WO2023228404A1 - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
WO2023228404A1
WO2023228404A1 PCT/JP2022/021734 JP2022021734W WO2023228404A1 WO 2023228404 A1 WO2023228404 A1 WO 2023228404A1 JP 2022021734 W JP2022021734 W JP 2022021734W WO 2023228404 A1 WO2023228404 A1 WO 2023228404A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
angle
rotation angle
rotation
command value
Prior art date
Application number
PCT/JP2022/021734
Other languages
English (en)
French (fr)
Inventor
幸寛 田丸
悠希 西村
光 中川
将彦 折井
辰也 森
千明 藤本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021734 priority Critical patent/WO2023228404A1/ja
Publication of WO2023228404A1 publication Critical patent/WO2023228404A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present disclosure relates to a rotating electrical machine control device.
  • this flux weakening control in order to obtain high output, it is important to increase the inductance Ld in the d-axis direction, which corresponds to the rotor magnet flux direction, among the inductances of the rotating electric machine. If the inductance Ld is large, the magnetic flux weakening control can be performed more efficiently in a rotating electrical machine, and a rotating electrical machine capable of high output can be realized.
  • a rotation angle detector detects the angle at which the magnetic poles of the rotor exist with respect to a reference angle, that is, the rotation angle of the rotor.
  • the rotation angle output by the rotation angle detector includes an angular error corresponding to an error with respect to the true value of the rotation angle of the rotating electric machine.
  • the alternating current component included in the angle error causes an error in the alternating current component of torque called a torque pulsation error, which causes vibration or noise generated from the rotating electric machine.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide a rotating electrical machine control device that can realize a high-output rotating electrical machine while suppressing the generation of vibration or noise. do.
  • a rotating electrical machine control device includes a rotating electrical machine having a stator having a plurality of phase windings, a rotor disposed inside the stator in the radial direction and having magnets, a power converter that converts into voltage; a current detection unit that detects current flowing through the windings of the plurality of phases based on the output signal output from the current sensor; and an output signal that outputs an output signal according to the rotation angle of the rotor.
  • a d-axis current command value generation unit that generates a command value for the d-axis current flowing through the rotating electrical machine;
  • a q-axis current command value generation unit that generates a command value for the q-axis current flowing through the rotating electrical machine;
  • a voltage command value calculation unit that calculates a voltage command value to be applied to the windings of the plurality of phases based on the rotation angle of the current, the command value of the q-axis current, and the command value of the d-axis current;
  • a switching control unit that turns on and off a plurality of switching elements included in the power converter based on the voltage command value.
  • the d-axis inductance Ld has a larger value than the q-axis inductance Lq.
  • the rotation calculation unit reduces an angular error caused by a detection error of the rotation sensor based on one or more of the output signal, the current, and the voltage command value of the rotation sensor.
  • the rotating electric machine control device According to the rotating electric machine control device according to the present disclosure, it is possible to realize a high-output rotating electric machine while suppressing the generation of vibration or noise.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an electric power steering device including a rotating electrical machine control device according to Embodiment 1.
  • FIG. 1 is a block diagram showing a rotating electrical machine control device according to Embodiment 1.
  • FIG. 1 is a block diagram showing a rotating electrical machine control device according to Embodiment 1.
  • FIG. 3 is a diagram showing execution areas of each control when maximum torque current control and magnetic flux weakening control are performed when the rotating electrical machine control device according to the first embodiment is applied to an embedded magnet type rotating electrical machine.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an electric power steering device including a rotating electrical machine control device according to Embodiment 1.
  • FIG. 1 is a block diagram showing a rotating electrical machine control device according to Embodiment 1.
  • FIG. 3 is a block diagram showing a control angle calculation unit according to the first embodiment.
  • FIG. 3 is a diagram illustrating setting of an internal division rate according to the first embodiment.
  • 3 is a Bode diagram showing a transfer function according to the first embodiment.
  • FIG. FIG. 7 is a block diagram showing a control angle calculation unit according to Embodiment 2.
  • FIG. 7 is a block diagram showing a rotation sensor and a rotation detection section according to Embodiment 3.
  • FIG. FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection section according to Embodiment 3;
  • FIG. 7 is a block diagram showing a rotation sensor and a rotation detection section according to Embodiment 4.
  • FIG. FIG. 7 is a diagram illustrating calculation by a rotation detection unit according to Embodiment 4;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection unit according to Embodiment 4;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection unit according to Embodiment 4;
  • FIG. 7 is a diagram illustrating calculation by a rotation detection unit according to Embodiment 4;
  • FIG. 7 is a cross-sectional view of a rotating electrical machine controlled by a rotating electrical machine control device according to a fifth embodiment, as viewed in the axial direction.
  • FIG. 7 is a schematic configuration diagram showing the overall configuration of an electric power steering device including a rotating electrical machine control device according to a sixth embodiment.
  • FIG. 7 is a diagram illustrating a circuit configuration of a DC-DC converter according to a sixth embodiment.
  • FIG. 7 is a diagram illustrating switching drive in a DC-DC converter according to a sixth embodiment.
  • 12 is a circuit diagram showing a part of a DC-DC converter according to a modification of the sixth embodiment.
  • Embodiment 1 A rotating electric machine control device 10 according to Embodiment 1 will be described with reference to the drawings. In the following description, the rotating electrical machine control device 10 may be simply referred to as the control device 10.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an electric power steering device 100 including a rotating electrical machine control device 10 according to the first embodiment.
  • rotating electric machine 1 is a driving force source of electric power steering device 100.
  • the rotating electric machine 1, the power converter 4, and the control device 10 constitute an electric power steering device 100.
  • Electric power steering device 100 is provided in a vehicle.
  • the rotating electrical machine 1 includes a stator and a rotor disposed radially inside the stator.
  • the stator is arranged so as to surround the outer periphery of the rotor with an air gap serving as a magnetic gap interposed therebetween.
  • the stator has a stator core and windings.
  • the windings are coils corresponding to each of the plurality of phases.
  • the rotating electric machine 1 is driven by three-phase alternating current of U-phase, V-phase, and W-phase.
  • the windings include windings Cu, Cv, and Cw corresponding to U-phase, V-phase, and W-phase, respectively.
  • the currents flowing through the windings Cu, Cv, and Cw are indicated by symbols Iu, Iv, and Iw.
  • Iu, Iv, and Iw the currents flowing through the windings
  • the rotor has a rotor core, a rotating shaft, and a plurality of magnets.
  • the rotor core is composed of, for example, a plurality of electromagnetic steel plates laminated in the direction in which the rotating shaft extends.
  • the rotating shaft is fixed to the center of the rotor core.
  • the plurality of magnets are fixed to the outer peripheral surface of the rotor core. The rotor rotates due to changes in the magnetic field generated between the plurality of magnets and the stator, and the rotating shaft rotates.
  • the rotor includes a rotation sensor 2 for detecting the rotation angle of the rotor.
  • the rotation sensor 2 is configured to output an output signal according to the rotation angle of the rotor.
  • the magnet is, for example, a permanent magnet.
  • the rotating electrical machine 1 constitutes a permanent magnet synchronous motor.
  • the d-axis inductance Ld and the q-axis inductance Lq have a relationship of Ld>Lq. That is, the d-axis inductance Ld has a larger value than the q-axis inductance Lq.
  • the rotating electric machine 1 is a forward salient pole motor.
  • the configuration of the rotating electrical machine 1 is not limited to a permanent magnet synchronous motor.
  • the magnet may be an electromagnet with a field winding.
  • the three-phase windings Cu, Cv, and Cw may be star-connected or delta-connected.
  • Power converter 4 is, for example, an inverter. In other words, the power converter 4 is configured to convert the voltage of the DC power supply 3 into an AC voltage. Power converter 4 includes three series circuits corresponding to three-phase alternating current of U phase, V phase, and W phase, a smoothing capacitor 5, and a current sensor 6. In other words, the series circuit is a leg.
  • a switching element SP and a switching element SN are connected in series.
  • the switching element SP is a positive side switching element connected to the positive side of the DC power supply 3.
  • the switching element SN is a negative side switching element connected to the negative side of the DC power supply 3.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect
  • a gate terminal of each switching element is connected to the control device 10 via a gate drive circuit or the like.
  • Each switching element is turned on or off by switching signals GPu to GNw output from the control device 10.
  • symbols SPu, SPv, and SPw representing switching elements SP, and symbols SNu, SNv, and SNw representing switching elements SN are shown, but lowercase letters u, v, and w represent U phase, V phase, and It is shown that it corresponds to each of the three-phase alternating current of phase and W phase.
  • switching element SP When each of the three phases is not distinguished, they may be simply referred to as switching element SP or simply as switching element SN.
  • connection points between the two switching elements SP and SN in each of the three-phase series circuits of the U-phase, V-phase, and W-phase are connected one-to-one to the corresponding windings Cu, Cv, and Cw.
  • a switching element SPu on the positive side of the U phase and a switching element SNu on the negative side of the U phase are connected in series.
  • the connection point between the two switching elements SPu and SNu is connected to the U-phase winding Cu.
  • a switching element SPv on the positive side of the V-phase and a switching element SNv on the negative side of the V-phase are connected in series.
  • connection point between the two switching elements SPv and SNv is connected to the V-phase winding Cv.
  • a W-phase positive-pole side switching element SPw and a W-phase negative-pole side switching element SNw are connected in series.
  • a connection point between the two switching elements SPw and SNw is connected to a W-phase winding Cw.
  • the smoothing capacitor 5 is connected between the positive electrode side and the negative electrode side of the DC power supply 3.
  • DC power supply 3 outputs DC voltage Vdc to power converter 4 .
  • the DC voltage Vdc is, for example, 12V.
  • the DC power source 3 is, for example, a battery, a DC-DC converter, a diode rectifier, a PWM rectifier, or the like.
  • the type of equipment constituting the DC power supply 3 is not limited as long as it outputs the DC voltage Vdc.
  • the DC power supply 3 may be provided with a voltage sensor that detects the DC voltage Vdc. An output signal output from the voltage sensor may be input to the control device 10.
  • the control device 10 may perform control using the detected DC voltage Vdc.
  • the current sensor 6 is configured to detect the current flowing through the windings of each of three phases: U phase, V phase, and W phase.
  • the current sensor 6 is, for example, a current sensor such as a shunt resistor or a Hall element.
  • the output signal output from the current sensor 6 is input to the control device 10.
  • the current sensor 6 is connected in series to switching elements SPw and SNw in each of the three-phase series circuits of U-phase, V-phase, and W-phase.
  • the current sensor 6 has a U-phase resistance Ru, a V-phase resistance Rv, and a W-phase resistance Rw.
  • Each of the three-phase resistors Ru, Rv, and Rw is connected in series to the negative electrode side of the switching elements SNu, SNv, and SNw.
  • the three-phase resistors Ru, Rv, and Rw are connected to amplifiers 21, 22, and 23 on a one-to-one basis.
  • the amplifiers 21, 22, and 23 detect the potential difference across each of the three-phase resistors Ru, Rv, and Rw. The detected potential difference is input to the control device 10.
  • the current sensor 6 may be provided on the electric wire that connects the series circuit of the two switching elements SP and SN and the winding. Further, the current sensor 6 may be provided on an electric wire that connects the power converter 4 and the DC power supply 3. In this case, the currents in the windings in each of the three phases, U-phase, V-phase, and W-phase, may be detected using the well-known "one bus shunt method.”
  • the configuration of the power converter 4 is not limited to an inverter.
  • a power converter other than an inverter, for example a matrix converter, may be used as the power converter 4.
  • the electric power steering device 100 includes the above-mentioned rotating electrical machine control device 10, the above-mentioned power converter 4, the above-mentioned rotating electrical machine 1, a driving force transmission mechanism 101, a steering device 102, wheels 103, and a handle 104. , a shaft 105, and a torque sensor 106.
  • the driving force transmission mechanism 101 is a mechanism that transmits the driving force generated from the rotating electrical machine 1 to the steering device 102 of the vehicle.
  • the driving force transmission mechanism 101 includes a worm gear mechanism or the like that connects the rotating shaft of the rotating electrical machine 1 to the shaft 105.
  • the steering wheel 104 is operated by a driver who drives the vehicle, and can be rotated to the left or to the right.
  • a rotating shaft of a rotor constituting the rotating electric machine 1 is connected to a steering device 102 of a wheel 103 via a driving force transmission mechanism 101.
  • Shaft 105 is connected to handle 104.
  • the shaft 105 transmits steering torque from the handle 104 to the steering device 102 connected to the wheels 103.
  • Torque sensor 106 is attached to shaft 105.
  • Torque sensor 106 detects steering torque Ts from steering wheel 104.
  • An output signal output from the torque sensor 106 is input to the control device 10.
  • An output signal output from the torque sensor 106 is input to, for example, an input circuit 92 described later.
  • Control device 10> 2 and 3 are block diagrams showing the control device 10 according to this embodiment.
  • the control device 10 is configured to control the rotating electrical machine 1 via the power converter 4.
  • the control device 10 includes a rotation detection section 31, a control angle calculation section 32, a current detection section 33, a voltage command value calculation section 34, a switching control section 35, and the like.
  • Each function of the control device 10 is realized by a processing circuit included in the control device 10.
  • the rotation detection section 31, the control angle calculation section 32, the current detection section 33, the voltage command value calculation section 34, and the switching control section 35 may be referred to as control sections 31 to 35.
  • the control units 31 to 35 may be referred to as functional units.
  • the control device 10 includes multiple processing circuits. Specifically, as shown in FIG. 3, the control device 10 includes a CPU (Central Processing Unit) 90, a storage device 91, an input circuit 92, an output circuit 93, and the like.
  • a CPU Central Processing Unit
  • the CPU 90 is an example of an arithmetic processing device. This is a computer such as a CPU (Central Processing Unit).
  • the CPU 90 is, for example, an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), or an FPGA (Field Pr. ogrammable Gate Array), various logic circuits, and various signal processing circuits. good.
  • the CPU 90 is configured to execute software stored in the storage device 91.
  • the software is, for example, a computer program.
  • the CPU 90 may include multiple circuits, such as the same type of circuit or different types of circuits. The processing of the CPU 90 may be executed such that each of the plurality of circuits shares a part of the processing performed by the CPU 90.
  • the storage device 91 stores computer programs or various data. In other words, the storage device 91 can store software.
  • the storage device 91 includes a RAM (Random Access Memory), a ROM (Read Only Memory), or the like. When the storage device 91 includes a RAM, the storage device 91 can read and write data from the CPU 90 . When the storage device 91 includes a ROM, the storage device 91 can read data from the CPU 90 . The storage device 91 exchanges data between the CPU 90 and the storage device 91 .
  • the input circuit 92 is a circuit that inputs an external signal from outside the control device 10 to the CPU 90.
  • the input circuit 92 is connected to various sensors or switches such as the rotation sensor 2, the current sensor 6, and the torque sensor 106.
  • the input circuit 92 includes an A/D converter and the like. Thereby, the input circuit 92 inputs the output signal output from the above-described sensor or switch to the CPU 90.
  • the output circuit 93 is a circuit that outputs a signal from the CPU 90 to the outside of the control device 10.
  • An electrical load is connected to the output circuit 93.
  • the electrical load is, for example, a gate drive circuit.
  • the gate drive circuit drives the switching element so as to switch the state of the switching element between an on state and an off state.
  • the output circuit 93 includes, for example, a drive circuit and the like.
  • the drive circuit outputs a control signal from the CPU 90 to the electrical load.
  • driving the switching element so as to switch the state of the switching element between the on state and the off state may be referred to as "on/off driving of the switching element".
  • control device 10 configured in this way, when the software is executed by the CPU 90, the storage device 91, the input circuit 92, the output circuit 93, etc., and other hardware or sensors connected to the control device 10 are connected. work together to drive. As a result, the functions of each of the control units 31 to 35 are realized. Note that setting data such as internal division ratios and control gains used by each of the control units 31 to 35 is stored in a storage device 91 such as a ROM as part of the software.
  • the rotation detection unit 31 detects the rotation angle ⁇ d of the rotor based on the output signal output from the rotation sensor 2. Specifically, the rotation detection unit 31 detects the rotation angle (magnetic pole position) of the magnetic pole (N pole) of the magnet in electrical angle with respect to the position of the U-phase winding Cv. The detected rotation angle is a detected value ⁇ d that is the rotation angle of the rotor.
  • the current detection unit 33 detects currents Iud, Ivd, and Iwd flowing through the three-phase windings based on the output signal output from the current sensor 6. Specifically, the current detection unit 33 detects the current Iud flowing through the U-phase winding Cu and the current Ivd flowing through the V-phase winding Cv based on the output signal output from the current sensor 6. Then, the current Iwd flowing through the W-phase winding Cw is detected.
  • the voltage command value calculation unit 34 calculates the three-phase voltage applied to the three-phase windings Cu, Cv, and Cw based on the control rotation angle ⁇ c and the current detection value calculated by the control angle calculation unit 32, which will be described later. Calculate voltage command values Vuo, Vvo, and Vwo. Specifically, the voltage command value calculation unit 34 calculates the voltage to be applied to the windings of multiple phases based on the rotation angle for control, the current, the command value of the q-axis current, and the command value of the d-axis current. Calculate the command value.
  • the voltage command value calculation unit 34 includes a current coordinate conversion unit 342, a dq-axis voltage command value calculation unit 343, and a voltage coordinate conversion unit 344.
  • the current coordinate conversion unit 342 converts the current detection values Iud, Ivd, and Iwd of the three-phase windings Cu, Cv, and Cw into the d-axis current detection value Idd and the q-axis current detection value Idd based on the control rotation angle ⁇ c. is converted into a current detected value Iqd.
  • the current coordinate conversion unit 342 converts the detected current values Iud, Ivd, and Iwd of the three-phase windings Cu, Cv, and Cw into a control rotation angle ⁇ c as shown in the following equation. Based on this, three-phase two-phase transformation and rotating coordinate transformation are performed. Thereby, the current detection values Iud, Ivd, and Iwd are converted into the d-axis current detection value Idd and the q-axis current detection value Iqd.
  • the d-axis is defined in the direction of the magnetic pole (N pole) of the magnet.
  • the q-axis is defined in a direction that is 90 electrical degrees ahead of the d-axis.
  • coordinate transformation is performed based on the rotation angle ⁇ c for control. Therefore, the direction of the rotation angle ⁇ c for control becomes the d-axis.
  • the current command value calculation unit 36 includes a d-axis current command value generation unit 361 and a q-axis current command value generation unit 362.
  • the d-axis current command value generation unit 361 calculates the d-axis current command value Ido. In other words, the d-axis current command value generation unit 361 generates a command value for the d-axis current flowing through the rotating electrical machine.
  • the q-axis current command value generation unit 362 calculates the q-axis current command value Iqo. In other words, the q-axis current command value generation unit 362 generates a command value for the q-axis current flowing through the rotating electrical machine.
  • the current command value calculation unit 36 detects the steering torque Ts generated at the steering wheel 104 operated by the driver, based on the output signal output from the torque sensor 106.
  • Ka is a constant. Note that Ka may be changed depending on the steering torque Ts, the traveling speed of the vehicle, and the like. Further, the q-axis current command value Iqo may be set based on known compensation control according to the steering situation.
  • maximum torque current control d-axis and q-axis current command values Ido and Iqo that maximize generated torque for the same current are calculated.
  • the execution region of the flux weakening control is set to a region where the rotational angular velocity ⁇ is equal to or higher than the base velocity at which the amplitude of the line voltage output by the inverter reaches the DC voltage Vdc.
  • FIG. 5 is a diagram showing the execution range of each control when maximum torque current control and magnetic flux weakening control are performed when the control device 10 is applied to an embedded magnet type rotating electric machine.
  • the horizontal axis represents rotational angular velocity
  • the vertical axis represents torque.
  • the dq-axis voltage command value calculation unit 343 performs current feedback control shown in the following equation. Specifically, in current feedback control, the dq-axis voltage command value calculation unit 343 adjusts the d-axis current detection value Idd so that it approaches the d-axis current command value Ido, and the q-axis current detection value Iqd. The d-axis voltage command value Vdo and the q-axis voltage command value Vqo are changed so as to approach the q-axis current command value Iqo. In current feedback control, for example, PI control or the like is used.
  • Kd and Kq indicate proportional gains.
  • Td and Tq represent integration time constants.
  • s represents a Laplace operator.
  • feedforward control may be performed for non-interference between the d-axis current and the q-axis current. That is, "- ⁇ c ⁇ Lq ⁇ Iqc” may be added to the d-axis voltage command value Vdo. Further, “ ⁇ c ⁇ (Ld ⁇ Idc+ ⁇ )” may be added to the q-axis voltage command value Vqo.
  • ⁇ c is a rotational angular velocity for control, which will be described later. Instead of ⁇ c, a detected value ⁇ d of rotational angular velocity, which will be described later, may be used.
  • Lq indicates q-axis inductance.
  • Ld indicates d-axis inductance.
  • indicates the flux linkage caused by the magnetomotive force of the magnet interlinking with the winding.
  • the voltage coordinate conversion unit 344 converts the d-axis voltage command value Vdo and the q-axis voltage command value Vqo into three-phase voltage command values Vuo, Vvo, and Vwo based on the control rotation angle ⁇ c.
  • the voltage coordinate transformation unit 344 performs fixed coordinate transformation on the d-axis voltage command value Vdo and the q-axis voltage command value Vqo based on the rotation angle ⁇ c for control. and performs two-phase to three-phase conversion. Thereby, the voltage coordinate conversion unit 344 converts the d-axis voltage command value Vdo and the q-axis voltage command value Vqo into three-phase voltage command values Vuo, Vvo, and Vwo.
  • the voltage coordinate conversion unit 344 may apply known modulation such as two-phase modulation or third harmonic superposition to the three-phase voltage command values Vuo, Vvo, and Vwo.
  • the switching control unit 35 turns on and off a plurality of switching elements included in the power converter 4 based on the three-phase voltage command values Vuo, Vvo, and Vwo.
  • the switching control unit 35 uses known carrier comparison PWM or space vector PWM.
  • the switching control unit 35 turns on and off the plurality of switching elements SP and SN included in the power converter 4 based on the voltage command value calculated by the voltage command value calculation unit 34.
  • the switching control unit 35 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo. Based on the comparison result, the switching control section 35 turns on/off the plurality of switching elements.
  • the carrier wave is, for example, a triangular wave.
  • the triangular wave has a waveform that oscillates around 0 with an amplitude of half the DC voltage Vdc/2 in the PWM period Tc.
  • the switching control unit 35 controls the operation of the positive-side switching element SP of each of the three phases, U-phase, V-phase, and W-phase, as follows.
  • the switching control unit 35 turns on the switching signal GP of the positive side switching element SP to turn on the positive side switching element SP.
  • the switching control unit 35 turns off the switching signal GP of the positive side switching element SP to turn off the positive side switching element SP.
  • the switching control unit 35 controls the operation of the negative electrode side switching element SN of each of the three phases U-phase, V-phase, and W-phase as follows.
  • the switching control unit 35 turns off the switching signal GN of the negative side switching element SN to turn off the negative side switching element SN.
  • the switching control unit 35 turns on the switching signal GN of the negative side switching element SN to turn on the negative side switching element SN.
  • a short-circuit prevention period may be provided between the on period of the positive side switching element SP and the on period of the negative side switching element SN in each of the three phases, U phase, V phase, and W phase. .
  • the short circuit prevention period is a so-called dead time. During the short circuit prevention period, both the positive side switching element SP and the negative side switching element SN are turned off.
  • the switching control unit 35 When the space vector PWM is used, the switching control unit 35 generates a voltage command vector from the three-phase voltage command values Vuo, Vvo, and Vwo. Based on the voltage command vector, the switching control unit 35 determines the output time distribution of the seven basic voltage vectors in the PWM cycle. The switching control unit 35 generates a switching signal that turns each switching element on and off in a PWM cycle based on the output time distribution of the seven basic voltage vectors.
  • the control angle calculation unit 32 is configured to reduce the angle error caused by the detection error of the rotation sensor 2 based on one or more of the rotation angle, current, and voltage command value that are output signals of the rotation sensor 2. It is configured.
  • the specific functions of the control angle calculating section 32 are as follows.
  • the control angle calculation unit 32 calculates a rotation angle ⁇ c for controlling the rotor. That is, the control angle calculation section 32 is an example of a rotation calculation section that calculates a rotation angle for rotor control.
  • the control angle calculation unit 32 estimates an estimated actual angle deviation ⁇ e, which is the deviation of the control rotation angle ⁇ c from the true value of the rotation angle of the rotor, based on the information on the detected current value and the information on the voltage command value.
  • the control angle calculation unit 32 calculates a detected angle deviation ⁇ d, which is a deviation of the control rotation angle ⁇ c from the detected rotation angle value ⁇ d.
  • the control angle calculation unit 32 calculates the detected angle deviation ⁇ d as a control angle deviation.
  • the control angle calculation unit 32 calculates, for example, a value obtained by internally dividing the estimated actual angle deviation ⁇ e and the detected angle deviation ⁇ d, as the control angle deviation ⁇ c. Then, the control angle calculation unit 32 calculates the control rotation angle based on the control angle deviation. Specifically, the control angle calculation unit 32 calculates the control rotation angle ⁇ c by performing feedback control so that the control angle deviation ⁇ c approaches 0. More specifically, the control angle calculation unit 32 performs this feedback control to change the rotational angular velocity for control of the rotor, integrates the rotational angular velocity for control, and calculates the rotational angle for control. do.
  • the control angle calculation unit 32 calculates the ratio Ke of the estimated actual angle deviation ⁇ e to the control angle deviation ⁇ c, as follows: It is set higher than the ratio Kd of detected angle deviation.
  • the control angle calculation unit 32 makes the ratio Ke of the estimated actual angle deviation ⁇ e in the control angle deviation ⁇ c lower than the ratio Kd of the detected angle deviation.
  • the control device 10 is not configured to correct the sensor detected value of the rotational angular velocity using the feedback control value, like the flux weakening control disclosed in Patent Document 1.
  • the response frequency of the feedback control is increased to reduce the error of the AC component included in the rotation angle sensor detection value. There's no need to.
  • the response frequency of the feedback control can be set to respond to the vibration frequency of the mechanical rotation angle, which is a relatively low frequency. Furthermore, the response frequency of the feedback control can be set so as not to respond to the frequency of a noise component included in the current detection value of several relatively high frequencies.
  • the ratio Ke of the estimated actual angle deviation ⁇ e is made higher than the ratio Kd of the detected angle deviation ⁇ d, and feedback control is performed to bring the control angle deviation ⁇ c closer to 0.
  • the rotation angle ⁇ c has been calculated. Therefore, it is possible to suppress an error in the AC component included in the rotation angle detection value ⁇ d from being reflected in the control rotation angle ⁇ c. Furthermore, the rotation angle ⁇ c for control can be brought closer to the true value of the rotation angle.
  • the control angle deviation ⁇ c is brought close to 0.
  • the rotation angle ⁇ c for control is calculated by feedback control. Therefore, it is possible to suppress an error in the AC component included in the rotation angle detection value ⁇ d from being reflected in the control rotation angle ⁇ c.
  • FIG. 6 is a block diagram showing the control angle calculating section 32 according to this embodiment.
  • the control angle calculation unit 32 calculates the detected angle deviation ⁇ d by subtracting the control rotation angle ⁇ c from the rotation angle detection value ⁇ d, as shown in the following equation.
  • the control angle calculation unit 32 calculates the estimated actual angle, which is the deviation of the control rotation angle ⁇ c from the true value of the rotation angle of the rotor, based on the information on the detected current value and the information on the voltage command value. Estimate the deviation ⁇ e.
  • control angle calculation unit 32 calculates the d-axis current detection value Idd, the q-axis current detection value Iqd, the d-axis voltage command value Vdo, the q-axis voltage command value Vqo, and the control angle calculation unit 32. Based on the rotational angular velocity ⁇ c, an estimated actual angle deviation ⁇ e, which is a deviation of the control rotation angle ⁇ c from the true value of the rotor rotation angle, is estimated.
  • the control angle calculation unit 32 calculates the estimated actual angle deviation ⁇ e using the following equation.
  • R indicates a preset resistance value of the winding.
  • Lq indicates a preset q-axis inductance.
  • Ld indicates a preset d-axis inductance.
  • Ld and Lq may be set using map data of the d-axis current and the q-axis current, taking into account the magnetic saturation of the permanent magnet.
  • Equation (1-6) is an equation derived based on the voltage equation.
  • ⁇ Vd indicates an error in the d-axis voltage due to deviation of the control rotation angle ⁇ c from the actual rotation angle.
  • the "actual rotation angle” is a rotation angle that satisfies the voltage equation.
  • ⁇ Vq represents an error in the q-axis voltage due to deviation of the control rotation angle ⁇ c from the actual rotation angle. Then, by calculating the value of the arctangent function of ⁇ Vd/ ⁇ Vq, the estimated actual angle deviation ⁇ e, which is the deviation of the control rotation angle ⁇ c from the true value of the rotation angle, is calculated.
  • the detected value ⁇ d of the rotational angular velocity calculated by differentiating the detected value ⁇ d of the rotational angle may be used.
  • the d-axis voltage detection value Vdd and A q-axis voltage detection value Vqd may be used.
  • the control angle calculation unit 32 calculates the detected value ⁇ d of the rotational angular velocity using the following equation.
  • ⁇ d(n-1) indicates the rotation angle detected at the previous calculation timing.
  • ⁇ d(n) indicates the rotation angle detected at the current calculation timing.
  • ⁇ T indicates the calculation period.
  • ⁇ d of the rotational angular velocity a value obtained by low-pass filtering the calculated value of equation (1-7) may be used.
  • the control angle calculation unit 32 calculates a value obtained by multiplying the estimated actual angle deviation ⁇ e by an internal division ratio Ke of the estimated actual angle deviation, and a value obtained by multiplying the detected angle deviation ⁇ d by an internal division ratio Kd of the detected angle deviation. Calculate the sum of the multiplied values. This total value is the control angle deviation ⁇ c.
  • the internal division ratio Ke of the estimated actual angle deviation is an example of the ratio of the estimated actual angle deviation.
  • the internal division ratio Kd of the detected angle deviation is an example of the ratio of the detected angle deviation.
  • the internal division ratio Ke of the estimated actual angle deviation is the ratio Ke of the estimated actual angle deviation ⁇ e to the control angle deviation ⁇ c.
  • the internal division ratio Kd of the detected angle deviation is the ratio Kd of the detected angle deviation ⁇ d to the control angle deviation ⁇ c.
  • control angle deviation ⁇ c is a value obtained by internally dividing the estimated actual angle deviation ⁇ e and the detected angle deviation ⁇ d into the ratio of Ke: (1 ⁇ Ke).
  • FIG. 7 shows an example of setting internal division ratios Ke and Kd according to this embodiment. As shown on the horizontal axis of FIG. 7, in this embodiment, the detected value ⁇ d of the rotational angular velocity is used as the velocity proportional physical quantity.
  • the control angle calculation unit 32 sets the internal division ratio Ke of the estimated actual angle deviation to be higher than the internal division ratio Kd of the detected angle deviation. do.
  • the control angle calculation unit 32 makes the internal division ratio Ke of the estimated actual angle deviation lower than the internal division ratio Kd of the detected angle deviation.
  • the control angle calculation unit 32 sets the internal division ratio Ke of the estimated actual angle deviation higher than 0.5, and The fraction Kd is lower than 0.5. Further, when the detected value ⁇ d of the rotational angular velocity is lower than the speed threshold Th, the control angle calculation unit 32 sets the internal division ratio Ke of the estimated actual angle deviation to be lower than 0.5, and Make the fraction Kd higher than 0.5. Note that the rotational angular velocity ⁇ c for control may be used instead of the detected value ⁇ d of the rotational angular velocity.
  • the control angle calculation unit 32 continuously increases the internal fraction Ke of the estimated actual angle deviation as the detected value ⁇ d of the rotational angular velocity increases. At the same time, the internal division ratio Kd of the detected angle deviation is continuously decreased.
  • the preset range of speed proportional physical quantities including the speed threshold Th corresponds to the range of rotational angular velocities. In the following description, this range will be referred to as a replacement angular velocity range.
  • the value obtained by subtracting the predetermined value from the speed threshold Th is the lower limit angular velocity ThL of the replacement angular velocity range.
  • the value obtained by adding a predetermined value to the speed threshold Th is the upper limit angular velocity ThH of the replacement angular velocity range.
  • the replacement angular velocity range is from the lower limit angular velocity ThL to the upper limit angular velocity ThH. In the example shown in FIG. 7, the replacement angular velocity range is set so that the speed threshold Th is at the center of the replacement angular velocity range.
  • the internal division ratios Ke and Kd are continuously changed in the replacement speed range.
  • the control angle deviation ⁇ c is prevented from changing sharply, the rotation angle ⁇ c for control is changed suddenly, and the torque can be suppressed from changing abruptly. Therefore, deterioration of steering feeling for the driver can be suppressed.
  • the internal division ratios Ke and Kd may be changed stepwise before and after the speed threshold Th, that is, at a speed lower or higher than the speed threshold Th.
  • the control angle calculation unit 32 continuously increases the internal fraction Ke of the estimated actual angle deviation from 0 to 1 as the detected value ⁇ d of the rotational angular velocity increases in the replacement angular velocity range including the speed threshold Th.
  • the internal division ratio Kd of the detected angle deviation is continuously decreased from 1 to 0. In other words, if the speed proportional physical quantity is lower than a preset range of speed proportional physical quantities including the speed threshold, the control angle calculation unit 32 sets the proportion of the estimated actual angle deviation to 0, and also sets the estimated actual angle deviation ratio to 0. Set the detection angle deviation ratio to 1.
  • the control angle calculation unit 32 sets the internal division ratio Ke of the estimated actual angle deviation to 0, and also sets the internal division ratio Kd of the detected angular deviation. Set to 1.
  • the control angle calculation unit 32 sets the internal division ratio Ke of the estimated actual angle deviation to 1, and sets the internal division ratio Kd of the detected angular deviation to 0. Set to .
  • control angle calculation unit 32 sets the ratio of the estimated actual angle deviation to 1, and also sets the ratio of the estimated actual angle deviation to 1 and detects Set the percentage of angular deviation to 0.
  • the rotational angular velocity ⁇ bd is an example of a velocity proportional physical quantity. The effect of this setting will be explained below.
  • the torque error ⁇ Terr when there is an angle error ⁇ err can be approximated as shown in the following equation.
  • the torque error ⁇ Terr increases as the absolute value of the d-axis current Id increases.
  • the speed threshold Th As described above, by setting the speed threshold Th, the internal fraction Ke of the estimated actual angle deviation is increased and the estimated actual angle deviation ⁇ e is decreased in the execution area of the flux weakening control. Angle ⁇ c is calculated. Therefore, the deviation of the control rotation angle ⁇ c from the true value of the rotation angle (estimated actual angle deviation ⁇ e) becomes small, and the angle error ⁇ err becomes small.
  • the true value of the rotation angle is the rotation angle for which the voltage equation holds.
  • the torque error ⁇ Terr shown in equation (1-9) is also derived based on the voltage equation. Therefore, by calculating the rotation angle ⁇ c for control so that the estimated actual angle deviation ⁇ e decreases, the torque error ⁇ Terr can be reduced.
  • the estimated actual angular deviation ⁇ e is reflected in the calculation of the rotational angle ⁇ c for control.
  • the speed threshold Th may be set to match the rotational angular velocity ⁇ bd of the boundary.
  • the speed threshold Th and the replacement angular velocity range may be set such that the rotational angular velocity ⁇ bd of the boundary is included in the replacement angular velocity range.
  • the speed threshold Th and the replacement angular velocity range may be changed depending on the torque. Further, when the control device 10 is applied to an embedded magnet type rotating electrical machine, the d-axis current becomes a value smaller than 0 even in the maximum torque current control. Therefore, the speed threshold Th and the replacement angular velocity range may be set in the execution range of maximum torque current control.
  • the rotational angular velocity ⁇ c for control may be used as the velocity proportional physical quantity.
  • a physical quantity other than the rotational angular velocity may be used as the velocity-proportional physical quantity.
  • the induced voltage generated in the winding is proportional to the rotational angular velocity
  • the voltage applied to the winding is proportional to the induced voltage.
  • the speed proportional physical quantity the magnitude of the voltage vector of the d-axis voltage command value Vdo and the q-axis voltage command value Vqo, or the sum of the square of the voltage command value Vdo and the square of the voltage command value Vqo is used. You can.
  • the control angle calculation unit 32 fixes the internal division ratio Ke of the estimated actual angle deviation to 0, and fixes the internal division ratio Kd of the detected angle deviation to 1. It may be fixed. That is, the control angle calculation unit 32 may prevent the estimated actual angle deviation ⁇ e from being reflected in the control angle deviation ⁇ c. This is because as the DC voltage Vdc decreases, the base speed decreases, and magnetic flux weakening control is performed from a lower rotation speed, but since the induced voltage is low when the rotor is rotating at a low speed, the formula This is because the accuracy of estimating the estimated actual angle deviation ⁇ e based on (1-6) decreases.
  • control angle calculation unit 32 calculates the control rotation angle ⁇ c by performing feedback control so that the control angle deviation ⁇ c approaches 0.
  • the control angle calculation unit 32 changes the rotational angular velocity ⁇ c for control by performing feedback control so that the control angle deviation ⁇ c approaches 0, and integrates the rotational angular velocity ⁇ c for control. Then, the rotation angle ⁇ c for control is calculated.
  • the response frequency of feedback control can be lower than the rotation frequency. Furthermore, the response frequency of the feedback control can be set according to the vibration frequency of the mechanical rotational angular velocity.
  • control angle calculation unit 32 performs feedback control by changing the control rotational angular velocity ⁇ c by PI control so that the control angle deviation ⁇ c approaches 0, as shown in the following equation.
  • Kc indicates proportional gain.
  • Tc indicates an integration time constant.
  • s represents a Laplace operator. Note that various types of feedback control such as PID control may be used instead of PI control.
  • FIG. 9 it can be seen that the steering speed of the steering wheel oscillates at approximately 35 Hz. The reason is shown in Fig. This is because in No. 9, it is shown that 0.1 s is about 3.5 cycles.
  • the response from the control angle deviation ⁇ c to the control rotation angle ⁇ c is required to be 35 Hz or more, preferably 90 to 100 Hz, which is about three times as much, and more preferably 175 Hz or more, which is five times as much.
  • the vibration frequency of this rotational angular velocity corresponds to the resonance frequency of a mechanical power transmission mechanism connected to the rotating shaft of the rotor.
  • FIG. 11 is a Bode diagram showing the transfer function G of equation (1-11).
  • the horizontal axis shows the rotational angular velocity, and the vertical axis shows the gain.
  • the cutoff frequency has a characteristic of a first-order low-pass filter with a proportional gain Kc [rad/s].
  • the reason why the first-order low-pass filter is used is that it is -20 dB/dec around 0 dB.
  • the input angular frequency ⁇ exceeds the proportional gain Kc, ⁇ c cannot follow the fluctuation of ⁇ c. Therefore, the fact that the response from the control angle deviation ⁇ c to the control rotation angle ⁇ c needs to be 35 Hz or more means that the proportional gain Kc needs to be 2 ⁇ 35 [rad/s] or more.
  • the proportional gain Kc needs to be at least 2 ⁇ 35 [rad/s], and considering the margin, it needs to be about three times that, 2 ⁇ 90 to 2 ⁇ 100 [rad/s], and is more Desirably, it is 2 ⁇ 175 [rad/s] or more.
  • the response frequency (cutoff frequency) from the control angle deviation ⁇ c to the control rotation angle ⁇ c can be made higher than the speed fluctuation frequency of 35 Hz.
  • the rotation angle ⁇ c for control can be made to follow speed fluctuations, and torque fluctuations due to angle errors can be suppressed.
  • the rotation angle for control it is possible to cause ⁇ c to follow speed fluctuations, and it is also possible to make it less susceptible to the influence of noise components included in the current detection value. As a result, torque fluctuations can be reduced and the rotating electric machine 1 can be made quieter. That is, generation of vibration or noise in the rotating electric machine 1 can be suppressed.
  • the response frequency from the control angle deviation ⁇ c to the control rotation angle ⁇ c is set lower than the rotation frequency corresponding to the speed threshold Th. According to this configuration, in a region where the rotational speed is higher than the speed threshold Th and the internal division ratio Ke of the estimated actual angle deviation ⁇ e is higher than the internal division ratio Kd of the detected angle deviation ⁇ d, the detected current value etc. It is possible to suppress the noise component of the rotational frequency that is reflected in the control rotational angle ⁇ c.
  • the response frequency from the control angle deviation ⁇ c to the control rotation angle ⁇ c is set higher than the mechanical resonance frequency that occurs in the rotational speed of the rotor.
  • the mechanical resonance frequency is 35 Hz.
  • the response frequency from the control angle deviation ⁇ c to the control rotation angle ⁇ c is preferably set between three times and five times the mechanical resonance frequency that occurs at the rotational speed of the rotor. According to this configuration, the rotation angle ⁇ c for control can be made to follow fluctuations in the mechanical rotational angular velocity, and can be made less susceptible to the influence of high-frequency noise components.
  • the feedback controller that calculates ⁇ 1c needs frequency tracking performance up to the maximum rotational speed.
  • a high-grade microcomputer is required to implement such a feedback controller.
  • the response frequency can be set according to the frequency of speed fluctuations, which is lower than the maximum rotational frequency. Therefore, frequency tracking performance as high as that in Patent Document 1 is not necessary. Therefore, according to the present embodiment, it is easy to separate the noise component from the detected current value, and a low-grade microcomputer can be used as the CPU 90.
  • the control angle calculation unit 32 calculates the estimated actual angle deviation in the control angle deviation ⁇ c.
  • the ratio Ke of ⁇ e is made higher than the ratio Kd of the detected angle deviation.
  • the control angle calculation unit 32 makes the ratio Ke of the estimated actual angle deviation ⁇ e in the control angle deviation ⁇ c lower than the ratio Kd of the detected angle deviation.
  • the estimated angle error calculation section does not need to be included in the control angle calculation section.
  • voltages (Vdo, Vqo) and currents (Idd, Iqd) are input to the control angle calculating section; It does not need to be input to the angle calculation section.
  • the detected angle deviation ⁇ d is always used to calculate the rotation angle ⁇ c for controlling the rotor. Since the response frequency from the detected angle deviation ⁇ d to the control rotation angle ⁇ c is set between 3 times the frequency of speed fluctuation and 5 times the frequency (for example, 175 Hz or more), the control rotation angle ⁇ c can be made to follow speed fluctuations, and can be made less susceptible to noise components included in the detected current value.
  • the detected angle deviation ⁇ d is invalid. Therefore, the rotor rotation angle calculation section does not need to be included in the control angle calculation section.
  • the rotation angle ⁇ d of the rotor is input to the control angle calculation unit, but the rotation angle ⁇ d does not need to be input to the control angle calculation unit.
  • the estimated actual angle deviation ⁇ e is always used to calculate the rotation angle ⁇ c for controlling the rotor.
  • Embodiment 2 A rotating electric machine control device 10 according to a second embodiment will be described with reference to the drawings.
  • the same members as in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted or simplified.
  • the basic configuration of the electric power steering device according to the second embodiment is the same as the electric power steering device 100 according to the first embodiment.
  • Embodiment 2 differs from Embodiment 1 in that the rotation angle ⁇ c for control in control device 10 has an upper limit value and a lower limit value.
  • FIG. 9 is a block diagram showing the control angle calculating section 32.
  • the control angle calculation unit 32 calculates the upper limit value ⁇ cmax and lower limit value ⁇ cmin of the rotation angle for control based on the detected value ⁇ d of the rotation angle.
  • the control angle calculation unit 32 corrects the control rotation angle ⁇ c based on the detected rotation angle value ⁇ d.
  • control angle calculation unit 32 adds or subtracts a preset limit angle width ⁇ lmt to the detected value ⁇ d of the rotation angle, as shown in the following equation. Thereby, the upper limit value ⁇ cmax and the lower limit value ⁇ cmin are calculated.
  • the limited angular width ⁇ lmt is set, for example, within 90 degrees in electrical angle.
  • control angle calculation unit 32 limits the control rotation angle ⁇ c to an upper limit value and a lower limit value using an upper limit value ⁇ cmax and a lower limit value ⁇ cmin, as shown in the following equation.
  • the rotation angle detected by the normal rotation sensor of one system is used as the rotation angle detection value ⁇ d. It's fine if you can.
  • Embodiment 3 A rotating electrical machine control device 10 according to a third embodiment will be described with reference to the drawings.
  • the same members as those in the above-described embodiment are given the same reference numerals, and the description thereof will be omitted or simplified.
  • the basic configuration of the electric power steering device according to the third embodiment is the same as the electric power steering device 100 according to the first embodiment.
  • the third embodiment differs from the first embodiment in that the rotation detection section includes a rotation sensor output signal correction section and an arctangent function calculation section.
  • FIG. 10 is a block diagram showing a rotation sensor 2A and a rotation detection section 31A according to the third embodiment.
  • the rotation sensor 2A is a rotation sensor that outputs a SIN signal and a COS signal to the rotation detection section 31A.
  • a rotation sensor is, for example, a resolver, an MR sensor, or the like.
  • the rotation detection section 31A includes a rotation sensor output signal correction section 40 and an arctangent function calculation section 41.
  • the rotation sensor output signal correction section 40 corrects the SIN signal and COS signal that are output signals output from the rotation sensor 2A.
  • the rotation sensor output signal correction section 40 outputs the corrected corrected SIN signal and corrected COS signal to the arctangent function calculation section 41.
  • the arctangent function calculation unit 41 calculates the rotation angle by calculating the corrected SIN signal and the corrected COS signal. Thereby, the rotation detection unit 31A calculates the rotation angle while suppressing the AC error component of the rotation angle.
  • An error in the AC component included in the rotation angle becomes a torque pulsation error.
  • the torque pulsation error becomes a cause of vibration or noise generated from the rotating electric machine.
  • the rotation angle exceeds an error when applying the d-axis current due to flux weakening control, etc., the d-axis of the rotation angle for control will have the q-axis component of the rotating electric machine, so the q-axis Current error occurs.
  • an error in the AC component included in the rotation angle becomes an error in the AC component of the q-axis current, causing vibration or noise in the rotating electric machine. Therefore, in order to suppress the vibration or noise of the rotating electric machine, it is important to suppress the error in the alternating current component included in the rotation angle.
  • the horizontal axis in each of FIGS. 11A to 15B indicates the passage of time.
  • the vertical axis in FIG. 11A indicates the SIN signal and COS signal output from the rotation sensor 2A.
  • the vertical axis in FIG. 11B indicates the rotation angle calculated under ideal conditions of the SIN signal and COS signal.
  • the vertical axis in FIG. 12A shows the case where the COS signal is offset with respect to the SIN signal output from the rotation sensor 2A.
  • the vertical axis in FIG. 12B indicates the rotation angle at which the SIN signal and COS signal shown in FIG. 12A are calculated.
  • FIG. 13A shows a case where the harmonic components of the SIN signal and the harmonic components of the COS signal output from the rotation sensor 2A are superimposed.
  • the vertical axis in FIG. 13B indicates the rotation angle at which the SIN signal and COS signal shown in FIG. 13A are calculated.
  • the vertical axis in FIG. 14A indicates a case where there is a difference in amplitude between the harmonic component of the SIN signal output from the rotation sensor 2A and the fundamental component of the COS signal.
  • the vertical axis in FIG. 14B indicates the rotation angle at which the SIN signal and COS signal shown in FIG. 14A are calculated.
  • FIG. 15A indicates a case where the phase difference between the harmonic component of the SIN signal output from the rotation sensor 2A and the fundamental component of the COS signal is deviated from 90 degrees.
  • the vertical axis in FIG. 15B indicates the rotation angle at which the SIN signal and COS signal shown in FIG. 15A are calculated.
  • the rotation sensor output signal correction section 40 calculates an offset value between the SIN signal and the COS signal. Subtract each offset value from the SIN signal and COS signal. Regarding the calculation of the offset value, it may be calculated using a low-pass filter with a cutoff sufficiently lower than the frequencies of the fundamental wave component of the SIN signal and the fundamental wave component of the COS signal, or it may be calculated using Fourier series expansion. However, the calculation may be performed using other known methods.
  • harmonic components of the SIN signal and COS signal are calculated.
  • the harmonic components of the SIN signal are subtracted from the SIN signal.
  • the harmonic components of the COS signal are subtracted from the COS signal. This removes harmonic components.
  • computation may be performed by Fourier series expansion, or by other known methods.
  • harmonic components may be removed using a low-pass filter.
  • the low-pass filter has a cutoff that is sufficiently higher than the frequency of the fundamental wave component of the SIN signal and the frequency of the fundamental wave component of the COS signal, and lower than the harmonic components.
  • the amplitudes of the fundamental wave components of the SIN signal and COS signal are calculated.
  • the fundamental wave components of the SIN signal and the COS signal are corrected so that they have the same amplitude.
  • calculation may be performed by Fourier series expansion, or calculation may be performed by other known methods.
  • correction the correction may be performed by calculating the amplitude ratio of the fundamental wave components of the SIN signal and the COS signal, and multiplying either the SIN signal or the COS signal by a gain corresponding to the amplitude ratio.
  • phase difference by calculating the phase difference between the fundamental wave components of the SIN signal and the COS signal, correction is performed so that the phase difference becomes 90 degrees.
  • the phase difference may be calculated by Fourier series expansion or by other known methods.
  • the phase difference may be set to 90 degrees by delaying either the SIN signal or the COS signal according to the frequency of the fundamental wave component, or the phase difference may be set to 90 degrees by using other known methods. It may be corrected so that the A corrected SIN signal and a corrected COS signal are calculated by the above-mentioned calculation.
  • the rotation sensor output signal correction section 40 can perform the above-mentioned four calculation processes, the rotation sensor output signal correction section 40 does not need to perform all four calculations. At least one of the four operations may be performed. Furthermore, when two or three operations selected from the four operations are performed, the order in which the operations are performed is not limited. For example, if only the first and second calculations are performed, the first calculation may be performed after the second calculation. Further, when only the first calculation, the second calculation, and the fourth calculation are performed, the first calculation may be performed after the fourth calculation, and the second calculation may be performed after the first calculation.
  • the corrected SIN signal and corrected COS signal output from the rotation sensor output signal correction section 40 are input to the arctangent function calculation section 41.
  • the arctangent function calculation unit 41 calculates a corrected SIN signal and a corrected COS signal using an arctangent function. Thereby, a rotation angle as shown in FIG. 11B can be obtained. That is, the arctangent function calculation unit 41 detects the rotation angle based on the corrected SIN signal and the corrected COS signal.
  • a rotation angle for control is calculated by the control method described in Embodiments 1 and 2. This makes it possible to suppress alternating current errors in the rotation angle and suppress torque pulsation errors.
  • the rotation detection unit 31A calculates the arctangent function of the SIN signal and the COS signal, which are the output signals output from the rotation sensor 2A, performs correction based on the harmonic component of the arctangent function, and detects the rotation angle. Good too. Even in this case, the effect of sufficiently suppressing torque pulsation errors can be obtained.
  • the rotation sensor output signal correction section 40 corrects the SIN signal and the COS signal, which are the output signals output from the rotation sensor 2A, and the arctangent function calculation section 41 corrects the rotation angle.
  • the output of the forward salient pole motor can be maximized while suitably reducing the pulsation error in the rotation sensor.
  • Embodiment 4 A rotating electrical machine control device 10 according to Embodiment 4 will be described with reference to the drawings.
  • the same members as those in the above-described embodiments are given the same reference numerals, and the description thereof will be omitted or simplified.
  • the basic configuration of the electric power steering device according to the fourth embodiment is the same as the electric power steering device 100 according to the first embodiment.
  • Embodiment 4 differs from Embodiment 1 in that the rotation detection section includes an angle calculation section and a rotation angle signal correction section.
  • FIG. 16 is a block diagram showing the rotation sensor 2B and rotation detection section 31B according to the fourth embodiment.
  • the rotation sensor 2B is, for example, a resolver, an encoder, an MR sensor, etc., as in the first embodiment.
  • the rotation detection section 31B includes an angle calculation section 50 and a rotation angle signal correction section 51.
  • the angle calculation unit 50 outputs the output signal output from the rotation sensor 2B to the angle calculation unit 50.
  • the angle calculation unit 50 outputs the uncorrected rotation angle ⁇ md of the rotor to the rotation angle signal correction unit 51.
  • the rotation angle signal correction unit 51 calculates the rotation angle ⁇ d of the rotor by correcting the rotation angle ⁇ md. Thereby, the rotation angle signal correction unit 51 calculates the rotation angle ⁇ d of the rotor in which the AC error component is suppressed.
  • An error in the alternating current component included in the rotation angle becomes an error in the alternating current component of the torque, that is, a torque pulsation error.
  • the torque pulsation error becomes a cause of vibration or noise generated from the rotating electric machine.
  • the rotation angle exceeds an error when applying the d-axis current due to flux weakening control, etc., the d-axis of the rotation angle for control will have the q-axis component of the rotating electric machine, so the q-axis Current error occurs.
  • an error in the AC component included in the rotation angle becomes an error in the AC component of the q-axis current, causing vibration or noise in the rotating electric machine. Therefore, in order to suppress the vibration or noise of the rotating electric machine, it is important to suppress the error in the alternating current component included in the rotation angle. Therefore, it is important to suppress errors in AC components included in the rotation angle in order to suppress vibrations or noise of the rotating electric machine.
  • the horizontal axis in each of FIGS. 17A to 18B indicates the passage of time.
  • the vertical axis in FIG. 17A indicates the rotation angle output signal.
  • the solid line in FIG. 17A indicates the rotation angle of the rotor in an ideal state.
  • the dotted line in FIG. 17A indicates the uncorrected rotation angle ⁇ md of the rotor.
  • the vertical axis in FIG. 17B indicates the angular error obtained by subtracting the uncorrected rotation angle ⁇ md from the ideal rotation angle.
  • the vertical axis in FIG. 18A indicates the rotation angle ⁇ d after processing by the rotation angle signal correction unit 51.
  • the vertical axis in FIG. 18B indicates a state in which the angular error becomes zero by performing the processing by the rotation angle signal correction unit 51.
  • the angular error occurs with periodic fluctuations.
  • Such periodically occurring angular errors can be a cause of torque pulsation errors.
  • the processing of the rotation angle signal correction unit 51 for suppressing the above-mentioned error will be explained.
  • Examples of the processing performed by the rotation angle signal correction section 51 include the following two processing methods.
  • the rotation angle signal correction unit 51 holds in advance the angular error between the ideal angle and the uncorrected rotation angle ⁇ md of the rotor using a map or the like.
  • Such ideal angle and uncorrected rotation angle ⁇ md are stored in the storage device 91. Note that such ideal angle and uncorrected rotation angle ⁇ md may be maintained by other known methods.
  • the rotation angle signal correction unit 51 calculates in advance the angular error between the ideal angle and the uncorrected rotation angle ⁇ md of the rotor by Fourier series expansion. Alternatively, the rotation angle signal correction section 51 may perform the calculation using another known method. Thereby, the rotation angle signal correction unit 51 extracts the angle error in each order component. Further, the rotation angle signal correction unit 51 corrects the uncorrected rotation angle ⁇ md of the rotor so that each order component of the rotation angle ⁇ md becomes 0.
  • the rotation angle for control is calculated by the calculation in the control angle calculation section 32 described in the first embodiment. This makes it possible to suppress alternating current errors in the rotation angle and suppress torque pulsation errors. Note that even if the rotation angle calculated according to the present embodiment is used as it is as the rotation angle for control, the effect of sufficiently suppressing torque pulsation errors can be obtained.
  • the rotation angle signal correction unit 51 of the present embodiment corrects the rotation angle, which is the output signal output from the rotation sensor 2B, and calculates the corrected rotation angle, thereby reducing the pulsation error in the rotation sensor.
  • the output of the forward salient pole motor can be maximized.
  • Embodiment 5 A rotating electrical machine control device 10 according to a fifth embodiment will be described with reference to the drawings.
  • the same members as those in the above-described embodiments are given the same reference numerals, and the explanation thereof will be omitted or simplified.
  • the basic configuration of the electric power steering device according to the fifth embodiment is the same as the electric power steering device 100 according to the first embodiment.
  • Embodiment 5 differs from Embodiment 1 in the rotating electric machine 1.
  • FIG. 19 is a sectional view showing a rotating electrical machine controlled by the rotating electrical machine control device according to the fifth embodiment, as viewed in the axial direction.
  • FIG. 19 shows a cross section parallel to a direction perpendicular to the axial direction.
  • directions are defined as follows.
  • the expression "axial direction” is a direction along the axis of the rotor that constitutes the rotating electrical machine 1.
  • the axial direction is the direction in which the shaft constituting the rotor extends.
  • the terms "circumferential direction” and “radial direction” correspond to the “circumferential direction” and “radial direction” of the stator or rotor that constitute the permanent magnet synchronous motor, respectively.
  • circumferential direction corresponds to the rotational direction of the rotor.
  • the circumferential direction is the circumferential direction around the rotation axis of the rotor.
  • radial means in the radial direction of the rotor.
  • radially outward means a direction from the center of the rotor toward the outer circumference in the radial direction.
  • radially inward means a direction from the outer peripheral portion of the rotor toward the center in the radial direction.
  • the rotating electric machine 1 is a permanent magnet synchronous motor.
  • the rotating electric machine 1 includes a stator 510 and a rotor 520 rotatably provided with respect to the stator 510.
  • the stator 510 is arranged so as to surround the outer periphery of the rotor 520 with an air gap 515 serving as a magnetic gap interposed therebetween.
  • Stator 510 includes a stator core 511 and a coil 514.
  • the stator core 511 includes a core back 512 formed in an annular shape in the circumferential direction, and a plurality of teeth 513 protruding from the core back 512 toward the inside in the radial direction.
  • a coil 514 is formed by winding a winding around each of the plurality of teeth 513.
  • the windings forming the coil 514 correspond to the windings Cu, Cv, and Cw described above. In the example shown in FIG. 19, one coil 514 is provided for one tooth 513.
  • the number of teeth 513 is twelve.
  • the number of teeth 513 is not limited to 12, but is determined as appropriate depending on the design of the permanent magnet synchronous motor.
  • a core back 512 is configured by connecting a plurality of core blocks, each of which is formed in an arc shape, in an annular shape.
  • the structure of the core back 512 is not limited to the structure shown in FIG. 19.
  • the core back 512 may be configured by integrally forming a plurality of core blocks. Further, the core back 512 and teeth 513 may be separated.
  • Rotor 520 has a rotor core 521, a shaft 523, and a plurality of permanent magnets 522.
  • Rotor core 521 is made of a magnetic material.
  • the rotor core 521 is configured, for example, by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the electromagnetic steel plate can also be referred to as a core plate, for example.
  • the shaft 523 is fixed to the rotor core 521 so as to pass through the rotor core 521 in the axial direction.
  • Such a rotor 520 is arranged inside the rotating electrical machine 1 so as to be freely rotatable with respect to the stator 510.
  • the rotor core 521 has a protrusion 524 that protrudes in the radial direction.
  • the protrusion 524 is formed to protrude radially outward toward the stator 510.
  • the protrusion 524 is provided on the outer circumferential surface of the rotor core 521 on which the permanent magnet 522 is arranged.
  • the number of protrusions 524 is eight, depending on the number of permanent magnets 522.
  • the number of protrusions 524 may be one or more.
  • the plurality of permanent magnets 522 are arranged on the outer peripheral surface of the rotor core 521 in the circumferential direction.
  • the rotating electric machine 1 including such a plurality of permanent magnets 522 is an example of a surface magnet motor (SPM).
  • SPM surface magnet motor
  • Each of the plurality of permanent magnets 522 has a stator-facing surface 527 and a recess 525.
  • the stator facing surface 527 is formed in an arc shape.
  • Stator facing surface 527 is a surface facing teeth 513 with gap 515 interposed therebetween. In other words, stator facing surface 527 faces the inner surface of stator 510.
  • the recess 525 fits into the protrusion 524 of the rotor core 521 .
  • the plurality of permanent magnets 522 are arranged in the circumferential direction of the rotor 520.
  • the polarities of the stator facing surfaces 527 of two adjacent permanent magnets 522 among the plurality of permanent magnets 522 are different from each other. For example, if the polarity of one stator facing surface 527 of two circumferentially adjacent permanent magnets 522 is N pole, the other stator facing surface 527 is magnetized in a different direction so that it is S pole.
  • a plurality of permanent magnets 522 are arranged.
  • FIG. 19 shows a so-called 8-pole, 12-slot permanent magnet synchronous motor.
  • the combination of the numbers of the plurality of permanent magnets 522, teeth 513, and coils 514 is not limited to this. Further, in the example shown in FIG. 19, the number of teeth 513 and the number of coils 514 are the same, but the number of teeth 513 and the number of coils 514 may be different.
  • the rotating electric machine 1 that constitutes the permanent magnet synchronous motor shown in FIG. 19 can increase the inductance Ld in the d-axis direction shown in FIG. 19, and can effectively perform magnetic flux weakening control.
  • the rotating electric machine control device 10 controls the drive of the rotating electric machine 1 according to the fifth embodiment, thereby realizing high output while reducing vibration or noise generated from the rotating electric machine 1. You can get the effect that you can.
  • Embodiment 6 A rotating electric machine control device 10 according to a sixth embodiment will be described with reference to the drawings.
  • the same members as those in the above-described embodiments are given the same reference numerals, and their explanations will be omitted or simplified.
  • the basic configuration of the electric power steering device according to the sixth embodiment is the same as the electric power steering device 100 according to the first embodiment.
  • the sixth embodiment differs from the first embodiment in that the electric power steering device includes a DC-DC converter.
  • FIG. 20 is a schematic configuration diagram showing the overall configuration of an electric power steering device including a rotating electrical machine control device according to Embodiment 6.
  • FIG. 21 is a diagram illustrating the circuit configuration of the DC-DC converter according to the sixth embodiment.
  • the electric power steering device includes a DC-DC converter 601.
  • the DC-DC converter 601 is configured to boost the voltage of the DC power supply 3.
  • DC-DC converter 601 is an example of a booster.
  • the control device 10 applies an AC voltage to the rotating electric machine 1 based on the output DC voltage boosted by the DC-DC converter 601.
  • the switching control unit 35 turns on and off a plurality of switching elements based on the voltage command value and the output DC voltage.
  • the DC-DC converter 601 includes a bridge inverter 604.
  • Bridge inverter 604 is an example of a booster.
  • Bridge inverter 604 includes bridge-type switching elements Sa, Sb, Sc, and Sd.
  • Switching elements Sa and Sc constitute an upper arm.
  • Switching elements Sb and Sd constitute a lower arm.
  • Switching elements Sa and Sb are connected in series.
  • Switching elements Sc and Sd are connected in series.
  • the bridge inverter 604 includes a plurality of legs having a series connection structure in which switching elements are connected in series. The plurality of legs are connected in parallel to each other.
  • switching elements Sa and Sb constitute one leg.
  • Switching elements Sc and Sd constitute one leg.
  • DC-DC converter 601 has two legs.
  • the bridge inverter 604 has a plurality of legs having a structure in which a plurality of switching elements constituting an upper arm and a lower arm are connected in series.
  • the positive terminal of the DC power supply 3 is connected to one end of the input capacitor 602 and one end of the integrated magnetic component 603.
  • the other end of the integrated magnetic component 603 is connected to each AC end of a bridge inverter 604 made up of switching elements Sa to Sd.
  • a load 606 and one end of a link capacitor 605 are connected to the DC end of the bridge inverter 604.
  • the negative terminal of the DC power supply 3 is connected to the input capacitor 602, the other end of the link capacitor 605, the negative terminal of the DC end of the bridge inverter 604, and the negative terminal of the load 606.
  • a control circuit 609 is connected to voltage sensors 607 and 608. Output voltage information 609a output from voltage sensor 607 is input to control circuit 609. Output voltage information 609b output from voltage sensor 608 is input to control circuit 609. Control circuit 609 generates drive signal 609c based on output voltage information 609a, 609b. Control circuit 609 drives switching elements Sa to Sd forming bridge inverter 604 using drive signal 609c. Based on the target output voltage set in the control circuit 609 and the output voltage information 609a, 609b, the control circuit 609 controls the switching elements Sa to Sd so that the output voltage information 609a, 609b and the target output voltage are equal to each other. Control the drive.
  • Control circuit 609 may be configured to be part of control device 10 .
  • the control circuit 609 generates a drive signal 609c and controls the driving of the switching elements Sa to Sd. Note that a dead time is provided so that the upper and lower arms of the switching elements Sa to Sd are not short-circuited, and the switching elements are driven on and off in a complementary manner.
  • equation (6-1) holds for the voltage and current of the integrated magnetic component 603. Note that in this equation (6-1), the winding resistance is ignored.
  • Vdc, V1, and V2 shown in equation (6-1) correspond to Vdc, V1, and V2 shown in FIG. 21.
  • Vdc indicates the voltage of the DC power supply 3.
  • V1 indicates the voltage at the terminal between switching elements Sa and Sb.
  • V2 indicates the voltage at the terminal between switching elements Sc and Sd.
  • M shown in equation (6-1) is the mutual inductance between one coil A and the other coil B that constitute the integrated magnetic component 603.
  • L shown in equation (6-1) is the self-inductance of the integrated magnetic component 603.
  • equation (6-9) is 0 and L>M, so di1/dt ⁇ 0 and di2/dt>0 are obtained.
  • equation (6-12) is 0 and L>M, so di1/dt>0 and di2/dt ⁇ 0. can get.
  • the desired Vdc2 can be generated by combining modes (1) to (4) described above, but here, by using modes (2) and (3) at 50% each, di1/dt, di2/dt , and reduce the current of the current fluctuation input capacitor Cin.
  • FIG. 22 is a diagram illustrating switching drive in the DC-DC converter according to the sixth embodiment.
  • mode (2) is used 50% of the time
  • mode (3) is used 50% of the time.
  • the symbol Ca indicates a carrier wave.
  • the output of the rotating electrical machine 1 is further increased compared to the first to fifth embodiments. can be realized.
  • FIG. 23 is a circuit diagram showing part of a DC-DC converter according to a modification of the sixth embodiment.
  • the entire structure of the DC-DC converter 601 is omitted, and switching elements Sc and Sd are shown.
  • FIG. 20 Only the points different from FIG. 20 will be explained.
  • a structure in which switching elements constituting the upper arm and the lower arm are connected in series can be called a leg.
  • a resistor and a capacitor may be provided in parallel to each of the plurality of legs.
  • the snubber circuit 650 in which the resistor R and the capacitor C are connected in series may be connected in parallel to the leg.
  • Diode D1 configuring snubber circuit 650 is an example of a first diode.
  • Diode D2 configuring snubber circuit 650 is an example of a second diode.
  • the diode D1 has an anode D1A connected to the drain side terminal of the switching element constituting the upper arm, and a cathode D1C connected to the intermediate point M2 between the resistor R and the capacitor C.
  • Diode D2 has an anode D2A connected to the midpoint M1 between the upper and lower arms and a cathode D2C connected to the midpoint M2 between the resistor R and the capacitor C.
  • the anode D2A of the diode D2 is connected to the drain side terminal of the switching element constituting the lower arm, and also connected to the source side terminal of the switching element constituting the upper arm.
  • the circuit configuration described above is applied when the switching element is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the circuit configuration described above is also applied when the switching element is a bipolar power transistor. In this case, the drain is the collector, the source is the emitter, and the gate is the base.
  • the above-described circuit configuration is also applied when the switching element is an IGBT (Insulated Gate Bipolar Transistor).
  • the drain can be translated into a collector and the source can be translated into an emitter.
  • the cathode D1C of the diode D1 and the cathode D2C of the diode D2 are connected to the midpoint M2 between the resistor R and the capacitor C. According to this configuration, surge can be suppressed more effectively.
  • the DC-DC converter 601 since the DC-DC converter 601 includes the snubber circuit 650, surges caused by the wiring inductance between the DC-DC converter 601 and the power converter 4 can be suppressed. Furthermore, EMI countermeasure noise can be reduced, and the cost of the entire device can be reduced. Note that this snubber circuit 650 is also effective when applied to the power converter 4.
  • the driving force source of various devices other than the electric power steering device 100 may be used as the driving force source of the rotating electric machine 1.
  • the rotating electric machine 1 may use a driving force source for wheels.
  • the stator may be provided with windings of multiple phases other than three phases (for example, two phases, four phases).
  • stator may be provided with a plurality of sets (for example, two sets) of three-phase windings, and the inverter and each part of the control device may be provided corresponding to each set of three-phase windings.
  • SYMBOLS 1 Rotating electrical machine, 2, 2A, 2B... Rotation sensor, 3... DC power supply, 4... Power converter, 5... Smoothing capacitor, 6... Current sensor, 10... Control device (rotating electrical machine control device), 21, 22, 23... Amplifier, 31, 31A, 31B... Rotation detection section (control section), 32... Control angle calculation section (control section), 33... Current detection section (control section), 34... Voltage command value calculation section (control section) ), 35... Switching control section (control section), 36... Current command value calculation section, 40... Rotation sensor output signal correction section, 41... Arctangent function calculation section, 50... Angle calculation section, 51...
  • Rotation angle signal correction section 91...Storage device, 92...Input circuit, 93...Output circuit, 100...Electric power steering device, 101...Driving force transmission mechanism, 102...Steering device, 103...Wheel, 104...Handle, 105...Shaft, 106...Torque Sensor, 342...Current coordinate conversion unit, 343...DQ-axis voltage command value calculation unit, 344...Voltage coordinate conversion unit, 361...D-axis current command value generation unit, 362...Q-axis current command value generation unit, 510...Stator, 511... Stator core, 512... Core back, 513... Teeth, 514... Coil, 515... Gap, 520... Rotor, 521...
  • Rotor core 522... Permanent magnet, 523... Shaft, 524... Protrusion, 525... Recess, 527... Stator opposing 601... DC-DC converter (booster), 602... Input capacitor, 603... Integrated magnetic component, 604... Bridge inverter, 605... Link capacitor, 606... Load, 607, 608... Voltage sensor, 609...
  • Control circuit 609a...Output voltage information, 609b...Output voltage information, 609c...Drive signal, 650...Snubber circuit, C...Capacitor, D1, D2...Diode, D1A, D2A...Anode, D1C, D2C...Cathode, M1, M2...Intermediate point , R, Ru, Rv, Rw...Resistance, Sa, Sb, Sc, Sd, SN, SP...Switching element

Abstract

回転電機制御装置は、回転電機と、電力変換器と、電流検出部と、回転センサと、回転演算部と、d軸電流指令値生成部と、q軸電流指令値生成部と、電圧指令値算出部と、スイッチング制御部とを有する。回転電機は、d軸インダクタンスLdがq軸インダクタンスLqより大きい値を持つ。回転演算部は、回転センサの出力信号、電流、電圧指令値のいずれか一つ以上に基づいて、回転センサの検出誤差に起因する角度誤差を低減する。

Description

回転電機制御装置
 本開示は、回転電機制御装置に関する。
 従来、永久磁石同期電動機又はブラシレスモータと呼ばれる回転電機が知られている。この回転電機においては、永久磁石がロータに使用され、巻線がステータに巻回されている。巻線に交流電流を通電することによりロータにトルクを生じさせ、ロータを回転させる。このような回転電機においては、ロータの回転速度が上昇するに伴って巻線に誘起される電圧である誘起電圧が上昇する。
 特許文献1に開示されているように、誘起電圧を減少させるために、ロータの磁石磁束を低減させる方向に電流を通電する制御、すなわち、弱め磁束制御が一般的に行われている。
 この弱め磁束制御において、高い出力を得るには、回転電機のインダクタンスのうち、ロータの磁石磁束方向に相当するd軸方向におけるインダクタンスLdを増加させることが重要である。インダクタンスLdが大きな回転電機であれば、より効率的に弱め磁束制御が行うことが可能であり、高い出力が可能な回転電機を実現することが可能である。
日本国特許第6987318号
 ところで、特許文献1に開示されている回転電機を制御するには、回転角検出器が必要である。回転角検出器は、基準角に対してロータの磁極が存在する角度、すなわち、ロータの回転角を検出する。回転角検出器が出力する回転角には、回転電機の回転角の真値に対する誤差に相当する角度誤差が含まれている。角度誤差に含まれる交流成分は、トルク脈動誤差と称されるトルクの交流成分の誤差を招き、回転電機から発生する振動又は騒音の原因となる。
 したがって、特許文献1に開示されている回転電機においては、効果的な弱め磁束制御によって高出力が可能な回転電機を実現することができたとしても、角度誤差の交流成分に起因して回転電機より生ずる振動又は騒音が増大してしまうという問題がある。
 言い換えると、このような回転電機においては、高出力を優先して振動又は騒音の悪化を許容するか、または、高出力が得られないものの振動又は騒音の悪化の抑制を優先するか、を選択する必要がある。
 本開示は、上記のような課題を解決するためになされたもので、振動又は騒音の発生を抑制しつつ高出力な回転電機を実現することができる回転電機制御装置を提供することを目的とする。
 本開示に係る回転電機制御装置は、複数相の巻線を有するステータと、前記ステータの径方向内側に配置されているとともに磁石を有するロータと、を有する回転電機と、直流電源の電圧を交流電圧に変換する電力変換器と、電流センサから出力される出力信号に基づいて前記複数相の巻線に流れる電流を検出する電流検出部と、前記ロータの回転角度に応じた出力信号を出力する回転センサと、前記ロータの制御用の回転角度を算出する回転演算部と、前記磁石の磁束の方向をd軸とし、前記d軸よりも電気角で90度進んだ方向をq軸とした場合において前記回転電機に流れるd軸電流の指令値を生成するd軸電流指令値生成部と、前記回転電機に流れるq軸電流の指令値を生成するq軸電流指令値生成部と、前記制御用の回転角度と、前記電流と、前記q軸電流の指令値と、前記d軸電流の指令値に基づいて、前記複数相の巻線に印加する電圧指令値を算出する電圧指令値算出部と、前記電圧指令値に基づいて前記電力変換器が有する複数のスイッチング素子をオンオフ駆動するスイッチング制御部と、を有する。前記回転電機は、d軸インダクタンスLdがq軸インダクタンスLqより大きい値を持つ。前記回転演算部は、前記回転センサの前記出力信号、前記電流、前記電圧指令値のいずれか一つ以上に基づいて、前記回転センサの検出誤差に起因する角度誤差を低減する。
 本開示に係る回転電機制御装置によれば、振動又は騒音の発生を抑制しつつ高出力な回転電機を実現することができる。
実施の形態1に係る回転電機制御装置を備えた電動パワーステアリング装置の全体構成を示す概略構成図である。 実施の形態1に係る回転電機制御装置を示すブロック図である。 実施の形態1に係る回転電機制御装置を示すブロック図である。 実施の形態1に係る回転電機制御装置が表面磁石型の回転電機に適用される場合において、Id=0制御及び弱め磁束制御が行われる際における各制御の実行領域を示す図である。 実施の形態1に係る回転電機制御装置が埋込磁石型の回転電機に適用される場合において、最大トルク電流制御及び弱め磁束制御が行われる際における各制御の実行領域を示す図である。 実施の形態1に係る制御用角度算出部を示すブロック図である。 実施の形態1に係る内分率の設定を説明する図である。 実施の形態1に係る伝達関数を示すボード線図である。 実施の形態2に係る制御用角度算出部を示すブロック図である。 実施の形態3に係る回転センサ及び回転検出部を示すブロック図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態3に係る回転検出部による演算を説明する図である。 実施の形態4に係る回転センサ及び回転検出部を示すブロック図である。 実施の形態4に係る回転検出部による演算を説明する図である。 実施の形態4に係る回転検出部による演算を説明する図である。 実施の形態4に係る回転検出部による演算を説明する図である。 実施の形態4に係る回転検出部による演算を説明する図である。 実施の形態5に係る回転電機制御装置によって制御される回転電機を示す断面図であって、軸方向に見た図である。 実施の形態6に係る回転電機制御装置を備えた電動パワーステアリング装置の全体構成を示す概略構成図である。 実施の形態6に係るDC-DCコンバータの回路構成を説明する図である。 実施の形態6に係るDC-DCコンバータにおけるスイッチング駆動を説明する図である。 実施の形態6の変形例に係るDC-DCコンバータの一部を示す回路図である。
 実施の形態1.
 実施の形態1に係る回転電機制御装置10について図面を参照して説明する。
 以下の説明では、回転電機制御装置10を、単に制御装置10と称する場合がある。
 図1は、実施の形態1に係る回転電機制御装置10を備えた電動パワーステアリング装置100の全体構成を示す概略構成図である。本実施の形態において、回転電機1は、電動パワーステアリング装置100の駆動力源である。回転電機1、電力変換器4、及び制御装置10は、電動パワーステアリング装置100を構成している。電動パワーステアリング装置100は、車両に設けられる。
<回転電機1>
 回転電機1は、ステータと、ステータの径方向内側に配置されたロータと、を備えている。ステータは、磁気的ギャップとなる空隙を介してロータの外周を囲むように配置されている。
<ステータ>
 ステータは、ステータコアと、巻線と、を有している。巻線は、複数の相の各々に対応するコイルである。本実施の形態に係る回転電機1は、U相、V相、W相の3相交流によって駆動が制御されている。巻線は、U相、V相、W相の各々に対応する巻線Cu、Cv、Cwで構成されている。図1においては、巻線Cu、Cv、Cwの各々に流れる電流が符号Iu、Iv、Iwで示されている。以下では、U相、V相、W相の3相のうち1つの相のみについて説明し、共通する他の2つの相について説明を省略する場合がある。
<ロータ>
 ロータは、ロータコアと、回転軸と、複数の磁石とを有する。ロータコアは、例えば、回転軸が延在する方向に積層された複数の電磁鋼板により構成されている。回転軸は、ロータコアの中央部に固定されている。複数の磁石は、ロータコアの外周面に固定されている。複数の磁石とステータとの間に発生する磁界の変化によってロータが回転し、回転軸が回転する。
 ロータは、ロータの回転角度を検出するための回転センサ2を備える。回転センサ2は、ロータの回転角度に応じた出力信号を出力するように構成されている。回転センサ2としては、例えば、レゾルバ、エンコーダ、MRセンサ等が用いられる。回転センサ2から出力される出力信号は、制御装置10に入力される。
 磁石は、例えば、永久磁石である。これにより、回転電機1は、永久磁石同期電動機を構成する。回転電機1においては、d軸インダクタンスLd及びq軸インダクタンスLqがLd>Lqの関係を有する。つまり、d軸インダクタンスLdがq軸インダクタンスLqより大きい値を有する。言い換えると、回転電機1は、順突極モータである。
 なお、回転電機1の構成は永久磁石同期電動機に限定されない。磁石は、界磁巻線を有する電磁石であってもよい。3相の巻線Cu、Cv、Cwは、スター結線されてもよいし、デルタ結線されてもよい。
<電力変換器4>
 電力変換器4は、例えば、インバータである。言い換えると、電力変換器4は、直流電源3の電圧を交流電圧に変換するように構成されている。電力変換器4は、U相、V相、W相の3相交流に対応する3つの直列回路と、平滑コンデンサ5と、電流センサ6とを有する。直列回路は、言い換えると、レグである。
<スイッチング素子>
 直列回路の各々においては、スイッチング素子SPとスイッチング素子SNとが直列に接続されている。スイッチング素子SPは、直流電源3の正極側に接続される正極側のスイッチング素子である。スイッチング素子SNは、直流電源3の負極側に接続される負極側のスイッチング素子である。
 スイッチング素子としては、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置10に接続されている。各スイッチング素子は、制御装置10から出力されたスイッチング信号GPu~GNwによりオン又はオフの駆動を行う。
 なお、図1においては、スイッチング素子SPを表す符号SPu、SPv、SPw、スイッチング素子SNを表す符号SNu、SNv、SNw、が示されているが、小文字u、v、wは、U相、V相、W相の3相交流の各々に対応することを示している。3相の各々を区別しない場合、単にスイッチング素子SPと称したり、単にスイッチング素子SNと称したりする場合がある。
 U相、V相、W相の3相の各々の直列回路における2つのスイッチング素子SP、SNの間の接続点は、対応する巻線Cu、Cv、Cwに一対一で接続されている。
 具体的には、U相の直列回路では、U相の正極側のスイッチング素子SPuとU相の負極側のスイッチング素子SNuとが直列接続されている。2つのスイッチング素子SPu、SNuの間の接続点は、U相の巻線Cuに接続されている。
 V相の直列回路では、V相の正極側のスイッチング素子SPvとV相の負極側のスイッチング素子SNvとが直列接続されている。2つのスイッチング素子SPv、SNvの間の接続点は、V相の巻線Cvに接続されている。
 W相の直列回路では、W相の正極側のスイッチング素子SPwとW相の負極側のスイッチング素子SNwとが直列接続されている。2つのスイッチング素子SPw、SNwの間の接続点は、W相の巻線Cwに接続されている。
<平滑コンデンサ5、直流電源3>
 平滑コンデンサ5は、直流電源3の正極側と負極側との間に接続されている。
 直流電源3は、電力変換器4に直流電圧Vdcを出力する。本実施の形態においては、直流電圧Vdcは、例えば、12Vである。直流電源3は、例えば、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等である。直流電圧Vdcを出力する機器であれば、直流電源3を構成する機器の種類は限定されない。直流電源3には、直流電圧Vdcを検出する電圧センサが設けられてもよい。電圧センサから出力される出力信号が制御装置10に入力されてもよい。制御装置10は、検出した直流電圧Vdcを用いて、制御を行ってもよい。
<電流センサ6>
 電流センサ6は、U相、V相、W相の3相の各々の巻線に流れる電流を検出するように構成されている。電流センサ6は、例えば、シャント抵抗又はホール素子等の電流センサである。電流センサ6から出力される出力信号は、制御装置10に入力される。
 本実施の形態では、電流センサ6は、U相、V相、W相の3相の各々の直列回路におけるスイッチング素子SPw、SNwに直列に接続されている。
 電流センサ6は、U相の抵抗Ru、V相の抵抗Rv、及びW相の抵抗Rwを有する。3相の抵抗Ru、Rv、Rwの各々は、スイッチング素子SNu、SNv、SNwの負極側に直列接続されている。
 3相の抵抗Ru、Rv、Rwは、アンプ21、22、23に一対一で接続されている。アンプ21、22、23は、3相の抵抗Ru、Rv、Rwの各々の両端の電位差を検出する。検出された電位差は、制御装置10に入力される。
 なお、U相、V相、W相の3相の各々において、電流センサ6は、2つのスイッチング素子SP、SNの直列回路と巻線とを接続する電線上に備えられてもよい。
 また、電流センサ6は、電力変換器4と直流電源3と接続する電線上に設けられてもよい。この場合、公知の「母線1シャント方式」により、U相、V相、W相の3相の各々における巻線の電流が検出されてもよい。
 電力変換器4の構成は、インバータに限定されない。インバータ以外の電力変換器、例えば、マトリックスコンバータが電力変換器4に用いられてもよい。
<電動パワーステアリング装置100>
 電動パワーステアリング装置100は、上述した回転電機制御装置10と、上述した電力変換器4と、上述した回転電機1と、駆動力伝達機構101と、操舵装置102と、車輪103と、ハンドル104と、シャフト105と、トルクセンサ106とを備えている。
 駆動力伝達機構101は、回転電機1から発生した駆動力を車両の操舵装置102に伝達する機構である。駆動力伝達機構101は、回転電機1の回転軸をシャフト105に連結するウォームギヤ機構等で構成されている。
 ハンドル104は、車両を運転する運転者によって操作され、左回転又は右回転が可能である。回転電機1を構成するロータの回転軸は、駆動力伝達機構101を介して車輪103の操舵装置102に連結されている。
 シャフト105は、ハンドル104に連結されている。シャフト105は、ハンドル104による操舵トルクを車輪103に連結されている操舵装置102に伝達する。
 トルクセンサ106は、シャフト105に取り付けられている。トルクセンサ106は、ハンドル104による操舵トルクTsを検出する。トルクセンサ106から出力される出力信号は、制御装置10に入力される。トルクセンサ106から出力される出力信号は、例えば、後述する入力回路92に入力される。
<制御装置10>
 図2及び図3は、本実施の形態に係る制御装置10を示すブロック図である。
 制御装置10は、電力変換器4を介して回転電機1を制御するように構成されている。
 図2に示すように、制御装置10は、回転検出部31、制御用角度算出部32、電流検出部33、電圧指令値算出部34、及びスイッチング制御部35等を備えている。
 制御装置10の各機能は、制御装置10が備えた処理回路により実現される。
 以下の説明では、回転検出部31、制御用角度算出部32、電流検出部33、電圧指令値算出部34、及びスイッチング制御部35を、制御部31~35と称する場合がある。また、制御部31~35を機能部と称してもよい。
 制御装置10は、複数の処理回路を備える。具体的には、図3に示すように、制御装置10は、CPU(Central Processing Unit)90と、記憶装置91と、入力回路92と、出力回路93等を備えている。
<CPU90>
 CPU90は、演算処理装置の一例である。CPU(Central Processing Unit)等のコンピュータである。
 CPU90は、例えば、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等を備えてもよい。CPU90は、記憶装置91に記憶されたソフトウェアを実行するように構成されている。ここで、ソフトウェアとは、例えば、コンピュータプログラムである。CPU90は、同じ種類の回路又は異なる種類の回路等の複数の回路を備えてもよい。複数の回路の各々は、CPU90において行われる処理の一部を分担するように、CPU90の処理が実行されてもよい。
<記憶装置91>
 記憶装置91は、コンピュータプログラム又は各種データ等を記憶する。言い換えると、記憶装置91は、ソフトウェアを記憶することが可能である。
 記憶装置91は、RAM(Random Access Memory)又はROM(Read Only Memory)等を備える。
 記憶装置91がRAMを備える場合、記憶装置91は、CPU90からデータを読み出し及び書き込みが可能である。記憶装置91がROMを備える場合、記憶装置91は、CPU90からデータを読み出し可能である。
 記憶装置91は、CPU90と記憶装置91との間でデータのやり取りを行う。
<入力回路92>
 入力回路92は、制御装置10の外部からの外部信号をCPU90に入力する回路である。入力回路92は、回転センサ2、電流センサ6、トルクセンサ106等の各種のセンサ又はスイッチに接続されている。入力回路92は、A/D変換器等を備えている。これにより、入力回路92は、上述したセンサ又はスイッチから出力される出力信号をCPU90に入力する。
<出力回路93>
 出力回路93は、CPU90から制御装置10の外部に信号を出力する回路である。出力回路93には、電気負荷が接続されている。電気負荷は、例えば、ゲート駆動回路等である。ゲート駆動回路は、スイッチング素子の状態をオン状態又はオフ状態に切り替えるようにスイッチング素子を駆動させる。出力回路93は、例えば、駆動回路等を備えている。駆動回路は、CPU90から制御信号を電気負荷に出力する。
 以下の説明では、スイッチング素子の状態をオン状態又はオフ状態に切り替えるようにスイッチング素子を駆動させることを、「スイッチング素子のオンオフ駆動」と称する場合がある。
 このように構成された制御装置10において、CPU90によってソフトウェアが実行されると、記憶装置91、入力回路92、及び出力回路93等と、制御装置10に接続されている他のハードウェア又はセンサとが協働して駆動する。これにより、制御部31~35の各々の機能が実現される。
 なお、制御部31~35の各々が用いる内分率、制御ゲイン等の設定データは、ソフトウェアの一部として、ROM等の記憶装置91に記憶されている。
 以下、図2~図8を参照し、制御装置10の各機能について詳細に説明する。
<制御装置10における基本制御>
<回転検出部31>
 回転検出部31は、回転センサ2から出力される出力信号に基づいて、ロータの回転角度θdを検出する。具体的には、回転検出部31は、U相の巻線Cvの位置に対する電気角での磁石の磁極(N極)の回転角度(磁極位置)を検出する。検出された回転角度は、ロータの回転角度となる検出値θdである。
<電流検出部33>
 電流検出部33は、電流センサ6から出力される出力信号に基づいて、3相の巻線に流れる電流Iud、Ivd、Iwdを検出する。具体的には、電流検出部33は、電流センサ6から出力される出力信号に基づいて、U相の巻線Cuに流れる電流Iudを検出し、V相の巻線Cvに流れる電流Ivdを検出し、W相の巻線Cwに流れる電流Iwdを検出する。
 なお、電流検出部33における電流検出に関し、電流センサ6が2相の巻線電流を検出するように構成され、残りの1相の巻線電流が、2相の巻線電流の検出値に基づいて算出されてもよい。例えば、電流センサ6が、V相及びW相の巻線電流Ivd、Iwdを検出し、U相の巻線電流Iudが、Iud=-Ivd-Iwdにより算出されてもよい。
<電圧指令値算出部34>
 電圧指令値算出部34は、後述する制御用角度算出部32により算出された制御用の回転角度θc及び電流検出値に基づいて、3相の巻線Cu、Cv、Cwに印加する3相の電圧指令値Vuo、Vvo、Vwoを算出する。
 具体的には、電圧指令値算出部34は、制御用の回転角度と、電流と、q軸電流の指令値と、d軸電流の指令値に基づいて、複数相の巻線に印加する電圧指令値を算出する。
 本実施の形態では、電圧指令値算出部34は、電流座標変換部342、dq軸電圧指令値算出部343、及び電圧座標変換部344を備えている。
 電流座標変換部342は、3相の巻線Cu、Cv、Cwの各々の電流検出値Iud、Ivd、Iwdを、制御用の回転角度θcに基づいて、d軸の電流検出値Idd、q軸の電流検出値Iqdに変換する。
 本実施の形態では、電流座標変換部342は、3相の巻線Cu、Cv、Cwの各々の電流検出値Iud、Ivd、Iwdを、次式に示すように、制御用の回転角度θcに基づいて3相2相変換及び回転座標変換を行う。これにより、電流検出値Iud、Ivd、Iwdをd軸の電流検出値Idd、q軸の電流検出値Iqdに変換する。
Figure JPOXMLDOC01-appb-M000001
 なお、d軸は、磁石の磁極(N極)の方向に定められる。q軸は、d軸より電気角で90度進んだ方向に定められる。
 本実施の形態では、制御用の回転角度θcに基づいて座標変換される。このため、制御用の回転角度θcの方向がd軸となる。
<電流指令値算出部36>
 電流指令値算出部36は、d軸電流指令値生成部361と、q軸電流指令値生成部362とを有する。d軸電流指令値生成部361は、d軸の電流指令値Idoを算出する。言い換えると、d軸電流指令値生成部361は、回転電機に流れるd軸電流の指令値を生成する。q軸電流指令値生成部362は、q軸の電流指令値Iqoを算出する。言い換えると、q軸電流指令値生成部362は、回転電機に流れるq軸電流の指令値を生成する。電流指令値算出部36は、トルクセンサ106から出力される出力信号に基づいて、運転者が操作するハンドル104に生じる操舵トルクTsを検出する。
 そして、電流指令値算出部36は、次式に示すように、操舵トルクTsに基づいてq軸の電流指令値Iqoを設定し、d軸の電流指令値Idoを0に設定する。すなわち、Id=0制御が行われる。Id=0制御は、d軸電流ゼロ制御の一例である。Id=0制御では、d軸の電流指令値Idoが0に設定される。回転電機1が表面磁石型の回転電機である場合においては、Id=0制御は好適である。
 Iqo=Ka×Ts Ido=0 ・・・(1-2)
 ここで、Kaは、定数である。なお、Kaは、操舵トルクTs及び車両の走行速度等に応じて変化されてもよい。また、q軸の電流指令値Iqoは、操舵状況に応じた公知の補償制御に基づいて設定されてもよい。
 なお、回転電機1が埋込磁石型の回転電機である場合においては、Id=0制御の代わりに、最大トルク電流制御によりd軸及びq軸の電流指令値Ido、Iqoが設定されてもよい。最大トルク電流制御では、同一電流に対して発生トルクを最大にするようなd軸及びq軸の電流指令値Ido、Iqoが算出される。
 回転角速度が高い領域においては、Id=0制御又は最大トルク電流制御により算出されるd軸の電流指令値よりも、d軸の電流指令値Idoを負方向に増加させる弱め磁束制御が行われる。
 例えば、弱め磁束制御の実行領域は、回転角速度ωが、インバータが出力する線間電圧の振幅が直流電圧Vdcに到達する基底速度以上になる領域に設定される。
 図4は、制御装置10が表面磁石型の回転電機に適用される場合において、Id=0制御及び弱め磁束制御が行われる際における各制御の実行領域を示す図である。
 図5は、制御装置10が埋込磁石型の回転電機に適用される場合において、最大トルク電流制御及び弱め磁束制御が行われる際における各制御の実行領域を示す図である。
 図4及び図5において、横軸は回転角速度を示し、縦軸はトルクを示す。
 dq軸電圧指令値算出部343は、次式に示す電流フィードバック制御を行う。具体的には、電流フィードバック制御において、dq軸電圧指令値算出部343は、d軸の電流検出値Iddがd軸の電流指令値Idoに近づくように、かつ、q軸の電流検出値Iqdがq軸の電流指令値Iqoに近づくように、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを変化させる。電流フィードバック制御においては、例えば、PI制御等が用いられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Kd、Kqは、比例ゲインを示す。Td、Tqは、積分時定数を示す。sは、ラプラス演算子を示す。なお、d軸電流とq軸電流の非干渉化のためのフィードフォワード制御が行われてもよい。
 すなわち、d軸の電圧指令値Vdoに、「-ωc×Lq×Iqc」が加算されてもよい。また、q軸の電圧指令値Vqoに、「ωc×(Ld×Idc+ψ)」が加算されてもよい。
 ここで、ωcは、後述する制御用の回転角速度である。ωcの代わりに、後述する回転角速度の検出値ωdが用いられてもよい。
 Lqは、q軸インダクタンスを示す。Ldは、d軸インダクタンスを示す。ψは、磁石の起磁力が巻線に鎖交する鎖交磁束を示す。
 電圧座標変換部344は、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを、制御用の回転角度θcに基づいて3相の電圧指令値Vuo、Vvo、Vwoに変換する。
 本実施の形態では、次式に示すように、電圧座標変換部344は、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoに対して、制御用の回転角度θcに基づく固定座標変換及び2相3相変換を行う。これによって、電圧座標変換部344は、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを、3相の電圧指令値Vuo、Vvo、Vwoに変換する。
Figure JPOXMLDOC01-appb-M000003
 なお、電圧座標変換部344は、3相の電圧指令値Vuo、Vvo、Vwoに対して、2相変調、3次高調波重畳等の公知の変調を加えてもよい。
<スイッチング制御部35>
 スイッチング制御部35は、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、電力変換器4が有する複数のスイッチング素子をオンオフ駆動する。スイッチング制御部35は、公知のキャリア比較PWM又は空間ベクトルPWMを用いる。
 スイッチング制御部35は、電圧指令値算出部34によって算出された電圧指令値に基づいて、電力変換器4が有する複数のスイッチング素子SP、SNをオンオフ駆動する。
 キャリア比較PWMが用いられる場合は、スイッチング制御部35は、キャリア波と3相の電圧指令値Vuo、Vvo、Vwoのそれぞれとを比較する。比較結果に基づいて、スイッチング制御部35は、複数のスイッチング素子をオンオフ駆動させる。
 キャリア波は、例えば、三角波である。ここで、三角波は、PWM周期Tcで0を中心に直流電圧の半分値Vdc/2の振幅で振動する波形を有する。
 U相、V相、W相の3相の各々の正極側のスイッチング素子SPについて、スイッチング制御部35は、次のように動作を制御する。
 キャリア波が電圧指令値を下回った場合においては、スイッチング制御部35は、正極側のスイッチング素子SPのスイッチング信号GPをオンして、正極側のスイッチング素子SPをオンにする。
 キャリア波が電圧指令値を上回った場合においては、スイッチング制御部35は、正極側のスイッチング素子SPのスイッチング信号GPをオフして、正極側のスイッチング素子SPをオフにする。
 U相、V相、W相の3相の各々の負極側のスイッチング素子SNについて、スイッチング制御部35は、次のように動作を制御する。
 キャリア波が電圧指令値を下回った場合においては、スイッチング制御部35は、負極側のスイッチング素子SNのスイッチング信号GNをオフして、負極側のスイッチング素子SNをオフにする。
 キャリア波が電圧指令値を上回った場合においては、スイッチング制御部35は、負極側のスイッチング素子SNのスイッチング信号GNをオンして、負極側のスイッチング素子SNをオンする。
 なお、U相、V相、W相の3相の各々における正極側のスイッチング素子SPのオン期間と負極側のスイッチング素子SNのオン期間との間には、短絡防止期間が設けられてもよい。短絡防止期間は、いわゆる、デッドタイムである。短絡防止期間においては、正極側のスイッチング素子SP及び負極側のスイッチング素子SNの双方をオフ状態にする。
 空間ベクトルPWMが用いられる場合は、スイッチング制御部35は、3相の電圧指令値Vuo、Vvo、Vwoから電圧指令ベクトルを生成する。電圧指令ベクトルに基づいて、スイッチング制御部35は、PWM周期における7つの基本電圧ベクトルの出力時間配分を決定する。スイッチング制御部35は、7つの基本電圧ベクトルの出力時間配分に基づいて、PWM周期において各スイッチング素子をオンオフ駆動するスイッチング信号を生成する。
<制御用角度算出部32>
 制御用角度算出部32は、回転センサ2の出力信号である回転角度、電流、電圧指令値のいずれか一つ以上に基づいて、回転センサ2の検出誤差に起因する角度誤差を低減するように構成されている。具体的な制御用角度算出部32の機能は以下の通りである。
 制御用角度算出部32は、ロータの制御用の回転角度θcを算出する。すなわち、制御用角度算出部32は、ロータの制御用の回転角度を算出する回転演算部の一例である。
 制御用角度算出部32は、電流検出値の情報及び電圧指令値の情報に基づいて、ロータの回転角度の真値に対する制御用の回転角度θcの偏差である推定実角度偏差Δθeを推定する。制御用角度算出部32は、回転角度の検出値θdに対する制御用の回転角度θcの偏差である検出角度偏差Δθdを算出する。
 制御用角度算出部32は、検出角度偏差Δθdを制御角度偏差として算出する。
 制御用角度算出部32は、例えば、推定実角度偏差Δθeと検出角度偏差Δθdとを内分した値を、制御角度偏差Δθcとして算出する。
 そして、制御用角度算出部32は、制御角度偏差に基づいて前記制御用の回転角度を算出する。具体的には、制御用角度算出部32は、制御角度偏差Δθcが0に近づくようにフィードバック制御を行うことにより、制御用の回転角度θcを算出する。より具体的には、制御用角度算出部32は、このフィードバック制御を行うことにより、ロータの制御用の回転角速度を変化させ、制御用の回転角速度を積分して、制御用の回転角度を算出する。
 ロータの回転角速度に比例する物理量である速度比例物理量が予め設定された速度閾値Thよりも高い場合において、制御用角度算出部32は、制御角度偏差Δθcにおける推定実角度偏差Δθeの割合Keを、検出角度偏差の割合Kdよりも高くする。
 速度比例物理量が速度閾値Thよりも低い場合において、制御用角度算出部32は、制御角度偏差Δθcにおける推定実角度偏差Δθeの割合Keを、検出角度偏差の割合Kdよりも低くする。
 この構成によれば、推定実角度偏差Δθeと検出角度偏差Δθdとを内分した制御角度偏差Δθcが0に近づくようにフィードバック制御を行う。これにより、制御用の回転角度θcが算出されている。言い換えると、本実施の形態に係る制御装置10は、特許文献1に開示された弱め磁束制御のように、回転角速度のセンサ検出値をフィードバック制御値により補正するように構成されていない。本実施の形態に係る制御装置10においては、ロータが高速度で回転しているときに、回転角度のセンサ検出値に含まれる交流成分の誤差を低下するように、フィードバック制御の応答周波数を高くする必要がない。
 このため、フィードバック制御の応答周波数を、比較的に低い周波数である機械的な回転角度の振動周波数に応答するように設定することができる。さらに、フィードバック制御の応答周波数を、比較的に高い数周波の電流検出値に含まれるノイズ成分の周波数に応答しないように設定することができる。
 また、ロータが高速度で回転しているときに、推定実角度偏差Δθeの割合Keが、検出角度偏差Δθdの割合Kdよりも高くされると共に、制御角度偏差Δθcを0に近づけるフィードバック制御により制御用の回転角度θcが算出されている。このため、回転角度の検出値θdに含まれる交流成分の誤差が、制御用の回転角度θcに反映されることを抑制することができる。さらに、制御用の回転角度θcを回転角度の真値に近づけることができる。
 従って、ロータが高速度で回転しているときに、回転角度の検出値θdに含まれる交流成分の誤差を低減しつつ、電流検出値に含まれる高周波のノイズ成分による回転角度の誤差の増加を抑制することができる。
 また、ロータが低速度で回転しているときに、検出角度偏差Δθdの割合Kdが、推定実角度偏差Δθeの割合Keよりも高くされた場合であっても、制御角度偏差Δθcを0に近づけるフィードバック制御により制御用の回転角度θcが算出されている。このため、回転角度の検出値θdに含まれる交流成分の誤差が、制御用の回転角度θcに反映されることを抑制することができる。
<検出角度偏差Δθdの算出>
 図6は、本実施の形態に係る制御用角度算出部32を示すブロック図である。
 制御用角度算出部32は、次式に示すように、回転角度の検出値θdから制御用の回転角度θcを減算して、検出角度偏差Δθdを算出する。
 Δθd=θd-θc ・・・(1-5)
<推定実角度偏差Δθeの算出>
 上述したように、制御用角度算出部32は、電流検出値の情報、及び電圧指令値の情報に基づいて、ロータの回転角度の真値に対する制御用の回転角度θcの偏差である推定実角度偏差Δθeを推定する。
 本実施の形態では、制御用角度算出部32は、d軸の電流検出値Idd、q軸の電流検出値Iqd、d軸の電圧指令値Vdo、q軸の電圧指令値Vqo、及び制御用の回転角速度ωcに基づいて、ロータの回転角度の真値に対する制御用の回転角度θcの偏差である推定実角度偏差Δθeを推定する。
 制御用角度算出部32は、次式を用いて、推定実角度偏差Δθeを算出する。
 ΔVd=-Vdo+R×Idd-ωc×Lq×Iqd
 ΔVq= Vqo-R×Iqd-ωc×Ld×Idd
 Δθe=arctan(ΔVd/ΔVq) ・・・(1-6)
 ここで、Rは、予め設定された巻線の抵抗値を示す。Lqは、予め設定されたq軸インダクタンスを示す。Ldは、予め設定されたd軸インダクタンスを示す。
 Ld、Lqは、永久磁石の磁気飽和を考慮し、d軸電流及びq軸電流のマップデータを用いて設定されもよい。
 式(1-6)は、電圧方程式に基づいて導出された式である。ΔVdは、制御用の回転角度θcが実際の回転角度から逸脱したことによるd軸電圧の誤差を示す。ここで、「実際の回転角度」とは、電圧方程式が成り立つ回転角度である。ΔVqは、制御用の回転角度θcが実際の回転角度から逸脱したことによるq軸電圧の誤差を示す。
 そして、ΔVd/ΔVqの逆正接関数の値を算出することにより、回転角度の真値に対する制御用の回転角度θcの偏差である推定実角度偏差Δθeが算出される。
 なお、制御用の回転角速度ωcの代わりに、回転角度の検出値θdを微分して算出された回転角速度の検出値ωdが用いられてもよい。
 また、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoの代わりに、3相の巻線に印加されるU相印加電圧Vu_PWM、V相印加電圧Vv_PWM、W相印加電圧Vw_PWMを検出してもよい。この場合、3相の電圧検出値Vu_PWM、Vv_PWM、Vw_PWMに対して、制御用の回転角度θcに基づく3相2相変換及び回転座標変換を行うことで得られたd軸の電圧検出値Vdd及びq軸の電圧検出値Vqdが用いられてもよい。
 制御用角度算出部32は、回転角速度の検出値ωdの絶対値が閾値よりも小さい場合には、式(1-6)を用いた推定実角度偏差Δθeを停止し、Δθe=0に設定してもよい。これは、回転角速度が低い場合において、q軸電圧の誤差ΔVqが0に近くなり、ΔVd/ΔVqが大きくなり過ぎ、Δθeの算出誤差が大きくなり過ぎることを防止するためである。
<回転角速度の検出値ωdの算出>
 制御用角度算出部32は、次式を用いて、回転角速度の検出値ωdを算出する。
 ωd(n)={θd(n)-θd(n-1)}/ΔT ・・・(1-7)
 ここで、θd(n-1)は、前回の演算タイミングで検出した回転角度を示す。θd(n)は、今回の演算タイミングで検出した回転角度を示す。ΔTは、演算周期を示す。
 回転角速度の検出値ωdとして、式(1-7)の算出値に対して、ローパスフィルタ処理をした値が用いられてもよい。
<内分による制御角度偏差Δθcの算出>
 制御用角度算出部32は、次式に示すように、推定実角度偏差Δθeに推定実角度偏差の内分率Keを乗算した値と、検出角度偏差Δθdに検出角度偏差の内分率Kdを乗算した値との合計の値を算出する。この合計の値は、制御角度偏差Δθcである。
 ここで、推定実角度偏差の内分率Keは、推定実角度偏差の割合の一例である。検出角度偏差の内分率Kdは、検出角度偏差の割合の一例である。
 Δθc=Ke×Δθe+Kd×Δθd
 Ke+Kd=1、0≦Ke≦1、0≦Kd≦1 ・・・(1-8)
 ここで、推定実角度偏差の内分率Keは、制御角度偏差Δθcにおける推定実角度偏差Δθeの割合Keである。検出角度偏差の内分率Kdは、制御角度偏差Δθcにおける検出角度偏差Δθdの割合Kdである。
 推定実角度偏差の内分率Keと検出角度偏差の内分率Kdとの合計値が1になるように、推定実角度偏差の内分率Ke及び検出角度偏差の内分率Kdは、それぞれ、0以上1以下の範囲に設定される。つまり、Kd=1-Keになる。
 したがって、(Δθc-Δθe):(Δθd-Δθc)=Ke:(1-Ke)の関係が成り立つ。すなわち、制御角度偏差Δθcは、推定実角度偏差Δθeと検出角度偏差Δθdとを、Ke:(1-Ke)の比に内分した値になる。
<速度比例物理量に応じた内分率の変化>
 図7は、本実施の形態に係る内分率Ke、Kdの設定例を示す。
 図7の横軸に示されているように、本実施の形態では、速度比例物理量として、回転角速度の検出値ωdが用いられる。
 回転角速度の検出値ωdが予め設定された速度閾値Thよりも高い場合において、制御用角度算出部32は、推定実角度偏差の内分率Keを、検出角度偏差の内分率Kdよりも高くする。
 回転角速度の検出値ωdが速度閾値Thよりも低い場合において、制御用角度算出部32は、推定実角度偏差の内分率Keを、検出角度偏差の内分率Kdよりも低くする。
 すなわち、制御用角度算出部32は、回転角速度の検出値ωdが、速度閾値Thよりも高い場合において、推定実角度偏差の内分率Keを0.5よりも高くし、検出角度偏差の内分率Kdを0.5よりも低くする。
 また、制御用角度算出部32は、回転角速度の検出値ωdが、速度閾値Thよりも低い場合において、推定実角度偏差の内分率Keを0.5よりも低くし、検出角度偏差の内分率Kdを0.5よりも高くする。
 なお、回転角速度の検出値ωdの代わりに、制御用の回転角速度ωcが用いられてもよい。
 速度閾値Thを含む予め設定された速度比例物理量の範囲において、制御用角度算出部32は、回転角速度の検出値ωdが増加するに従って、推定実角度偏差の内分率Keを連続的に増加させると共に、検出角度偏差の内分率Kdを連続的に減少させる。
 本実施の形態では、「速度閾値Thを含む予め設定された速度比例物理量の範囲」は、回転角速度の範囲に相当する。以下の説明では、この範囲を入替角速度範囲と称する。
 速度閾値Thから所定値を減算した値が、入替角速度範囲の下限角速度ThLである。速度閾値Thに所定値を加算した値が、入替角速度範囲の上限角速度ThHである。入替角速度範囲は、下限角速度ThLから上限角速度ThHまでの範囲になる。
 図7に示す例では、速度閾値Thが入替角速度範囲の中心になるように、入替角速度範囲が設定される。
 この構成によれば、入替速度範囲において、内分率Ke、Kdを連続的に変化させている。これにより、推定実角度偏差Δθeと検出角度偏差Δθdとの間に差がある場合において、制御角度偏差Δθcが急峻に変化することを抑制し、制御用の回転角度θcが急峻に変化し、トルクが急峻に変化することを抑制することができる。したがって、運転者における操舵感の悪化を抑制することができる。
 なお、速度閾値Thの前後において、すなわち、速度閾値Thよりも低い速度又は高い速度において、内分率Ke、Kdをステップ状に変化させてもよい。
 制御用角度算出部32は、速度閾値Thを含む入替角速度範囲において、回転角速度の検出値ωdが増加するに従って、推定実角度偏差の内分率Keを0から1まで連続的に増加させると共に、検出角度偏差の内分率Kdを1から0まで連続的に減少させる。言い換えると、制御用角度算出部32は、速度閾値を含む予め設定された速度比例物理量の範囲よりも速度比例物理量がよりも低い場合は、推定実角度偏差の割合を0に設定すると共に、前記検出角度偏差の割合を1に設定する。
 また、回転角速度の検出値ωdが入替角速度範囲よりも低い場合は、制御用角度算出部32は、推定実角度偏差の内分率Keを0に設定すると共に、検出角度偏差の内分率Kdを1に設定する。回転角速度の検出値ωdが入替角速度範囲よりも高い場合は、制御用角度算出部32は、推定実角度偏差の内分率Keを1に設定すると共に、検出角度偏差の内分率Kdを0に設定する。言い換えると、制御用角度算出部32は、速度閾値を含む予め設定された速度比例物理量の範囲よりも速度比例物理量がよりも高い場合は、推定実角度偏差の割合を1に設定すると共に、検出角度偏差の割合を0に設定する。
<速度閾値Thを弱め磁束制御の実行領域に対応して設定>
 速度閾値Thは、Id=0制御又は最大トルク電流制御の実行領域と弱め磁束制御の実行領域との境界の回転角速度ωbdに対応して設定されている。回転角速度ωbdは、速度比例物理量の一例である。
 以下に、この設定の効果を説明する。
 角度誤差Δθerrがある場合の、トルク誤差ΔTerrは、次式のように近似できる。
 ΔTerr≒Iq×cos(Δθerr)+Id×sin(Δθerr)
    ・・・(1-9)
 誤差がある場合も、角度誤差Δθerrは0に近い。つまり、cos(Δθerr)<<sin(Δθerr)になり、式(1-9)の右辺の第1項を無視できる。
 よって、トルク誤差ΔTerrは、d軸電流Idの絶対値が大きくなると、大きくなる。
 上述したように、弱め磁束制御においては、Id=0制御又は最大トルク電流制御により算出されるd軸の電流指令値よりも、d軸の電流指令値Idoが負方向に増加される。
 このため、弱め磁束制御の実行領域では、d軸電流Idの絶対値が大きくなり、角度誤差Δθerrがあると、トルク誤差ΔTerrが大きくなる。
 上述したように、速度閾値Thを設定することにより、弱め磁束制御の実行領域で、推定実角度偏差の内分率Keが高くされ、推定実角度偏差Δθeが減少するように、制御用の回転角度θcが算出される。このため、回転角度の真値に対する制御用の回転角度θcの偏差(推定実角度偏差Δθe)が小さくなり、角度誤差Δθerrが小さくなる。
 式(1-6)を用いて説明したように、回転角度の真値は、電圧方程式が成り立つ回転角度である。式(1-9)に示すトルク誤差ΔTerrも、電圧方程式に基づいて導出される。このため、推定実角度偏差Δθeが減少するように、制御用の回転角度θcを算出することにより、トルク誤差ΔTerrを減少させることができる。
 式(1-6)の推定実角度偏差Δθeの算出精度は、誘起電圧が高くなる場合に高くなる。このため、弱め磁束制御が実行される誘起電圧が高くなる領域で、推定実角度偏差の内分率Keが高くされることで、角度誤差Δθerrの低減精度を高くできる。
 本実施の形態では、回転角速度の検出値ωdが、入替角速度範囲の下限角速度ThLよりも大きくなる場合において、推定実角度偏差Δθeが制御用の回転角度θcの算出に反映される。
 したがって、Id=0制御又は最大トルク電流制御の実行領域と弱め磁束制御の実行領域との境界の回転角速度ωbdが、入替角速度範囲の下限角速度ThL以上になるように、速度閾値Th及び入替角速度範囲が設定されるとよい。例えば、速度閾値Thが境界の回転角速度ωbdに一致するように設定されるとよい。または、境界の回転角速度ωbdが入替角速度範囲に含まれるように、速度閾値Th及び入替角速度範囲が設定されてもよい。
 図5に示すように、制御装置10が埋込磁石型の回転電機に適用される場合において、境界の回転角速度ωbdは、トルクに応じて変化する。このため、速度閾値Th及び入替角速度範囲は、トルクに応じて変化されてもよい。
 また、制御装置10が埋込磁石型の回転電機に適用される場合では、最大トルク電流制御においても、d軸電流は0よりも小さい値になる。このため、速度閾値Th及び入替角速度範囲は、最大トルク電流制御の実行領域に設定されてもよい。
 なお、速度比例物理量として、制御用の回転角速度ωcが用いられてもよい。また、速度比例物理量として、回転角速度以外の物理量が用いられもよい。
 例えば、巻線に生じる誘起電圧は、回転角速度に比例し、巻線の印加電圧は、誘起電圧に比例する。
 速度比例物理量として、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoの電圧ベクトルの大きさ、又は、電圧指令値Vdoの2乗と電圧指令値Vqoの2乗との和が用いられてもよい。
 なお、直流電圧Vdcが電圧閾値よりも低くなった場合において、制御用角度算出部32は、推定実角度偏差の内分率Keを0に固定し、検出角度偏差の内分率Kdを1に固定してもよい。つまり、制御用角度算出部32は、推定実角度偏差Δθeが制御角度偏差Δθcに反映されないようにしてもよい。
 これは、直流電圧Vdcが低下するに従って、基底速度が低下し、より低い回転速度から弱め磁束制御を行うことになるが、ロータが低速度で回転しているときには誘起電圧が低いことから、式(1-6)による推定実角度偏差Δθeの推定精度が低下するためである。
<制御角度偏差Δθcに基づいた、制御用の回転角度θcの算出>
 上述したように、制御用角度算出部32は、制御角度偏差Δθcが0に近づくようにフィードバック制御を行うことにより、制御用の回転角度θcを算出する。
 本実施の形態では、制御用角度算出部32は、制御角度偏差Δθcが0に近づくようにフィードバック制御を行うことにより、制御用の回転角速度ωcを変化させ、制御用の回転角速度ωcを積分して、制御用の回転角度θcを算出する。
 この構成によれば、フィードバック制御により制御用の回転角速度ωcを変化させることにより、フィードバック制御により直接、制御用の回転角度θcを変化させる必要がなく、フィードバック制御の応答周波数を回転周波数まで高くする必要がない。
 したがって、フィードバック制御の応答周波数を、回転周波数よりも低くすることができる。さらに、フィードバック制御の応答周波数を、機械的な回転角度速度の振動周波数に応じて設定することができる。
 例えば、制御用角度算出部32は、次式に示すように、制御角度偏差Δθcが0に近づくように、PI制御により制御用の回転角速度ωcを変化させフィードバック制御を行う。
 ωc=Kc×(1+1/(Tc×s))×Δθc ・・・(1-10)
 ここで、Kcは、比例ゲインを示す。Tcは、積分時定数を示す。sは、ラプラス演算子を示す。
 なお、PI制御の代わりに、PID制御等の各種のフィードバック制御が用いられてもよい。
<Δθcからθcまでの応答周波数>
 制御角度偏差Δθcから制御用の回転角度θcまでの伝達関数Gは、次式が得られる。
 G(s)=θc/Δθc=Kc×(1+1/(Tc×s))/s ・・・(1-11)
 非特許文献1(栗重他、「電動パワーステアリングの操舵トルク低減制御方式」、日本機械学会論文集(C編)、68巻675号)に開示されているFig.9から明らかなように、ステアリングの操舵速度は、おおよそ35Hzで振動していることがわかる。理由は、Fig.9においては、0.1sで約3.5周期であることが示されているためである。
 したがって、ステアリングにおける速度変動は、この程度の周波数で起こりうる。したがって、制御角度偏差Δθcから制御用の回転角度θcまでの応答は、35Hz以上は必要であり、余裕をもって約3倍の90~100Hzが好ましく、5倍の175Hz以上がより好ましい。
 この回転角速度の振動周波数は、ロータの回転軸に連結された機械的な動力伝達機構の共振周波数に対応している。
 図11は、式(1-11)の伝達関数Gを示すボード線図である。図11において、横軸は回転角速度を示し、縦軸はゲインを示す。また、図11は、式(1-11)において条件Tc=5/Kcが設定された場合を示している。
 図11から明らかなように、ω=Kc[rad/s]において伝達関数Gは0dBになっている。カットオフ周波数は、比例ゲインKc[rad/s]の1次ローパスフィルタの特性となっている。ここで、1次ローパスフィルタとした根拠は、0dB付近で、-20dB/decになっているためである。
 したがって、制御角度偏差Δθcから制御用の回転角度θcまでの応答は、入力角周波数ωが比例ゲインKc以下であれば、Δθc=0になるようにθcが応答する。その一方、入力角周波数ωが比例ゲインKcを超えると、Δθcの変動に、θcが追従できなくなる。そこで、制御角度偏差Δθcから制御用の回転角度θcまでの応答が、35Hz以上必要であることは、比例ゲインKcが、2π×35[rad/s]以上必要であることを意味する。
 さらに、余裕をもって、応答を約3倍の90~100Hzにするには、比例ゲインKcを、2π×90~2π×100[rad/s]にすることが必要である。応答を5倍の175Hz以上にするには、比例ゲインKcを、2π×175[rad/s]以上にする必要がある。
 以上より、比例ゲインKcは、少なくとも、2π×35[rad/s]は必要であり、余裕を考えるとその約3倍の2π×90~2π×100[rad/s]は必要であり、より望ましくは2π×175[rad/s]以上であるとよい。
 このように比例ゲインKcを設定することで、制御角度偏差Δθcから制御用の回転角度θcまでの応答周波数(カットオフ周波数)を、速度変動の周波数35Hzよりも高くすることができる。これにより、制御用の回転角度θcを速度変動に追従させることができ、角度誤差によりトルク変動が生じることを抑制することができる。
 一方、電流検出値に含まれるノイズ成分又は角度検出値に含まれるノイズ成分による制御角度偏差Δθcの高周波の振動成分は、カットオフされる。このため、制御用の回転角度θcに高周波の振動成分が反映されないようにすることができる。
 したがって、制御角度偏差Δθcから制御用の回転角度θcまでの応答周波数を、速度変動の周波数の3倍値から5倍値の間(例えば、90Hz以上)に設定することで、制御用の回転角度θcを速度変動に追従させることができると共に、電流検出値に含まれるノイズ成分の影響を受け難くすることができる。
 その結果、トルク変動を低減でき、回転電機1を静音化することができる。すなわち、回転電機1の振動又は騒音の発生を抑制することができる。
 また、制御角度偏差Δθcから制御用の回転角度θcまでの応答周波数は、速度閾値Thに対応する回転周波数よりも低く設定される。
 この構成によれば、回転速度が速度閾値Thよりも高く、推定実角度偏差Δθeの内分率Keが、検出角度偏差Δθdの内分率Kdよりも高くなる領域で、電流検出値等に含まれる回転周波数のノイズ成分が、制御用の回転角度θcに反映されることを抑制できる。
 また、制御角度偏差Δθcから制御用の回転角度θcまでの応答周波数は、ロータの回転速度に生じる機械的な共振周波数よりも高く設定されている。本実施の形態においては、機械的な共振周波数は35Hzである。
 特に、制御角度偏差Δθcから制御用の回転角度θcまでの応答周波数は、ロータの回転速度に生じる機械的な共振周波数の3倍値から5倍値の間に設定されるとよい。
 この構成によれば、制御用の回転角度θcを機械的な回転角速度の変動に追従させることができると共に、高周波のノイズ成分の影響を受け難くすることができる。
 一方、特許文献1に開示された弱め磁束制御においては、上述したように、Δω1cを算出するフィードバック制御器は、最大の回転速度までの周波数の追従性能が必要となる。このようなフィードバック制御器を実現するには、高級なマイコンが必要である。さらに、Δθdcに含まれる電流検出値からノイズ成分を分けることが困難である。
 一方、本実施の形態においては、応答周波数を、最大の回転周波数よりも低い、速度変動の周波数に応じて設定することができる。したがって、特許文献1ほどの周波数追従性能は不要である。
 したがって、本実施の形態によれば、電流検出値からノイズ成分を分けることが容易であり、CPU90として低級なマイコンを用いることができる。
 以上の説明においては、ロータの回転角速度に比例する物理量である速度比例物理量が予め設定された速度閾値Thよりも高い場合において、制御用角度算出部32は、制御角度偏差Δθcにおける推定実角度偏差Δθeの割合Keを、検出角度偏差の割合Kdよりも高くする。速度比例物理量が速度閾値Thよりも低い場合において、制御用角度算出部32は、制御角度偏差Δθcにおける推定実角度偏差Δθeの割合Keを、検出角度偏差の割合Kdよりも低くする。本実施の形態は、上述した制御に限定されない。ロータの回転角速度に比例する物理量である速度比例物理量によらず、常にKd=1かつKe=0としてもよい。
 Kd=1かつKe=0場合、推定実角度偏差Δθeは無効となる。このため、推定角度誤差演算部は、制御用角度算出部に含まれていなくてもよい。上述した実施の形態においては、電圧(Vdo、Vqo)及び電流(Idd、Iqd)が制御用角度算出部に入力されているが、電圧(Vdo、Vqo)及び電流(Idd、Iqd)は、制御用角度算出部に入力されなくてもよい。
 この場合、常に検出角度偏差Δθdを用いてロータの制御用の回転角度θcを算出することとなる。検出角度偏差Δθdから制御用の回転角度θcまでの応答周波数を、速度変動の周波数の3倍値から5倍値の間(例えば、175Hz以上)に設定しているため、制御用の回転角度θcを速度変動に追従させることができると共に、電流検出値に含まれるノイズ成分の影響を受け難くすることができる。
 その結果、検出角度偏差Δθdのみを使用し、ロータの制御用の回転角度θcを算出する場合においても、トルク変動を低減でき、回転電機1を静音化することができる。すなわち、回転電機1の振動又は騒音の発生を抑制することができる。さらに、回転センサ2における脈動誤差を好適に低減したうえで、順突極モータの出力を最大化することができる。
 また、ロータの回転角速度に比例する物理量である速度比例物理量によらず、常にKd=0かつKe=1としてもよい。Kd=0かつKe=1場合、検出角度偏差Δθdは無効となる。このため、ロータの回転角度演算部は制御用角度算出部に含まれていなくてもよい。上述した実施の形態においては、ロータの回転角度θdが制御用角度算出部に入力されているが、回転角度θdは、制御用角度算出部に入力されなくてもよい。
 この場合、常に推定実角度偏差Δθeを用いてロータの制御用の回転角度θcを算出することとなる。Kd=1かつKe=の0場合と同様に、推定実角度偏差Δθeから制御用の回転角度θcまでの応答周波数を、速度変動の周波数の3倍値から5倍値の間(例えば、175Hz以上)に設定しているため、制御用の回転角度θcを速度変動に追従させることができると共に、電流検出値に含まれるノイズ成分の影響を受け難くすることができる。
 その結果、推定実角度偏差Δθeのみを使用し、ロータの制御用の回転角度θcを算出する場合においても、トルク変動を低減でき、回転電機1を静音化することができる。すなわち、回転電機1の振動又は騒音の発生を抑制することができる。さらに、回転センサ2における脈動誤差を好適に低減したうえで、順突極モータの出力を最大化することができる。
 実施の形態2.
 実施の形態2に係る回転電機制御装置10について図面を参照して説明する。
 実施の形態2において、実施の形態1と同一部材には同一符号を付して、その説明は省略または簡略化する。
 実施の形態2に係る電動パワーステアリング装置の基本的な構成は、実施の形態1に係る電動パワーステアリング装置100と同様である。制御装置10における制御用の回転角度θcが上限値及び下限値を有する点で、実施の形態2は、実施の形態1と異なる。
 図9は、制御用角度算出部32を示すブロック図である。
 本実施の形態では、制御用角度算出部32は、回転角度の検出値θdに基づいて、制御用の回転角度の上限値θcmax及び下限値θcminを算出する。
 制御用の回転角度θcが上限値θcmaxから下限値θcminまでの範囲を逸脱した場合において、制御用角度算出部32は、回転角度の検出値θdに基づいて制御用の回転角度θcを修正する。
 例えば、制御用角度算出部32は、次式に示すように、回転角度の検出値θdに対して、予め設定された制限角度幅Δθlmtを加算又は減算する。これにより、上限値θcmax及び下限値θcminを算出する。
 制限角度幅Δθlmtは、例えば、電気角で90度以内に設定される。
 θcmax=θd+Δθlmt
 θcmin=θd-Δθlmt ・・・(2-1)
 さらに、制御用角度算出部32は、次式に示すように、制御用の回転角度θcを、上限値θcmax及び下限値θcminにより上限値及び下限値制限する。
(CASE 1)θc>θcmaxの場合
 θc=θcmax ・・・(2-2)
(CASE 2)θc<θcminの場合
 θc=θcmin ・・・(2-3)
(CASE 3)θcmin≦θc≦θcmaxの場合
 θc=θc ・・・(2-4)
 このように、制御用の回転角度θcを、回転角度の検出値θdに基づいて設定した上限値θcmax及び下限値θcminにより制限することにより、制御用の回転角度θcの算出値に異常が生じた場合でも、制御用の回転角度θcを適切な範囲に維持でき、回転電機の性能が大幅に悪化することを防止できる。
 なお、本実施の形態は、回転センサが多重化されている場合にも用いることができる。
 例えば、2重系のレゾルバ又は2重系のMRセンサといった2重系の回転センサを用いる場合において、正常な一方の系統の回転センサにより検出された回転角度が、回転角度の検出値θdとして用いられればよい。
 実施の形態3.
 実施の形態3に係る回転電機制御装置10について図面を参照して説明する。
 実施の形態3において、上述した実施の形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 実施の形態3に係る電動パワーステアリング装置の基本的な構成は、実施の形態1に係る電動パワーステアリング装置100と同様である。回転検出部が回転センサ出力信号補正部及び逆正接関数演算部を有している点で、実施の形態3は、実施の形態1と異なる。
 図10は、実施の形態3に係る回転センサ2A及び回転検出部31Aを示すブロック図である。
 回転センサ2Aは、SIN信号とCOS信号を回転検出部31Aに出力する回転センサである。このような回転センサは、例えば、レゾルバやMRセンサ等である。
 回転検出部31Aは、回転センサ出力信号補正部40と逆正接関数演算部41とを有する。回転センサ出力信号補正部40は、回転センサ2Aから出力される出力信号であるSIN信号とCOS信号を補正する。回転センサ出力信号補正部40は、補正された補正SIN信号と補正COS信号を逆正接関数演算部41に出力する。逆正接関数演算部41は、補正SIN信号と補正COS信号を演算し、回転角度を算出する。これにより、回転検出部31Aは、回転角度の交流誤差成分を抑制した上で回転角度を算出している。
 回転角度に含まれる交流成分の誤差は、トルク脈動誤差となる。トルク脈動誤差は、回転電機から生じる振動又は騒音の要因となる。
 特に、弱め磁束制御等によりd軸電流を通電する際に回転角度が誤差を踏んでいる場合、制御用の回転角度のd軸は、回転電機のq軸成分を持つことになるため、q軸電流誤差が発生する。
 このため、回転角度に含まれる交流成分の誤差は、q軸電流の交流成分の誤差となり、回転電機の振動又は騒音を発生させる。このため、回転電機の振動又は騒音を抑制するために、回転角度に含まれる交流成分の誤差を抑制ことは重要である。
 次に、図11A~図15Bを参照し、回転検出部31Aによる演算を説明する。
 図11A~図15Bの各々の横軸は、時間の経過を示す。
 図11Aの縦軸は、回転センサ2Aから出力されたSIN信号及びCOS信号を示す。
 図11Bの縦軸は、SIN信号とCOS信号が理想的な状態で演算された回転角度を示す。
 図12Aの縦軸は、回転センサ2Aから出力されたSIN信号に対してCOS信号がオフセットされた場合を示す。
 図12Bの縦軸は、図12Aに示すSIN信号とCOS信号が演算された回転角度を示す。
 図13Aの縦軸は、回転センサ2Aから出力されたSIN信号の高調波成分とCOS信号の高調波成分とが重畳している場合を示す。
 図13Bの縦軸は、図13Aに示すSIN信号とCOS信号が演算された回転角度を示す。
 図14Aの縦軸は、回転センサ2Aから出力されたSIN信号の高調波成分とCOS信号において基本波成分の振幅に差がある場合を示す。
 図14Bの縦軸は、図14Aに示すSIN信号とCOS信号が演算された回転角度を示す。
 図15Aの縦軸は、回転センサ2Aから出力されたSIN信号の高調波成分とCOS信号において基本波成分の位相差が90度からずれている場合を示す。
 図15Bの縦軸は、図15Aに示すSIN信号とCOS信号が演算された回転角度を示す。
 図11A及び図11Bを示すSIN信号とCOS信号が理想的な状態である場合を除く全ての場合において、すなわち、図12B、図13B、図14B、及び図15Bに示す場合において、回転角度は、周期的に発生する誤差を含んでいる。この誤差は、トルク脈動誤差の発生要因となり得る。
 以下、上述した誤差を抑制するための回転センサ出力信号補正部40の処理について説明する。本実施の形態では、回転センサ出力信号補正部40が以下の4つの演算の全てを行う場合について、説明する。
<第1演算>
 回転センサ出力信号補正部40では、SIN信号とCOS信号のオフセット値を演算する。SIN信号とCOS信号からそれぞれのオフセット値を減算する。
 オフセット値の演算に関し、SIN信号の基本波成分及びCOS信号の基本波成分の周波数よりも十分低いカットオフを持つローパスフィルタを用いて演算してもよいし、フーリエ級数展開により演算してもよいし、他の公知の方法により演算してもよい。
<第2演算>
 次に、SIN信号とCOS信号の高調波成分を演算する。SIN信号からSIN信号の高調波成分を減算する。COS信号からCOS信号の高調波成分を減算する。これにより、高調波成分を除去する。高調波成分の演算に関し、フーリエ級数展開により演算してもよいし、他の公知の方法により演算してもよい。また、ローパスフィルタを用いて、高調波成分を除去してもよい。この場合、ローパスフィルタは、SIN信号の基本波成分の周波数及びCOS信号の基本波成分の周波数よりも十分高く、かつ、高調波成分よりも低いカットオフを有する。
<第3演算>
 次に、SIN信号とCOS信号の基本波成分の振幅を演算する。SIN信号とCOS信号の基本波成分が同じ振幅となるように補正する。基本波成分の振幅の演算に関し、フーリエ級数展開により演算してもよいし、他の公知の方法により演算してもよい。補正に関し、SIN信号とCOS信号の基本波成分の振幅比を演算し、振幅比に応じたゲインをSIN信号とCOS信号のどちらか一方に掛けることで補正を行えばよい。
<第4演算>
 次に、SIN信号とCOS信号の基本波成分の位相差を演算することによって、位相差が90度となるように補正を行う。位相差の演算に関し、フーリエ級数展開により演算してもよいし、他の公知の方法により演算してもよい。補正に関し、SIN信号とCOS信号のうちどちらか一方を基本波成分の周波数に応じて遅延させることで位相差が90度となるようにしてもよいし、他の公知の方法により位相差が90度となるように補正してもよい。
 上述した演算により、補正SIN信号及び補正COS信号が算出される。
 回転センサ出力信号補正部40は、上述した4つの演算処理を行うことが可能であるが、回転センサ出力信号補正部40による処理は、4つの演算の全てを行わなくてもよい。4つの演算のうち少なくとも1つの演算を行えばよい。
 また、4つの演算から選択される2つの演算又は3つの演算が行われる場合、演算が行われる順番は、限定されない。例えば、第1演算と第2演算のみが行われる場合、第2演算の後に第1演算を行ってもよい。また、第1演算、第2演算、及び第4演算のみが行われる場合、第4演算の後に第1演算を行い、第1演算の後に第2演算を行ってもよい。
 次に、回転センサ出力信号補正部40から出力された補正SIN信号及び補正COS信号は、逆正接関数演算部41に入力される。逆正接関数演算部41は、逆正接関数を用いて補正SIN信号及び補正COS信号を演算する。これにより、図11Bに示すような回転角度を得ることができる。すなわち、逆正接関数演算部41は、補正SIN信号及び補正COS信号に基づき、回転角度を検出する。
 本実施の形態に係る回転検出部31Aによる算出によって得られた回転角度を用いて、実施の形態1、2で説明した制御方法により制御用の回転角度を算出する。これにより、回転角度の交流誤差を抑制し、トルク脈動誤差を抑制することができる。
<変形例1>
 なお、本実施の形態によって演算された回転角度をそのまま制御用の回転角度として用いても、トルク脈動誤差を十分に抑制する効果を得ることができる。
<変形例2>
 回転検出部31Aは、回転センサ2Aから出力される出力信号であるSIN信号とCOS信号の逆正接関数を演算し、逆正接関数の高調波成分に基づいた補正を行い、回転角度を検出してもよい。この場合においても、トルク脈動誤差を十分に抑制する効果を得ることができる。
 上述したように、本実施の形態に係る回転センサ出力信号補正部40によって回転センサ2Aから出力される出力信号であるSIN信号とCOS信号を補正し、かつ、逆正接関数演算部41によって回転角度を算出することで、回転センサにおける脈動誤差を好適に低減したうえで、順突極モータの出力を最大化することができる。
 実施の形態4.
 実施の形態4に係る回転電機制御装置10について図面を参照して説明する。
 実施の形態4において、上述した実施の形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 実施の形態4に係る電動パワーステアリング装置の基本的な構成は、実施の形態1に係る電動パワーステアリング装置100と同様である。回転検出部が角度算出部及び回転角度信号補正部を有している点で、実施の形態4は、実施の形態1と異なる。
 図16は、実施の形態4に係る回転センサ2B及び回転検出部31Bを示すブロック図である。
 回転センサ2Bは、実施の形態1と同様に、例えば、レゾルバ、エンコーダ、MRセンサ等である。
 回転検出部31Bは、角度算出部50と回転角度信号補正部51とを有する。角度算出部50は、回転センサ2Bから出力される出力信号を角度算出部50に出力する。角度算出部50は、未補正のロータの回転角度θmdを回転角度信号補正部51に出力する。回転角度信号補正部51は、回転角度θmdを補正することで、ロータの回転角度θdを算出する。これにより、回転角度信号補正部51は、交流誤差成分が抑制されたロータの回転角度θdを算出している。
 回転角度に含まれる交流成分の誤差は、トルクの交流成分の誤差、つまり、トルク脈動誤差となる。トルク脈動誤差は、回転電機から生じる振動又は騒音の要因となる。
 特に、弱め磁束制御等によりd軸電流を通電する際に回転角度が誤差を踏んでいる場合、制御用の回転角度のd軸は、回転電機のq軸成分を持つことになるため、q軸電流誤差が発生する。
 このため、回転角度に含まれる交流成分の誤差は、q軸電流の交流成分の誤差となり、回転電機の振動又は騒音を発生させる。このため、回転電機の振動又は騒音を抑制するために、回転角度に含まれる交流成分の誤差を抑制ことは重要である。このため、回転電機の振動又は騒音の抑制のため回転角度に含まれる交流成分の誤差の抑制は重要である。
 次に、図17A~図18Bを参照し、回転検出部31Bによる演算を説明する。
 図17A~図18Bの各々の横軸は、時間の経過を示す。
 図17Aの縦軸は、回転角度の出力信号を示す。図17Aの実線は、理想的な状態のロータの回転角度を示す。図17Aの点線は、未補正のロータの回転角度θmdを示す。
 図17Bの縦軸は、理想的な状態の回転角度から未補正の回転角度θmdを引算することで得られた角度誤差を示す。
 図18Aの縦軸は、回転角度信号補正部51による処理が施された後の回転角度θdを示す。
 図18Bの縦軸は、回転角度信号補正部51による処理を施すことによって角度誤差がゼロになった状態を示す。
 図17Bを示すように、角度誤差は、周期的な変動を伴って発生している。このような周期的に発生する角度誤差は、トルク脈動誤差の発生要因となり得る。
 以下、上述した誤差を抑制するための回転角度信号補正部51の処理について説明する。回転角度信号補正部51の処理としては、例えば、次の2つの処理方法が挙げられる。
<処理方法1>
 回転角度信号補正部51は、予め理想的な角度とロータの未補正の回転角度θmdとの角度誤差をマップ等により保持しておく。このような理想的な角度及び未補正の回転角度θmdは、記憶装置91に保存されている。なお、このような理想的な角度及び未補正の回転角度θmdは、他の公知の方法により保持されてもよい。
 次に、実際に入力されたロータの未補正の回転角度θmdに対応する角度誤差を保持していたマップを参照し、ロータの未補正の回転角度θmdに足し合わせ補正を行う。他の公知の方法により演算してもよい。
<処理方法2>
 回転角度信号補正部51は、予め理想的な角度とロータの未補正の回転角度θmdとの角度誤差をフーリエ級数展開により演算する。または、回転角度信号補正部51は、他の公知の方法により演算を行ってよい。これにより、回転角度信号補正部51は、各次数成分における角度誤差を抽出する。さらに、回転角度信号補正部51は、ロータの未補正の回転角度θmdに対して、回転角度θmdの各々の次数成分が0となるように補正する。
 回転角度信号補正部51によって上述した処理方法が行われることで、図18A及び図18Bを示すようなロータの回転角度θdを得ることができる。
 本実施の形態における回転検出部31Bによる算出によって得られた回転角度を用いて、実施の形態1で説明した制御用角度算出部32における演算で制御用の回転角度を算出する。これにより、回転角度の交流誤差を抑制し、トルク脈動誤差を抑制することができる。
 なお、本実施の形態によって演算された回転角度をそのまま制御用の回転角度として用いても、トルク脈動誤差を十分に抑制する効果を得ることができる。
 以上から、本実施の形態の回転角度信号補正部51で回転センサ2Bから出力される出力信号である回転角度を補正し、補正後の回転角度を算出することで、回転センサにおける脈動誤差を好適に低減したうえで、順突極モータの出力を最大化することができる。
 実施の形態5.
 実施の形態5に係る回転電機制御装置10について図面を参照して説明する。
 実施の形態5において、上述した実施の形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 実施の形態5に係る電動パワーステアリング装置の基本的な構成は、実施の形態1に係る電動パワーステアリング装置100と同様である。回転電機1の点で、実施の形態5は、実施の形態1と異なる。
 図19は、実施の形態5に係る回転電機制御装置によって制御される回転電機を示す断面図であって、軸方向に見た図である。言い換えると、図19は、軸方向と垂直な方向に平行な断面を示している。
 実施の形態5の説明においては、以下のように方向を定義する。
 文言「軸方向」は、回転電機1を構成するロータの軸心に沿う方向である。言い換えると、軸方向は、ロータを構成するシャフトが延在する方向である。
 文言「周方向」及び「径方向」は、永久磁石同期電動機を構成するステータ又はロータにおける「周方向」及び「径方向」の各々に対応している。
 文言「周方向」は、ロータの回転方向に相当する。言い換えると、軸方向に見た断面図においてロータの回転軸を中心とした円周方向が周方向である。
 文言「径方向」は、ロータの半径方向を意味する。例えば、文言「径方向外側」は、径方向におけるロータの中心から外周部分に向かう方向を意味する。文言「径方向内側」は、径方向におけるロータの外周部分から中心に向かう方向を意味する。
 図19に示すように、回転電機1は、永久磁石同期電動機である。回転電機1は、ステータ510と、ステータ510に対して回転自在に設けられたロータ520とを有している。
<ステータ510>
 ステータ510は、磁気的ギャップとなる空隙515を介してロータ520の外周を囲むように配置されている。ステータ510は、ステータコア511と、コイル514と、を有している。ステータコア511は、周方向において円環状に形成されたコアバック512と、コアバック512から径方向内側に向かって突出した複数のティース513と、を有している。複数のティース513の各々に巻線が巻き付けられることで、コイル514が形成されている。コイル514を構成する巻線は、上述した巻線Cu、Cv、Cwに相当する。図19に示す例では、1つのティース513に1つのコイル514が設けられている。
 図19に示す構成では、ティース513の個数は、12個である。ティース513の個数は、12個に限定されず、永久磁石同期電動機の設計に応じて適宜決定される。
 実施の形態5においては、各々が円弧状に形成された複数のコアブロックが円環状に
連結されることにより、コアバック512が構成されている。コアバック512の構造は、図19に示す構造に限定されない。複数のコアブロックが一体的に形成されることで、コアバック512が構成されてもよい。また、コアバック512とティース513とが分離されてもよい。
<ロータ520>
 ロータ520は、ロータコア521と、シャフト523と、複数の永久磁石522とを有する。
 ロータコア521は、磁性体によって構成されている。ロータコア521は、例えば、複数の電磁鋼板が軸方向に積層することにより構成されている。電磁鋼板は、例えば、コア板と称することもできる。シャフト523は、ロータコア521を軸方向に貫通するようにロータコア521に固定されている。このようなロータ520は、回転電機1の内部において、ステータ510に対して回転自在に配置されている。
 ロータコア521は、径方向に突出した突起524を有する。突起524は、ステータ510に向かう径方向外側に突出するように形成されている。突起524は、永久磁石522が配置されるロータコア521の外周面に設けられている。突起524の個数は、複数の永久磁石522の個数に応じて、8個である。突起524の個数は、1つ以上であればよい。
<永久磁石522>
 複数の永久磁石522は、周方向においてロータコア521の外周面に配置されている。このような複数の永久磁石522を備える回転電機1は、表面磁石型モータ(SPM)の一例である。複数の永久磁石522の各々は、ステータ対向面527と凹部525とを有する。ステータ対向面527は、円弧状に形成されている。ステータ対向面527は、空隙515を介してティース513に対向する面である。言い換えると、ステータ対向面527は、ステータ510の内側面に対向する。凹部525は、ロータコア521の突起524と嵌合する。
 複数の永久磁石522は、ロータ520の周方向に並ぶ。周方向において、複数の永久磁石522のうち互いに隣り合う2つの永久磁石522のステータ対向面527の極性は、互いに異なっている。例えば、周方向に隣接する2つの永久磁石522のうち一方のステータ対向面527の極性がN極であれば、他方のステータ対向面527はS極となるように着磁方向が異ならせた状態で複数の永久磁石522が配置されている。
 図19に示す回転電機1においては、ティース513の個数が12個であり、コイル514の個数が12個であり、永久磁石の数が8個である。すなわち、図19は、いわゆる、8極12スロットの永久磁石同期電動機を示している。複数の永久磁石522、ティース513、コイル514の数の組合せがこれに限らなくてもよい。また、図19に示す例においてはティース513の個数とコイル514の個数とは同じであるが、ティース513の個数とコイル514の個数とが異なっていてもよい。
 以上、図19に示した永久磁石同期電動機を構成する回転電機1は、図19に示すd軸方向のインダクタンスLdを増大させることができ、弱め磁束制御が効果的に実施できる。
 実施の形態1~4に係る回転電機制御装置10が実施の形態5に係る回転電機1の駆動を制御することによって、回転電機1から生じる振動又は騒音を低減しつつ、高出力化を実現することができるといった効果が得られる。
 実施の形態6.
 実施の形態6に係る回転電機制御装置10について図面を参照して説明する。
 実施の形態6において、上述した実施の形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 実施の形態6に係る電動パワーステアリング装置の基本的な構成は、実施の形態1に係る電動パワーステアリング装置100と同様である。電動パワーステアリング装置がDC-DCコンバータを備える点で、実施の形態6は、実施の形態1と異なる。
 図20は、実施の形態6に係る回転電機制御装置を備えた電動パワーステアリング装置の全体構成を示す概略構成図である。図21は、実施の形態6に係るDC-DCコンバータの回路構成を説明する図である。
 図20及び図21を示すように、電動パワーステアリング装置は、DC-DCコンバータ601を備える。DC-DCコンバータ601は、直流電源3の電圧を昇圧するように構成されている。DC-DCコンバータ601は、昇圧器の一例である。
 制御装置10は、DC-DCコンバータ601によって昇圧された出力直流電圧に基づいて、回転電機1に交流電圧を印加する。スイッチング制御部35は、電圧指令値及び前記出力直流電圧に基づいて、複数のスイッチング素子をオンオフ駆動する。
 さらに、DC-DCコンバータ601は、ブリッジインバータ604を有する。ブリッジインバータ604は、昇圧器の一例である。ブリッジインバータ604は、ブリッジ型のスイッチング素子Sa、Sb、Sc、Sdを有する。スイッチング素子Sa、Scは、上アームを構成する。スイッチング素子Sb、Sdは、下アームを構成する。スイッチング素子Sa、Sbは、直列に接続されている。スイッチング素子Sc、Sdは、直列に接続されている。ブリッジインバータ604は、スイッチング素子が直列に接続された直列接続構造を有する複数のレグを備える。複数のレグは、互いに並列に接続されている。具体的には、スイッチング素子Sa、Sbは、1つのレグを構成する。スイッチング素子Sc、Sdは、1つのレグを構成する。図21に示す例では、DC-DCコンバータ601は、2つのレグを有する。言い換えると、ブリッジインバータ604は、上アーム及び下アームを構成する複数のスイッチング素子が直列に接続された構造を有する複数のレグを有する。
 直流電源3の正極端子は、入力コンデンサ602の一端及び統合磁気部品603の一端に接続されている。統合磁気部品603の他端は、スイッチング素子Sa~Sdからなるブリッジインバータ604の交流端にそれぞれ接続されている。ブリッジインバータ604の直流端には、負荷606及びリンクコンデンサ605の一端が接続されている。直流電源3の負極端子は、入力コンデンサ602と、リンクコンデンサ605の他端と、ブリッジインバータ604の直流端の負極と、負荷606の負極とに接続されている。
 制御回路609は、電圧センサ607、608に接続されている。電圧センサ607から出力される出力電圧情報609aは、制御回路609に入力される。電圧センサ608から出力される出力電圧情報609bは、制御回路609に入力される。制御回路609は、出力電圧情報609a、609bに基づき、駆動信号609cを生成する。制御回路609は、駆動信号609cによって、ブリッジインバータ604を構成するスイッチング素子Sa~Sdを駆動する。制御回路609は、制御回路609に設定されている目標出力電圧と、出力電圧情報609a、609bと基づき、出力電圧情報609a、609bと目標出力電圧とが等しくなるように、スイッチング素子Sa~Sdの駆動を制御する。
 図20及び図21に示す例では、制御装置10と制御回路609とが別体である構成が示されている。制御回路609は、制御装置10の一部であるように構成されてもよい。この構成においては、制御回路609において行われる上述の演算が制御装置10において行われる。制御回路609は、駆動信号609cを生成し、スイッチング素子Sa~Sdの駆動を制御する。
 なお、スイッチング素子Sa~Sdの上アーム及び下アームが短絡しないよう、デッドタイムを設け、スイッチング素子のオンオフ駆動を相補的に行う。
 ここで、統合磁気部品603の電圧及び電流には式(6-1)の関係が成り立つ。なお、この式(6-1)においては、巻線抵抗は無視する。
Figure JPOXMLDOC01-appb-M000004
 式(6-1)に示すVdc、V1、V2は、図21に示すVdc、V1、V2に対応している。具体的には、Vdcは、直流電源3の電圧を示す。V1は、スイッチング素子Sa、Sb間の端子における電圧を示す。V2は、スイッチング素子Sc、Sd間の端子における電圧を示す。式(6-1)に示すMは、統合磁気部品603を構成する一方のコイルAと他方のコイルB間の相互インダクタンスである。式(6-1)に示すLは、統合磁気部品603の自己インダクタンスをLである。
 式(6-1)を電流i1、i2の微分の形に改めると、以下の式が得らえる。
Figure JPOXMLDOC01-appb-M000005
 式(6-2)より、電流i1、i2の微分は以下のようになる。
 di1/dt=(L・(Vdc-V1)+M・(Vdc-V2))/(L・L-M・M) ・・・式(6-3)
 di2/dt=(L・(Vdc-V2)+M・(Vdc-V1))/(L・L-M・M) ・・・式(6-4)
 ここで、スイッチング素子SaがONの場合、V1はVdc2と一致する。スイッチング素子SbがONの場合、V1は0と一致する。
 また、スイッチング素子ScがONの場合、V2はでVdc2と一致する。スイッチング素子SdがONの場合、V2は0と一致する。
 スイッチング素子Sa~Sdのオンオフ駆動パターンは、2の2乗、すなわち、4通り存在する。このため、4通りについて、式(6-3)、(6-4)に基づき考慮する。
 以下の説明では、符号Sa、Sb、Sc、Sdの「ON」及び「OFF」は、スイッチング素子Sa~Sdのオンオフ駆動における「ON」及び「OFF」の各々に対応する。
<モード(1):Sa=ON、かつ、Sc=ON>
 V1=Vdc2、V2=Vdc2が得られる。このため、上述した式(6-3)、(6-4)から以下の式(6-5)、(6-6)が得られる。
 di1/dt=(L・(Vdc-Vdc2)+M・(Vdc-Vdc2))/(L・L-M・M)
 di1/dt=(L+M)・(Vdc-Vdc2)/(L・L-M・M)
 ・・・式(6-5)
 di2/dt=(L・(Vdc-Vdc2)+M・(Vdc-Vdc2))/(L・L-M・M)
 di2/dt=(L+M)・(Vdc-Vdc2)/(L・L-M・M)
 ・・・式(6-6)
 このモードでは、di1/dt=di2/dtであり、また、Vdc<Vdc2であることを考えると、符号は負となる。つまり、電流i1、i2はともに低下する。
<モード(2):Sa=ON、かつ、Sd=ON>
 V1=Vdc2、V2=0が得られる。このため、上述した式(6-3)、(6-4)から以下の式(6-7)、(6-8)が得られる。
 di1/dt=(L・(Vdc-Vdc2)+M・Vdc)/(L・L-M・M)
 di1/dt=((L+M)・Vdc-L・Vdc2)/(L・L-M・M)
 ・・・式(6-7)
 di2/dt=(L・Vdc +M・(Vdc-Vdc2))/(L・L-M・M)
 di2/dt=((L+M)・Vdc -M・Vdc2)/(L・L-M・M)
 ・・・式(6-8)
 上述した式を足し合わせると、以下の式が得られる。
 di1/dt+di2/dt=(2(L+M)・Vdc-(L+M)・Vdc2)/(L・L-M・M) ・・・式(6-9)
 ここで、Vdc=0.5Vdc2とすると、式(6-9)は0であり、L>Mであることから、di1/dt<0、かつ、di2/dt>0が得られる。
<モード(3):Sb=ON、かつ、Sc=ON>
 V1=0、V2=Vdcが得られる。このため、上述した式(6-3)、(6-4)から以下の式(6-10)、(6-11)が得られる。
 di1/dt=(L・Vdc+M・(Vdc-Vdc2))/(L・L-M・M)
 di1/dt=((L+M)・Vdc-M・Vdc2)/(L・L-M・M)
 ・・・式(6-10)
 di2/dt=(L・(Vdc-Vdc2) +M・Vdc)/(L・L-M・M)
 di2/dt=((L+M)・Vdc-L・Vdc2)/(L・L-M・M)
 ・・・式(6-11)
 上述した式を足し合わせると、以下の式が得られる。
 di1/dt+di2/dt=(2(L+M)・Vdc-(L+M)・Vdc2)/(L・L-M・M)
 ・・・式(6-12)
 ここで、モード(2)と同様に、Vdc=0.5Vdc2とすると、式(6-12)は0であり、L>Mであることから、di1/dt>0かつdi2/dt<0が得られる。
<モード(4):Sb=ON、かつ、Sd=ON>
 V1=0、V2=0が得られる。このため、上述した式(6-3)、(6-4)から以下の式(6-13)、(6-14)が得られる。
 di1/dt=(L・Vdc+M・Vdc )/(L・L-M・M)
 di1/dt=(L+M)・Vdc /(L・L-M・M)
 ・・・式(6-13)
 di2/dt=(L・Vdc+M・Vdc )/(L・L-M・M)
 di2/dt=(L+M)・Vdc/(L・L-M・M)
 ・・・式(6-14)
 このモードでは、di1/dt=di2/dtであり、また、Vdc<Vdc2であることを考えると、符号は正となる。つまり、電流i1、i2はともに増大する。
 上述したモード(1)~(4)を組み合わせて所望のVdc2を生成させればよいが、ここでは、モード(2)、(3)を50%ずつ用いることで、di1/dt、di2/dtの絶対値を小さくし、かつ電流変動入力コンデンサCinの電流を低減する。
 図22は、実施の形態6に係るDC-DCコンバータにおけるスイッチング駆動を説明する図である。図22に示す例では、モード(2)を50%用い、かつ、モード(3)を50%用いる場合について説明する。図22において、符号Caは、キャリア波を示す。
 図22において、d(=0.5)>caであれば、Sa=ONかつSc=OFFとなる。逆に、d(0.5)<caであれば、Sa=OFFかつSc=ONとなる。なお、スイッチング素子Sb、Sdは、スイッチング素子Sa、Scの各々と相補的スイッチングを行うので説明を省略する。
 このように、各レグのスイッチング素子、すなわち、直流回路の各々のスイッチング素子を180度ずらして駆動することにより、モード(2)、(3)が周期Tc内で50%ずつ生成される。これにより、電流変動及び入力コンデンサ電流を極小化することができる。これをインターリーブ駆動と称する。
 以上、実施の形態6で説明したように、直流電源3からの出力がDC-DCコンバータ601に供給される構成においては、実施の形態1~5に比べて、回転電機1のさらなる高出力化を実現することができる。
 さらに、インターリーブ駆動を行うことにより、電流変動及び入力コンデンサ電流を極小化することができる。DC-DCコンバータ601を備えることに起因する受動素子の体積の増大を抑制することが可能となる。
<変形例>
 図23は、実施の形態6の変形例に係るDC-DCコンバータの一部を示す回路図である。図23においては、DC-DCコンバータ601の全体構造が省略されており、スイッチング素子Sc、Sdが示されている。以下、図20とは異なる点のみを説明する。
 上アーム及び下アームを構成するスイッチング素子が直列に接続された構造をレグと称することができる。図23に示すように、複数のレグの各々に対して並列に抵抗及びコンデンサを設けてもよい。言い換えると、抵抗RとコンデンサCとが直列接続されたスナバ回路650がレグに対して並列に接続されてもよい。
 また、スナバ回路650においては、2つのダイオードD1、D2を用いた接続構造を採用してもよい。スナバ回路650を構成するダイオードD1は、第1ダイオードの一例である。スナバ回路650を構成するダイオードD2は、第2ダイオードの一例である。
 ダイオードD1は、上アームを構成するスイッチング素子のドレイン側端子に接続されたアノードD1Aと、抵抗RとコンデンサCとの間の中間点M2に接続されたカソードD1Cを有する。
 ダイオードD2は、上アームと下アームとの間の中間点M1に接続されたアノードD2Aと、抵抗RとコンデンサCとの間の中間点M2に接続されたカソードD2Cを有する。言い換えると、ダイオードD2のアノードD2Aは、下アームを構成するスイッチング素子のドレイン側端子に接続され、かつ、上アームを構成するスイッチング素子のソース側端子に接続されている。
 上述した回路構成は、スイッチング素子がMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である場合に適用される。
 上述した回路構成は、スイッチング素子がバイポーラパワートランジスタである場合においても適用される。この場合、ドレインがコレクタ、ソースがエミッタ、ゲートがベースに言い換えられる。また、上述した回路構成は、スイッチング素子がIGBT(Insulated Gate Bipolar Transistor)の場合においても適用される。この場合、ドレインがコレクタ、ソースがエミッタに言い換えられる。
 このようにダイオードD1のカソードD1C及びダイオードD2のカソードD2Cは、抵抗RとコンデンサCとの間の中間点M2に接続されている。この構成によれば、より効果的にサージを抑制することができる。
 以上のように、DC-DCコンバータ601がスナバ回路650を有することにより、DC-DCコンバータ601と電力変換器4間の配線インダクタンスに起因するサージを抑制することができる。さらに、EMI対策ノイズが低減することができ、装置全体のコストを低減することができる。なお、このスナバ回路650は、電力変換器4に適用しても有効である。
 上述した実施の形態においては、回転電機1の駆動力源として、電動パワーステアリング装置100以外の各種の装置の駆動力源を用いてもよい。例えば、回転電機1は、車輪の駆動力源を用いてもよい。また、ステータに3相以外の複数相(例えば、2相、4相)の巻線が設けられてもよい。
 また、ステータに複数組(例えば、2組)の3相の巻線が設けられ、各組の3相の巻線に対応してインバータ及び制御装置の各部が設けられてもよい。
 上述した説明では、様々な例示的な実施の形態及び実施の形態が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は、特定の実施の形態の適用に限られない。上述した複数の実施の形態に関し、単独で又は様々な組み合わせで、実施の形態に適用可能である。
 従って、例示されていない実施の形態が、明細書に開示される技術の範囲内において想定される。
 例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれてもよい。
 1…回転電機、2、2A、2B…回転センサ、3…直流電源、4…電力変換器、5…平滑コンデンサ、6…電流センサ、10…制御装置(回転電機制御装置)、21、22、23…アンプ、31、31A、31B…回転検出部(制御部)、32…制御用角度算出部(制御部)、33…電流検出部(制御部)、34…電圧指令値算出部(制御部)、35…スイッチング制御部(制御部)、36…電流指令値算出部、40…回転センサ出力信号補正部、41…逆正接関数演算部、50…角度算出部、51…回転角度信号補正部、91…記憶装置、92…入力回路、93…出力回路、100…電動パワーステアリング装置、101…駆動力伝達機構、102…操舵装置、103…車輪、104…ハンドル、105…シャフト、106…トルクセンサ、342…電流座標変換部、343…dq軸電圧指令値算出部、344…電圧座標変換部、361…d軸電流指令値生成部、362…q軸電流指令値生成部、510…ステータ、511…ステータコア、512…コアバック、513…ティース、514…コイル、515…空隙、520…ロータ、521…ロータコア、522…永久磁石、523…シャフト、524…突起、525…凹部、527…ステータ対向面、601…DC-DCコンバータ(昇圧器)、602…入力コンデンサ、603…統合磁気部品、604…ブリッジインバータ、605…リンクコンデンサ、606…負荷、607、608…電圧センサ、609…制御回路、609a…出力電圧情報、609b…出力電圧情報、609c…駆動信号、650…スナバ回路、C…コンデンサ、D1、D2…ダイオード、D1A、D2A…アノード、D1C、D2C…カソード、M1、M2…中間点、R、Ru、Rv、Rw…抵抗、Sa、Sb、Sc、Sd、SN、SP…スイッチング素子

Claims (21)

  1.  複数相の巻線を有するステータと、前記ステータの径方向内側に配置されているとともに磁石を有するロータと、を有する回転電機と、
     直流電源の電圧を交流電圧に変換する電力変換器と、
     電流センサから出力される出力信号に基づいて前記複数相の巻線に流れる電流を検出する電流検出部と、
     前記ロータの回転角度に応じた出力信号を出力する回転センサと、
     前記ロータの制御用の回転角度を算出する回転演算部と、
     前記磁石の磁束の方向をd軸とし、前記d軸よりも電気角で90度進んだ方向をq軸とし、
     前記回転電機に流れるd軸電流の指令値を生成するd軸電流指令値生成部と、
     前記回転電機に流れるq軸電流の指令値を生成するq軸電流指令値生成部と、
     前記制御用の回転角度と、前記電流と、前記q軸電流の指令値と、前記d軸電流の指令値に基づいて、前記複数相の巻線に印加する電圧指令値を算出する電圧指令値算出部と、
     前記電圧指令値に基づいて前記電力変換器が有する複数のスイッチング素子をオンオフ駆動するスイッチング制御部と、
     を有し、
     前記回転電機は、d軸インダクタンスLdがq軸インダクタンスLqより大きい値を持ち、
     前記回転演算部は、前記回転センサの前記出力信号、前記電流、前記電圧指令値のいずれか一つ以上に基づいて、前記回転センサの検出誤差に起因する角度誤差を低減する、
     回転電機制御装置。
  2.  前記回転演算部は、
     前記回転センサから出力される出力信号に基づいて、前記ロータの回転角度を検出する回転検出部と、
     前記回転角度、前記電流、前記電圧指令値のいずれか一つ以上に基づいて、前記制御用の回転角度を演算する制御用角度算出部と、
     を有している、
     請求項1に記載の回転電機制御装置。
  3.  前記制御用角度算出部は、
     前記回転角度に対する前記制御用の回転角度の偏差である検出角度偏差を算出し、
     前記検出角度偏差を制御角度偏差として算出し、
     前記制御角度偏差に基づいて前記制御用の回転角度を算出する、
     請求項2に記載の回転電機制御装置。
  4.  前記制御用角度算出部は、
     電流検出値の情報、及び前記電圧指令値の情報に基づいて、前記ロータの回転角度の真値に対する前記制御用の回転角度の偏差である推定実角度偏差を推定し、前記推定実角度偏差を制御角度偏差として算出し、
     前記制御角度偏差に基づいて前記制御用の回転角度を算出する、
     請求項2に記載の回転電機制御装置。
  5.  前記制御用角度算出部は、
     前記回転角度に対する前記制御用の回転角度の偏差である検出角度偏差を算出し、
     電流検出値の情報、及び前記電圧指令値の情報に基づいて、前記ロータの回転角度の真値に対する前記制御用の回転角度の偏差である推定実角度偏差を推定し、前記推定実角度偏差と前記検出角度偏差とを内分した値を制御角度偏差として算出し、
     前記ロータの回転角速度に比例する物理量である速度比例物理量が予め設定された速度閾値よりも高い場合において、前記制御角度偏差における前記推定実角度偏差の割合を、前記検出角度偏差の割合よりも高くし、
     前記速度比例物理量が、前記速度閾値よりも低い場合において、前記制御角度偏差における前記推定実角度偏差の割合を、前記検出角度偏差の割合よりも低くする、
     請求項2に記載の回転電機制御装置。
  6.  前記制御用角度算出部は、前記速度閾値を含む予め設定された前記速度比例物理量の範囲において、前記速度比例物理量が増加するに従って、前記推定実角度偏差の割合を連続的に増加させると共に、前記検出角度偏差の割合を連続的に減少させる、
     請求項5に記載の回転電機制御装置。
  7.  前記制御用角度算出部は、前記速度閾値を含む予め設定された前記速度比例物理量の範囲において、前記速度比例物理量が増加するに従って、前記推定実角度偏差の割合を0から1まで連続的に増加させると共に、前記検出角度偏差の割合を1から0まで連続的に減少させ、
     前記速度比例物理量が前記速度比例物理量の範囲よりも低い場合は、前記推定実角度偏差の割合を0に設定すると共に、前記検出角度偏差の割合を1に設定し、
     前記速度比例物理量が前記速度比例物理量の範囲よりも高い場合は、前記推定実角度偏差の割合を1に設定すると共に、前記検出角度偏差の割合を0に設定する、
     請求項5に記載の回転電機制御装置。
  8.  前記速度閾値は、d軸電流ゼロ制御又は最大トルク電流制御の実行領域と弱め磁束制御の実行領域との境界の前記速度比例物理量に対応して設定されている、
     請求項5から請求項7のいずれか一項に記載の回転電機制御装置。
  9.  前記制御用角度算出部は、前記制御角度偏差が0に近づくようにフィードバック制御を行うことにより、前記ロータの制御用の回転角速度を変化させ、前記制御用の回転角速度を積分して、前記制御用の回転角度を算出する、
     請求項5から請求項8のいずれか一項に記載の回転電機制御装置。
  10.  前記電圧指令値算出部は、
     前記複数相の巻線の電流検出値を、前記制御用の回転角度に基づいてd軸電流及びq軸電流に変換し、
     前記d軸電流がd軸電流指令値に近づくように、かつ、前記q軸電流がq軸電流指令値に近づくように、d軸の電圧指令値及びq軸の電圧指令値を変化させ、
     前記d軸の電圧指令値及び前記q軸の電圧指令値を、前記制御用の回転角度に基づいて複数相の電圧指令値に変換し、
     前記制御用角度算出部は、
     前記d軸及びq軸の電流検出値、前記d軸の電圧指令値及び前記q軸の電圧指令値、及び前記制御用の回転角速度に基づいて、前記ロータの回転角度の真値に対する前記制御用の回転角度の偏差である前記推定実角度偏差を推定する、
     請求項9に記載の回転電機制御装置。
  11.  前記制御用角度算出部は、
     前記回転角度の検出値に基づいて、前記制御用の回転角度の上限値及び下限値を算出し、
     前記制御用の回転角度が前記上限値から前記下限値までの範囲を逸脱した場合において、前記回転角度の検出値に基づいて前記制御用の回転角度を修正する、
     請求項5から請求項10のいずれか一項に記載の回転電機制御装置。
  12.  前記制御角度偏差から前記制御用の回転角度までの応答周波数は、前記速度閾値に対応する回転周波数よりも低く設定されている、
     請求項5から請求項11のいずれか一項に記載の回転電機制御装置。
  13.  前記制御角度偏差から前記制御用の回転角度までの応答周波数は、前記ロータの回転角
    速度に生じる機械的な共振周波数よりも高く設定されている、
     請求項5から請求項12のいずれか一項に記載の回転電機制御装置。
  14.  前記制御角度偏差から前記制御用の回転角度までの応答周波数は、前記ロータの回転角
    速度に生じる機械的な共振周波数の3倍値から5倍値の間に設定されている、
     請求項5から請求項13のいずれか一項に記載の回転電機制御装置。
  15.  前記回転検出部は、
     前記回転センサから出力される出力信号であるSIN信号とCOS信号のオフセット値を演算する第1演算、
     前記SIN信号と前記COS信号の高調波成分を演算する第2演算、
     前記SIN信号と前記COS信号の基本波成分の振幅比を演算する第3演算、及び
     前記SIN信号と前記COS信号の位相差情報を演算する第4演算、
     のうち少なくとも1つの演算によって、補正SIN信号及び補正COS信号を算出し、
     前記補正SIN信号及び前記補正COS信号に基づき、前記回転角度を検出する、
     請求項2から請求項14のいずれか一項に記載の回転電機制御装置。
  16.  前記回転検出部は、
     前記回転センサから出力される出力信号であるSIN信号とCOS信号の逆正接関数を演算し、前記逆正接関数の高調波成分に基づいた補正を行った上で前記回転角度を検出する、
     請求項2から請求項14のいずれか一項に記載の回転電機制御装置。
  17.  前記ロータは、
     磁性体によって構成されたロータコアと、
     周方向において前記ロータコアの外周面に配置されている複数の永久磁石と、
     を備え、
     前記永久磁石が配置される前記ロータコアの前記外周面には、前記ロータコアの径方向に突出して形成された突起が設けられており、
     前記永久磁石は、前記ステータの内側面と対向する円弧状のステータ対向面と、前記突起と嵌合する凹部とを有し、
     請求項1から請求項16のいずれか一項に記載の回転電機制御装置。
  18.  前記電力変換器は、直流電源の電圧を昇圧する昇圧器を含み、
     前記回転電機制御装置は、前記昇圧器によって昇圧された出力直流電圧に基づいて、前記回転電機に交流電圧を印加し、
     前記スイッチング制御部は、前記電圧指令値及び前記出力直流電圧に基づいて、前記複数のスイッチング素子をオンオフ駆動する、
     請求項1から請求項17のいずれか一項に記載の回転電機制御装置。
  19.  前記昇圧器は、
     前記スイッチング素子を有する上アーム及び下アームと、
     前記スイッチング素子が直列に接続された構造を有する複数のレグと、
     を備え、
     前記昇圧器は、前記複数のレグが互いに並列に接続されたブリッジ型のスイッチング素子であり、
     前記スイッチング素子の回路動作において、前記複数のレグの各々を構成する前記スイッチング素子を互いに位相を180度ずらして駆動するインターリーブ駆動を行う、
     請求項18に記載の回転電機制御装置。
  20.  前記昇圧器は、
     前記スイッチング素子を有する上アーム及び下アームと、
     前記スイッチング素子が直列に接続された構造を有する複数のレグと、
     抵抗とコンデンサとが直列接続されたスナバ回路と、
     を有し、
     前記複数のレグは、互いに並列に接続されており、
     前記スナバ回路は、前記複数のレグに対して並列に接続されている、
     請求項18又は請求項19に記載の回転電機制御装置。
  21.  前記スナバ回路は、第1ダイオードと第2ダイオードとを備え、
     前記第1ダイオードは、前記上アームを構成する前記スイッチング素子のコレクタ又はドレイン側端子に接続されたアノードと、前記抵抗と前記コンデンサとの間の中間点に接続されたカソードとを有し、
     前記第2ダイオードは、前記上アームと前記下アームとの間の中間点に接続されたアノードと、前記抵抗と前記コンデンサとの間の中間点に接続されたカソードとを有する、
     請求項20に記載の回転電機制御装置。
PCT/JP2022/021734 2022-05-27 2022-05-27 回転電機制御装置 WO2023228404A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021734 WO2023228404A1 (ja) 2022-05-27 2022-05-27 回転電機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021734 WO2023228404A1 (ja) 2022-05-27 2022-05-27 回転電機制御装置

Publications (1)

Publication Number Publication Date
WO2023228404A1 true WO2023228404A1 (ja) 2023-11-30

Family

ID=88918833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021734 WO2023228404A1 (ja) 2022-05-27 2022-05-27 回転電機制御装置

Country Status (1)

Country Link
WO (1) WO2023228404A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080188A (ja) * 1996-09-04 1998-03-24 Mitsubishi Electric Corp 回転磁石形多相同期電動機の制御方法及びその装置
JP2004266935A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 同期モータの制御装置および同期モータの回転位置ずれ補正方法
JP2006101675A (ja) * 2004-09-30 2006-04-13 Mitsubishi Electric Corp モータ駆動装置
JP2015104180A (ja) * 2013-11-22 2015-06-04 株式会社デンソー 回転電機の回転子
JP2015521838A (ja) * 2012-06-26 2015-07-30 日産自動車株式会社 可変磁束型回転電機
JP2016146726A (ja) * 2015-02-09 2016-08-12 トヨタ自動車株式会社 モータ制御システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080188A (ja) * 1996-09-04 1998-03-24 Mitsubishi Electric Corp 回転磁石形多相同期電動機の制御方法及びその装置
JP2004266935A (ja) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp 同期モータの制御装置および同期モータの回転位置ずれ補正方法
JP2006101675A (ja) * 2004-09-30 2006-04-13 Mitsubishi Electric Corp モータ駆動装置
JP2015521838A (ja) * 2012-06-26 2015-07-30 日産自動車株式会社 可変磁束型回転電機
JP2015104180A (ja) * 2013-11-22 2015-06-04 株式会社デンソー 回転電機の回転子
JP2016146726A (ja) * 2015-02-09 2016-08-12 トヨタ自動車株式会社 モータ制御システム

Similar Documents

Publication Publication Date Title
JP4452735B2 (ja) 昇圧コンバータの制御装置および制御方法
US9112436B2 (en) System for controlling controlled variable of rotary machine
US9935568B2 (en) Control apparatus of rotary electric machine
JP6869392B1 (ja) 交流回転電機の制御装置
JP4163226B2 (ja) モータの制御装置
WO2017109884A1 (ja) 回転電機の制御装置
WO2021019662A1 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
WO2023228404A1 (ja) 回転電機制御装置
WO2021176493A1 (ja) 回転電機装置
JP6910418B2 (ja) 交流回転電機の制御装置
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JPWO2020196719A1 (ja) 回転電機制御システム
JP7317250B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7321385B2 (ja) 回転機の制御装置
US20230412099A1 (en) Motor control device and electric power steering device provided with same
JP7351013B2 (ja) 電力変換装置および電動パワーステアリング装置
US20230261604A1 (en) Rotating electrical machine control device
JP7393763B2 (ja) 回転電機制御システム
JP6305603B1 (ja) 回転電機の制御装置
JP2023183492A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
JP2023183491A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
CN116472665A (zh) 旋转电机控制系统
JP2022042224A (ja) 回転電機制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943804

Country of ref document: EP

Kind code of ref document: A1