルク指令値Toに基づいてトルク補正値ΔTocの位相αが変化される。
本実施の形態では、トルク補正値算出部33は、回転速度N及びトルク指令値Toに基づいて、トルク補正値ΔTocの振幅Aを変化させる。
例を用いて後述するように、発明者は、トルクのリプル成分の振幅が、回転速度Nに加えてトルクに応じて変化することを発見した。上記の構成によれば、回転速度Nに加えてトルク指令値Toに基づいて、トルク補正値ΔTocの振幅Aを変化させるので、振幅を合わせて、リプル成分を精度よく低減することができる。
トルク補正値ΔTocにより回転電機から出力されるトルク成分の振幅が、リプル成分の振幅に一致又は近くなるように、回転速度N及びトルク指令値Toに基づいてトルク補正値ΔTocの振幅Aが変化される。
<複数の次数の補正値成分の合計>
トルク補正値算出部33は、トルク補正値ΔTocとして、電気角でのロータの回転角周波数ωを自然数倍した複数の次数nの角周波数ωnの補正値成分ΔTocnを合計した値を算出する。そして、トルク補正値算出部33は、複数の次数nのそれぞれについて、回転速度N及びトルク指令値Toに基づいて、回転角度θに対する補正値成分ΔTocnの位相αnを変化させる。
トルクに複数の次数の角周波数のリプル成分が含まれる場合は、各次数nによって、リプル成分の発生挙動が異なり、回転角度θに対する各次数の角周波数ωnのリプル成分の位相αが異なる。上記の構成によれば、各次数nについて、回転速度N及びトルク指令値Toに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの位相αnを変化させることで、各次数の角周波数ωnのリプル成分を精度よく低減することができる。
各次数の角周波数ωnの補正値成分ΔTocnにより回転機1から出力される各次数の角周波数ωnのトルク成分の位相が、各次数の角周波数ωnのリプル成分の位相の逆位相に一致又は近くなるように、回転速度N及びトルク指令値Toに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの位相αnが変化される。
また、トルク補正値算出部33は、複数の次数nのそれぞれについて、回転速度N及びトルク指令値Toに基づいて、補正値成分ΔTocnの振幅Anを変化させる。
各次数nによって、リプル成分の発生挙動が異なり、各次数の角周波数ωnのリプル成分の振幅が異なる。上記の構成によれば、各次数nについて、回転速度N及びトルク指令値Toに基づいて、補正値成分ΔTocnの振幅Anを変化させることで、各次数の角周波数ωnのリプル成分を精度よく低減することができる。
各次数の角周波数ωnの補正値成分ΔTocnにより回転機1から出力される各次数の角周波数ωnのトルク成分の振幅が、各次数の角周波数ωnのリプル成分の振幅に一致又は近くなるように、回転速度N及びトルク指令値Toに基づいて、各次数の角周波数ωnの補正値成分ΔTocnの振幅Anが変化される。
<3つの次数の例>
実施の形態1と同様に、複数の次数nは、n=6の6次、n=12の12次、及びn=18の18次の3つの次数に設定されている。そして、トルク補正値算出部33は、式(2)のように、6次の角周波数ω6の補正値成分ΔToc6、12次の角周波数ω12の補正値成分ΔToc12、及び18次の角周波数ω18の補正値成分ΔToc18を算出し、それらを合計した値を、トルク補正値ΔTocとして算出する。
図9に示すように、トルク補正値算出部33は、6次の補正値成分ΔToc6を算出する6次成分演算部331、12次の補正値成分ΔToc12を算出する12次成分演算部332、18次の補正値成分ΔToc18を算出する18次成分演算部333、及び複数の次数の補正値成分を合計してトルク補正値ΔTocを算出する合計補正値演算部334を備えている。
<6次成分演算部331>
6次成分演算部331は、6次の補正値成分ΔToc6を算出する。6次成分演算部331は、電気角での回転角度θに6を乗算して、回転角度の6倍値6×θを算出する。6次成分演算部331は、回転速度N及びトルク指令値Toと回転角度θに対する6次の補正値成分の位相α6との関係が予め設定された6次位相設定データを参照し、現在の回転速度N及び現在のトルク指令値Toに対応する6次の補正値成分の位相α6を算出する。6次位相設定データは、回転速度N及びトルク指令値Toと位相α6との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
6次成分演算部331は、回転角度の6倍値6×θに、6次の補正値成分の位相α6を加算した値を、6次の角度θ6として算出する。そして、6次成分演算部331は、6次の角度θ6の正弦関数の値sin(θ6)を算出する。正弦関数の代わりに、余弦関数が用いられてもよい。或いは、入力角度が2π[rad]変化する周期が1周期として設定された任意の周期関数が用いられてもよい。周期関数は、入力角度と出力値との関係が予め設定されたマップデータであってもよい。
6次成分演算部331は、回転速度N及びトルク指令値Toと6次の補正値成分の振幅A6との関係が予め設定された6次振幅設定データを参照し、現在の回転速度N及び現在のトルク指令値Toに対応する6次の補正値成分の振幅A6を算出する。6次振幅設定データは、回転速度N及びトルク指令値Toと振幅A6との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、6次成分演算部331は、6次の角度θ6の正弦関数の値sin(θ6)に、6次の補正値成分の振幅A6を乗算した値を、6次の補正値成分ΔToc6として算出する。
<12次成分演算部332>
12次成分演算部332は、12次の補正値成分ΔToc12を算出する。12次成分演算部332は、電気角での回転角度θに12を乗算して、回転角度の12倍値12×θを算出する。12次成分演算部332は、回転速度N及びトルク指令値Toと回転角度θに対する12次の補正値成分の位相α12との関係が予め設定された12次位相設定データを参照し、現在の回転速度N及び現在のトルク指令値Toに対応する12次の補正値成分の位相α12を算出する。12次位相設定データは、回転速度N及びトルク指令値と位相α12との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
12次成分演算部332は、回転角度の12倍値12×θに、12次の補正値成分の位相α12を加算した値を、12次の角度θ12として算出する。そして、12次成分演算部332は、12次の角度θ12の正弦関数の値sin(θ12)を算出する。6次と同様に、正弦関数の代わりに、余弦関数、又は任意の周期関数が用いられてもよい。
12次成分演算部332は、回転速度N及びトルク指令値Toと12次の補正値成分の振幅A12との関係が予め設定された12次振幅設定データを参照し、現在の回転速度N及び現在のトルク指令値Toに対応する12次の補正値成分の振幅A12を算出する。12次振幅設定データは、回転速度N及びトルク指令値Toと振幅A12との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、12次成分演算部332は、12次の角度θ12の正弦関数の値sin(θ12)に、12次の補正値成分の振幅A12を乗算した値を、12次の補正値成分ΔToc12として算出する。
<18次成分演算部333>
18次成分演算部333は、18次の補正値成分ΔToc18を算出する。18次成分演算部333は、電気角での回転角度θに18を乗算して、回転角度の18倍値18×θを算出する。18次成分演算部333は、回転速度N及びトルク指令値Toと回転角度θに対する18次の補正値成分の位相α18との関係が予め設定された18次位相設定データを参照し、現在の回転速度N及び現在のトルク指令値に対応する18次の補正値成分の位相α18を算出する。18次位相設定データは、回転速度N及びトルク指令値Toと位相α18との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
18次成分演算部333は、回転角度の18倍値18×θに、18次の補正値成分の位相α18を加算した値を、18次の角度θ18として算出する。そして、18次成分演算部333は、18次の角度θ18の正弦関数の値sin(θ18)を算出する。6次と同様に、正弦関数の代わりに、余弦関数、又は任意の周期関数が用いられてもよい。
18次成分演算部333は、回転速度N及びトルク指令値Toと18次の補正値成分の振幅A18との関係が予め設定された18次振幅設定データを参照し、現在の回転速度N及び現在のトルク指令値Toに対応する18次の補正値成分の振幅A18を算出する。18次振幅設定データは、回転速度N及びトルク指令値Toと振幅A18との関係が予め設定されたマップデータであってもよく、多項式などの関数であってもよい。
そして、18次成分演算部333は、18次の角度θ18の正弦関数の値sin(θ18)に、18次の補正値成分の振幅A18を乗算した値を、18次の補正値成分ΔToc18として算出する。
合計補正値演算部334は、6次の補正値成分ΔToc6、12次の補正値成分ΔToc12、及び18次の補正値成分ΔToc18を合計した値を、トルク補正値ΔTocとして算出する。
<位相、振幅の設定例>
図10に、回転機1のトルクから抽出した6次の角周波数のリプル成分の波形を示す。図10には、第1トルク指令値To1の条件における6次のリプル成分を中抜き線で示し、第1トルク指令値To1よりも高い第2トルク指令値To2の条件における6次のリプル成分を破線で示す。なお、第1トルク指令値To1の条件と第2トルク指令値To2の条件とは、同じ回転速度である。横軸は、電気角での回転角度θ[deg]であり、縦軸は、リプル成分である。図10の例に示すように、トルクが異なると、6次のリプル成分の位相及び振幅が異なり、トルクが大きくなると、6次のリプル成分の位相が遅れ、振幅が大きくなっている。
図11に、第1トルク指令値To1の条件及び第2トルク指令値To2の条件のそれぞれにおける6次の補正値成分の位相α6の設定例を示す。第1トルク指令値To1の6次の補正値成分の位相α6を中抜き線で示し、第2トルク指令値To2の6次の補正値成分の位相α6を破線で示す。図11に示す6次の補正値成分の位相α6は、6次の補正値成分ΔToc6により回転機1から出力される6次のトルク成分の位相が、6次のリプル成分の位相の逆位相に一致又は近くなるように、各回転速度及び各トルクにおいて実機検証結果及び解析結果により予め設定されている。図11に示すように、各回転速度において、トルクが大きい方が、6次の補正値成分の位相α6の進み度合いが小さくなっている。
このように、各回転速度において、トルク指令値Toが増加するに従って、各次数の補正値成分の位相αnの進み度合いが次第に減少される。全てのトルク指令値Toの領域でなく、一部の予め設定されたトルク指令値Toの領域において、トルク指令値Toが増加するに従って、各次数の補正値成分の位相αnの進み度合いが次第に減少されてもよい。
図12に、第1トルク指令値To1の条件及び第2トルク指令値To2の条件のそれぞれにおける6次の補正値成分の振幅A6の設定例を示す。第1トルク指令値To1の6次の補正値成分の振幅A6を中抜き線で示し、第2トルク指令値To2の6次の補正値成分の振幅A6を破線で示す。図12に示す6次の補正値成分の振幅A6は、6次の補正値成分ΔToc6により回転機1から出力される6次のトルク成分の振幅が、6次のリプル成分の振幅に一致又は近くなるように、各回転速度及び各トルクにおいて実機検証結果及び解析結果により予め設定されている。図12に示すように、各回転速度において、トルクが大きい方が、6次の補正値成分の振幅A6が大きくなっている。
このように、各回転速度において、トルク指令値Toが増加するに従って、各次数の補正値成分の振幅Anが次第に増加される。全てのトルク指令値Toの領域でなく、一部の予め設定されたトルク指令値Toの領域において、トルク指令値Toが増加するに従って、各次数の補正値成分の振幅Anが次第に増加されてもよい。
上記の各次数の補正値成分の位相αn及び振幅Anの設定例では、回転速度N及びトルク指令値Toが正の値である場合について示されていたが、回転速度N及びトルク指令値Toの一方又は双方が負の値である場合についても、同様に、位相αn及び振幅Anが、実機検証結果及び解析結果により予め設定される。また、回転速度Nが負の値である場合は、回転速度Nが正の値である場合の位相αn及び振幅Anの設定値が、回転速度N及びトルク指令値Toの正負を入れ替えて用いられてもよい。正回転、正トルクの場合だけでなく、逆回転、負トルクの場合でも、各次数のリプル成分を低減するように各次数の補正値成分の位相αn及び振幅Anが設定される。
<転用例>
位相αn及び振幅Anを設定する際に用いられるトルク指令値Toの代わりに、トルクに相関する値(トルク相関値と称す)が用いられてもよい。例えば、トルク相関値として、補正後のトルク指令値Tocが用いられてもよいし、巻線電流値が用いられてもよい。
3.実施の形態3
実施の形態3に係る制御装置30について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機1及び制御装置30の基本的な構成は実施の形態1と同様であるが、回転機1の回転方向に応じて、リプル成分の傾向が異なる点が実施の形態1と異なる。
図13に、本実施の形態に係るロータ7を軸心に直交する平面で切断した断面図を示す。ロータ7には、周方向に複数の磁極8を形成する複数の永久磁石9が埋め込まれている。本実施の形態では、各磁極8において、単数又は複数の永久磁石9が周方向に非対称に配置されている。また、各磁極8には、周方向に非対称のスリット10が設けられている。そのため、回転機1の回転方向に応じて、トルクの出力特性及びリプル成分の出力特性が異なる。本実施の形態では、回転速度が正の値(正回転)である場合の方が、回転速度が負の値(逆回転)である場合よりも、トルクが大きくなるように、永久磁石9が周方向に非対称に配置されている。
本実施の形態では、トルク補正値算出部33は、ロータの回転方向に応じて、回転速度の変化に対するトルク補正値ΔTocの位相αの変化の傾向を異ならせる。
この構成によれば、ロータの回転方向に応じてトルク及びリップル成分の出力特性が変化する場合に、ロータの回転方向に応じて、回転速度の変化に対するトルク補正値ΔTocの位相αの変化の傾向を異ならせて、回転方向に関わらず、リプル成分を適切に低減することができる。
また、トルク補正値算出部33は、ロータの回転方向に応じて、回転速度の変化に対するトルク補正値ΔTocの振幅Aの変化の傾向を異ならせる。
この構成によれば、ロータの回転方向に応じて、回転速度の変化に対するトルク補正値ΔTocの振幅Aの変化の傾向を異ならせて、回転方向に関わらず、リプル成分を適切に低減することができる。
トルク補正値算出部33は、複数の次数nのそれぞれについて、ロータの回転方向に応じて、回転速度の変化に対する補正値成分ΔTocnの位相αnの変化の傾向を異ならせる。また、トルク補正値算出部33は、複数の次数nのそれぞれについて、ロータの回転方向に応じて、回転速度の変化に対する補正値成分ΔTocnの振幅Anの変化の傾向を異ならせる。
図14に、第1トルク指令値To1の条件及び、第1トルク指令値To1よりも大きい第2トルク指令値To2の条件のそれぞれにおける6次の補正値成分の位相α6の設定例を示す。第1トルク指令値To1の6次の補正値成分の位相α6を中抜き線で示し、第2トルク指令値To2の6次の補正値成分の位相α6を破線で示す。図14に示す6次の補正値成分の位相α6は、6次の補正値成分ΔToc6により回転機1から出力される6次のトルク成分の位相が、6次のリプル成分の位相の逆位相に一致又は近くなるように、各回転速度及び各トルクにおいて実機検証結果及び解析結果により予め設定されている。図14に示すように、回転速度の正負に応じて、回転速度の絶対値の変化に対する、6次の補正値成分の位相α6の進み度合いの変化の傾向が異なっている。
図15に、第1トルク指令値To1の条件及び第2トルク指令値To2の条件のそれぞれにおける6次の補正値成分の振幅A6の設定例を示す。第1トルク指令値To1の6次の補正値成分の振幅A6を中抜き線で示し、第2トルク指令値To2の6次の補正値成分の振幅A6を破線で示す。図15に示す6次の補正値成分の振幅A6は、6次の補正値成分ΔToc6により回転機1から出力される6次のトルク成分の振幅が、6次のリプル成分の振幅に一致又は近くなるように、各回転速度及び各トルクにおいて実機検証結果及び解析結果により予め設定されている。図15に示すように、回転速度の正負に応じて、回転速度の絶対値の変化に対する、6次の補正値成分の振幅A6の変化の傾向が異なっている。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転機、30 回転機の制御装置、31 回転検出部、32 電流検出部、33 トルク補正値算出部、34 トルク指令値算出部、35 電圧印加部、A トルク補正値の振幅、An 各次数の補正値成分の振幅、N 回転速度、To トルク指令値、Toc 補正後のトルク指令値、n 次数、ΔToc トルク補正値、ΔTocn 各次数の補正値成分、α 回転角度に対するトルク補正値の位相、αn 各次数の回転角度に対する補正値成分の位相、θ 回転角度

Claims (9)

  1. 複数相の巻線が設けられたステータと、ロータとを有する回転機を制御する回転機の制御装置であって、
    前記ロータの回転角度及び回転速度を検出する回転検出部と、
    前記回転機のトルクに生じるリプル成分を低減するためのトルク補正値を算出するトルク補正値算出部と、
    トルク指令値を前記トルク補正値で補正して、補正後のトルク指令値を算出するトルク指令値算出部と、
    前記補正後のトルク指令値に基づいて、前記複数相の巻線に電圧を印加する電圧印加部と、を備え、
    前記ロータには、周方向に複数の磁極を形成する複数の永久磁石が埋め込まれ、各前記磁極において、単数又は複数の前記永久磁石が周方向に非対称に配置され、
    前記トルク補正値算出部は、前記回転角度に応じて前記トルク補正値を周期的に変化させると共に、前記回転速度に基づいて、前記回転角度に対する前記トルク補正値の位相及び振幅の一方又は双方を変化させ、前記ロータの回転方向に応じて、前記回転速度の変化に対する前記トルク補正値の位相及び振幅の一方又は双方の変化の傾向を異ならせる回転機の制御装置。
  2. 前記トルク補正値算出部は、前記回転速度及びトルクに相関するトルク相関値に基づいて、前記トルク補正値の位相を変化させる請求項1に記載の回転機の制御装置。
  3. 前記トルク補正値算出部は、前記回転速度及びトルクに相関するトルク相関値に基づいて、前記トルク補正値の振幅を変化させる請求項1又は2に記載の回転機の制御装置。
  4. 前記トルク補正値算出部は、予め設定された回転速度の領域において、前記回転速度が増加するに従って、前記トルク補正値の位相の進み度合いを次第に増加させる請求項1からのいずれか一項に記載の回転機の制御装置。
  5. 前記トルク補正値算出部は、予め設定された回転速度の領域において、前記回転速度が増加するに従って、前記トルク補正値の振幅を次第に増加させる請求項1から4のいずれか一項に記載の回転機の制御装置。
  6. 前記トルク補正値算出部は、前記トルク補正値として、電気角での前記ロータの回転角周波数を自然数倍した複数の次数の角周波数の補正値成分を合計した値を算出し、
    前記複数の次数のそれぞれについて、前記回転速度に基づいて、前記回転角度に対する前記補正値成分の位相を変化させる請求項1からのいずれか一項に記載の回転機の制御装置。
  7. 前記トルク補正値算出部は、前記複数の次数のそれぞれについて、前記回転速度及びトルクに相関するトルク相関値に基づいて、前記補正値成分の位相を変化させる請求項に記載の回転機の制御装置。
  8. 前記トルク補正値算出部は、前記複数の次数のそれぞれについて、前記回転速度に基づいて、前記補正値成分の振幅を変化させる請求項又はに記載の回転機の制御装置。
  9. 前記トルク補正値算出部は、前記複数の次数のそれぞれについて、前記回転速度及びトルクに相関するトルク相関値に基づいて、前記補正値成分の振幅を変化させる請求項からのいずれか一項に記載の回転機の制御装置。
JP2022547324A 2020-09-11 2020-09-11 回転機の制御装置 Active JP7321385B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034495 WO2022054232A1 (ja) 2020-09-11 2020-09-11 回転機の制御装置

Publications (3)

Publication Number Publication Date
JPWO2022054232A1 JPWO2022054232A1 (ja) 2022-03-17
JPWO2022054232A5 JPWO2022054232A5 (ja) 2022-10-25
JP7321385B2 true JP7321385B2 (ja) 2023-08-04

Family

ID=80631439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022547324A Active JP7321385B2 (ja) 2020-09-11 2020-09-11 回転機の制御装置

Country Status (2)

Country Link
JP (1) JP7321385B2 (ja)
WO (1) WO2022054232A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050118A (ja) 2009-08-25 2011-03-10 Meidensha Corp 電動機のトルク脈動抑制システム
JP4835959B2 (ja) 2009-03-30 2011-12-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2014150604A (ja) 2013-01-31 2014-08-21 Ntn Corp 電気自動車用同期モータの制御装置
JP2015204649A (ja) 2014-04-11 2015-11-16 三菱電機株式会社 電動車両のモータ制御装置
JP6671553B1 (ja) 2018-07-19 2020-03-25 三菱電機株式会社 回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835959B2 (ja) 2009-03-30 2011-12-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2011050118A (ja) 2009-08-25 2011-03-10 Meidensha Corp 電動機のトルク脈動抑制システム
JP2014150604A (ja) 2013-01-31 2014-08-21 Ntn Corp 電気自動車用同期モータの制御装置
JP2015204649A (ja) 2014-04-11 2015-11-16 三菱電機株式会社 電動車両のモータ制御装置
JP6671553B1 (ja) 2018-07-19 2020-03-25 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
WO2022054232A1 (ja) 2022-03-17
JPWO2022054232A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2017141513A1 (ja) 電力変換装置
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
JP6536473B2 (ja) 回転電機の制御装置
CN113422564A (zh) 交流旋转机控制装置
US8129932B2 (en) Driving apparatus for three-phase AC synchronous motor
JP6685452B1 (ja) 回転電機の制御装置
JP7203253B2 (ja) 交流回転機の制御装置、及び電動パワーステアリング装置
JP7321385B2 (ja) 回転機の制御装置
JP7262661B2 (ja) 回転電機装置
CN113078863B (zh) 交流旋转电机的控制装置
US11323056B2 (en) Controller for AC rotary electric machine
CN114208020B (zh) 交流旋转电机的控制装置及电动助力转向装置
WO2023218676A1 (ja) 回転電機の制御装置および回転電機の制御方法
JP6991297B1 (ja) 電流検出装置及び交流回転機の制御装置
JP7393763B2 (ja) 回転電機制御システム
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7309002B1 (ja) 電力変換装置
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
WO2023228404A1 (ja) 回転電機制御装置
WO2023067797A1 (ja) 交流回転機の制御装置、車両用駆動装置、及び電動パワーステアリング装置
JP2023183491A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
CN114384296A (zh) 电流检测装置
JP2023183492A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
CN114208020A (zh) 交流旋转电机的控制装置及电动助力转向装置
CN116114165A (zh) 功率转换装置及电动助力转向装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R151 Written notification of patent or utility model registration

Ref document number: 7321385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151