WO2014118953A1 - 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法 - Google Patents

冷凍サイクル装置、及び、冷凍サイクル装置の制御方法 Download PDF

Info

Publication number
WO2014118953A1
WO2014118953A1 PCT/JP2013/052242 JP2013052242W WO2014118953A1 WO 2014118953 A1 WO2014118953 A1 WO 2014118953A1 JP 2013052242 W JP2013052242 W JP 2013052242W WO 2014118953 A1 WO2014118953 A1 WO 2014118953A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
pressure
amount
pressure reducing
Prior art date
Application number
PCT/JP2013/052242
Other languages
English (en)
French (fr)
Inventor
航祐 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/052242 priority Critical patent/WO2014118953A1/ja
Priority to GB1513809.2A priority patent/GB2525791B/en
Priority to JP2014559445A priority patent/JP6021955B2/ja
Publication of WO2014118953A1 publication Critical patent/WO2014118953A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a control method for the refrigeration cycle apparatus.
  • a decompression device for example, an expansion valve
  • a decompression device is provided in one of the heat source side unit and the load side unit, and is provided in the decompression device and the load side unit provided in the heat source side unit.
  • a load-side heat exchanger or a heat-source-side heat exchanger provided in the heat-source-side unit and a decompression device provided in the load-side unit are connected via a connection pipe (hereinafter referred to as a first connection pipe).
  • the refrigerant provided in the heat source side unit and the load side heat exchanger provided in the load side unit are connected via a connection pipe (hereinafter referred to as a second connection pipe), so that the refrigerant circulation circuit Is formed.
  • environmental conditions for example, the temperature of the medium that exchanges heat with the refrigerant in the heat source side heat exchanger, the temperature of the medium that exchanges heat with the refrigerant in the load side heat exchanger, etc.
  • operating conditions for example, The high pressure side pressure and the low pressure side pressure change with changes in the operating capacity of the compressor, etc., so that the refrigerant density in the first connection pipe and the second connection pipe changes, and the refrigerant circulation circuit The required amount of refrigerant changes.
  • the refrigerant circulation direction of the refrigerant circuit is switched by a flow path switching device (for example, a four-way valve), so that the heat source side heat exchanger acts as a condenser.
  • a flow path switching device for example, a four-way valve
  • a cooling operation in which the side heat exchanger acts as an evaporator and a heating operation in which the heat source side heat exchanger acts as an evaporator and the load side heat exchanger acts as a condenser are switched.
  • the required amount of refrigerant in the cooling operation is caused by the change in the required amount of refrigerant in the first connection pipe and the required amount of refrigerant in the second connection pipe as the refrigerant circulation direction changes. There is a difference between the amount of refrigerant required for heating operation.
  • the refrigerant in the first connection pipe is in a gas-liquid two-phase state
  • the refrigerant in the second connection pipe is in a gas phase state
  • the refrigerant in the connection pipe is in a liquid phase state
  • the refrigerant in the second connection pipe is in a gas phase state. Since the refrigerant in the liquid phase state requires a larger amount of refrigerant compared to the refrigerant in the gas-liquid two-phase state, the amount of necessary refrigerant is larger in the heating operation than in the cooling operation.
  • the refrigerant in the first connection pipe in the liquid phase state, and the refrigerant in the second connection pipe is in the gas phase state.
  • This refrigerant is in a gas-liquid two-phase state, and the refrigerant in the second connection pipe is in a gas phase state.
  • the refrigerant in the liquid phase state requires a larger amount of refrigerant as compared with the refrigerant in the gas-liquid two-phase state, so that the amount of necessary refrigerant is larger in the cooling operation than in the heating operation.
  • the cooling capacity in the condenser is larger than the refrigerant density in the evaporator, the cooling capacity can be reduced by the difference between the internal volume of the heat source side heat exchanger and the internal volume of the load side heat exchanger. There is a difference between the amount of refrigerant required for operation and the amount of refrigerant required for heating operation.
  • the heat source side heat exchanger with a large internal volume acts as a condenser with an increased refrigerant density
  • the internal volume In the cooling operation in which the load-side heat exchanger with a small capacity acts as an evaporator with a small refrigerant density, the heat source side heat exchanger with a large internal volume acts as an evaporator with a small refrigerant density, and the internal volume is reduced.
  • the required refrigerant amount is increased.
  • the heat source side heat exchanger with a small internal volume acts as an evaporator with a low refrigerant density, and the internal volume
  • the heat source side heat exchanger with a small internal volume acts as a condenser with a large refrigerant density, and the internal volume is reduced.
  • the required refrigerant amount is increased.
  • a refrigerant storage container such as an accumulator (so-called ACC) or a receiver (so-called REC) is provided in the refrigerant circulation circuit (see, for example, Patent Document 1).
  • JP 2012-229893 A paragraph [0095] to paragraph [0100], FIG. 1, FIG. 6, FIG. 7)
  • the present invention has been made against the background of the above-described problems, and an object thereof is to obtain a refrigeration cycle apparatus that is suppressed from being increased in cost and size. Another object of the present invention is to obtain a control method for a refrigeration cycle apparatus that is prevented from being increased in cost and size.
  • a compressor, a heat source side heat exchanger, a pressure reducing unit, and a load side heat exchanger are sequentially connected to form a refrigerant circulation circuit, and the compressor and the heat source side heat exchanger are formed.
  • the load side heat exchanger is provided in the load side unit
  • the pressure reducing means is provided in the first pressure reducing device provided in the heat source side unit and the load side unit.
  • the first pressure reducing device and the second pressure reducing device are connected in series via a first connection pipe interposed between the heat source side unit and the load side unit.
  • a part of the refrigerant circuit that is connected and the refrigerant flowing through the flow path between the first pressure reduction device and the second pressure reduction device is in a gas-liquid two-phase state and includes at least the first connection pipe
  • the amount of refrigerant in the flow path of In so that, it controls the pressure reduction amount of the first pressure reducing device and the second pressure reducing device.
  • the decompression means includes a first decompression device provided in the heat source side unit and a second decompression device provided in the load side unit, the first decompression device and the second decompression device.
  • the decompression device is connected in series via the first connection pipe interposed between the heat source side unit and the load side unit, and the refrigerant flowing through the flow path between the first decompression device and the second decompression device is,
  • the first decompression device and the second decompression device are in a gas-liquid two-phase state, and the amount of refrigerant in a part of the refrigerant circulation circuit including at least the first connection pipe becomes a target amount of refrigerant.
  • the refrigeration cycle apparatus forms a refrigeration cycle (heat pump cycle) by circulating the refrigerant in the refrigerant circulation circuit, and performs a cooling operation for cooling the temperature controlled object, a heating operation for heating the temperature controlled object, and the like.
  • a refrigeration cycle heat pump cycle
  • the refrigeration cycle apparatus according to the present invention is an air conditioner.
  • the present invention is not limited to such a case, and the refrigeration cycle apparatus according to the present invention forms a refrigeration cycle.
  • Other refrigeration cycle devices are included.
  • the configuration, operation, and the like described below are merely examples, and are not limited to such configuration, operation, and the like.
  • symbol is attached
  • the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.
  • Embodiment 1 FIG. The air conditioning apparatus according to Embodiment 1 will be described. ⁇ Configuration of air conditioner> Below, the structure of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated.
  • 1 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes an outdoor unit 11 and an indoor unit 21.
  • the outdoor unit 11 corresponds to the “heat source side unit” in the present invention.
  • the indoor unit 21 corresponds to a “load side unit” in the present invention.
  • the outdoor unit 11 is provided with a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an outdoor blower 15, a first expansion valve 16, and an accumulator 17.
  • the indoor unit 21 is provided with an indoor heat exchanger 22, an indoor fan 23, and a second expansion valve 24.
  • the first expansion valve 16 corresponds to the “first pressure reducing device” in the present invention.
  • the second expansion valve 24 corresponds to the “second decompression device” in the present invention.
  • the first expansion valve 16 of the outdoor unit 11 and the second expansion valve 24 of the indoor unit 21 are connected via a first connection pipe 31.
  • the four-way valve 13 of the outdoor unit 11 and the indoor side heat exchanger 22 of the indoor unit 21 are connected via a second connection pipe 32.
  • the compressor 12, the four-way valve 13, the outdoor heat exchanger 14, the first expansion valve 16, the first connection pipe 31, the second expansion valve 24, the indoor heat exchanger 22, the second connection pipe 32, and the accumulator 17 A refrigerant circulation circuit is formed.
  • the drive frequency of the compressor 12 is controlled by the control device 41. Further, the control device 41 controls the air volume of the outdoor fan 15 and the air volume of the indoor fan 23. Further, the opening degree of the first expansion valve 16 and the opening degree of the second expansion valve 24 are controlled by the control device 41. Further, the flow path of the four-way valve 13 is controlled by the control device 41.
  • the control apparatus 41 may be provided in the outdoor unit 11, may be provided in the indoor unit 21, and may be provided in addition to them.
  • control device 41 is connected with a first pressure sensor 51 and a second pressure sensor 52.
  • the first pressure sensor 51 detects the pressure of the refrigerant discharged from the compressor 12.
  • the second pressure sensor 52 detects the pressure of the refrigerant sucked into the compressor 12.
  • the control device 41 includes a first temperature sensor 61, a second temperature sensor 62, a third temperature sensor 63, a fourth temperature sensor 64, a fifth temperature sensor 65, a sixth temperature sensor 66, Is connected.
  • the first temperature sensor 61 detects the temperature of the refrigerant discharged from the compressor 12.
  • the second temperature sensor 62 detects the temperature of the refrigerant flowing between the outdoor heat exchanger 14 and the first expansion valve 16.
  • the third temperature sensor 63 detects the temperature of the refrigerant flowing between the first expansion valve 16 and the second expansion valve 24.
  • the fourth temperature sensor 64 detects the temperature of the refrigerant that flows between the second expansion valve 24 and the indoor heat exchanger 22.
  • the fifth temperature sensor 65 detects the temperature of the refrigerant flowing between the indoor heat exchanger 22 and the four-way valve 13.
  • the sixth temperature sensor 66 detects the temperature of the refrigerant sucked into the compressor 12.
  • FIG. 1 shows the case where the third temperature sensor 63 is provided in the outdoor unit 11, the third temperature sensor 63 may be provided in the indoor unit 21, and the first connection pipe 31 is provided. It may be provided.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 12 passes through the four-way valve 13 and flows into the outdoor heat exchanger 14.
  • the high-temperature and high-pressure refrigerant in a gas state is condensed by exchanging heat with a medium such as outside air supplied to the outdoor heat exchanger 14 by the outdoor blower 15, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the first expansion valve 16, the first connection pipe 31, and the second expansion valve 24, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 22. To do.
  • the low-pressure gas-liquid two-phase refrigerant evaporates by exchanging heat with a medium such as room air supplied to the indoor heat exchanger 22 by the indoor fan 23, and becomes a low-pressure gas refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection pipe 32 and the four-way valve 13, flows into the accumulator 17, and is sucked into the compressor 12 again. That is, during the cooling operation, the outdoor heat exchanger 14 acts as a condenser, and the indoor heat exchanger 22 acts as an evaporator.
  • cooling operation is shown by the solid line arrow in FIG.
  • the control device 41 controls the four-way valve 13 so that the refrigerant discharged from the compressor 12 is led to the indoor heat exchanger 22 and the refrigerant from the outdoor heat exchanger 14 is led to the suction side of the compressor 12. Switch the flow path.
  • the flow path of the four-way valve 13 during the heating operation is indicated by a dotted line in FIG.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 12 passes through the four-way valve 13 and the second connection pipe 32 and flows into the indoor heat exchanger 22.
  • the high-temperature and high-pressure refrigerant in a gas state is condensed by exchanging heat with a medium such as indoor air supplied to the indoor-side heat exchanger 22 by the indoor fan 23, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the second expansion valve 24, the first connection pipe 31, and the first expansion valve 16, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 14. To do.
  • the low-pressure gas-liquid two-phase refrigerant evaporates by exchanging heat with a medium such as outside air supplied to the outdoor heat exchanger 14 by the outdoor blower 15, and becomes a low-pressure gas refrigerant.
  • the low-pressure gaseous refrigerant passes through the four-way valve 13, flows into the accumulator 17, and is sucked into the compressor 12 again. That is, during the heating operation, the outdoor heat exchanger 14 functions as an evaporator, and the indoor heat exchanger 22 functions as a condenser.
  • coolant at the time of heating operation is shown by the dotted line arrow in FIG.
  • FIG. 2 is a diagram showing a PH diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • point A is the compressor suction side
  • point B is the compressor discharge side
  • point C is the expansion valve located on the upstream side of the first expansion valve 16 and the second expansion valve 24 (hereinafter referred to as upstream expansion).
  • the point D on the inlet side of the valve a) corresponds to the outlet side of the expansion valve (hereinafter referred to as the downstream expansion valve b) located on the downstream side of the first expansion valve 16 and the second expansion valve 24.
  • the first connection pipe 31 corresponds to the point E during the cooling operation and the heating operation.
  • the second connection pipe 32 corresponds to point A during the cooling operation and corresponds to point B during the heating operation.
  • the air conditioner 1 is controlled so that the refrigerant between the first expansion valve 16 and the second expansion valve 24 is in a gas-liquid two-phase state during the cooling operation and the heating operation.
  • control is performed so that the sum of the refrigerant amount of the first connection pipe 31 and the refrigerant amount of the second connection pipe 32 becomes a target refrigerant amount.
  • the refrigerant between the first expansion valve 16 and the second expansion valve 24 is controlled to be in a gas-liquid two-phase state, the refrigerant amount in the first connection pipe 31 and the refrigerant quantity in the second connection pipe 32
  • the control device 41 controls the opening degree of the first expansion valve 16 and the second expansion valve 24 so that the total amount of the refrigerant is controlled to be the target refrigerant amount.
  • the following two control methods will be described.
  • the target refrigerant amount is per pipe unit length that is the sum of the refrigerant amount per pipe unit length of the first connection pipe 31 and the refrigerant quantity per pipe unit length of the second connection pipe 32. The case where it is synonymous with making the amount of the refrigerant of will be described.
  • coolant amount per piping unit length by piping length You can do it.
  • the refrigerant density of the first connection pipe 31 and the refrigerant density of the second connection pipe 32 are The target refrigerant density may be set to the sum of the above.
  • first connection pipe 31 and the second connection pipe 32 have different pipe lengths and a common cross-sectional area, per pipe unit cross-sectional area that targets the total refrigerant amount per pipe unit cross-sectional area. What is necessary is just to use the amount of refrigerant
  • the control device 41 sets and changes the driving frequency of the compressor 12 according to the air conditioning load, that is, so that the indoor unit 21 can exert its target ability. Further, the control device 41 sets the air flow rate of the outdoor blower 15 so that the condensation temperature becomes the target condensation temperature during the cooling operation, and the evaporation temperature becomes the target evaporation temperature during the heating operation. Set and change so that Incidentally, the condensation temperature, for example, the detected pressure P d of the first pressure sensor 51 is obtained by converting the saturation temperature and the evaporation temperature, for example, the saturation temperature converted detected pressure P s of the second pressure sensor 52 It is obtained by doing. Moreover, the control apparatus 41 sets and changes the ventilation volume of the indoor side air blower 23 according to a user's setting.
  • the target degree of supercooling SC m is a fixed value set in advance. As the degree of supercooling SC m a target, is configured with two fixed values, the degree of supercooling SC may be controlled to be between the two fixed values.
  • the control device 41 determines the degree of opening of the downstream expansion valve b by adding the refrigerant amount per pipe unit length in the first connection pipe 31 and the refrigerant quantity per pipe unit length in the second connection pipe 32 (hereinafter, units of the total refrigerant quantity Mp per length) is controlled to be in the total refrigerant quantity Mp m per unit length of the target.
  • the total refrigerant amount Mp m per unit length of the target is a preset one fixed value.
  • the total refrigerant quantity Mp m per unit length of the target is configured with two fixed values, the total refrigerant quantity Mp per unit length may be controlled to be between the two fixed values .
  • the refrigerant density ⁇ p 1 in the first connection pipe 31 is based on, for example, the detected temperature TH 3 of the third temperature sensor 63 and the enthalpy converted from the detected temperature TH 2 of the second temperature sensor 62 during the cooling operation. Also, during the heating operation, the temperature is calculated based on the detected temperature TH 3 of the third temperature sensor 63 and the enthalpy converted from the detected temperature TH 4 of the fourth temperature sensor 64. A method for calculating the refrigerant density ⁇ p 1 in the first connection pipe 31 will be described in detail later.
  • Refrigerant density .rho.p 2 at the second connection pipe 32 may be converted from the detected pressure P s of the second pressure sensor 52, and detects the pressure P s of the second pressure sensor 52, the sixth the detected temperature TH 6 temperature sensor 66 may be converted from. And the sensed pressure P s of the second pressure sensor 52, and the detected temperature TH 6 of the sixth temperature sensor 66, when converted from becomes a possible degree of superheat SH is taken into account, the refrigerant in the second connection pipe 32 The calculation accuracy of the density ⁇ p 2 is improved.
  • the refrigerant density ⁇ p 2 in the second connection pipe 32 is converted from the detected pressure P d of the first pressure sensor 51 and the detected temperature TH 1 of the first temperature sensor 61 during the heating operation.
  • FIG. 3 is a diagram showing a control flow in the control method 1 of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 41 determines in S101 whether the operation is a cooling operation or a heating operation. If the operation is a cooling operation, the process proceeds to S102, and if the operation is a heating operation, the process proceeds to S106.
  • control device 41 calculates the degree of supercooling SC and proceeds to S103.
  • control device 41 calculates the total refrigerant amount Mp per unit length, and proceeds to S104.
  • Control unit 41 in S104, when the subcooling degree SC is larger than the degree of supercooling SC m The targeted, the opening degree of the first expansion valve 16 is increased, excessive supercooling degree SC is the target If the degree of cooling is smaller than SC m , the opening of the first expansion valve 16 is reduced and the process proceeds to S105.
  • change amount of the opening may be determined.
  • Control unit 41 in S105, if the total refrigerant quantity Mp per unit length is large compared with the total refrigerant quantity Mp m per unit length of the target is to increase the opening degree of the second expansion valve 24 the total refrigerant quantity Mp per unit length is smaller compared to the total refrigerant quantity Mp m per unit length of the target is to reduce the opening degree of the second expansion valve 24.
  • Units in accordance with the extent or different length per total refrigerant quantity Mp m per unit length total refrigerant quantity Mp is the target of the change amount of the opening degree may be determined.
  • the controller 41 calculates the degree of supercooling SC, and proceeds to S107.
  • the control device 41 calculates the total refrigerant amount Mp per unit length, and proceeds to S108.
  • Control unit 41 in S108, when the subcooling degree SC is larger than the degree of supercooling SC m The targeted, the opening degree of the second expansion valve 24 is increased, excessive supercooling degree SC is the target When the degree of cooling is smaller than SC m , the opening of the second expansion valve 24 is reduced and the process proceeds to S109.
  • change amount of the opening may be determined.
  • Control unit 41 in S109, if the total refrigerant quantity Mp per unit length is large compared with the total refrigerant quantity Mp m per unit length of the target is to increase the opening degree of the first expansion valve 16 the total refrigerant quantity Mp per unit length is smaller compared to the total refrigerant quantity Mp m per unit length of the target is to reduce the opening degree of the first expansion valve 16.
  • Units in accordance with the extent or different length per total refrigerant quantity Mp m per unit length total refrigerant quantity Mp is the target of the change amount of the opening degree may be determined.
  • Control method 2 The control device 41 sets and changes the driving frequency of the compressor 12 according to the air conditioning load, that is, so that the indoor unit 21 can exert its target ability. Further, the control device 41 sets the air flow rate of the outdoor blower 15 so that the condensation temperature becomes the target condensation temperature during the cooling operation, and the evaporation temperature becomes the target evaporation temperature during the heating operation. Set and change so that Moreover, the control apparatus 41 sets and changes the ventilation volume of the indoor side air blower 23 according to a user's setting.
  • the degree of superheat SH is, in the cooling operation, for example, by calculating the detected temperature TH 5 of the fifth temperature sensor 65, and temperature detection pressure P s and the saturation temperature in terms of the second pressure sensor 52, the difference between the Further, at the time of heating operation, for example, it is obtained by calculating the difference between the detected temperature TH 6 of the sixth temperature sensor 66 and the temperature obtained by converting the detected pressure P s of the second pressure sensor 52 into the saturation temperature.
  • the target superheat degree SH m is a fixed value set in advance. Two fixed values may be set as the target superheat degree SH m and the superheat degree SH may be controlled to be between the two fixed values.
  • Control unit 41 the opening of the upstream-side expansion valve a, the total refrigerant quantity Mp per unit length is controlled to be in the total refrigerant quantity Mp m per unit length of the target.
  • the total refrigerant amount Mp per unit length is calculated in the same manner as in the control method 1.
  • FIG. 4 is a diagram showing a control flow in the control method 2 of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 41 determines in S201 whether the operation is a cooling operation or a heating operation. If the operation is a cooling operation, the process proceeds to S202. If the operation is a heating operation, the process proceeds to S206.
  • control device 41 calculates the degree of superheat SH and proceeds to S203.
  • control device 41 calculates the total refrigerant amount Mp per unit length, and proceeds to S204.
  • Control unit 41 in S204, if the degree of superheat SH is larger than the degree of superheating SH m The targeted, the opening degree of the second expansion valve 24 is increased, the degree of superheat SH m superheat degree SH is the target If it is smaller than, the opening of the second expansion valve 24 is made smaller, and the process proceeds to S205.
  • changing the amount of opening may be determined.
  • Control unit 41 in S205, if the total refrigerant quantity Mp per unit length is large compared with the total refrigerant quantity Mp m per unit length of the target is to reduce the opening degree of the first expansion valve 16 the total refrigerant quantity Mp per unit length is smaller compared to the total refrigerant quantity Mp m per unit length of the target increases the opening degree of the first expansion valve 16.
  • Units in accordance with the extent or different length per total refrigerant quantity Mp m per unit length total refrigerant quantity Mp is the target of the change amount of the opening degree may be determined.
  • control device 41 calculates the superheat degree SH, and proceeds to S207.
  • control device 41 calculates the total refrigerant amount Mp per unit length, and proceeds to S208.
  • Control unit 41 in S208, if the degree of superheat SH is larger than the degree of superheating SH m a target is the superheat degree SH m of the opening degree of the first expansion valve 16 is increased, the degree of superheat SH is the target If it is smaller than, the opening of the first expansion valve 16 is reduced and the process proceeds to S209.
  • changing the amount of opening may be determined.
  • Control unit 41 in S209, if the total refrigerant quantity Mp per unit length is large compared with the total refrigerant quantity Mp m per unit length of the target is to reduce the opening degree of the second expansion valve 24 the total refrigerant quantity Mp per unit length is smaller compared to the total refrigerant quantity Mp m per unit length of the target increases the opening degree of the second expansion valve 24.
  • Units in accordance with the extent or different length per total refrigerant quantity Mp m per unit length total refrigerant quantity Mp is the target of the change amount of the opening degree may be determined.
  • the refrigerant density ⁇ p 1 in the first connection pipe 31 includes the saturated gas density ⁇ g 1 [kg / m 3 ], the saturated liquid density ⁇ l 1 [kg / m 3 ], and the void ratio f 1 of the refrigerant in the first connection pipe 31. From the (area ratio of bubbles contained per unit cross-sectional area of the fluid), the following formula (2) is calculated.
  • the saturated gas density ⁇ g 1 and the saturated liquid density ⁇ l 1 are converted from, for example, the detected temperature TH 3 of the third temperature sensor 63.
  • FIG. 5 is a diagram illustrating a dryness calculation method of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the dryness x 1 is calculated from, for example, the following equation ( 1) based on enthalpy H 1 [kJ / kg], saturated liquid enthalpy Hsl 1 [kJ / kg] and saturated gas enthalpy Hsg 1 [kJ / kg] shown in FIG. It is calculated in 4).
  • the enthalpy H 1 is converted from the detected temperature TH 2 of the second temperature sensor 62 during the cooling operation, and is converted from the detected temperature TH 4 of the fourth temperature sensor 64 during the heating operation.
  • the saturated liquid enthalpy Hsl 1 and the saturated gas enthalpy Hsg 1 are converted from, for example, the detection temperature TH 3 of the third temperature sensor 63.
  • a pressure sensor may be provided instead of the detected temperature TH 3 of the third temperature sensor 63, and the saturated liquid enthalpy Hsl 1 and the saturated gas enthalpy Hsg 1 may be converted from the detected pressure of the pressure sensor.
  • each sensor is corrected by using, for example, information on the lengths of the first connection pipe 31 and the second connection pipe 32 so that the pressure loss is taken into account. It is good to be done.
  • the refrigerant density may be calculated at a plurality of locations, for example, a temperature sensor may be added between the first connection pipe 31 and the second expansion valve 24, and the average value may be used for control.
  • the refrigerant between the first expansion valve 16 and the second expansion valve 24 is in a gas-liquid two-phase state, and the refrigerant amount of the first connection pipe 31 and the second connection pipe 32 are Control that the sum of the refrigerant amount and the target refrigerant amount is performed is performed using a common (for example, the same) target refrigerant amount during the cooling operation and the heating operation. Therefore, it is possible to suppress a difference in the necessary amount of refrigerant with changes in the refrigerant circulation direction, and further reduce the size of the refrigerant storage container.
  • the air conditioning apparatus 1 it is possible to switch between the cooling operation and the heating operation.
  • the air conditioning apparatus 1 may perform only one of the cooling operation and the heating operation.
  • the first expansion is performed only in one of the cooling operation and the heating operation, or by using a target refrigerant amount that is different between the cooling operation and the heating operation.
  • the refrigerant between the valve 16 and the second expansion valve 24 is in a gas-liquid two-phase state, and the total refrigerant quantity in the first connection pipe 31 and the refrigerant quantity in the second connection pipe 32 is the target refrigerant quantity. It may be controlled to become.
  • the refrigerant amount in the first connection pipe 31 is controlled so that the sum of the refrigerant amount in the first connection pipe 31 and the refrigerant quantity in the second connection pipe 32 becomes the target refrigerant amount. It may be controlled so that only the amount becomes the target refrigerant amount. Even in such a case, the change in the required refrigerant amount of the refrigerant circulation circuit due to the change in the high-pressure side pressure or the low-pressure side pressure accompanying changes in environmental conditions, operating conditions, etc. is suppressed.
  • the storage container is downsized.
  • the refrigerant in the first connection pipe 31 changes between a gas-liquid two-phase state and a liquid-phase state with a change in the refrigerant circulation direction. The change does not occur, the difference in the required amount of refrigerant is efficiently suppressed, and the refrigerant storage container is reduced in size.
  • API year-round energy consumption efficiency
  • the coefficient of performance (COP) of the refrigerant circulation circuit is further improved. That is, when there is a large amount of surplus refrigerant, for example, the refrigerant at the outlet of the evaporator is brought into a gas-liquid two-phase state in order to prevent the high-pressure side pressure from excessively rising due to the surplus refrigerant remaining in the condenser.
  • the control of the refrigerant may limit the refrigeration capacity of the refrigerant circulation circuit, if the generation of excess refrigerant is suppressed, the refrigeration capacity is limited or unnecessary, and therefore the refrigerant circulation The coefficient of performance (COP) of the circuit is improved.
  • FIG. 6 is a diagram showing a configuration of a modification of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes an outdoor unit 11 and a plurality of indoor units 21-1 and 21-2.
  • the first expansion valve 16 of the outdoor unit 11, the indoor unit 21 -1 second expansion valve 24-1 and the second expansion valve 24-2 of the indoor unit 21-2 are connected via the first connection pipe 31, and the four-way valve 13 of the outdoor unit 11 and the indoor unit 21 -1 indoor heat exchanger 22-1 and the indoor heat exchanger 22-2 of the indoor unit 21-2 may be connected via the second connection pipe 32.
  • FIG. 6 illustrates the case where the two indoor units 21-1 and 21-2 are provided, but three or more indoor units may be provided.
  • FIG. 7 is a diagram showing the configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention. As shown in FIG. 7, the air conditioner 1 does not have the accumulator 17. The internal volume of the outdoor heat exchanger 14 is 0.7 to 1.3 times that of the indoor heat exchanger 22. Since the other structure of the air conditioning apparatus 1 is the same as that of Embodiment 1, the description is abbreviate
  • FIG. 8 shows the relationship between the internal volume of the outdoor heat exchanger, the internal volume of the indoor heat exchanger, and the sum of the required refrigerant amount of the outdoor heat exchanger and the required refrigerant amount of the indoor heat exchanger.
  • FIG. 8 As shown in FIG. 8, as the internal volume VOC of the outdoor heat exchanger 14 and the internal volume VIC of the indoor heat exchanger 22 increase, the required refrigerant amount of the outdoor heat exchanger 14 and the indoor heat exchanger are increased.
  • the total of 22 required refrigerant amounts (hereinafter referred to as heat exchanger total required refrigerant amount) increases from 1 kg to 3 kg, for example.
  • a region F indicated by hatching is a region in which the internal volume VOC of the outdoor heat exchanger 14 is 0.7 to 1.3 times the internal volume VIC of the indoor heat exchanger 22.
  • the heat exchanger total required refrigerant amount is dominated by the required refrigerant amount of the heat exchanger acting as a condenser, so that the internal volume VOC of the outdoor heat exchanger 14 is equal to the internal volume VIC of the indoor heat exchanger 22. If the comparison is larger, the heat exchanger total required refrigerant amount increases during the cooling operation in which the outdoor heat exchanger 14 acts as a condenser, and surplus refrigerant is generated during the heating operation. In other words, the heat exchanger total required refrigerant amount in the lower region of the region F is a heat exchanger total required refrigerant amount M c of the cooling operation.
  • the heat exchanger during the heating operation in which the indoor heat exchanger 22 acts as a condenser when the internal volume VOC of the outdoor heat exchanger 14 is smaller than the internal volume VIC of the indoor heat exchanger 22, the heat exchanger during the heating operation in which the indoor heat exchanger 22 acts as a condenser.
  • the total required refrigerant amount increases, and surplus refrigerant is generated during cooling operation.
  • the heat exchanger total required refrigerant amount in the upper section of the region F is a heat exchanger total required refrigerant quantity M h in the heating operation.
  • the heat exchanger total required refrigerant amount in the region F is a heat exchanger total required amount of refrigerant during the cooling operation M c or heat exchanger total required refrigerant quantity M h in the heating operation.
  • the heat exchanger total required refrigerant amount M c during the cooling operation and the heat exchanger total required refrigerant amount M h during the heating operation are determined based on the internal volume VOC [m 3 ] of the outdoor heat exchanger 14 and the room From the internal volume VIC [m 3 ] of the inner heat exchanger 22, the refrigerant density ⁇ c [kg / m 3 ] of the condenser, and the refrigerant density ⁇ e [kg / m 3 ] of the evaporator, the following equation is obtained: (5) Calculated by equation (6).
  • the internal volume VOC of the outdoor heat exchanger 14 is 0.7 to 1.3 times the internal volume VIC of the indoor heat exchanger 22, and the cooling operation and the heating operation are performed.
  • the first expansion valve 16 and the second expansion are set such that the sum of the refrigerant amount in the first connection pipe 31 and the refrigerant quantity in the second connection pipe 32 becomes a common (for example, the same) refrigerant amount. Since the opening degree of the valve 24 is controlled, the refrigerant approximated by the sum of the necessary refrigerant amount in the first connection pipe 31, the necessary refrigerant quantity in the second connection pipe 32, and the total necessary refrigerant quantity in the heat exchanger. The required amount of refrigerant in the circulation circuit is almost equal during the cooling operation and the heating operation.
  • the required refrigerant amount Mr h of the refrigerant circulation circuit during the heating operation includes the heat exchanger total required refrigerant amount M h during the heating operation, the total refrigerant amount Mp per unit length, the first connection pipe 31 and the first From the pipe length L [m] of the two-connection pipe 32, the following formula (8) is calculated.
  • Mp ⁇ L in Expression (8) is the refrigerant length of each connection pipe and the pipe length and pipe of each connection pipe. Replaced by the sum of the cross-sectional areas.
  • the air conditioner 1 since there is almost no difference between the necessary refrigerant amount Mr c of the refrigerant circulation circuit during the cooling operation and the necessary refrigerant amount Mr h of the refrigerant circulation circuit during the heating operation, the excess refrigerant Is hardly generated, and the refrigerant storage container is unnecessary or further downsized.
  • Embodiment 3 An air conditioner according to Embodiment 3 will be described. Note that the description overlapping or similar to the first embodiment and the second embodiment is appropriately simplified or omitted. In the third embodiment, the operation of the air conditioner 1 is the same as that of the first embodiment, and the description thereof is omitted.
  • ⁇ Configuration of air conditioner> Below, the structure of the air conditioning apparatus which concerns on Embodiment 3 is demonstrated. The air conditioner 1 does not have the accumulator 17. The internal volume of the outdoor heat exchanger 14 may not be 0.7 to 1.3 times the internal volume of the indoor heat exchanger 22. Since the other structure of the air conditioning apparatus 1 is the same as that of Embodiment 1, the description is abbreviate
  • the refrigerant between the first expansion valve 16 and the second expansion valve 24 is controlled to be in a gas-liquid two-phase state during the cooling operation and the heating operation. Moreover, in the air conditioning apparatus 1, it controls so that the required refrigerant
  • the refrigerant between the first expansion valve 16 and the second expansion valve 24 is controlled so as to be in a gas-liquid two-phase state, and the necessary refrigerant amount of the refrigerant circulation circuit becomes the target necessary refrigerant amount. Being controlled is achieved by the control device 41 controlling the opening degree of the first expansion valve 16 and the second expansion valve 24.
  • Control unit 41 the opening of the downstream-side expansion valve b, is controlled so as necessary refrigerant quantity in the refrigerant circuit is required refrigerant quantity Mr m a target.
  • the target required refrigerant amount Mr m is a fixed value set in advance.
  • required refrigerant quantity Mr m a target is configured with two fixed values, required refrigerant quantity in the refrigerant circuit may be controlled to be between the two fixed values.
  • the required refrigerant amount Mr c of the refrigerant circuit during the cooling operation is calculated from the equation (7) in which the equation (5) is substituted. Further, the required refrigerant amount Mr h of the refrigerant circuit during the heating operation is calculated from the equation (8) into which the equation (6) is substituted.
  • information on the internal volume VOC of the outdoor heat exchanger 14, the internal volume VIC of the indoor heat exchanger 22, and the pipe length L of the first connection pipe 31 and the second connection pipe 32 is the control device. 41 is input in advance. The control device 41 may automatically acquire the information.
  • the refrigerant density ⁇ c in the condenser is converted from, for example, the detection pressure P d of the first pressure sensor 51. Further, the refrigerant density ⁇ e in the evaporator is converted from, for example, the detected pressure P s of the second pressure sensor 52.
  • FIG. 9 is a diagram showing a control flow in the control method 1 of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the control device 41 calculates the required refrigerant amount Mr c of the refrigerant circulation circuit in S303, and proceeds to S304.
  • the control device 41 increases the opening of the second expansion valve 24 when the required refrigerant amount Mr c of the refrigerant circulation circuit is larger than the target required refrigerant amount Mr m, and When the required refrigerant amount Mr c is smaller than the target required refrigerant amount Mr m , the opening degree of the second expansion valve 24 is reduced.
  • the amount of change in the opening degree may be determined according to how much the required refrigerant amount Mr c of the refrigerant circulation circuit differs from the target required refrigerant amount Mr m .
  • the control device 41 calculates the necessary refrigerant amount Mr h of the refrigerant circulation circuit, and proceeds to S308.
  • the control device 41 increases the opening of the first expansion valve 16 so that the refrigerant circulation circuit
  • the required refrigerant amount Mr h is smaller than the target required refrigerant amount Mr m
  • the opening degree of the first expansion valve 16 is reduced.
  • the change amount of the opening degree may be determined according to how much the required refrigerant amount Mr h of the refrigerant circulation circuit differs from the target required refrigerant amount Mr m .
  • FIG. 10 is a diagram showing a control flow in the control method 2 of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the control device 41 calculates the required refrigerant amount Mr c of the refrigerant circulation circuit in S403, and proceeds to S404.
  • the control device 41 reduces the opening of the first expansion valve 16 and
  • the opening degree of the first expansion valve 16 is increased.
  • the amount of change in the opening degree may be determined according to how much the required refrigerant amount Mr c of the refrigerant circulation circuit differs from the target required refrigerant amount Mr m .
  • the control device 41 calculates the necessary refrigerant amount Mr h of the refrigerant circulation circuit, and proceeds to S408.
  • the control device 41 reduces the opening of the second expansion valve 24, and the refrigerant circulation circuit
  • the opening degree of the second expansion valve 24 is increased.
  • the change amount of the opening degree may be determined according to how much the required refrigerant amount Mr h of the refrigerant circulation circuit differs from the target required refrigerant amount Mr m .
  • control is performed so that the required refrigerant amount Mr c of the refrigerant circulation circuit during the cooling operation and the required refrigerant amount Mr h of the refrigerant circulation circuit during the heating operation become the target required refrigerant amount Mr m. Therefore, even when the internal volume of the outdoor heat exchanger 14 is not 0.7 to 1.3 times the internal volume of the indoor heat exchanger 22, almost no excess refrigerant is generated, and the refrigerant storage container Is unnecessary or further downsized. Note that the internal volume of the outdoor heat exchanger 14 may be 0.7 to 1.3 times the internal volume of the indoor heat exchanger 22.
  • Embodiment 1 As mentioned above, although Embodiment 1, Embodiment 2, and Embodiment 3 were demonstrated, this invention is not limited to description of each embodiment. For example, it is also possible to combine each embodiment or each modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 本発明に係る冷凍サイクル装置は、圧縮機と熱源側熱交換器と減圧手段と負荷側熱交換器とが、順次接続されて冷媒循環回路が形成され、圧縮機と熱源側熱交換器とは、熱源側ユニットに設けられ、負荷側熱交換器は、負荷側ユニットに設けられ、減圧手段は、熱源側ユニットに設けられた第1減圧装置と、負荷側ユニットに設けられた第2減圧装置と、を有し、第1減圧装置と第2減圧装置とは、熱源側ユニットと負荷側ユニットとの間に介在する第1接続配管を介して直列に接続され、第1減圧装置と第2減圧装置との間の流路を流れる冷媒が、気液二相状態になり、且つ、少なくとも第1接続配管を含む冷媒循環回路の一部の流路における冷媒量が、目標とする冷媒量になるように、第1減圧装置及び第2減圧装置の減圧量を制御するものである。

Description

冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
 本発明は、冷凍サイクル装置と、冷凍サイクル装置の制御方法に関するものである。
 従来の冷凍サイクル装置として、減圧装置(例えば、膨張弁等)が、熱源側ユニット及び負荷側ユニットのいずれか一方に設けられ、熱源側ユニットに設けられた減圧装置と負荷側ユニットに設けられた負荷側熱交換器とが、又は、熱源側ユニットに設けられた熱源側熱交換器と負荷側ユニットに設けられた減圧装置とが、接続配管(以下、第1接続配管という)を介して接続され、熱源側ユニットに設けられた圧縮機と負荷側ユニットに設けられた負荷側熱交換器とが、接続配管(以下、第2接続配管という)を介して接続されることで、冷媒循環回路が形成されるものがある。
 そのような冷凍サイクル装置では、環境条件(例えば、熱源側熱交換器で冷媒と熱交換する媒体の温度、負荷側熱交換器で冷媒と熱交換する媒体の温度等)、運転条件(例えば、圧縮機の運転容量等)等の変化に伴って、高圧側圧力及び低圧側圧力が変化するため、第1接続配管及び第2接続配管の冷媒密度が変化することとなって、冷媒循環回路の必要冷媒量が変化する。
 また、従来の冷凍サイクル装置として、更に、流路切替装置(例えば、四方弁等)によって冷媒循環回路の冷媒の循環方向が切り替えられることで、熱源側熱交換器が凝縮器として作用し、負荷側熱交換器が蒸発器として作用する冷却運転と、熱源側熱交換器が蒸発器として作用し、負荷側熱交換器が凝縮器として作用する加熱運転とが切り替えられるものもある。
 そのような冷凍サイクル装置では、冷媒の循環方向の変化に伴って、第1接続配管の必要冷媒量と第2接続配管の必要冷媒量とが変化することに起因し、冷却運転における必要冷媒量と加熱運転における必要冷媒量とに差が生じる。
 減圧装置が熱源側ユニットに設けられる場合では、冷却運転において、第1接続配管の冷媒が気液二相状態で、且つ、第2接続配管の冷媒が気相状態となり、加熱運転において、第1接続配管の冷媒が液相状態で、且つ、第2接続配管の冷媒が気相状態となる。気液二相状態の冷媒と比較して液相状態の冷媒の方が、必要冷媒量が多いため、冷却運転と比較して加熱運転の方が、必要冷媒量が多くなる。
 減圧装置が負荷側ユニットに設けられる場合では、冷却運転において、第1接続配管の冷媒が液相状態で、且つ、第2接続配管の冷媒が気相状態となり、加熱運転において、第1接続配管の冷媒が気液二相状態で、且つ、第2接続配管の冷媒が気相状態となる。気液二相状態の冷媒と比較して液相状態の冷媒の方が、必要冷媒量が多いため、加熱運転と比較して冷却運転の方が、必要冷媒量が多くなる。
 また、凝縮器での冷媒密度が蒸発器での冷媒密度と比較して大きくなることに起因し、熱源側熱交換器の内容積と負荷側熱交換器の内容積との違いによっても、冷却運転における必要冷媒量と加熱運転における必要冷媒量とに差が生じる。
 熱源側熱交換器の内容積が負荷側熱交換器の内容積と比較して大きい場合には、内容積が大きい熱源側熱交換器が、冷媒密度が大きくなる凝縮器として作用し、内容積が小さい負荷側熱交換器が、冷媒密度が小さくなる蒸発器として作用する冷却運転の方が、内容積が大きい熱源側熱交換器が、冷媒密度が小さくなる蒸発器として作用し、内容積が小さい負荷側熱交換器が、冷媒密度が大きくなる凝縮器として作用する加熱運転と比較して、必要冷媒量が多くなる。
 熱源側熱交換器の内容積が負荷側熱交換器の内容積と比較して小さい場合には、内容積が小さい熱源側熱交換器が、冷媒密度が小さくなる蒸発器として作用し、内容積が大きい負荷側熱交換器が、冷媒密度が大きくなる凝縮器として作用する加熱運転の方が、内容積が小さい熱源側熱交換器が、冷媒密度が大きくなる凝縮器として作用し、内容積が大きい負荷側熱交換器が、冷媒密度が小さくなる蒸発器として作用する冷却運転と比較して、必要冷媒量が多くなる。
 そのため、従来の冷凍サイクル装置では、上述の環境条件、運転条件等の変化に伴う必要冷媒量の変化によって生じる余剰冷媒、上述の冷却運転における必要冷媒量と加熱運転における必要冷媒量との差によって生じる余剰冷媒等を貯留するために、冷媒循環回路に、アキュムレータ(いわゆるACC)、レシーバ(いわゆるREC)等の冷媒貯留容器が設けられる(例えば、特許文献1参照)。
特開2012-229893号公報(段落[0095]~段落[0100]、図1、図6、図7)
 このような冷凍サイクル装置では、余剰冷媒が多く、冷媒貯留容器が大型化され、冷凍サイクル装置が高コスト化及び大型化されてしまうという問題点があった。特に、第1接続配管及び第2接続配管の配管長さが長い場合には、更に余剰冷媒が増加し、冷凍サイクル装置が更に高コスト化及び大型化されてしまうという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、高コスト化及び大型化されることが抑制された冷凍サイクル装置を得ることを目的とする。また、本発明は、高コスト化及び大型化されることが抑制された冷凍サイクル装置の制御方法を得ることを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機と熱源側熱交換器と減圧手段と負荷側熱交換器とが、順次接続されて冷媒循環回路が形成され、前記圧縮機と前記熱源側熱交換器とは、熱源側ユニットに設けられ、前記負荷側熱交換器は、負荷側ユニットに設けられ、前記減圧手段は、前記熱源側ユニットに設けられた第1減圧装置と、前記負荷側ユニットに設けられた第2減圧装置と、を有し、前記第1減圧装置と前記第2減圧装置とは、前記熱源側ユニットと前記負荷側ユニットとの間に介在する第1接続配管を介して直列に接続され、前記第1減圧装置と前記第2減圧装置との間の流路を流れる冷媒が、気液二相状態になり、且つ、少なくとも前記第1接続配管を含む前記冷媒循環回路の一部の流路における冷媒量が、目標とする冷媒量になるように、前記第1減圧装置及び前記第2減圧装置の減圧量を制御するものである。
 本発明に係る冷凍サイクル装置は、減圧手段が、熱源側ユニットに設けられた第1減圧装置と、負荷側ユニットに設けられた第2減圧装置と、を有し、第1減圧装置と第2減圧装置とが、熱源側ユニットと負荷側ユニットとの間に介在する第1接続配管を介して直列に接続され、第1減圧装置と第2減圧装置との間の流路を流れる冷媒が、気液二相状態になり、且つ、少なくとも第1接続配管を含む冷媒循環回路の一部の流路における冷媒量が、目標とする冷媒量になるように、第1減圧装置及び第2減圧装置の減圧量を制御するものであることで、余剰冷媒が削減され、高コスト化及び大型化されることが抑制される。
本発明の実施の形態1に係る空気調和装置の、構成を示す図である。 本発明の実施の形態1に係る空気調和装置の、P-H線図を示す図である。 本発明の実施の形態1に係る空気調和装置の、制御方法1における制御フローを示す図である。 本発明の実施の形態1に係る空気調和装置の、制御方法2における制御フローを示す図である。 本発明の実施の形態1に係る空気調和装置の、乾き度の算出方法を示す図である。 本発明の実施の形態1に係る空気調和装置の、変形例の構成を示す図である。 本発明の実施の形態2に係る空気調和装置の、構成を示す図である。 室外側熱交換器の内容積と、室内側熱交換器の内容積と、室外側熱交換器の必要冷媒量と室内側熱交換器の必要冷媒量との合計と、の関係を示す図である。 本発明の実施の形態3に係る空気調和装置の、制御方法1における制御フローを示す図である。 本発明の実施の形態3に係る空気調和装置の、制御方法2における制御フローを示す図である。
 以下、本発明に係る冷凍サイクル装置について、図面を用いて説明する。本発明に係る冷凍サイクル装置は、冷媒循環回路の冷媒を循環させて冷凍サイクル(ヒートポンプサイクル)を形成して、被温調対象を冷却する冷却運転、被温調対象を加熱する加熱運転等を行なうものである。なお、以下では、本発明に係る冷凍サイクル装置が、空気調和装置である場合を説明しているが、そのような場合に限定されず、本発明に係る冷凍サイクル装置には、冷凍サイクルを形成する他の冷凍サイクル装置が含まれる。また、以下で説明する構成、動作等は、一例にすぎず、そのような構成、動作等に限定されない。また、各図において、同一又は類似する部材又は部分には、同一の符号を付している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 実施の形態1に係る空気調和装置について説明する。
<空気調和装置の構成>
 以下に、実施の形態1に係る空気調和装置の構成について説明する。
 図1は、本発明の実施の形態1に係る空気調和装置の、構成を示す図である。図1に示されるように、空気調和装置1は、室外機11と、室内機21と、を有する。室外機11は、本発明における「熱源側ユニット」に相当する。室内機21は、本発明における「負荷側ユニット」に相当する。
 室外機11には、圧縮機12と、四方弁13と、室外側熱交換器14と、室外側送風機15と、第1膨張弁16と、アキュムレータ17と、が設けられる。室内機21には、室内側熱交換器22と、室内側送風機23と、第2膨張弁24と、が設けられる。第1膨張弁16は、本発明における「第1減圧装置」に相当する。第2膨張弁24は、本発明における「第2減圧装置」に相当する。
 室外機11の第1膨張弁16と、室内機21の第2膨張弁24とが、第1接続配管31を介して接続される。室外機11の四方弁13と、室内機21の室内側熱交換器22とが、第2接続配管32を介して接続される。圧縮機12と四方弁13と室外側熱交換器14と第1膨張弁16と第1接続配管31と第2膨張弁24と室内側熱交換器22と第2接続配管32とアキュムレータ17とで、冷媒循環回路が形成される。
 制御装置41によって、圧縮機12の駆動周波数が制御される。また、制御装置41によって、室外側送風機15の送風量と室内側送風機23の送風量とが制御される。また、制御装置41によって、第1膨張弁16の開度と第2膨張弁24の開度とが制御される。また、制御装置41によって、四方弁13の流路が制御される。なお、制御装置41は、室外機11に設けられてもよく、室内機21に設けられてもよく、それら以外に設けられてもよい。
 また、制御装置41には、第1圧力センサ51と、第2圧力センサ52と、が接続される。第1圧力センサ51は、圧縮機12から吐出された冷媒の圧力を検出する。第2圧力センサ52は、圧縮機12に吸入される冷媒の圧力を検出する。
 また、制御装置41には、第1温度センサ61と、第2温度センサ62と、第3温度センサ63と、第4温度センサ64と、第5温度センサ65と、第6温度センサ66と、が接続される。第1温度センサ61は、圧縮機12から吐出された冷媒の温度を検出する。第2温度センサ62は、室外側熱交換器14と第1膨張弁16との間を流れる冷媒の温度を検出する。第3温度センサ63は、第1膨張弁16と第2膨張弁24との間を流れる冷媒の温度を検出する。第4温度センサ64は、第2膨張弁24と室内側熱交換器22との間を流れる冷媒の温度を検出する。第5温度センサ65は、室内側熱交換器22と四方弁13との間を流れる冷媒の温度を検出する。第6温度センサ66は、圧縮機12に吸入される冷媒の温度を検出する。なお、図1では、第3温度センサ63が室外機11に設けられる場合を示しているが、第3温度センサ63が、室内機21に設けられてもよく、また、第1接続配管31に設けられてもよい。
<空気調和装置の動作>
 以下に、実施の形態1に係る空気調和装置の動作について説明する。
(冷房運転時の動作)
 空気調和装置1の冷房運転時の動作について説明する。
 制御装置41は、圧縮機12から吐出された冷媒が室外側熱交換器14に導かれ、室内側熱交換器22からの冷媒が圧縮機12の吸入側に導かれるように、四方弁13の流路を切り替える。なお、冷房運転時の四方弁13の流路は、図1において実線で示される。
 圧縮機12から吐出された高温高圧のガス状態の冷媒は、四方弁13を通過して室外側熱交換器14に流入する。高温高圧のガス状態の冷媒は、室外側送風機15によって室外側熱交換器14に供給された外気等の媒体と熱交換することで凝縮し、高圧の液状態の冷媒となる。高圧の液状態の冷媒は、第1膨張弁16と第1接続配管31と第2膨張弁24とを通過して、低圧の気液二相状態の冷媒となり、室内側熱交換器22に流入する。低圧の気液二相状態の冷媒は、室内側送風機23によって室内側熱交換器22に供給された室内空気等の媒体と熱交換することで蒸発し、低圧のガス状態の冷媒となる。低圧のガス状態の冷媒は、第2接続配管32と四方弁13とを通過して、アキュムレータ17へ流入し、圧縮機12へ再度吸入される。つまり、冷房運転時には、室外側熱交換器14が凝縮器として作用し、室内側熱交換器22が蒸発器として作用する。なお、冷房運転時の冷媒の循環方向は、図1において実線矢印で示される。
(暖房運転時の動作)
 空気調和装置1の暖房運転時の動作について説明する。
 制御装置41は、圧縮機12から吐出された冷媒が室内側熱交換器22に導かれ、室外側熱交換器14からの冷媒が圧縮機12の吸入側に導かれるように、四方弁13の流路を切り替える。なお、暖房運転時の四方弁13の流路は、図1において点線で示される。
 圧縮機12から吐出された高温高圧のガス状態の冷媒は、四方弁13と第2接続配管32とを通過して室内側熱交換器22に流入する。高温高圧のガス状態の冷媒は、室内側送風機23によって室内側熱交換器22に供給された室内空気等の媒体と熱交換することで凝縮し、高圧の液状態の冷媒となる。高圧の液状態の冷媒は、第2膨張弁24と第1接続配管31と第1膨張弁16とを通過して、低圧の気液二相状態の冷媒となり、室外側熱交換器14に流入する。低圧の気液二相状態の冷媒は、室外側送風機15によって室外側熱交換器14に供給された外気等の媒体と熱交換することで蒸発し、低圧のガス状態の冷媒となる。低圧のガス状態の冷媒は、四方弁13を通過して、アキュムレータ17へ流入し、圧縮機12へ再度吸入される。つまり、暖房運転時には、室外側熱交換器14が蒸発器として作用し、室内側熱交換器22が凝縮器として作用する。なお、暖房運転時の冷媒の循環方向は、図1において点線矢印で示される。
<制御装置の動作>
 図2は、本発明の実施の形態1に係る空気調和装置の、P-H線図を示す図である。図2において、A点は圧縮機吸入側、B点は圧縮機吐出側、C点は第1膨張弁16及び第2膨張弁24のうちの上流側に位置する膨張弁(以下、上流側膨張弁aという)の入口側、D点は第1膨張弁16及び第2膨張弁24のうちの下流側に位置する膨張弁(以下、下流側膨張弁bという)の出口側に相当する。第1接続配管31は、冷房運転時及び暖房運転時において、E点に相当する。また、第2接続配管32は、冷房運転時において、A点に相当し、暖房運転時において、B点に相当する。
 図2に示されるように、空気調和装置1では、冷房運転時及び暖房運転時に、第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態となるように制御される。また、空気調和装置1では、冷房運転時及び暖房運転時に、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量になるように制御される。第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態となるように制御されることと、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量になるように制御されることとは、制御装置41が第1膨張弁16及び第2膨張弁24の開度を制御することで、両立される。
 具体例として、以下2通りの制御方法を説明する。なお、以下では、第1接続配管31と第2接続配管32とが共通の配管長さである場合、つまり、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計を目標の冷媒量にすることが、第1接続配管31の配管単位長さあたりの冷媒量と第2接続配管32の配管単位長さあたりの冷媒量との合計を目標とする配管単位長さあたりの冷媒量にすることと、同義である場合を説明する。
 なお、第1接続配管31と第2接続配管32とが異なる配管長さである場合には、配管単位長さあたりの冷媒量に配管長さを乗算した冷媒量の合計を目標とする冷媒量にすればよい。また、第1接続配管31と第2接続配管32とが共通の配管長さで、共通の断面積である場合には、第1接続配管31の冷媒密度と第2接続配管32の冷媒密度との合計を目標とする冷媒密度にすればよい。また、第1接続配管31と第2接続配管32とが異なる配管長さで、共通の断面積である場合には、配管単位断面積あたりの冷媒量の合計を目標とする配管単位断面積あたりの冷媒量にすればよい。
(制御方法1)
 制御装置41は、圧縮機12の駆動周波数を、空調負荷に応じて、つまり室内機21が目標とする能力を発揮することができるように、設定及び変更する。また、制御装置41は、室外側送風機15の送風量を、冷房運転時は、凝縮温度が目標とする凝縮温度になるように、また、暖房運転時は、蒸発温度が目標とする蒸発温度になるように、設定及び変更する。なお、凝縮温度は、例えば、第1圧力センサ51の検出圧力Pを飽和温度換算することで得られ、また、蒸発温度は、例えば、第2圧力センサ52の検出圧力Pを飽和温度換算することで得られる。また、制御装置41は、室内側送風機23の送風量を、使用者の設定に応じて、設定及び変更する。
 制御装置41は、上流側膨張弁aの開度を、過冷却度SCが目標とする過冷却度SCになるように、設定及び変更する。なお、過冷却度SCは、冷房運転時には、例えば、第1圧力センサ51の検出圧力Pを飽和温度換算した温度と、第2温度センサ62の検出温度THと、の差を算出することで得られ、また、暖房運転時には、例えば、第1圧力センサ51の検出圧力Pを飽和温度換算した温度と、第4温度センサ64の検出温度THと、の差を算出することで得られる。目標とする過冷却度SCは、予め設定された1つの固定値である。目標とする過冷却度SCとして、2つの固定値が設定され、過冷却度SCが、その2つの固定値の間になるように制御してもよい。
 制御装置41は、下流側膨張弁bの開度を、第1接続配管31における配管単位長さあたりの冷媒量と第2接続配管32における配管単位長さあたりの冷媒量との合計(以下、単位長さあたりの合計冷媒量Mpという)が目標とする単位長さあたりの合計冷媒量Mpになるように制御する。目標とする単位長さあたりの合計冷媒量Mpは、予め設定された1つの固定値である。目標とする単位長さあたりの合計冷媒量Mpとして、2つの固定値が設定され、単位長さあたりの合計冷媒量Mpが、その2つの固定値の間になるように制御してもよい。
 単位長さあたりの合計冷媒量Mpは、第1接続配管31の断面積S[m]と、第2接続配管32の断面積S[m]と、第1接続配管31での冷媒密度ρp[kg/m]と、第2接続配管32での冷媒密度ρp[kg/m]と、を用いて、以下の式(1)で算出される。
Figure JPOXMLDOC01-appb-M000001
 第1接続配管31での冷媒密度ρpは、冷房運転時には、例えば、第3温度センサ63の検出温度THと、第2温度センサ62の検出温度THから換算されるエンタルピと、に基づいて算出され、また、暖房運転時には、第3温度センサ63の検出温度THと、第4温度センサ64の検出温度THから換算されるエンタルピと、に基づいて算出される。なお、第1接続配管31での冷媒密度ρpの算出方法については、後に詳述する。
 第2接続配管32での冷媒密度ρpは、冷房運転時には、例えば、第2圧力センサ52の検出圧力Pから換算されてもよく、第2圧力センサ52の検出圧力Pと、第6温度センサ66の検出温度THと、から換算されてもよい。第2圧力センサ52の検出圧力Pと、第6温度センサ66の検出温度THと、から換算される場合には、過熱度SHが加味されることとなり、第2接続配管32での冷媒密度ρpの算出精度が向上される。第2接続配管32での冷媒密度ρpは、暖房運転時には、第1圧力センサ51の検出圧力Pと、第1温度センサ61の検出温度THと、から換算される
 図3は、本発明の実施の形態1に係る空気調和装置の、制御方法1における制御フローを示す図である。図3に示されるように、制御装置41は、S101において、冷房運転か暖房運転かを判定し、冷房運転である場合は、S102に進み、暖房運転である場合は、S106に進む。
 制御装置41は、S102において、過冷却度SCを算出し、S103に進む。制御装置41は、S103において、単位長さあたりの合計冷媒量Mpを算出し、S104に進む。制御装置41は、S104において、過冷却度SCが目標とする過冷却度SCと比較して大きい場合は、第1膨張弁16の開度を大きくし、過冷却度SCが目標とする過冷却度SCと比較して小さい場合は、第1膨張弁16の開度を小さくして、S105に進む。過冷却度SCが目標とする過冷却度SCとどの程度異なるかに応じて、開度の変更量が決定されてもよい。制御装置41は、S105において、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して大きい場合は、第2膨張弁24の開度を大きくし、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して小さい場合は、第2膨張弁24の開度を小さくする。単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
 制御装置41は、S106において、過冷却度SCを算出し、S107に進む。制御装置41は、S107において、単位長さあたりの合計冷媒量Mpを算出し、S108に進む。制御装置41は、S108において、過冷却度SCが目標とする過冷却度SCと比較して大きい場合は、第2膨張弁24の開度を大きくし、過冷却度SCが目標とする過冷却度SCと比較して小さい場合は、第2膨張弁24の開度を小さくして、S109に進む。過冷却度SCが目標とする過冷却度SCとどの程度異なるかに応じて、開度の変更量が決定されてもよい。制御装置41は、S109において、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して大きい場合は、第1膨張弁16の開度を大きくし、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して小さい場合は、第1膨張弁16の開度を小さくする。単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
(制御方法2)
 制御装置41は、圧縮機12の駆動周波数を、空調負荷に応じて、つまり室内機21が目標とする能力を発揮することができるように、設定及び変更する。また、制御装置41は、室外側送風機15の送風量を、冷房運転時は、凝縮温度が目標とする凝縮温度になるように、また、暖房運転時は、蒸発温度が目標とする蒸発温度になるように、設定及び変更する。また、制御装置41は、室内側送風機23の送風量を、使用者の設定に応じて、設定及び変更する。
 制御装置41は、下流側膨張弁bの開度を、過熱度SHが目標とする過熱度SHになるように、設定及び変更する。なお、過熱度SHは、冷房運転時には、例えば、第5温度センサ65の検出温度THと、第2圧力センサ52の検出圧力Pを飽和温度換算した温度と、の差を算出することで得られ、また、暖房運転時には、例えば、第6温度センサ66の検出温度THと、第2圧力センサ52の検出圧力Pを飽和温度換算した温度と、の差を算出することで得られる。目標とする過熱度SHは、予め設定された1つの固定値である。目標とする過熱度SHとして、2つの固定値が設定され、過熱度SHが、その2つの固定値の間になるように制御してもよい。
 制御装置41は、上流側膨張弁aの開度を、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpになるように制御する。単位長さあたりの合計冷媒量Mpは、制御方法1と同様に算出される。
 図4は、本発明の実施の形態1に係る空気調和装置の、制御方法2における制御フローを示す図である。図4に示されるように、制御装置41は、S201において、冷房運転か暖房運転かを判定し、冷房運転である場合は、S202に進み、暖房運転である場合は、S206に進む。
 制御装置41は、S202において、過熱度SHを算出し、S203に進む。制御装置41は、S203において、単位長さあたりの合計冷媒量Mpを算出し、S204に進む。制御装置41は、S204において、過熱度SHが目標とする過熱度SHと比較して大きい場合は、第2膨張弁24の開度を大きくし、過熱度SHが目標とする過熱度SHと比較して小さい場合は、第2膨張弁24の開度を小さくして、S205に進む。過熱度SHが目標とする過熱度SHとどの程度異なるかに応じて、開度の変更量が決定されてもよい。制御装置41は、S205において、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して大きい場合は、第1膨張弁16の開度を小さくし、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して小さい場合は、第1膨張弁16の開度を大きくする。単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
 制御装置41は、S206において、過熱度SHを算出し、S207に進む。制御装置41は、S207において、単位長さあたりの合計冷媒量Mpを算出し、S208に進む。制御装置41は、S208において、過熱度SHが目標とする過熱度SHと比較して大きい場合は、第1膨張弁16の開度を大きくし、過熱度SHが目標とする過熱度SHと比較して小さい場合は、第1膨張弁16の開度を小さくして、S209に進む。過熱度SHが目標とする過熱度SHとどの程度異なるかに応じて、開度の変更量が決定されてもよい。制御装置41は、S209において、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して大きい場合は、第2膨張弁24の開度を小さくし、単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpと比較して小さい場合は、第2膨張弁24の開度を大きくする。単位長さあたりの合計冷媒量Mpが目標とする単位長さあたりの合計冷媒量Mpとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
(第1接続配管での冷媒密度の算出方法)
 第1接続配管31での冷媒密度ρpは、第1接続配管31の冷媒の、飽和ガス密度ρg[kg/m]と飽和液密度ρl[kg/m]とボイド率f(流体の単位断面積あたりに含まれる気泡の面積割合)とから、以下の式(2)で算出される。
Figure JPOXMLDOC01-appb-M000002
 飽和ガス密度ρg及び飽和液密度ρlは、例えば、第3温度センサ63の検出温度THから換算される。また、ボイド率fは、第1接続配管31の冷媒の、乾き度xと飽和ガス密度ρgと飽和液密度ρlとから、以下の式(3)で算出される。なお、式(3)において、e=0.4とすると、ボイド率fの算出精度が向上する。
Figure JPOXMLDOC01-appb-M000003
 図5は、本発明の実施の形態1に係る空気調和装置の、乾き度の算出方法を示す図である。乾き度xは、例えば、図5に示されるエンタルピH[kJ/kg]と飽和液エンタルピHsl[kJ/kg]と飽和ガスエンタルピHsg[kJ/kg]とから、以下の式(4)で算出される。なお、エンタルピHは、例えば、冷房運転時には、第2温度センサ62の検出温度THから換算され、暖房運転時には、第4温度センサ64の検出温度THから換算される。飽和液エンタルピHsl及び飽和ガスエンタルピHsgは、例えば、第3温度センサ63の検出温度THから換算される。なお、第3温度センサ63の検出温度THに換えて、圧力センサが設けられ、その圧力センサの検出圧力から飽和液エンタルピHsl及び飽和ガスエンタルピHsgが換算されてもよい。
Figure JPOXMLDOC01-appb-M000004
 なお、空気調和装置1では、第1接続配管31での冷媒密度ρp及び第2接続配管32での冷媒密度ρpが、室外機11又は室内機21に設けられた各センサの検出温度、検出圧力等から算出されるが、第1接続配管31及び第2接続配管32の圧力損失が大きいことに起因して、第1接続配管31及び第2接続配管32の実際の冷媒密度と、室外機11又は室内機21に設けられた各センサの検出温度、検出圧力等から算出される冷媒密度と、の間に差が生じてしまう場合には、室外機11又は室内機21に設けられた各センサの検出温度、検出圧力等から算出される冷媒密度が、その圧力損失を加味するように、例えば、第1接続配管31及び第2接続配管32の配管長さの情報等を用いて補正されるとよい。また、例えば、第1接続配管31と第2膨張弁24との間に温度センサが追加される等、冷媒密度が複数箇所で算出され、その平均値が制御に用いられてもよい。
<空気調和装置の作用>
 以下に、実施の形態1に係る空気調和装置の作用について説明する。
 空気調和装置1では、第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態になり、且つ、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量(例えば、一定)になるように制御される。そのため、環境条件、運転条件等の変化に伴って、高圧側圧力及び低圧側圧力が変化することに起因して、冷媒循環回路の必要冷媒量が変化することが抑制され、冷媒貯留容器が小型化される。
 また、空気調和装置1では、第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態になり、且つ、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量になるように制御されることが、冷房運転時及び暖房運転時に、共通(例えば、同一)の目標とする冷媒量を用いて行われる。そのため、冷媒の循環方向の変化に伴って、必要冷媒量に差が生じることが抑制され、更に冷媒貯留容器が小型化される。
 なお、空気調和装置1では、冷房運転及び暖房運転を切り替えることが可能であるが、空気調和装置1が、冷房運転及び暖房運転のいずれか一方のみを行うものであってもよい。また、冷房運転及び暖房運転を切り替えることが可能である場合に、冷房運転及び暖房運転のいずれか一方のみにおいて、又は、冷房運転及び暖房運転で異なる目標とする冷媒量を用いて、第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態になり、且つ、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量になるように制御されてもよい。それらのような場合でも、環境条件、運転条件等の変化に伴って、高圧側圧力及び低圧側圧力が変化することに起因して、冷媒循環回路の必要冷媒量が変化することが抑制され、冷媒貯留容器が小型化される。
 また、空気調和装置1では、第1接続配管31の冷媒量と第2接続配管32の冷媒量との合計が目標とする冷媒量になるように制御されるが、第1接続配管31の冷媒量のみが目標とする冷媒量になるように制御されてもよい。そのような場合でも、環境条件、運転条件等の変化に伴って、高圧側圧力又は低圧側圧力が変化することに起因して、冷媒循環回路の必要冷媒量が変化することが抑制され、冷媒貯留容器が小型化される。また、空気調和装置1が冷房運転及び暖房運転を切り替えるものである場合には、冷媒の循環方向の変化に伴って、第1接続配管31の冷媒が気液二相状態と液相状態とに変化することがなくなり、必要冷媒量に差が生じることが効率よく抑制され、冷媒貯留容器が小型化される。
 上述のどのような場合でも、コストが削減され、環境性能が向上されるという作用を、更に有する。つまり、第1接続配管31の冷媒が液相状態にならないため、冷媒循環回路の必要冷媒量自体が削減されることとなり、例えば、冷媒自体のコストが削減される。また、冷媒循環回路の必要冷媒量自体が削減されることで、冷媒漏洩時の環境及び生物への影響が低減されるため、例えば、R32、HFO1234yf、HFO1234ze、プロパン等を冷媒として用いることが可能となり、実質GWP(=GWP×冷媒量)、通年エネルギー消費効率(APF)等の環境性能評価指標が改善される。
 また、必要冷媒量の差、つまり余剰冷媒が生じることが抑制される場合には、冷媒循環回路の成績係数(COP)が向上されるという作用も、更に有する。つまり、余剰冷媒が多い場合には、例えば、凝縮器に余剰冷媒が滞留することで高圧側圧力が過昇することを抑制するために、蒸発器出口の冷媒を気液二相状態にする等の制御によって冷媒循環回路の冷凍能力に制限が加えられることがあるが、余剰冷媒が生じることが抑制される場合には、冷凍能力の制限が少なくて済む、又は、不要となるため、冷媒循環回路の成績係数(COP)が向上される。
<変形例>
 図6は、本発明の実施の形態1に係る空気調和装置の、変形例の構成を示す図である。図6に示されるように、空気調和装置1が、室外機11と、複数の室内機21-1、21-2と、を有し、室外機11の第1膨張弁16と、室内機21-1の第2膨張弁24-1及び室内機21-2の第2膨張弁24-2とが、第1接続配管31を介して接続され、室外機11の四方弁13と、室内機21-1の室内側熱交換器22-1及び室内機21-2の室内側熱交換器22-2とが、第2接続配管32を介して接続されてもよい。なお、図6では、2つの室内機21-1、21-2を有する場合を説明しているが、3つ以上であってもよい。
実施の形態2.
 実施の形態2に係る空気調和装置について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。なお、実施の形態2は、実施の形態1と、空気調和装置1の動作及び制御装置41の動作が同様であるため、その説明を省略している。
<空気調和装置の構成>
 以下に、実施の形態2に係る空気調和装置の構成について説明する。図7は、本発明の実施の形態2に係る空気調和装置の、構成を示す図である。図7に示されるように、空気調和装置1は、アキュムレータ17を有しない。室外側熱交換器14の内容積は、室内側熱交換器22の内容積と比較して0.7~1.3倍である。空気調和装置1の他の構成は、実施の形態1と同様であるため、その説明を省略する。
<空気調和装置の作用>
 図8は、室外側熱交換器の内容積と、室内側熱交換器の内容積と、室外側熱交換器の必要冷媒量と室内側熱交換器の必要冷媒量との合計と、の関係を示す図である。図8に示されるように、室外側熱交換器14の内容積VOC及び室内側熱交換器22の内容積VICが増加するに従って、室外側熱交換器14の必要冷媒量と室内側熱交換器22の必要冷媒量との合計(以下、熱交換器合計必要冷媒量という)は、例えば、1kgから3kgへと増加する。図8において、斜線で示される領域Fは、室外側熱交換器14の内容積VOCが室内側熱交換器22の内容積VICと比較して0.7~1.3倍の領域である。
 熱交換器合計必要冷媒量は、凝縮器として作用する熱交換器の必要冷媒量が支配的であるため、室外側熱交換器14の内容積VOCが室内側熱交換器22の内容積VICと比較して大きい場合には、室外側熱交換器14が凝縮器として作用する冷房運転時に熱交換器合計必要冷媒量が多くなり、暖房運転時には余剰冷媒が発生する。つまり、領域Fの下側の領域における熱交換器合計必要冷媒量は、冷房運転時の熱交換器合計必要冷媒量Mである。
 また、室外側熱交換器14の内容積VOCが室内側熱交換器22の内容積VICと比較して小さい場合には、室内側熱交換器22が凝縮器として作用する暖房運転時に熱交換器合計必要冷媒量が多くなり、冷房運転時には余剰冷媒が発生する。つまり、領域Fの上側の領域における熱交換器合計必要冷媒量は、暖房運転時の熱交換器合計必要冷媒量Mである。
 また、室外側熱交換器14の内容積VOCが室内側熱交換器22の内容積VICと比較して0.7~1.3倍である場合には、冷房運転時の熱交換器合計必要冷媒量Mと暖房運転時の熱交換器合計必要冷媒量Mとの間の差が殆ど無くなり、余剰冷媒が殆ど発生しない。つまり、領域Fにおける熱交換器合計必要冷媒量は、冷房運転時の熱交換器合計必要冷媒量M又は暖房運転時の熱交換器合計必要冷媒量Mである。
 なお、冷房運転時の熱交換器合計必要冷媒量M、及び、暖房運転時の熱交換器合計必要冷媒量Mは、室外側熱交換器14の内容積VOC[m]と、室内側熱交換器22の内容積VIC[m]と、凝縮器の冷媒密度ρ[kg/m]と、蒸発器の冷媒密度ρ[kg/m]と、から、以下の式(5)、式(6)で算出される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 そして、空気調和装置1では、室外側熱交換器14の内容積VOCが室内側熱交換器22の内容積VICと比較して0.7~1.3倍であり、冷房運転時及び暖房運転時に、第1接続配管31における冷媒量と第2接続配管32における冷媒量との合計が、共通(例えば、同一)の目標とする冷媒量になるように、第1膨張弁16及び第2膨張弁24の開度が制御されているため、第1接続配管31における必要冷媒量と、第2接続配管32における必要冷媒量と、熱交換器合計必要冷媒量との合計で近似される、冷媒循環回路の必要冷媒量が、冷房運転時及び暖房運転時において殆ど等しくなる。
 なお、冷房運転時の冷媒循環回路の必要冷媒量Mrは、冷房運転時の熱交換器合計必要冷媒量Mと、単位長さあたりの合計冷媒量Mpと、第1接続配管31及び第2接続配管32の配管長さL[m]と、から、以下の式(7)で算出される。第1接続配管31の配管長さと第2接続配管32の配管長さとが異なる場合には、式(7)のMp×Lが、各接続配管の冷媒密度に各接続配管の配管長さ及び配管断面積を乗算したものの合計に置き換わる。
Figure JPOXMLDOC01-appb-M000007
 また、暖房運転時の冷媒循環回路の必要冷媒量Mrは、暖房運転時の熱交換器合計必要冷媒量Mと、単位長さあたりの合計冷媒量Mpと、第1接続配管31及び第2接続配管32の配管長さL[m]と、から、以下の式(8)で算出される。第1接続配管31の配管長さと第2接続配管32の配管長さとが異なる場合には、式(8)のMp×Lが、各接続配管の冷媒密度に各接続配管の配管長さ及び配管断面積を乗算したものの合計に置き換わる。
Figure JPOXMLDOC01-appb-M000008
 つまり、空気調和装置1では、冷房運転時の冷媒循環回路の必要冷媒量Mrと、暖房運転時の冷媒循環回路の必要冷媒量Mrと、の間に差が殆ど生じないため、余剰冷媒が殆ど発生せず、冷媒貯留容器が不要、又は、更に小型化される。
実施の形態3.
 実施の形態3に係る空気調和装置について説明する。
 なお、実施の形態1及び実施の形態2と重複又は類似する説明は、適宜簡略化又は省略している。なお、実施の形態3は、実施の形態1と、空気調和装置1の動作が同様であるため、その説明を省略している。
<空気調和装置の構成>
 以下に、実施の形態3に係る空気調和装置の構成について説明する。空気調和装置1は、アキュムレータ17を有しない。室外側熱交換器14の内容積は、室内側熱交換器22の内容積と比較して0.7~1.3倍でなくてもよい。空気調和装置1の他の構成は、実施の形態1と同様であるため、その説明を省略する。
<制御装置の動作>
 空気調和装置1では、冷房運転時及び暖房運転時に、第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態になるように制御される。また、空気調和装置1では、冷媒循環回路の必要冷媒量が目標とする必要冷媒量になるように制御される。第1膨張弁16と第2膨張弁24との間の冷媒が気液二相状態になるように制御されることと、冷媒循環回路の必要冷媒量が目標とする必要冷媒量になるように制御されることとは、制御装置41が第1膨張弁16及び第2膨張弁24の開度を制御することで、両立される。
 具体例として、以下2通りの制御方法を説明する。なお、以下では、第1接続配管31と第2接続配管32とが共通の配管長さである場合を説明する。第1接続配管31と第2接続配管32とが異なる配管長さである場合でも、各接続配管の冷媒密度に各接続配管の配管長さ及び配管断面積を乗算したものの合計を算出すればよい。また、以下では、実施の形態1の制御方法1及び制御方法2と異なる部分のみ説明している。
(制御方法1)
 制御装置41は、下流側膨張弁bの開度を、冷媒循環回路の必要冷媒量が目標とする必要冷媒量Mrになるように制御する。目標とする必要冷媒量Mrは、予め設定された1つの固定値である。目標とする必要冷媒量Mrとして、2つの固定値が設定され、冷媒循環回路の必要冷媒量が、その2つの固定値の間になるように制御してもよい。
 冷房運転時の冷媒循環回路の必要冷媒量Mrは、式(5)が代入された式(7)から算出される。また、暖房運転時の冷媒循環回路の必要冷媒量Mrは、式(6)が代入された式(8)から算出される。その際、室外側熱交換器14の内容積VOCと、室内側熱交換器22の内容積VICと、第1接続配管31及び第2接続配管32の配管長さLと、の情報は制御装置41に予め入力されている。制御装置41が、その情報を自動で取得してもよい。
 凝縮器での冷媒密度ρは、例えば、第1圧力センサ51の検出圧力Pから換算される。また、蒸発器での冷媒密度ρは、例えば、第2圧力センサ52の検出圧力Pから換算される。
 図9は、本発明の実施の形態3に係る空気調和装置の、制御方法1における制御フローを示す図である。図9に示されるように、制御装置41は、S303において、冷媒循環回路の必要冷媒量Mrを算出し、S304に進む。制御装置41は、S305において、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して大きい場合は、第2膨張弁24の開度を大きくし、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して小さい場合は、第2膨張弁24の開度を小さくする。冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
 制御装置41は、S307において、冷媒循環回路の必要冷媒量Mrを算出し、S308に進む。制御装置41は、S309において、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して大きい場合は、第1膨張弁16の開度を大きくし、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して小さい場合は、第1膨張弁16の開度を小さくする。冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
(制御方法2)
 図10は、本発明の実施の形態3に係る空気調和装置の、制御方法2における制御フローを示す図である。図10に示されるように、制御装置41は、S403において、冷媒循環回路の必要冷媒量Mrを算出し、S404に進む。制御装置41は、S405において、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して大きい場合は、第1膨張弁16の開度を小さくし、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して小さい場合は、第1膨張弁16の開度を大きくする。冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
 制御装置41は、S407において、冷媒循環回路の必要冷媒量Mrを算出し、S408に進む。制御装置41は、S409において、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して大きい場合は、第2膨張弁24の開度を小さくし、冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrと比較して小さい場合は、第2膨張弁24の開度を大きくする。冷媒循環回路の必要冷媒量Mrが目標とする必要冷媒量Mrとどの程度異なるかに応じて、開度の変更量が決定されてもよい。
<空気調和装置の作用>
 空気調和装置1では、冷房運転時の冷媒循環回路の必要冷媒量Mrと、暖房運転時の冷媒循環回路の必要冷媒量Mrと、が目標とする必要冷媒量Mrになるように制御されるため、室外側熱交換器14の内容積が室内側熱交換器22の内容積と比較して0.7~1.3倍でない場合でも、余剰冷媒が殆ど発生せず、冷媒貯留容器が不要、又は、更に小型化される。なお、室外側熱交換器14の内容積が、室内側熱交換器22の内容積と比較して0.7~1.3倍であってもよい。
 以上、実施の形態1、実施の形態2、及び実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態又は各変形例を組み合わせることも可能である。
 1 空気調和装置、11 室外機、12 圧縮機、13 四方弁、14 室外側熱交換器、15 室外側送風機、16 第1膨張弁、17 アキュムレータ、21 室内機、22 室内側熱交換器、23 室内側送風機、24 第2膨張弁、31 第1接続配管、32 第2接続配管、41 制御装置、51 第1圧力センサ、52 第2圧力センサ、61 第1温度センサ、62 第2温度センサ、63 第3温度センサ、64 第4温度センサ、65 第5温度センサ、66 第6温度センサ、a 上流側膨張弁、b 下流側膨張弁。

Claims (9)

  1.  圧縮機と熱源側熱交換器と減圧手段と負荷側熱交換器とが、順次接続されて冷媒循環回路が形成される冷凍サイクル装置であって、
     前記圧縮機と前記熱源側熱交換器とは、熱源側ユニットに設けられ、
     前記負荷側熱交換器は、負荷側ユニットに設けられ、
     前記減圧手段は、前記熱源側ユニットに設けられた第1減圧装置と、前記負荷側ユニットに設けられた第2減圧装置と、を有し、
     前記第1減圧装置と前記第2減圧装置とは、前記熱源側ユニットと前記負荷側ユニットとの間に介在する第1接続配管を介して直列に接続され、
     前記第1減圧装置と前記第2減圧装置との間の流路を流れる冷媒が、気液二相状態になり、且つ、少なくとも前記第1接続配管を含む前記冷媒循環回路の一部の流路における冷媒量が、目標とする冷媒量になるように、前記第1減圧装置及び前記第2減圧装置の減圧量を制御する、
    ことを特徴とする冷凍サイクル装置。
  2.  前記圧縮機と前記負荷側熱交換器とは、前記熱源側ユニットと前記負荷側ユニットとの間に介在する第2接続配管を介して接続され、
     前記一部の流路は、少なくとも前記第2接続配管を含む、
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  流路切替装置を備え、
     前記熱源側熱交換器が凝縮器として作用し、前記負荷側熱交換器が蒸発器として作用する冷却運転と、前記熱源側熱交換器が蒸発器として作用し、前記負荷側熱交換器が凝縮器として作用する加熱運転とが、前記流路切替装置によって切り替えられ、
     前記目標とする冷媒量は、前記冷却運転及び前記加熱運転において共通である、
    ことを特徴とする請求項2に記載の冷凍サイクル装置。
  4.  前記熱源側熱交換器の内容積は、前記負荷側熱交換器の内容積と比較して0.7~1.3倍である、
    ことを特徴とする請求項3に記載の冷凍サイクル装置。
  5.  前記一部の流路は、少なくとも前記熱源側熱交換器の流路と前記負荷側熱交換器の流路とを含む、
    ことを特徴とする請求項3に記載の冷凍サイクル装置。
  6.  前記一部の流路を流れる冷媒の密度を算出し、該冷媒の密度に基づいて、前記第1減圧装置及び前記第2減圧装置のうちの下流側の減圧装置の減圧量を制御し、
     前記冷媒循環回路の過冷却度を算出し、該過冷却度に基づいて、前記第1減圧装置及び前記第2減圧装置のうちの上流側の減圧装置の減圧量を制御する、
    ことを特徴とする請求項1~5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記一部の流路を流れる冷媒の密度を算出し、該冷媒の密度に基づいて、前記第1減圧装置及び前記第2減圧装置のうちの上流側の減圧装置の減圧量を制御し、
     前記冷媒循環回路の過熱度を算出し、該過熱度に基づいて、前記第1減圧装置及び前記第2減圧装置のうちの下流側の減圧装置の減圧量を制御する、
    ことを特徴とする請求項1~5のいずれか一項に記載の冷凍サイクル装置。
  8.  前記冷媒は、R32、HFO1234yf、HFO1234ze、及びプロパンのいずれか、又は、それらのいずれかを含む混合冷媒である、
    ことを特徴とする請求項1~7のいずれか一項に記載の冷凍サイクル装置。
  9.  圧縮機と熱源側熱交換器と減圧手段と負荷側熱交換器とが、順次接続されて冷媒循環回路が形成され、前記圧縮機と前記熱源側熱交換器とが、熱源側ユニットに設けられ、前記負荷側熱交換器が、負荷側ユニットに設けられ、前記減圧手段が、前記熱源側ユニットに設けられた第1減圧装置と、前記負荷側ユニットに設けられた第2減圧装置と、を有し、前記第1減圧装置と前記第2減圧装置とが、前記熱源側ユニットと前記負荷側ユニットとの間に介在する第1接続配管を介して直列に接続される冷凍サイクル装置の制御方法であって、
     前記第1減圧装置と前記第2減圧装置との間の流路を流れる冷媒が、気液二相状態になり、且つ、少なくとも前記第1接続配管を含む前記冷媒循環回路の一部の流路における冷媒量が、目標とする冷媒量になるように、前記第1減圧装置及び前記第2減圧装置の減圧量を制御する、
    ことを特徴とする冷凍サイクル装置の制御方法。
PCT/JP2013/052242 2013-01-31 2013-01-31 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法 WO2014118953A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/052242 WO2014118953A1 (ja) 2013-01-31 2013-01-31 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
GB1513809.2A GB2525791B (en) 2013-01-31 2013-01-31 Refrigeration cycle apparatus and refrigeration cycle apparatus control method
JP2014559445A JP6021955B2 (ja) 2013-01-31 2013-01-31 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052242 WO2014118953A1 (ja) 2013-01-31 2013-01-31 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法

Publications (1)

Publication Number Publication Date
WO2014118953A1 true WO2014118953A1 (ja) 2014-08-07

Family

ID=51261698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052242 WO2014118953A1 (ja) 2013-01-31 2013-01-31 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法

Country Status (3)

Country Link
JP (1) JP6021955B2 (ja)
GB (1) GB2525791B (ja)
WO (1) WO2014118953A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081033B1 (ja) * 2016-05-24 2017-02-15 三菱電機株式会社 空気調和装置
JP2017101897A (ja) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 冷凍サイクル装置
JP2019095128A (ja) * 2017-11-22 2019-06-20 大阪瓦斯株式会社 ヒートポンプ装置の制御方法、及びヒートポンプ装置
JP2021050847A (ja) * 2019-09-24 2021-04-01 株式会社富士通ゼネラル 空気調和装置
JP2021050848A (ja) * 2019-09-24 2021-04-01 株式会社富士通ゼネラル 空気調和装置
JP2021055958A (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 冷凍装置
US11326804B2 (en) 2018-02-06 2022-05-10 Mitsubishi Electric Corporation Air-conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493432B2 (ja) * 2017-02-24 2019-04-03 ダイキン工業株式会社 空気調和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137690A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd 空気調和機
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置
JP2012032108A (ja) * 2010-08-02 2012-02-16 Daikin Industries Ltd 空気調和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2968392B2 (ja) * 1992-05-29 1999-10-25 株式会社日立製作所 空気調和機
JPH0828986A (ja) * 1994-07-15 1996-02-02 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2000283568A (ja) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd 冷凍装置の制御方法及び冷凍装置
JP4670329B2 (ja) * 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
JP4389927B2 (ja) * 2006-12-04 2009-12-24 ダイキン工業株式会社 空気調和装置
JP4245064B2 (ja) * 2007-05-30 2009-03-25 ダイキン工業株式会社 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137690A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd 空気調和機
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置
JP2012032108A (ja) * 2010-08-02 2012-02-16 Daikin Industries Ltd 空気調和装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101897A (ja) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 冷凍サイクル装置
JP6081033B1 (ja) * 2016-05-24 2017-02-15 三菱電機株式会社 空気調和装置
WO2017203606A1 (ja) * 2016-05-24 2017-11-30 三菱電機株式会社 空気調和装置
JP2019095128A (ja) * 2017-11-22 2019-06-20 大阪瓦斯株式会社 ヒートポンプ装置の制御方法、及びヒートポンプ装置
US11326804B2 (en) 2018-02-06 2022-05-10 Mitsubishi Electric Corporation Air-conditioning system
JP2021050847A (ja) * 2019-09-24 2021-04-01 株式会社富士通ゼネラル 空気調和装置
JP2021050848A (ja) * 2019-09-24 2021-04-01 株式会社富士通ゼネラル 空気調和装置
JP7294027B2 (ja) 2019-09-24 2023-06-20 株式会社富士通ゼネラル 空気調和装置
JP2021055958A (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 冷凍装置
WO2021065914A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 冷凍装置

Also Published As

Publication number Publication date
JPWO2014118953A1 (ja) 2017-01-26
JP6021955B2 (ja) 2016-11-09
GB2525791A (en) 2015-11-04
GB201513809D0 (en) 2015-09-16
GB2525791B (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6021955B2 (ja) 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
US20140208787A1 (en) Refrigeration apparatus
CN107683393B (zh) 空调装置
EP2527756B1 (en) Air-conditioning hot-water supply combined system
JPWO2009150761A1 (ja) 冷凍サイクル装置、並びにその制御方法
EP2261578A1 (en) Refrigeration device
KR101901540B1 (ko) 공기 조화 장치
US9863680B2 (en) Heat pump apparatus
JP5979112B2 (ja) 冷凍装置
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
JP6479181B2 (ja) 空気調和装置
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JP2006250479A (ja) 空気調和機
EP3680565A1 (en) Air conditioning device
CN109312961B (zh) 制冷装置的热源机组
JP6846915B2 (ja) 多室型空気調和機
WO2017010007A1 (ja) 空気調和装置
JP6272364B2 (ja) 冷凍サイクル装置
JP2013124843A (ja) 冷凍サイクルシステム
JPWO2015029223A1 (ja) 空気調和装置
CN113272598B (zh) 空调机
JP2020134107A (ja) 熱交換器およびそれを備えた空気調和機
CN109798633A (zh) 空调系统的控制方法和空调系统
JP2010065981A (ja) 空気調和装置
JP2006071271A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1513809

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130131

WWE Wipo information: entry into national phase

Ref document number: 1513809.2

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 13873429

Country of ref document: EP

Kind code of ref document: A1