JP2017101897A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2017101897A
JP2017101897A JP2015236954A JP2015236954A JP2017101897A JP 2017101897 A JP2017101897 A JP 2017101897A JP 2015236954 A JP2015236954 A JP 2015236954A JP 2015236954 A JP2015236954 A JP 2015236954A JP 2017101897 A JP2017101897 A JP 2017101897A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236954A
Other languages
English (en)
Inventor
峻 浅利
Shun Asari
峻 浅利
貴宏 図司
Takahiro Zushi
貴宏 図司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2015236954A priority Critical patent/JP2017101897A/ja
Publication of JP2017101897A publication Critical patent/JP2017101897A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】液戻し流量調節部を小型にできる冷凍サイクル装置を提供する。【解決手段】冷凍サイクル装置1は、アキュムレータ17と、液戻し配管18と、液戻し流量調節部19と、高圧圧力センサ20と、凝縮液温度センサ21と、制御部22とを持つ。アキュムレータ17は、第二の熱交換器14と圧縮機10との間の主配管15に設けられる。液戻し配管18は、アキュムレータ17、及びアキュムレータ17と圧縮機10との間の主配管に接続される。液戻し流量調節部19は、液戻し配管18に設けられている。高圧圧力センサ20は、圧縮機10の吐出口の冷媒の圧力を検出する。凝縮液温度センサ21は、第一の熱交換器12の出口における冷媒の温度を検出する。制御部22は、高圧圧力センサ20が検出した圧力に対する冷媒の飽和温度である高圧飽和温度を算出し、高圧飽和温度と凝縮液温度センサ21が検出した温度との差に基づいて膨張部13の開度を調節する。【選択図】図1

Description

本発明の実施形態は、冷凍サイクル装置に関する。
従来、圧縮機、第一の熱交換器、第一の流量調節弁(膨張部)、及び第二の熱交換器を備え、四方弁(流路切替え部)等により加熱運転と冷却運転とを切替え可能な冷凍サイクル装置が知られている。この種の冷凍サイクル装置は、両熱交換器のうち、蒸発器として機能させた熱交換器を出た冷媒と凝縮器として機能させた熱交換器を出た冷媒とを気液熱交換器で熱交換させることで、冷凍サイクル装置の性能を向上させている。
冷凍サイクル装置が、気液熱交換器に冷媒を流すか否かを切替える第二の流量調節弁(液戻し流量調節部)を備えることが検討されている。
冷凍サイクル装置が、第一の流量調節弁と並列に、気液熱交換器及び第二の流量調節弁が設けられた配管を備える場合が考えられる。この場合、第二の流量調節弁を開くと、気液熱交換器での交換熱量が抑制され、第一の流量調節弁の入口での冷媒の温度が大きく変化する。第一の流量調節弁に流れる冷媒の流量も大きく変動するため、気液熱交換器の交換熱量を調節した場合に冷凍サイクル装置の性能の変動が大きくなる。
一方で、冷凍サイクル装置が、気液熱交換器及び第二の流量調節弁を並列に接続したものに第一の流量調節弁を直列に接続した場合が考えられる。この場合、第二の流量調節弁を閉じても第一の流量調節弁を流れる冷媒の流量はほとんど変化しないため、第一の流量調節弁と並列に第二の流量調節弁等を設けた場合よりも冷凍サイクル装置の性能の変動を抑えることができる。しかし、気液熱交換器に冷媒を流さずに第二の流量調節弁及び第一の流量調節弁に冷媒を流す場合には、第二の流量調節弁による圧力損失を充分に下げる、すなわち、第二の流量調節弁を充分に大型化する必要がある。
特開2001−221527号公報 特開2014−181869号公報
本発明が解決しようとする課題は、液戻し流量調節部を小型にすることができ、液戻し流量調節部を制御しても性能の変動が少ない冷凍サイクル装置を提供することである。
実施形態の冷凍サイクル装置は、圧縮機と、第一の熱交換器と、膨張部と、第二の熱交換器と、主配管と、アキュムレータと、液戻し配管と、液戻し流量調節部と、高圧圧力センサと、凝縮液温度センサと、制御部と、を持つ。前記膨張部は、開度を調節可能である。前記主配管は、前記圧縮機、前記第一の熱交換器、前記膨張部、及び前記第二の熱交換器を順次接続し、冷媒及び冷凍機油が流通している。前記アキュムレータは、前記第二の熱交換器と前記圧縮機との間の前記主配管に設けられ、液相の前記冷媒及び前記冷凍機油の少なくとも一方を下部に収容し、気相の前記冷媒を前記圧縮機に供給する。前記液戻し配管は、前記アキュムレータの下部、及び、前記アキュムレータと前記圧縮機との間の前記主配管にそれぞれ接続されている。前記液戻し流量調節部は、開度を調節可能であって前記液戻し配管に設けられている。前記高圧圧力センサは、前記圧縮機の吐出口における前記冷媒の圧力を検出する。前記凝縮液温度センサは、前記第一の熱交換器の出口における前記冷媒の温度を検出する。前記制御部は、前記膨張部の開度及び前記液戻し流量調節部の開度を調節する。前記制御部は、前記高圧圧力センサが検出した圧力に対する前記冷媒の飽和温度である高圧飽和温度を算出する。前記制御部は、前記高圧飽和温度と前記凝縮液温度センサが検出した温度との差である過冷却度を算出する。前記制御部は、前記過冷却度に基づいて前記膨張部の開度を調節する。
第1の実施形態の冷凍サイクル装置を示す概略構成図。 第1の実施形態の冷凍サイクル装置のアキュムレータの断面図。 第1の実施形態の冷凍サイクル装置を第二のPMVが最小開度開いている状態で運転したときのモリエル線図。 第1の実施形態の冷凍サイクル装置を第二のPMVの開度を大きくして運転したときのモリエル線図。 第1の実施形態の冷凍サイクル装置を運転させたときの、第二のPMVの開度による圧縮機の吐出口及び吸入口の温度の変化を表す図。 第1の実施形態の変形例における冷凍サイクル装置のアキュムレータの断面図。 第1の実施形態の変形例における冷凍サイクル装置のアキュムレータの断面図。 第2の実施形態の冷凍サイクル装置を示す概略構成図。 高圧のケースを有する圧縮機における各温度及び圧縮機の運転周波数の変化を示す図。 第4の実施形態の冷凍サイクル装置を示す概略構成図。
以下、実施形態の冷凍サイクル装置を、図面を参照して説明する。
(第1の実施形態)
図1に示すように、本実施形態の冷凍サイクル装置1は、圧縮機10と、四方弁(流路切替え部)11と、第一の熱交換器12と、第一のPMV(Pulse Motor Valve、膨張部)13と、第二の熱交換器14と、主配管15と、アキュムレータ17と、液戻し配管18と、第二のPMV(液戻し流量調節部)19と、高圧圧力センサ20と、凝縮液温度センサ21と、制御部22とを備える。
圧縮機10は、公知のインバータ制御により運転周波数を変更することができる。圧縮機10は、後述する冷凍機油が溶け込んだ冷媒Rを圧縮する。なお、圧縮機10として運転周波数を変更できないものを用いてもよい。
四方弁11は、主配管15を流れる冷媒R及び図示しない冷凍機油(以下、冷媒R等と称する)の向きを切替える。
第一の熱交換器12は、加熱又は冷却する対象となるチラー等の対象配管50と熱交換する。対象配管50内には、水等の第二の冷媒(不図示)が流れていて、第一の熱交換器12との熱交換により加熱又は冷却される。第一の熱交換器12及び対象配管50で、いわゆる水熱交換器51を構成する。例えば、水熱交換器51はプレート式の熱交換器である。
対象配管50には、第二の冷媒を流すためのポンプ52が設けられている。
第一のPMV13は、開度を調節可能なものである。例えば、第一のPMV13は、図示はしないが、貫通孔が形成された弁本体と、貫通孔に対して進退可能なニードルとを有している。貫通孔をニードルで塞いだときに、第一のPMV13に冷媒R等が流れなくなる。このとき、第一のPMV13は閉じた状態になり、第一のPMV13の開度は最も小さくなる。
一方で、貫通孔からニードルが最も離間したときに、第一のPMV13に冷媒R等が最も流れやすくなる。このとき、第一のPMV13は開いた状態になり、第一のPMV13の開度は最も大きくなる。
例えば、第二の熱交換器14はフィンチューブ式の熱交換器(空気熱交換器)である。第二の熱交換器14の内容積は、第一の熱交換器12の内容積よりも大きい。第二の熱交換器14の内容積とは、第二の熱交換器14のうち冷媒R等が充填される部分の内容積のことを意味する。第一の熱交換器12の内容積についても同様である。第二の熱交換器14に対応して送風機28が配置されている。
主配管15及び液戻し配管18は、銅管等で形成されている。主配管15は、圧縮機10、四方弁11、第一の熱交換器12、第一のPMV13、及び第二の熱交換器14を順次接続する。圧縮機10、四方弁11、第一の熱交換器12、第一のPMV13、第二の熱交換器14、及び主配管15内には、冷媒R及び冷凍機油が流通している。冷媒Rとしては、R410A等を用いることができる。冷凍機油としては、例えばポリオールエステル系の冷凍機油等を用いることができる。
アキュムレータ17は、第二の熱交換器14と圧縮機10との間の主配管15に設けられている。アキュムレータ17は、図2に示すように、球殻状のケース25と、ケース25に取付けられケース25を支持する脚部26とを有している。ケース25は、上下方向に沿った長軸を有する。ケース25及び脚部26は、鉄鋼等の金属で形成されている。ケース25の下部には、液相の冷媒R及び冷凍機油が収容されている。ケース25の上部には、気相の冷媒Rが収容されている。
なお、ケース25の下部に液相の冷媒R及び冷凍機油の少なくとも一方が収容されているとしてもよい。
ケース25の上部には、主配管15を構成する流入管15a及び流出管15bが接続されている。ケース25内における流出管15bの端部は、ケース25の上部であって気相の冷媒Rがある所に配置されている。流出管15bから気相の冷媒Rが主配管15を介して圧縮機10に流出することで、アキュムレータ17は気相の冷媒Rを圧縮機10に供給する。
ケース25の底面(下部)には、液戻し配管18の一端部が接続されている。図1に示すように、液戻し配管18の他端部は、アキュムレータ17と圧縮機10との間の主配管15であって、後述する気液熱交換器29よりも冷媒Rが流れる方向の上流側の部分に接続されている。
液戻し配管18の長手方向の中間部には、前述の第二のPMV19が設けられている。第二のPMV19は、第一のPMV13と同様に構成され、開度を調節可能である。なお、液戻し配管18及び第二のPMV19で液戻し回路32を構成する。
本実施形態の冷凍サイクル装置1は、気液熱交換器29を備えている。気液熱交換器29は、アキュムレータ17と圧縮機10との間の主配管15と、第一の熱交換器12と第一のPMV13との間の主配管15とを熱交換する。
高圧圧力センサ20は、圧縮機10の吐出口10aにおける冷媒Rの圧力を検出する。高圧圧力センサ20は制御部22に接続され、検出結果を制御部22に送信する。
凝縮液温度センサ21は、第一の熱交換器12の出口における冷媒Rの温度を検出する。凝縮液温度センサ21は制御部22に接続され、検出結果を制御部22に送信する。
本実施形態では、圧縮機10の吸入口10b近くの主配管15に、圧縮機10の吸入口10bにおける冷媒Rの圧力を検出する低圧圧力センサ30が設けられている。低圧圧力センサ30は制御部22に接続され、検出結果を制御部22に送信する。
圧縮機10の吸入口10b近くの主配管15に、圧縮機10の吸入口10bにおける冷媒Rの温度を検出する吸入温度センサ31が設けられている。吸入温度センサ31は制御部22に接続され、検出結果を制御部22に送信する。
圧縮機10、四方弁11、第一のPMV13、送風機28、第二のPMV19は制御部22に接続され、制御部22により制御される。
制御部22は、図示はしないが演算素子、メモリ等を有している。メモリには、制御プログラム、冷媒Rの圧力に対する冷媒Rの飽和温度の表等が記憶されている。
制御部22の演算素子は、圧力センサ20、30、温度センサ21、31の検出結果に基づいて、第一のPMV13の開度及び第二のPMV19の開度を調節する。
なお、冷凍サイクル装置1は、主配管15にレシーバ(受液器)を備えない。
ここで、冷凍サイクル装置1に充填される冷媒Rの量(以下、冷媒Rの充填量とも略称する)について説明する。冷媒Rの充填量が不足していると、蒸発器(熱交換器12、14のうち蒸発器として機能するもの)の出口における冷媒Rは乾いた状態となり、冷媒Rの充填量が多いと湿った状態となる。このため、冷媒Rの充填量が多くなるように調節することが好ましい。
具体的には、冷媒Rの充填量が多く必要な、空気熱交換器である第二の熱交換器14が凝縮器として機能する後述する冷却運転において、冷媒Rの充填量が過不足なく冷凍サイクル装置1を運転できるように冷媒Rの充填量を調節する。この時、制御部22は、第一のPMV13を圧縮機10の過熱度(SuperHeat)が一定の値になるように制御する(SH制御する)。
冷媒Rの充填量がこの状態で四方弁11を切替え、水熱交換器51を構成する第一の熱交換器12が凝縮器として機能する後述する加熱運転をした時に、第一の熱交換器12の内容積と第二の熱交換器14の内容積との差により余剰な冷媒Rが生じる。その余剰な冷媒Rにより、アキュムレータ17内に液相の冷媒Rが収容される。
このように構成された冷凍サイクル装置1では、制御部22は圧縮機10を駆動させるとともに四方弁11を切替え、送風機28を運転させる。これにより、圧縮機10、第一の熱交換器12、第一のPMV13、第二の熱交換器14、アキュムレータ17の順で冷媒R等を流す。第一の熱交換器12で冷媒Rを凝縮させ、第一の熱交換器12を凝縮器として機能させる。第二の熱交換器14で冷媒Rを蒸発させ、第二の熱交換器14を蒸発器として機能させる。こうして、冷凍サイクル装置1を加熱運転にする。
このとき、制御部22は、高圧圧力センサ20が検出した圧力、及び、メモリに記憶された冷媒Rの飽和温度の表に基づいて、この圧力に対する冷媒Rの飽和温度である高圧飽和温度を算出する。高圧飽和温度と凝縮液温度センサ21が検出した温度との差である、過冷却度(SubCool)を算出する。
制御部22は、冷凍サイクル装置1を加熱運転させたときに、過冷却度が一定の値になるように(過冷却度に基づいて)第一のPMV13の開度を調節する(SC制御をする)。ここで言う一定の値とは、例えば1K(ケルビン)から5Kである。
図3に、冷凍サイクル装置1を加熱運転したときのモリエル線図を示す。図3の横軸は比エンタルピーを示し、縦軸は圧力を示す。曲線Lは冷媒Rの飽和蒸気線であり、曲線Lは冷媒Rの飽和液線である。曲線Lは、等温線である。
圧縮機10の吐出口10aにおける冷媒Rの高圧かつ高温の状態を、モリエル線図上で吐出状態Sとする。吐出状態Sの冷媒Rは、第一の熱交換器12において圧力が変わらないまま凝縮して液化する。第一の熱交換器12の出口における冷媒Rの状態は、吐出状態Sの冷媒Rに対して比エンタルピーが低下することで液相の状態Sとなる。
このとき、水熱交換器51においてポンプ52により対象配管50内を流れる第二の冷媒が加熱される。
高圧圧力センサ20が検出した圧力はPであり、高圧飽和温度はTである。凝縮液温度センサ21が検出した温度はTであり、過冷却度はTとTとの差である。
気液熱交換器29により、状態Sの冷媒Rが圧力が変わらないまま、比エンタルピーでJ冷却される。気液熱交換器29の出口では、冷媒Rは状態Sとなる。
第二のPMV19は、圧縮機10に冷凍機油を戻すために、完全に閉じることなく最小開度開いている。第二のPMV19の開度が大きいと、蒸発器(第二の熱交換器14)の出口における乾き度が低下し、蒸発器の性能が低下するためである。
第二のPMV19が開いていることで、ケース25の下部に収容されている液相の冷媒R及び冷凍機油が液戻し配管18内を流れる。液相の冷媒Rの気化熱等により、状態Sの冷媒Rが冷却される。アキュムレータ17から液戻し配管18を通して圧縮機10に供給される液相の冷媒Rの流量(以下、液戻し量とも略称する)は、第二のPMV19の開度により制御される。
なお、第二のPMV19は液相の冷媒R及び冷凍機油を流すためのものであるため、比較的小型のものが用いられる。
アキュムレータ17内の気相の冷媒Rは、流出管15b及び主配管15を介して圧縮機10に供給される。このように、アキュムレータ17は、気相の冷媒Rと液相の冷媒Rとを分離する気液分離器として機能する。
液化した状態Sの冷媒Rは、第一のPMV13により、比エンタルピーが一定のままで圧力Pよりも低圧の圧力Pまで膨張し減圧され、低圧かつ低温の状態Sとなる。
膨張して状態Sとなった冷媒Rは、第二の熱交換器14において圧力が変わらないまま蒸発して気化する。第二の熱交換器14の出口における冷媒Rの状態は、例えば状態Sとなる。
気液熱交換器29により、状態Sの冷媒Rが圧力が変わらないまま、比エンタルピーでJ加熱される。比エンタルピーJは、比エンタルピーJに等しい。気液熱交換器29の出口では、冷媒Rは状態Sとなる。
状態Sの冷媒Rは、圧縮機10の吸入口10bから吸入され、圧縮されて吐出状態Sとなる。
加熱運転時には、制御部22がSC制御を行うことで、余剰の冷媒Rがアキュムレータ17に収容される。このため、アキュムレータ17に液相の冷媒Rが常に収容された状態で、冷凍サイクル装置1を運転することになる。
例えば、冷媒Rの全循環量に対して、重量比で98%が流出管15b内を流れ、2%が液戻し配管18内を流れるとする。この場合、流出管15b内を流れる冷媒Rは気相なので乾き度は1.0、液戻し配管18内を流れる冷媒Rは液相なので乾き度は0.0となる。すると、主配管15に液戻し配管18が接続された部分での冷媒Rの乾き度は、0.98になる。
なお、冷凍サイクル装置1において、例えば圧縮機10の圧縮比が増加した場合等には、気液熱交換器29の交換熱量が増加し、圧縮機10の吸入口10bにおける過熱度である吸入過熱度が増加する。
吸入過熱度がある値を超えた時に、制御部22は第二のPMV19の開度を大きくする。すると、液戻し配管18内を流れる液相の冷媒R及び冷凍機油の流量が増加し、図4に示すように、気液熱交換器29で熱交換する比エンタルピーJが増加し、圧縮機10の吸入口10bにおける冷媒Rの温度が低下する。したがって、圧縮機10の吐出口10aにおける冷媒Rの温度(以下、吐出温度とも略称する)が低下する。
SC制御を行う場合、基本的に、凝縮器(第一の熱交換器12)の出口における冷媒Rは液相状態である。したがって、凝縮不良により第一のPMV13を流れる冷媒Rの流量が不足する等の不具合を防止することができる。
例えば、第二のPMV19の開度を大きくすることで、冷媒Rの全循環量に対して、重量比で95%が流出管15b内を流れ、5%が液戻し配管18内を流れるとする。この場合、主配管15に液戻し配管18が接続された部分での冷媒Rの乾き度は、0.95に低下する。
図5に、本実施形態の冷凍サイクル装置1を運転させ、第二のPMV19の開度を変えたときの圧縮機10の吐出口10aの温度(吐出温度)、及び吸入口10bの温度の変化を示す。図5の横軸は第二のPMV19の開度を表し、ステップ数が多いほど第二のPMV19の開度が大きいことを意味する。左側の縦軸は圧縮機10の吐出口10aにおける冷媒Rの温度を表し、右側の縦軸は圧縮機10の吸入口10bにおける冷媒Rの温度を表す。
第二のPMV19の開度が大きくなるにしたがって、吐出口10aの冷媒Rの温度及び吸入口10bの温度が低下することが分かった。しかし、第二のPMV19の開度を調節しても、圧縮機10の吐出口10a及び吸入口10bの温度や、後述するCOP等の性能の変動は比較的少ない。
例えば、比較例として、冷凍サイクル装置1を加熱運転するときに、圧縮機10の過熱度が一定の値になるように冷凍サイクル装置1を制御する(SH制御する)場合を考える。このとき、蒸発器として機能する第二の熱交換器14の出口における冷媒Rは、一般的に完全に乾いてしまう。
この場合、任意に制御できるのはアキュムレータ17の入口における過熱度であり、気液熱交換器29の出口における過熱度(圧縮機10の吸入口10bにおける過熱度)は制御できず成行きになる。圧縮機10の吐出口10aにおける冷媒Rの温度が高くなったときには過熱度を小さくする必要がある。しかし、SH制御では過熱度を0Kよりも小さい値に制御できない。
これに対して本実施形態の冷凍サイクル装置1ではSC制御をするため、第二の熱交換器14の出口における冷媒Rが乾きにくくなり、アキュムレータ17内に液相の冷媒Rが供給されやすくなる。
一方で、制御部22は圧縮機10を駆動させるとともに四方弁11を切替え、送風機28を運転させる。これにより、圧縮機10、第二の熱交換器14、第一のPMV13、第一の熱交換器12、アキュムレータ17の順で冷媒R等を流す。第二の熱交換器14で冷媒Rを凝縮させ、第一の熱交換器12で冷媒Rを蒸発させる。こうして、冷凍サイクル装置1を冷却運転にする。
このとき、水熱交換器51においてポンプ52により対象配管50内を流れる第二の冷媒が冷却される。
制御部22は、低圧圧力センサ30が検出した圧力、及び、メモリに記憶された冷媒Rの飽和温度の表に基づいて、この圧力に対する冷媒Rの飽和温度である低圧飽和温度を算出する。吸入温度センサ31が検出した温度と低圧飽和温度との差である吸入過熱度を算出する。
制御部22は、冷凍サイクル装置1を冷却運転させたときに、吸入過熱度が一定の値になるように(吸入過熱度に基づいて)第一のPMV13の開度を調節する。また、吸入過熱度に基づいて第二のPMV19の開度を調節する。例えば、制御部22は吸入過熱度が閾値を超えたときに、第二のPMV19の開度を大きくする。
比較例として冷凍サイクル装置が第一の熱交換器12と第一のPMV13との間の主配管15にレシーバを備えた場合には、レシーバには液相の冷媒Rと気相の冷媒Rとが収容される。比較例の冷凍サイクル装置を加熱運転したときに、第一の熱交換器12を凝縮器として機能する。しかし、第一の熱交換器12内及びレシーバ内の冷媒R等の圧力を高くしても、レシーバ内に液相の冷媒Rがあるため、液相の冷媒Rの体積が減少する。したがって、冷媒R等の圧力を高くした効果が第一のPMV13内を流れる冷媒R等に伝達されにくくなり、状態Sにおける過冷却度が充分にとりにくくなる。
したがって、冷凍サイクル装置1がレシーバを備えないことで、冷凍サイクル装置1の後述するCOP等の性能が向上する。
冷凍サイクル装置1において、レシーバの有無によるCOP(Coefficient Of Performance:成績係数)の変化について説明する。なお、COPは冷凍サイクル装置1の入力に対する能力の比で示される。ここで言う能力とは、水熱交換器51での放熱量又は吸熱量を意味する。
第二の熱交換器14を凝縮器として機能させた冷却運転では、レシーバの有無によらず冷凍サイクル装置1のCOPは変わらない。一方で、第一の熱交換器12を凝縮器として機能させた加熱運転では、レシーバを備えないことで、従来の冷凍サイクル装置に比べてCOPが例えば5.3%向上する。
以上説明したように、本実施形態の冷凍サイクル装置1によれば、第二のPMV19は液相の冷媒R及び冷凍機油を流すためのものであるため、比較的小型のものを用いることができる。第二のPMV19の開度を調節したときに、冷凍サイクル装置1の性能の変動を少なくすることができる。
第一の熱交換器12の内容積よりも第二の熱交換器14の内容積の方が大きく、制御部22は冷凍サイクル装置1を加熱運転にしたときにSC制御をする。これにより、アキュムレータ17内に液相の冷媒Rを収容し、レシーバを備えなくても熱交換器12、14の内容積の差に対応することができる。
低圧圧力センサ30及び吸入温度センサ31を備えることで、制御部22が冷却運転時に吸入過熱度を算出してSH制御することができる。
基本的には圧縮機10の信頼性を確保するために、最低限必要な量の液相の冷媒Rを圧縮機10の戻すように第二のPMV19を制御すればよい。しかし、圧縮機10の吸入過熱度が大きくなったときに液戻し量を増加させることで、吐出温度を低減することができる。
気液熱交換器29を備えることで、冷凍サイクル装置1の能力を増加させることができる。しかし、気液熱交換器29を備えると、吐出温度が高くなるという課題がある。
本実施形態では、第二のPMV19の開度を調節して液戻し量を制御することで、圧縮機10が吸入する冷媒Rを冷却し、吐出温度を低下することができる。
液戻し配管18の端部は、アキュムレータ17と圧縮機10と間の主配管15であって、気液熱交換器29よりも上流側に接続されている。
気液熱交換器29の低圧側の主配管15に液相の冷媒Rが流れることとなり、気液熱交換器29での交換熱量が増加し、冷凍サイクル装置1の能力が増加する。
冷凍サイクル装置1がレシーバを備えないことで、冷凍サイクル装置1の性能を向上させ、冷凍サイクル装置1を小型化(省スペース化)することができる。
なお、本実施形態のアキュムレータ17としては、冷媒Rを気相と液相とに分離でき、液戻し量を任意に制御できれば任意の形状のものを用いることができる。
例えば、図6に示すアキュムレータ17Aのように、液戻し配管18Aの端部を、ケース25の上下方向の中央部まで延ばしてもよい。この場合、液戻し配管18Aに複数の液戻し孔18aを形成してもよい。各液戻し孔18aは、液戻し配管18Aの外面から液戻し配管18Aの管路に連通するまで延びている。複数の液戻し孔18aは、上下方向に並べて形成されている。
このように構成されたアキュムレータ17Aでは、液相の冷媒R及び冷凍機油は複数の液戻し孔18aを通して液戻し配管18A内に入り、液戻し配管18A内を流れる。
また、図7に示すアキュムレータ17Bのように、流出管15cをU字形に構成してもよい。流出管15cは、端部が気相の冷媒R中に配置されるとともに、曲り部に形成された1つの液戻し孔15dが液相の冷媒R中に配置されている。液戻し孔15dは、流出管15cの外面から流出管15cの管路に連通するまで延びている。
このように構成されたアキュムレータ17Aでは、液相の冷媒R及び冷凍機油は液戻し孔15dを通して流出管15c内に入り、気相の冷媒Rとともに圧縮機10に供給される。
なお、流出管15cに形成される液戻し孔15dの数は1つに限定されず、必要であれば流出管15cに液戻し孔15dを複数形成してもよい。
内容積の小さい熱交換器を水熱交換器51を構成する第一の熱交換器12、内容積の大きい熱交換器を空気熱交換器である第二の熱交換器14として説明した。しかし、熱交換器12、14の両方とも水熱交換器としてもよいし、熱交換器12、14の両方とも空気熱交換器としてもよい。例えば水熱交換器としてシェルアンドチューブ方式熱交換器を用いた場合、空気熱交換器よりも水熱交換器の方が内容積が大きくなる場合がある。このため、内容積の小さい熱交換器を空気熱交換器、内容積の大きい熱交換器を水熱交換器として冷凍サイクル装置を構成してもよい。
アキュムレータ17の上流側の主配管15に、第二の吸入温度センサを設けてもよい。この場合、制御部22は、第二の吸入温度センサで検出された温度から得られる吸入過熱度に基づいて第一のPMV13をSH制御してもよい。
吐出温度を検出する吐出温度センサを主配管15に設けてもよい。この場合、制御部22は第一のPMV13をSH制御するのに代えて、第一のPMV13を吐出温度で制御してもよい。この時、安定した通常の運転状態であれば、アキュムレータ17内に液相の冷媒Rは溜まらない。液戻し配管18内を気相の冷媒Rと少量の冷凍機油が流れることが、従来のアキュムレータにおける液戻し孔の役割を果たす。
この時、気液熱交換器29内を流れるのは、高圧の二相の冷媒Rと低圧の気相の冷媒Rであり、気液熱交換器29の主配管15の間で熱交換をほとんど行わない。よって、空気熱交換器である第二の熱交換器14を凝縮器として機能させる冷却運転において、気液熱交換器29により吐出温度が上昇することは、ほとんどない。
本実施形態では、冷凍サイクル装置1が加熱運転専用であり冷却運転を行わない場合等には、冷凍サイクル装置1は四方弁11を備えなくてもよい。この場合、冷凍サイクル装置1は、低圧圧力センサ30及び吸入温度センサ31を備えなくてもよい。
(第2の実施形態)
次に、第2の実施形態について図8を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図8に示すように、本実施形態の冷凍サイクル装置2は、第1の実施形態の冷凍サイクル装置1の制御部22に代えて、圧縮機10の吐出口10aにおける冷媒Rの温度を検出する吐出温度センサ35、及び制御部22Aを備えている。吐出温度センサ35は、圧縮機10の吐出口10aに近い主配管15に設けられている。吐出温度センサ35は制御部22Aに接続され、検出結果を制御部22Aに送信する。
制御部22Aは、制御部22に対してメモリに記憶された制御プログラムのみが異なる。
冷凍サイクル装置1では、吸入過熱度に基づいて第二のPMV19の開度を調節したが、本実施形態の冷凍サイクル装置2では、制御部22Aは、吐出温度センサ35が検出した温度(吐出温度)に基づいて第二のPMV19の開度を調節する。例えば、制御部22Aは、吐出温度が閾値を超えた場合には、第二のPMV19の開度を大きくして吐出温度を下げる。
吐出温度を閾値とすることで、吐出温度を直接的に低減することができる。吸入過熱度が0Kにほぼ等しい場合であっても、吐出温度をさらに低減することができる。
基本的には、圧縮機10の信頼性を確保するために最低限必要な量の液相の冷媒Rを圧縮機10に戻すように、制御部22Aが第二のPMV19を制御すればよい。吐出温度が上昇した時に液戻し量を増加することで、吐出温度を低減することができる。吐出温度を閾値とすることで、吸入過熱度が0Kにほぼ等しい場合でも液戻し量を制御することができるため、吸入過熱度よりも吐出温度で液戻し量を制御する方がよい。
(第3の実施形態)
次に、第3の実施形態について図8及び図9を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
第2の実施形態の冷凍サイクル装置2では、吐出温度センサ35が検出した温度(吐出温度)に基づいて第二のPMV19の開度を調節するとした。本実施形態の冷凍サイクル装置3では、制御部22Bが、吐出温度センサ35が検出した温度と高圧飽和温度との差である吐出過熱度(DSH:Discharge SuperHeat)を算出する。そして、制御部22Bが吐出過熱度に基づいて第二のPMV19の開度を調節する。
制御部22Bは、制御部22に対してメモリに記憶された制御プログラムのみが異なる。例えば、制御部22Bは、吐出過熱度が閾値を超えた場合には、第二のPMV19の開度を大きくして吐出過熱度を下げる。
なお、高圧飽和温度は、高圧圧力センサ20が検出した圧力、及び、メモリに記憶された冷媒Rの飽和温度の表に基づいて算出している。しかし、空気熱交換器である第二の熱交換器14が凝縮器として機能する冷却運転において、第二の熱交換器14を構成するチューブの長手方向の中央部の温度を検出し、この検出した温度を高圧飽和温度(凝縮温度)としてもよい。
一般的に、冷凍機油が高温高圧の冷媒R中に溶け込んでいる高圧のケースを有する圧縮機(例えば、ロータリ方式の圧縮機)では、冷凍機油の希釈等を防止して圧縮機の信頼性を確保するため、冷凍機油の温度と凝縮温度との温度差(圧縮機ΔT)をある程度確保する必要がある。高圧のケースを有する圧縮機を用いた場合、吐出温度を低減させるために第二のPMV19の開度を大きくした時を例にとって説明する。特に過熱度が0Kにほぼ等しい領域で圧縮機の信頼性が確保できているか判断するには、圧縮機内の冷凍機油の温度を検出する油温センサが必要になる。
ここで、図9を用いて、高圧のケースを有する圧縮機における各温度及び圧縮機の運転周波数の変化について説明する。図9の横軸は、経過時間を示す。図9の縦軸は、各温度(℃)、及び圧縮機の運転周波数(rps(revolutions per second))を示す。曲線L6は、吐出温度である。曲線Lは、圧縮機内の冷凍機油の温度である。曲線Lは、圧縮機の運転周波数である。曲線Lは、圧縮機のケースの温度である。曲線L10は、凝縮温度である。
吐出温度を表す曲線L6と冷凍機油の温度を表す曲線Lとが、ほぼ同様に推移することが分かる。すなわち、圧縮機ΔTは、吐出温度と凝縮温度との温度差である吐出過熱度(DSH)とほぼ同様に推移する。
よって、DSHを検出することで、冷凍機油の温度を検出するセンサを備えることなく圧縮機ΔTを確保できているか推測できる。DSHを閾値として圧縮機ΔTを制御することで、吐出温度の過度な低下を防ぐことができ、圧縮機の信頼性を確保したまま吐出温度を抑制することができる。
高圧のケースを有するロータリ方式の圧縮機において、圧縮機の信頼性は、冷凍機油の温度と凝縮温度との温度差が確保できているか否かに依存する。このため、吐出温度と冷凍機油の温度が近い値となるロータリ方式の圧縮機では、吐出温度よりもDSHに基づいて第二のPMV19の開度を調節する方がよい。
また、第1の実施形態のように、制御部22Bが、吐出温度に基づいて第二のPMV19の開度を調節してもよい。この場合、DSHが所定の値以下にならないようDSHの下限値を設け、DSHが下限値以上になるように制御部22Bが第二のPMV19の開度を制御してもよい。
具体的には、吐出温度が所定の値以上となった時に制御部22Bは第二のPMV19の開度を大きくして吐出温度を抑制する。吐出温度が所定値を下回らない場合には、第二のPMV19の開度をさらに大きくし、DSHが所定の値以下となるまで第二のPMV19の開度を大きくし続ける。この時、DSHが前記所定の値以下となった場合、その時の第二のPMV19の開度を上限開度として設定する。
なお、上限開度を設定した後で、DSHがさらに低下して圧縮機の信頼性が損なわれると判断した場合は、上限開度を小さくしてもよい。上限開度を設定した後で、DSHが上昇してさらに第二のPMV19の開度を大きくしても問題ないと判断した場合は、上限開度を大きくしてもよい。
第二のPMV19をこのように制御することで、直接的に吐出温度を抑制することができ、さらに圧縮機の信頼性を確保することができる。
(第4の実施形態)
次に、第4の実施形態について図10を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図10に示すように、本実施形態の冷凍サイクル装置4は、第2の実施形態の冷凍サイクル装置2において、液戻し配管18の端部を、アキュムレータ17と圧縮機10との間の主配管15であって、気液熱交換器29よりも下流側に接続したものである。
このように構成されていることで、気液熱交換器29の低圧側の入口における冷媒Rは、常に乾き度1で供給される。したがって、第二のPMV19の開度を調節しても、気液熱交換器29の低圧側の入口の冷媒Rの乾き度は変わらず、気液熱交換器29での交換熱量がほとんど変化しない。
冷凍サイクル装置4をこのように構成することで、液戻し配管18の端部を気液熱交換器29の低圧側の入口に接続する構成よりも安定した制御を行うことができる。
なお、前記第1実施形態から第4実施形態では、膨張部及び液戻し流量調節部として電子制御式膨張弁(PMV)を用いているが、膨張部及び液戻し流量調節部はこれに限られない。
冷凍サイクル装置は、気液熱交換器29を備えなくてもよい。
以上説明した少なくともひとつの実施形態によれば、液戻し配管18及び第二のPMV19を持ち、制御部が過冷却度に基づいて第一のPMV13の開度を調節することで、第二のPMV19を小型にすることができ、第二のPMV19を制御しても性能の変動が少なくすることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1、2、3…冷凍サイクル装置、10…圧縮機、12…第一の熱交換器、13…第一のPMV(膨張部)、14…第二の熱交換器、15…主配管、17、17A、17B…アキュムレータ、18、18A…液戻し配管、19…第二のPMV(液戻し流量調節部)、20…高圧圧力センサ、21…凝縮液温度センサ、22、22A、22B…制御部、29…気液熱交換器、30…低圧圧力センサ、31…吸入温度センサ、35…吐出温度センサ、R…冷媒

Claims (9)

  1. 圧縮機と、
    第一の熱交換器と、
    開度を調節可能な膨張部と、
    第二の熱交換器と、
    前記圧縮機、前記第一の熱交換器、前記膨張部、及び前記第二の熱交換器を順次接続し、冷媒及び冷凍機油が流通する主配管と、
    前記第二の熱交換器と前記圧縮機との間の前記主配管に設けられ、液相の前記冷媒及び前記冷凍機油の少なくとも一方を下部に収容し、気相の前記冷媒を前記圧縮機に供給するアキュムレータと、
    前記アキュムレータの下部、及び、前記アキュムレータと前記圧縮機との間の前記主配管にそれぞれ接続された液戻し配管と、
    開度を調節可能であって前記液戻し配管に設けられた液戻し流量調節部と、
    前記圧縮機の吐出口における前記冷媒の圧力を検出する高圧圧力センサと、
    前記第一の熱交換器の出口における前記冷媒の温度を検出する凝縮液温度センサと、
    前記膨張部の開度及び前記液戻し流量調節部の開度を調節する制御部と、
    を備え、
    前記制御部は、
    前記高圧圧力センサが検出した圧力に対する前記冷媒の飽和温度である高圧飽和温度を算出し、
    前記高圧飽和温度と前記凝縮液温度センサが検出した温度との差である過冷却度を算出し、
    前記過冷却度に基づいて前記膨張部の開度を調節する冷凍サイクル装置。
  2. 前記主配管を流れる前記冷媒及び前記冷凍機油の向きを切替える流路切替え部を備え、
    前記流路切替え部は、前記制御部により制御され、
    前記第一の熱交換器の内容積よりも前記第二の熱交換器の内容積の方が大きく、
    前記制御部は、前記流路切替え部を切替えて、前記第一の熱交換器を凝縮器として機能させ、前記第二の熱交換器を蒸発器として機能させたときに、前記過冷却度が一定の値になるように前記膨張部の開度を調節する請求項1に記載の冷凍サイクル装置。
  3. 前記圧縮機の吸入口における前記冷媒の圧力を検出する低圧圧力センサと、
    前記圧縮機の吸入口における前記冷媒の温度を検出する吸入温度センサと、
    を備え、
    前記制御部は、
    前記低圧圧力センサが検出した圧力に対する前記冷媒の飽和温度である低圧飽和温度を算出し、
    前記吸入温度センサが検出した温度と前記低圧飽和温度との差である吸入過熱度を算出し、
    前記吸入過熱度に基づいて前記液戻し流量調節部の開度を調節する請求項1又は2に記載の冷凍サイクル装置。
  4. 前記圧縮機の吐出口における前記冷媒の温度を検出する吐出温度センサを備え、
    前記制御部は、前記吐出温度センサが検出した温度に基づいて前記液戻し流量調節部の開度を調節する請求項1又は2に記載の冷凍サイクル装置。
  5. 前記制御部は、前記吐出温度センサが検出した温度と前記高圧飽和温度との差である吐出過熱度を算出し、
    前記吐出過熱度に基づいて前記液戻し流量調節部の開度を調節する請求項4に記載の冷凍サイクル装置。
  6. 前記アキュムレータと前記圧縮機との間の前記主配管と、前記第一の熱交換器と前記膨張部との間の前記主配管とを熱交換する気液熱交換器を備える請求項1から5のいずれか一項に記載の冷凍サイクル装置。
  7. 前記液戻し配管は、前記アキュムレータと前記圧縮機との間の前記主配管であって、前記気液熱交換器よりも上流側に接続されている請求項6に記載の冷凍サイクル装置。
  8. 前記液戻し配管は、前記アキュムレータと前記圧縮機との間の前記主配管であって、前記気液熱交換器よりも下流側に接続されている請求項6に記載の冷凍サイクル装置。
  9. 前記主配管に受液器を備えない請求項1から8のいずれか一項に記載の冷凍サイクル装置。
JP2015236954A 2015-12-03 2015-12-03 冷凍サイクル装置 Pending JP2017101897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236954A JP2017101897A (ja) 2015-12-03 2015-12-03 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236954A JP2017101897A (ja) 2015-12-03 2015-12-03 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2017101897A true JP2017101897A (ja) 2017-06-08

Family

ID=59016636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236954A Pending JP2017101897A (ja) 2015-12-03 2015-12-03 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2017101897A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109869941A (zh) * 2018-12-17 2019-06-11 珠海格力电器股份有限公司 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
WO2020208751A1 (ja) 2019-04-10 2020-10-15 三菱電機株式会社 空気調和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654754U (ja) * 1979-10-03 1981-05-13
JPH01169272A (ja) * 1987-12-24 1989-07-04 Mitsubishi Electric Corp 冷媒装置
JP2005098635A (ja) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2008057874A (ja) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp 冷凍サイクル装置
WO2014118953A1 (ja) * 2013-01-31 2014-08-07 三菱電機株式会社 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
JP2014214913A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 油戻し制御装置及び冷凍装置
JP2015117902A (ja) * 2013-12-19 2015-06-25 東芝キヤリア株式会社 冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654754U (ja) * 1979-10-03 1981-05-13
JPH01169272A (ja) * 1987-12-24 1989-07-04 Mitsubishi Electric Corp 冷媒装置
JP2005098635A (ja) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2008057874A (ja) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp 冷凍サイクル装置
WO2014118953A1 (ja) * 2013-01-31 2014-08-07 三菱電機株式会社 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
JP2014214913A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 油戻し制御装置及び冷凍装置
JP2015117902A (ja) * 2013-12-19 2015-06-25 東芝キヤリア株式会社 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109869941A (zh) * 2018-12-17 2019-06-11 珠海格力电器股份有限公司 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
WO2020208751A1 (ja) 2019-04-10 2020-10-15 三菱電機株式会社 空気調和装置

Similar Documents

Publication Publication Date Title
JP5991989B2 (ja) 冷凍空調装置
JP5355016B2 (ja) 冷凍装置及び熱源機
JP5132708B2 (ja) 冷凍空調装置
JP2011052884A (ja) 冷凍空調装置
JP6814974B2 (ja) 冷凍装置
JP6671183B2 (ja) 冷凍サイクル装置
JP2010007975A (ja) エコノマイザーサイクル冷凍装置
JP2011080633A (ja) 冷凍サイクル装置および温水暖房装置
CN104613696B (zh) 冰箱及其控制方法
JP2015148406A (ja) 冷凍装置
JP2015148407A (ja) 冷凍装置
JP5449266B2 (ja) 冷凍サイクル装置
WO2019138780A1 (ja) 製氷システム
JP6388260B2 (ja) 冷凍装置
JP2009186033A (ja) 二段圧縮式冷凍装置
JP2018132224A (ja) 二元冷凍システム
JP2017101897A (ja) 冷凍サイクル装置
JP7138801B2 (ja) 冷凍サイクル装置
KR101917391B1 (ko) 공기 조화기
JP6272364B2 (ja) 冷凍サイクル装置
JP6094859B2 (ja) 冷凍装置
JP6555584B2 (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
JP2018112367A (ja) 二元ヒートポンプ装置
JP6136231B2 (ja) 冷媒流量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519