WO2014117477A1 - 双层透明导电膜及其制备方法 - Google Patents

双层透明导电膜及其制备方法 Download PDF

Info

Publication number
WO2014117477A1
WO2014117477A1 PCT/CN2013/078930 CN2013078930W WO2014117477A1 WO 2014117477 A1 WO2014117477 A1 WO 2014117477A1 CN 2013078930 W CN2013078930 W CN 2013078930W WO 2014117477 A1 WO2014117477 A1 WO 2014117477A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
grid
mesh
wire
embossing
Prior art date
Application number
PCT/CN2013/078930
Other languages
English (en)
French (fr)
Inventor
周菲
高育龙
曹淼倩
顾滢
Original Assignee
南昌欧菲光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光科技有限公司 filed Critical 南昌欧菲光科技有限公司
Priority to JP2014559081A priority Critical patent/JP6184985B2/ja
Priority to KR1020137026020A priority patent/KR101536573B1/ko
Priority to US14/000,098 priority patent/US9313896B2/en
Publication of WO2014117477A1 publication Critical patent/WO2014117477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • H05K1/0289Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Definitions

  • the present invention relates to a conductive film, and more particularly to a double-layer transparent conductive film and a method of preparing the same.
  • the transparent conductive film is a conductive film having excellent electrical conductivity and excellent light transmittance to visible light, and has wide application prospects. In recent years, it has been successfully applied in the fields of liquid crystal displays, touch panels, electromagnetic wave protection, transparent electrode transparent surface heaters for solar cells, and flexible light-emitting devices.
  • a method of preparing a transparent conductive film requires patterning a transparent conductive film by exposure, development, etching, and cleaning processes, and then forming a conductive region and a light-transmitting region on the surface of the substrate according to the pattern.
  • a metal mesh can be formed directly on a particular pattern area on the substrate by printing.
  • the metal mesh in the two-layer conductive film plays a decisive role in the photoelectric properties of the film, which requires good electrical conductivity, and also requires high visible light transmittance and infrared reflectance.
  • the double-layer transparent conductive film needs to align the upper and lower layers in the process of superposition or design, so as to avoid undesirable optical phenomena and color difference between the mesh regions.
  • the alignment precision of the double-layer conductive film is relatively high, generally 10 ⁇ m, in order to avoid poor optical phenomena and ensure high light transmittance, so that the requirements for equipment and operation are high due to high alignment precision requirements in production. There are also relatively high requirements.
  • a double-layer transparent conductive film comprising:
  • a first embossing layer is disposed on the first substrate, and the first squeegee layer is provided with a first wire-like groove, and the first wire-shaped groove forms a first mesh;
  • a first conductive layer comprising a conductive material filled in the first mesh line trench
  • An adhesion-promoting layer disposed on the first embossed layer and the first conductive layer;
  • a second embossing layer is disposed on the second substrate, a second wire-like groove is disposed on the second embossing layer, and the second wire-shaped groove forms a second mesh,
  • One of the first grid and the second grid is a regular grid and the other is a random grid;
  • the second conductive layer includes a conductive material filled in the second mesh line trench.
  • the area of the blank area in the center of the unit of the random grid accounts for more than 95% of the area of the first conductive layer, and the area of the blank area in the center of the unit of the regular grid
  • the ratio of the area of the second conductive layer is greater than 95%.
  • the unit of the random grid is an irregular quadrilateral, and the unit of the regular grid is a rectangle.
  • the random mesh is an irregular polygon mesh
  • the mesh line of the irregular polygon mesh has a slope range of (-1, 1), and the number of grid lines is greater than a slope.
  • the number of grid lines (- ⁇ ,-1) and (1,+ ⁇ ) or the grid line slope range (-1,1) is less than the slope (- ⁇ ,-1) and (1) , + ⁇ ) the number of grid lines
  • the regular grid is a regular hexagon grid.
  • the random mesh is an irregular polygon mesh
  • the mesh lines of the irregular polygon mesh are evenly distributed at various angles, and the distribution is uniformly satisfied: between two nodes the grid lines and the horizontal direction X axis forming an angle ⁇ , the angle ⁇ in an even distribution, the uniform distribution statistics for each ⁇ value of a random grid; 50 follow the step size, each angle falls statistics
  • the probability p i of the grid lines in the interval thus obtaining p 1 , p 2 ... to p 36 in 36 angular intervals within 0 ⁇ 180 0 ; p i satisfies the standard deviation less than 20% of the arithmetic mean.
  • a method for preparing a double-layer transparent conductive film comprising:
  • an embossing adhesive to the surface of the first substrate to obtain a first embossing layer, performing pattern embossing on the first embossing layer to form a first wire-like groove, the first wire shape
  • the trench forms a first grid
  • a conductive material is filled in the second wire-like trench and sintered to form a second conductive layer.
  • a double-layer transparent conductive film comprising:
  • a first embossing layer is disposed on a surface of the substrate, the first embossing layer is provided with a first wire-like groove, and the first wire-shaped groove forms a first mesh;
  • a first conductive layer comprising a conductive material filled in the first mesh line trench
  • a second embossing layer is disposed on the other surface of the substrate, a second wire-like groove is disposed on the second embossing layer, and the second wire-shaped groove forms a second mesh.
  • One of the first grid and the second grid is a regular grid, and the other is a random grid;
  • the second conductive layer includes a conductive material filled in the second mesh line trench.
  • a method for preparing a double-layer transparent conductive film comprising:
  • the trench forms a second grid, one of the first grid and the second grid is a regular grid, and the other is a random grid;
  • a conductive material is filled in the second wire-like trench and sintered to form a second conductive layer.
  • a double-layer transparent conductive film comprising:
  • a substrate having a first wire-like groove formed thereon, the first wire-shaped groove forming a first mesh;
  • a first conductive layer comprising a conductive material filled in the first mesh line trench
  • One of the grids is a regular grid and the other is a random grid
  • the second conductive layer includes a conductive material filled in the second mesh line trench.
  • a method for preparing a double-layer transparent conductive film comprising:
  • One of the first grid and the second grid is a regular grid, and the other is a random grid
  • a conductive material is filled in the second wire-like trench and sintered to form a second conductive layer.
  • the double-layer transparent conductive film includes a first conductive layer and a second conductive layer
  • the first conductive layer includes a conductive material filled in the first mesh-shaped trench, and a first mesh is formed on a surface of the first conductive layer
  • the two conductive layers include a conductive material filled in the second mesh line trench, and a second mesh is formed on the surface of the second conductive layer, one of the first mesh and the second mesh is a regular mesh, and the other is Random meshes, in the process of superimposing or designing a two-layer conductive film, have no alignment accuracy requirements, and can avoid poor optical phenomena and color matching differences between mesh regions. Further, in the production process, the production efficiency is greatly improved due to the requirement of non-alignment precision.
  • FIG. 1A is a schematic cross-sectional view showing a two-layer transparent conductive film of Embodiment 1;
  • FIG. 1B is a schematic plan view showing a second conductive layer of the double-layer transparent conductive film of Embodiment 1;
  • FIG. 2 is a schematic plan view of a first conductive layer of Embodiment 1;
  • FIG. 3 is a schematic cross-sectional view showing a two-layer transparent conductive film of Embodiment 2;
  • 3A is a plan view showing a second conductive layer of Embodiment 2;
  • 3B is a schematic plan view of the first conductive layer of Embodiment 2;
  • FIG. 4 is a schematic cross-sectional view showing a two-layer transparent conductive film of Embodiment 3;
  • FIG. 4A is a schematic plan view showing a first conductive layer of Embodiment 3.
  • 4B is a schematic plan view of a second conductive layer of Embodiment 3.
  • Example 5 is a flow chart showing a method of preparing a two-layer transparent conductive film of Example 1;
  • FIG. 6 is a flow chart showing a method of preparing a two-layer transparent conductive film of Embodiment 2;
  • FIG. 7 is a flow chart showing a method of preparing a two-layer transparent conductive film of Example 3.
  • FIG. 1A is a schematic cross-sectional view of a double-layer conductive film 100 of the present embodiment.
  • the double-layer conductive film 100 includes a first substrate 110, a first embossed layer 120, and a first conductive layer from bottom to top.
  • the first substrate 110 is made of PET, and the substrate 110 has a thickness of 188 ⁇ m and is transparent.
  • the first embossed layer 120 is disposed on the first substrate 110.
  • the first embossing layer 120 is made of a UV embossing material.
  • the first embossing layer 120 is embossed to form a first wire-like groove 14 having a groove depth of 3 ⁇ m and a width of 2.2 ⁇ m.
  • the first mesh-like trench 14 forms a first mesh, and the first mesh is a random mesh.
  • the first conductive layer 101 is disposed on the first embossed layer 120, and comprises a conductive material metal silver filled in the first mesh-like trenches 14.
  • the metallic silver is interconnected in the first mesh-like trenches 14 to form a conductive region.
  • the thickness of the filled metal silver is less than the depth of the trench 14, which is about 2 ⁇ m.
  • the adhesion promoting layer 103 is bonded to the first conductive layer 101.
  • the second substrate 110' is disposed on the adhesion-promoting layer 103, similar to the structure and material of the first substrate 110.
  • the second embossed layer 120' is disposed on the second substrate 110', and the second reticular groove 14' is embossed on the second embossed layer 120'.
  • the second grid formed by the second wire-like grooves 14' is a regular grid.
  • the second conductive layer 102 is disposed on the second embossed layer 120', and comprises a conductive material metallic silver filled in the second mesh-like trench 14'.
  • the metallic silver communicates with each other in the first mesh-like trench 14' to form a conductive Area.
  • the thickness of the filled metal silver is less than the depth of the trench 14', which is about 2 ⁇ m.
  • the first conductive layer 101 and the second conductive layer 102 are bonded together by the adhesion promoting layer 103 to form a double-layer conductive film 100.
  • FIG. 1B is a schematic plan view of the second conductive layer 102 of the embodiment.
  • the second grid formed by the second wire-like grooves 14' is a regular grid.
  • the rule grid is a rule formed by juxtaposing a plurality of grid cells 12.
  • the grid unit 12 randomly selects a point as a starting node 12a of the grid unit 12, the grid line 121 extends from the node 12a as a starting point to the node 12b, and the grid line 124 also starts from the node 12a.
  • the grid line 122 and the grid line 123 start from the nodes 12b and 12d, respectively, and extend along different directions from the grid lines 124 and the grid lines 121.
  • the node 12c constitutes a grid unit 12 which is a regular quadrilateral.
  • the above process is repeated by selecting each node as a starting point, respectively, to form a grid of the second conductive layer 102. That is, the grid lines 121, the grid lines 122, the grid lines 123, and the grid lines 124 enclose the grid unit 12.
  • the grid lines constituting the grid unit 12 have a length of 280 ⁇ m.
  • the intermediate blank area 13 surrounded by the four grid lines of the grid unit 12 is an insulating area, and the insulating area also serves as a light transmitting area.
  • the ratio of the area of the blank area 13 to the total area of the grid unit 12 is greater than 95%, that is, the ratio of the area of the blank area in the regular grid of the second conductive layer 102 to the total area of the second conductive layer 102 is greater than 95%. This ratio gives the conductive film a high light transmittance.
  • FIG. 2 is a plan view showing the first conductive layer 101 of the present embodiment.
  • the first grid formed by the second wire-like grooves 14' is a random grid.
  • the random mesh is formed by a plurality of grid cells 21 arranged side by side.
  • the grid unit 21 randomly selects a point as the start point node 21a of the grid unit 21, and the grid line 211 extends from the node 21a as a starting point to the node 21b, and the grid line 214 also starts from the node 21a along the grid line 211.
  • the direction extends to reach the node 21d, and the grid line 212 and the grid line 213 respectively start from the nodes 21b and 21d, and intersect with the grid line 214 and the grid line 211 to form a node 21c.
  • the constituent grid cells 21 are irregular quadrangles, which are sequentially arranged to form a random mesh of the first conductive layer 101. That is, the grid line 211, the grid line 212, the grid line 213, and the grid line 214 form the grid unit 21, and the intermediate blank area 22 surrounded by the four grid lines of the grid unit 21 is an insulating area. This insulating region also serves as a light transmitting region.
  • the area of the blank area 22 occupies more than 95% of the total area of the grid unit 21, that is, the area of the blank area in the random grid of the first conductive layer 101 occupies more than 95% of the area of the first conductive layer 101.
  • the circumference of the constituent grid unit 21 is the same as the circumference of the grid unit 12 of the second conductive layer 102.
  • the method for forming the irregular quadrilateral mesh unit 21 may be: first, design a regular regular quadrilateral mesh unit, and then move each regular quadrilateral node, and the moved node is guaranteed.
  • the connected quadrilateral is an irregular quadrilateral; the method of moving the node is to move randomly from the center of the original node to the origin distance d; the grid line 211, the grid line 212, the grid line 213, and the grid line 214 A grid unit 21 is enclosed.
  • the method for preparing the double-layer conductive film 100 includes the following steps:
  • the conductive material is metallic silver.
  • the adhesion promoting layer 103 is used to better bond the first conductive layer 101 and the second conductive layer 102 together.
  • the first conductive layer 101 is used as a sensing layer, and the second conductive layer 102 is used as a driving layer. After the two conductive layers are stacked, they are bonded by the adhesion-promoting layer 103. During the superposition process, the first conductive layer 101 and the second conductive layer 102 have no alignment precision requirements during the superposition process, and can be well. Avoid bad optical phenomena and color differences between grid areas. The requirements for production processes and equipment are relatively low.
  • FIG. 3 is a schematic cross-sectional view of the double-layer conductive film 200 of the present embodiment.
  • the double-layer conductive film 200 includes a first conductive layer 201, a first embossed layer 210, a substrate 203, and a second pressure from bottom to top.
  • the base layer 203 is disposed in the middle of the two conductive layers.
  • the material of the substrate 203 is PET, and the thickness of the substrate 203 is 188 ⁇ m.
  • the first embossing layer 210 is disposed on the lower surface of the substrate 203, and is formed by embossing the first squeegee layer 210 to form a first wire-like groove 32 having a groove depth of 3 ⁇ m and a width of 2.2 ⁇ m.
  • the first mesh formed by the first mesh line grooves 32 is a random mesh.
  • the first conductive layer 201 is disposed on the first embossed layer 210, and comprises a conductive material, metallic silver, filled in the first mesh-like trench 32, and has a filling thickness smaller than a depth of the first mesh-like trench 32 of about 2 ⁇ m. Since the extruded first wire-like grooves 32 communicate with each other, the filled metal silver forms a conductive region.
  • the second embossing layer 210' is disposed on the upper surface of the substrate 203, and the second reticular groove 32' is formed on the second embossed layer 210' by embossing, the groove depth is 3 ⁇ m, and the width is 2.2 ⁇ m. .
  • the second grid formed by the second wire-like grooves 32' is a regular grid.
  • the second conductive layer 202 is disposed on the second embossed layer 210', including the conductive material metallic silver filled in the second mesh-like trench 32'. Since the extruded second wire-like grooves 32' communicate with each other, the filled metal silver communicates with each other to form a conductive region.
  • a plan view of the second conductive layer 202 of the present embodiment is shown, and the second mesh formed by the second mesh-like grooves 32' is a regular mesh.
  • the regular grid includes a plurality of grid cells 33 arranged side by side.
  • the shape of the grid unit 33 is a regular hexagon, which is a regular grid.
  • a point is randomly selected as the start node 33a of the grid unit 33, the grid line 331 extends from the node 33a to the node 33b, the grid line 332 extends from the node 33b to the node 33c, and the grid line 333 extends from the node 33c to the node 33d
  • the grid line 334 extends from the node 33d to the node 33e
  • the grid line 335 extends from the node 33e to the node 33f
  • the grid line 336 extends from the node 33f to the node 33a, thus forming a regular hexagonal grid unit 33;
  • the second conductive layer 202 is arranged by a plurality of grid cells 33 to form a regular grid.
  • the blank area 337 surrounded by the regular hexagonal cell grid 33 is an insulating area.
  • the insulating region is also a light transmitting region.
  • the ratio of the area of the blank area 337 surrounded by the regular hexagonal unit grid 33 to the total area of the unit grid 33 is greater than 96.2%, that is, the area of the blank area in the regular grid of the second conductive layer 202 occupies the second conductive layer.
  • the ratio of the total area of 202 is greater than 96.2%. This ratio gives the conductive film a high light transmittance.
  • the cell grid 33 has a circumference of 280 ⁇ m.
  • FIG. 3B A plan view of the first conductive layer 201 of the present embodiment is shown in FIG. 3B.
  • the first mesh formed by the first mesh line grooves 32 is a random mesh.
  • the random grid includes a plurality of juxtaposed grid cells 33'.
  • the mesh unit 33' is an irregular polygon, and may have an irregular triangular shape, a quadrangular shape, or a pentagon shape.
  • a plurality of cell grids 33' of non-specular polygons form a random mesh of the first conductive layer 201, wherein the grid lines are straight segments.
  • the slope of the grid line of the irregular polygon mesh ranges from (-1, 1) to the number of grid lines greater than the slope (- ⁇ , -1) and (1, + ⁇ );
  • the number of grid lines where the grid line and the X axis are less than or equal to 45° is greater than the number of grid lines where the grid line is more than 45° from the X axis; or the grid line slope range is another case
  • the number of grid lines (-1, 1) is less than the number of grid lines of slope (- ⁇ , -1) and (1, + ⁇ ).
  • the blank area 337' surrounded by the four grid lines of the grid unit 33' is an insulating area. This insulating region also serves as a light transmitting region.
  • the method for preparing the double-layer conductive film 200 includes the steps of:
  • the conductive material is metallic silver.
  • the first conductive layer 201 includes a plurality of irregular polygonal mesh cells 33', and the plurality of mesh cells 33' form a random mesh.
  • the second conductive layer 202 includes a plurality of regular hexagonal cell grids 33, and the plurality of cell grids 33 form a regular grid.
  • the first conductive layer 201 and the second conductive layer 202 have no alignment precision requirements during the superposition process, and can well avoid bad optical phenomena and meshes. Differences in color matching between regions. The requirements for production processes and equipment are relatively low.
  • the double-layer transparent conductive film 300 of the present embodiment has a single-sided double-layer structure, and includes a substrate 41, a first conductive layer 301, a spacer layer 303, and a second conductive layer 302 from bottom to top.
  • the base 41 is made of PET, and the base 41 has a thickness of 188 ⁇ m and is transparent.
  • a first wire-like groove 42 is formed on the substrate 41 by imprinting, and has a groove depth of 3 ⁇ m and a width of 2.2 ⁇ m.
  • the first mesh formed by the first mesh-like grooves 42 is a regular mesh.
  • the first conductive layer 301 is disposed on the substrate 41 and includes a conductive material filled in the first mesh-like trenches 42.
  • the conductive material is silver in this embodiment.
  • the thickness of the filled metallic silver is less than the depth of the first mesh-like trench 42 and is about 2 ⁇ m. Since the extruded first mesh-like grooves 42 communicate with each other, the filled metal silver forms the first conductive layer 301.
  • the isolation layer 303 is disposed on the first conductive layer 301.
  • the material of the spacer layer 303 is a polymer such as a UV embossing paste.
  • a second wire-like groove 42' is provided on the separation layer 303.
  • the grid formed by the second wire-like grooves 42' is a random mesh.
  • the second conductive layer 302 is disposed on the isolation layer 303 and includes a conductive material, i.e., metallic silver, filled in the second mesh-like trench 42'.
  • the thickness of the filled metal silver is less than the depth of the trench 42', which is about 2 ⁇ m, and the depth of the trench is smaller than the thickness of the spacer layer 303. Since the extruded grooves 42' communicate with each other, the filled metal silver forms the second conductive layer 302.
  • FIG. 4A A plan view of the first conductive layer 301 of the present embodiment is shown in FIG. 4A.
  • the first mesh line-like grooves 42 form a regular grid.
  • the rule grid includes a plurality of grid cells 45 arranged side by side.
  • the grid unit 45 has a rhombus shape, and the grid line has an angle ⁇ of 20° with the X axis.
  • the blank area in the grid of the grid unit 45 is an insulating area, and the insulating area can also serve as a light transmitting area.
  • the visible light transmittance of the first conductive layer 301 is greater than 86.6%.
  • FIG. 4B A plan view of the second conductive layer 302 of the present embodiment is shown in FIG. 4B.
  • the second mesh line-like grooves 42' form a random mesh.
  • the random grid includes a plurality of grid cells 45' arranged side by side.
  • the grid unit 45' is an irregular polygon, and a plurality of irregular polygon unit grids 45' form a random grid, and the grid lines in the random grid are straight line segments.
  • Random mesh is uniformly distributed to meet the uniform distribution: grid lines in the horizontal direction and the right X-axis form an angle ⁇ in a uniform distribution, the uniform distribution statistics for each ⁇ value of a random grid; and 50 according to the Step size, the probability p i of the grid line falling in each angular interval is counted, so that p 1 , p 2 ... to p 36 are obtained in 36 angular intervals within 0 ⁇ 180 0 ; p i satisfies the standard deviation is smaller than 20% of the arithmetic mean.
  • the blank area in the grid of the grid unit 45' is an insulating area, and the insulating area can also serve as a light transmitting area.
  • preparing the two-layer thin film conductive layer 300 includes the following steps:
  • the first mesh formed by the first mesh-like grooves 42 is a regular mesh.
  • the conductive material is metallic silver.
  • the second grid formed by the second wire-like grooves 42' is a random grid.
  • the coated polymer layer can be a UV embossing paste.
  • a patterning imprint is performed on the surface of the substrate 41 using an imprint technique to form first grid-like grooves 42 in the functional region, the grooves 42 having a depth of 3 ⁇ m and a width of 2.2 ⁇ m;
  • the surface of the substrate 303 is embossed to form a pattern of all the grid-like grooves 42 filled with a conductive material and sintered to obtain a first conductive layer 301; the plurality of first wire-like grooves 42 are arranged to form a regular grid.
  • the regular grid satisfies the uniform distribution described above, and then the patterned polymer is applied on the first conductive layer 301 to form an isolation layer 303 covering the first conductive layer 301.
  • the thickness is 4 ⁇ m, and the patterning is performed on the isolation layer 303 to form a second wire-like groove 42'.
  • the plurality of second wire-like grooves 42' are arranged to form a random mesh, and then the coating technique is used in the groove.
  • the conductive material is filled and sintered to obtain a second conductive layer 302.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)

Abstract

一种双层透明导电膜,包括第一基底;第一压印胶层,设于第一基底上,第一压印胶层上设有第一网线状沟槽,第一网线状沟槽形成第一网格;第一导电层,包括填充在第一网线状沟槽的导电材料;增粘层,设于第一压印胶层上;第二基底,设于增粘层上;第二压印胶层,设于第二基底上,第二压印胶层上设有第二网线状沟槽,第二网线状沟槽形成第二网格,第一网格和第二网格中其中之一为规则网格,另一个网格为随机网格,第二导电层,包括填充在第二网线状沟槽的导电材料。由于一个网格为随机网格,另一个为规则网格,在叠加过程中,无对准精度要求,生产效率得到较大的提高。此外,还提供双层透明导电膜的制备方法。

Description

双层透明导电膜及其制备方法
【技术领域】
本发明涉及导电薄膜,特别是涉及一种双层透明导电膜及其制备方法。
【背景技术】
透明导电膜是一种既具有高的导电性,又对可见光有很好的透光性的优良性能的导电膜,具有广泛的应用前景。近年来已经成功应用于液晶显示器、触控面板、电磁波防护、太阳能电池的透明电极透明表面发热器及柔性发光器件等领域中。
一般制备透明导电膜的方法需要采用曝光、显像、蚀刻和清洗工序对透明导电膜进行图形化,然后根据图形在基底的表面形成导电区域和透光区域。或者采用印刷法直接在基底上的特定的图形区域形成金属网格。双层导电膜中的金属网格对薄膜的光电性能起决定作用,它要求具有良好的导电性能,同时还需要具有高的可见光透过率和红外反射率。双层透明导电膜需要在叠加或设计的过程中,将上下层的网格对准,用以来避免不良的光学现象以及网格区域间的配色差异。因此双层导电膜的对准精度要求比较高,一般情况在10μm,才能避免不良的光学现象并保证高透光性,这样在生产中由于对准精度要求比较高,所以对设备和操作的要求也同样有了比较高的要求。
【发明内容】
基于此,有必要提供能降低对准精度要求并具有较高的透光性的双层透明导电膜及其制备方法。
一种双层透明导电膜,包括:
第一基底;
第一压印胶层,设于所述第一基底上,所述第一压印胶层上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
第一导电层,包括填充在所述第一网线状沟槽的导电材料;
增粘层,设于所述第一压印胶层和所述第一导电层上;
第二基底,设于所述增粘层上;
第二压印胶层,设于所述第二基底上,所述第二压印胶层上设有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
第二导电层,包括填充在第二网线状沟槽的导电材料。
在其中一个实施例中,所述随机网格的单元的中央的空白区域的面积占所述第一导电层的面积的比例大于95%,所述规则网格的单元的中央的空白区域的面积占所述第二导电层的面积的比例大于95%。
在其中一个实施例中,所述随机网格的单元为不规则的四边形,所述规则网格的单元为矩形。
在其中一个实施例中,所述随机网格为不规则的多边形网格,所述不规则的多边形网格的网格线的斜率范围在(-1,1)的网格线的数量大于斜率(-∞,-1)和(1,+∞)的网格线的数量或网格线斜率范围(-1,1)的网格线的数量小于斜率(-∞,-1)和(1,+∞)的网格线的数量,所述规则网格为正六边形网格。
在其中一个实施例中,所述随机网格为不规则的多边形网格,所述不规则的多边形网格的网格线在各个角度上分布均匀,所述分布均匀满足:两个节点之间的网格线与水平方向X轴形成θ角,所述θ角成均匀分布,所述均匀分布为统计每一条随机网格的θ值;然后按照50的步距,统计落在每个角度区间内网格线的概率pi,由此在0~1800以内的36个角度区间得到p1、p2……至p36;pi满足标准差小于算术均值的20%。
一种双层透明导电膜的制备方法,包括:
在第一基底的表面涂布压印胶,得到第一压印胶层,在所述第一压印胶层上进行图形化压印,形成第一网线状沟槽,所述第一网线状沟槽形成第一网格;
在所述第一网线状沟槽中填充导电材料并烧结,形成第一导电层;
在所述第一导电层上粘接一层增粘层;
在所述增粘层上粘接第二基底,在所述第二基底上涂布压印胶,得到第二压印胶层,在所述第二压印胶层上进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
一种双层透明导电膜,包括:
基底,
第一压印胶层,设于所述基底的一个表面上,所述第一压印胶层上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
第一导电层,包括填充在第一网线状沟槽的导电材料;
第二压印胶层,设于所述基底的另一个表面上,所述第二压印胶层上设有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
第二导电层,包括填充在第二网线状沟槽的导电材料。
一种双层透明导电膜的制备方法,包括:
在基底的一个表面涂布压印胶,得到第一压印胶层,在所述第一压印胶层上进行图形化压印,形成第一网线状沟槽,所述第一网线状沟槽形成第一网格;
在所述第一网线状沟槽中填充导电材料并烧结,形成第一导电层;
在基底的另一表面涂布压印胶,得到第二压印胶层,在所述第二压印胶层上进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;
在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
一种双层透明导电膜,包括:
基底,所述基底上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
第一导电层,包括填充在第一网线状沟槽的导电材料;
隔离层,设置在所述第一导电层上,所述隔离层上有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
第二导电层,包括填充在第二网线状沟槽的导电材料。
一种双层透明导电膜的制备方法,包括:
在基底的表面进行图形化压印,形成第一网线状沟槽;所述第一网线状沟槽形成第一网格;
在所述第一网线状沟槽中填充并烧结导电材料,形成第一导电层;
在所述第一导电层的表面涂布聚合物,形成隔离层,在所述隔离层进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
上述的双层透明导电膜包括第一导电层和第二导电层,第一导电层包括填充在第一网线状沟槽的导电材料,在第一导电层的表面形成了第一网格,第二导电层包括填充在第二网线状沟槽的导电材料,在第二导电层的表面形成了第二网格,第一网格和第二网格中其中一个为规则网格,另一个为随机网格,在叠加或设计双层导电膜的过程中,无对准精度要求,并可以避免不良的光学现象以及网格区域间的配色差异。更进一步的,在生产过程中,由于无对准精度要求,生产效率得到较大的提高。
【附图说明】
图1A为实施例1的双层透明导电膜的横截面示意图;
图1B为实施例1的双层透明导电膜的第二层导电层的平面示意图;
图2为实施例1的第一层导电层的平面示意图;
图3为实施例2的双层透明导电膜的横截面示意图;
图3A为实施例2的第二层导电层的平面示意图;
图3B为实施例2的第一层导电层的平面示意图;
图4为实施例3的双层透明导电膜的横截面示意图;
图4A为实施例3的第一层导电层的平面示意图;
图4B为实施例3的第二层导电层的平面示意图;
图5为实施例1的双层透明导电膜的制备方法流程图;
图6为实施例2的双层透明导电膜的制备方法流程图;
图7为实施例3的双层透明导电膜的制备方法流程图。
【具体实施方式】
下面结合附图及具体实施例对透明导电膜作进一步的说明。
实施例1
请参阅图1A,图1A所示为本实施例的双层导电膜100的横截面示意图,双层导电膜100自下而上包括第一基底110、第一压印胶层120、第一导电层101、增粘层103、第二基底110’、第二压印胶层120'和第二导电层102。
第一基底110为PET材质,基底110的厚度为188μm,呈透明状。
第一压印胶层120设置在第一基底110上。第一压印胶层120为UV压印胶材质,在第一压印胶层120上设有压印形成第一网线状沟槽14,沟槽深度为3μm,宽度为2.2μm。第一网线状沟槽14形成了第一网格,第一网格为随机网格。
第一导电层101设置在第一压印胶层120上,包括填充在第一网线状沟槽14中的导电材料金属银,金属银在第一网线状沟槽14相互连通形成导电区。填充的金属银的厚度小于沟槽14的深度,约为2μm。
增粘层103,粘接在第一导电层101上。
第二基底110’设置在增粘层103上,与第一基底110的结构和材质类似。
第二压印胶层120’设置在第二基底110’上,在第二压印胶层120’上压印有第二网线状沟槽14’。第二网线状沟槽14’形成的第二网格为规则网格。
第二导电层102设置在第二压印胶层120’上,包括填充在第二网线状沟槽14’中的导电材料金属银,金属银在第一网线状沟槽14’相互连通形成导电区。填充的金属银的厚度小于沟槽14’的深度,约为2μm。
第一导电层101和第二导电层102通过增粘层103粘合在一起,形成双层导电膜100。
请参阅图1B,图1B为本实施例的第二导电层102的平面示意图。第二网线状沟槽14’形成了的第二网格为规则网格。规则网格由多个网格单元12并列排布形成的规则。在本实施例中,网格单元12随机选择一点作为网格单元12的一个起始节点12a,网格线121以节点12a为起始点延伸至节点12b,网格线124同样从节点12a开始沿与网格线121不同的方向延伸,到达节点12d,网格线122和网格线123分别以节点12b和12d为起始点,沿着与网格线124和网格线121不同方向延伸相交形成节点12c,此时组成的网格单元12为规则四边形。以同样的方法,分别选择各个节点为起始点重复上述的过程,形成第二导电层102的网格。即网格线121、网格线122、网格线123和网格线124围成了网格单元12。组成网格单元12网格线的长度为280μm。网格单元12的四条网格线围成的中间空白区域13为绝缘区域,该绝缘区域也作为透光区域。空白区域13的面积占网格单元12的总面积的比例大于95%,即第二导电层102的规则网格内空白区域的面积占第二导电层102的总面积的比例大于95%。该比例使得导电膜具有较高的透光率。
请参阅图2,图2所示为本实施例的第一层导电层101平面图。第二网线状沟槽14’形成的第一网格为随机网格。随机网格由多个网格单元21并列排布形成。网格单元21随机选择一个点作为网格单元21的起始点节点21a,网格线211以节点21a为起始点延伸至节点21b,网格线214同样从节点21a开始沿与网格线211不同的方向延伸,到达节点21d,网格线212和网格线213分别以节点21b和21d为起始点,沿着与网格线214和网格线211不同方向延伸相交形成至节点21c,此时组成的网格单元21为不规则四边形,依次排列形成第一导电层101的随机网格。即网格线211、网格线212、网格线213和网格线214形成了网格单元21,网格单元21的四条网格线围成的中间空白区域22为绝缘区域。该绝缘区域也作为透光区域。空白区域22的面积占网格单元21总面积的比例大于95%,即第一导电层101的随机网格内的空白区域的面积占与第一导电层101的面积的比例大于95%。组成网格单元21的周长与第二导电层102的网格单元12的周长相同。在其他的实施中,不规则四边形的网格单元21的形成方法还可以为:首先,设计好规则的正四边形网格单元,然后使每个正四边形的节点进行移动,移动后的节点要保证连接起来的四边形为不规则四边形;节点移动的方法为以原节点中心,到原点距离为d范围内,随机移动;网格线211、网格线212、网格线213和网格线214所围成的网格单元21。
请参阅图5,本实施例中,制备双层导电膜100的方法包括如下步骤:
S101、在第一基底110表面涂布压印胶,得到第一压印层120,在第一压印层120上进行图形化压印,形成第一网线状沟槽14,第一网线状沟槽14形成的第一网格为随机网格。
S102、在第一网线状沟槽14中填充导电材料并烧结,形成第一导电层101。
导电材料为金属银。
S103、在第一导电层101上粘接一层增粘层103。
增粘层103用于更好将第一导电层101和第二导电层102粘接在一起。
S104、在增粘层103上粘接第二基底110’,在第二基底110’上涂布压印胶,得到第二压印胶层120’,在第二压印胶层120’进行图形化压印,形成第二网线状沟槽14’,第二网线状沟槽14’形成的第二网格为规则网格。
S105、在第二网线状沟槽14’中填充导电材料并烧结,形成第二导电层102。
将第一导电层101作为感应层,将第二导电层102作为驱动层。将两层导电层叠加后通过增粘层103粘接起来即可,在叠加的过程中,第一导电层101和第二导电层102在叠加的过程中无对准精度要求,且能很好的避免不良的光学现象以及网格区域间的配色差异。对生产工艺和设备要求比较低。
实施例2
如图3所示为本实施例的双层导电膜200的横截面示意图,双层导电膜200自下而上包括第一导电层201、第一压印胶层210、基底203、第二压印胶层210’和第二导电层202。
基层203设置在两层导电层的中间。基底203的材质为PET,基底203的厚度为188μm。
第一压印胶层210设置在基底203的下表面上,通过在第一压印胶层210压印形成第一网线状沟槽32,沟槽深度为3μm,宽度为2.2μm。第一网线状沟槽32形成的第一网格为随机网格。
第一导电层201设置在第一压印胶层210,包括填充在第一网线状沟槽32中的导电材料金属银,填充的厚度小于第一网线状沟槽32的深度,约为2μm。由于压出的第一网线状沟槽32相互连通,填充的金属银形成了导电区。
第二压印胶层210’设置在基底203的上表面上,在第二压印胶层210’上通过压印形成第二网线状沟槽32’,沟槽深度为3μm,宽度为2.2μm。第二网线状沟槽32’形成的第二网格为规则网格。
同样,第二导电层202设置在第二压印胶层210’上,包括填充在第二网线状沟槽32’中导电材料金属银。由于压出的第二网线状沟槽32’相互连通,填充的金属银相互连通,形成了导电区。
如图3A所示为本实施例的第二导电层202的平面图,第二网线状沟槽32’形成的第二网格为规则网格。规则网格包括并列排布的多个网格单元33。网格单元33的形状为正六边形,为规则的网格。随机选择一个点作为网格单元33的起始节点33a,网格线331从节点33a延伸至节点33b,网格线332从节点33b延伸到节点33c,网格线333从节点33c延伸到节点33d,网格线334从节点33d延伸到节点33e,网格线335从节点33e延伸到节点33f,网格线336从节点33f延伸到节点33a,这样形成正六边的网格单元33;重复上面的过程,在第二导电层202由多个网格单元33排列形成了规则网格。正六边形的单元网格33围成的空白区域337为绝缘区域。该绝缘区域也是透光区域。正六边形的单元网格33围成的空白区域337面积占单元网格33的总面积的比例大于96.2%,即第二导电层202的规则网格内的空白区域的面积占第二导电层202的总面积的比例大于96.2%。该比例使得导电膜具有较高的透光率。单元网格33的周长为280μm。
如图3B所示为本实施例的第一导电层201的平面图。第一网线状沟槽32形成的第一网格为随机网格。随机网格包括多个并列排布网格单元33’。网格单元33’为不规则的多边形,可以有不规则的三边形、四边形或五边形等。多个不规格多边形的单元网格33’形成了第一导电层201的随机网格,其中网格线为直线段。不规则的多边形网格的网格线的斜率范围在(-1,1)的网格线的数量大于斜率(-∞,-1)和(1,+∞)的网格线的数量;即网格线与X轴的夹角小于或等于45°的网格线的数量大于网格线与X轴的夹角大于45°的网格线的数量;或另一种情况网格线斜率范围(-1,1)的网格线的数量小于斜率(-∞,-1)和(1,+∞)的网格线的数量。网格单元33’的四条网格线围成的空白区域337’为绝缘区域。该绝缘区域也作为透光区域。
请参阅图6,本实施例中,制备双层导电膜200的方法包括步骤:
S201、在基底203的一个表面涂布压印胶,得到第一压印胶层210,在第一压印胶层210上进行图形化压印,形成第一网线状沟槽32,第一网线状沟槽32形成的第一网格为随机网格。
S202、在第一网线状沟槽32中填充导电材料并烧结,形成第一导电层201。
其中,导电材料为金属银。
S203、在基底203的另一表面涂布压印胶,得到第二压印胶层210’,在第二压印胶层210’上进行图形化压印,形成第二网线状沟槽32’,第二网线状沟槽32’形成的第二网格为规则网格。
S204、在第二网线状沟槽32’中填充导电材料并烧结形成第二导电层202。
第一导电层201包括多个不规则多边形的网格单元33’,多个网格单元33’形成了随机网格。第二导电层202包括多个正六边形的单元网格33,多个单元网格33形成了规则网格。在形成第二导电层202的规则网格单元33时,第一导电层201和第二导电层202在叠加的过程中无对准精度要求,且能很好的避免不良的光学现象以及网格区域间的配色差异。对生产工艺和设备要求比较低。
实施例3
请参阅图4,本实施例的双层透明导电膜300的结构为单面双层结构,自下而上的包括基底41,第一导电层301、隔离层303和第二导电层302。
基底41的材质为PET,基底41的厚度为188μm,呈透明状。在基底41上有压印形成第一网线状沟槽42,沟槽深度为3μm,宽度为2.2μm。第一网线状沟槽42形成的第一网格为规则网格。
第一导电层301设置在基底41上,包括填充在第一网线状沟槽42中的导电材料。导电材料本实施例中为银。填充的金属银的厚度小于第一网线状沟槽42的深度,约为2μm。由于压出的第一网线状沟槽42相互连通,填充的金属银形成了第一导电层301。
隔离层303设置在第一导电层301上。隔离层303的材料为聚合物,例如UV压印胶。隔离层303上设有第二网线状沟槽42’。第二网线状沟槽42’形成的网格为随机网格。
第二导电层302设置在隔离层303上,包括填充在第二网线状沟槽42’中的导电材料,即金属银。填充的金属银的厚度小于沟槽42’的深度,约为2μm,且沟槽的深度小于隔离层303的厚度。由于压出的沟槽42’相互连通,填充的金属银形成了第二导电层302。
如图4A所示为本实施例的第一导电层301的平面图。第一网线状沟槽42形成了规则网格。规则网格包括多个并列排布的网格单元45。网格单元45为菱形,网格线与X轴夹角θ为20°。网格单元45的网格内的空白区域为绝缘区域,该绝缘区域也可作为透光区。第一导电层301的可见光透过率大于86.6%。
图4B中所示为本实施例的第二导电层302的平面图。第二网线状沟槽42’形成随机网格。随机网格包括多个并列排布的网格单元45’。网格单元45’为不规则多边形,多个不规则多边形的单元网格45’形成了随机网格,随机网格中的网格线是直线段。随机网格呈均匀分布,该均匀分布满足:网格线与右向水平方向X轴所成角度θ呈均匀分布,所述均匀分布为统计每一条随机网格的θ值;然后按照50的步距,统计落在每个角度区间内网格线的概率pi,由此在0~1800以内的36个角度区间得到p1、p2……至p36;pi满足标准差小于算术均值的20%。网格单元45’的网格内的空白区域为绝缘区域,该绝缘区域也可以作为透光区。
请参阅图7,本实施例中,制备双层薄膜导电层300包括步骤:
S301、在基底41的表面进行图形化压印,形成第一网线状沟槽42。第一网线状沟槽42形成的第一网格为规则网格。
S302、在第一网线状沟槽42中填充并烧结导电材料,形成第一导电层301。
导电材料为金属银。
S303、在第一导电层301的表面涂布聚合物,形成隔离层303,在隔离层303进行图形化压印,形成第二网线状沟槽42’。第二网线状沟槽42’形成的第二网格为随机网格。
涂布的聚合物层可以是UV压印胶。
S304、在第二网线状沟槽42'中填充导电材料并烧结,形成第二导电层302。
首先使用压印技术在基底41的表面进行图形化压印,形成功能区中的第一网格状沟槽42,这些沟槽42的深度为3μm,宽度为2.2μm;然后使用刮涂技术在基底303表面压印形成图形化的所有网格状沟槽42中填充导电材料并烧结得到第一导电层301;多个第一网线状沟槽42排列形成规则网格。规则网格满足上述的均匀分布,然后在第一导电层301上对进行图形化涂布聚合物,形成隔离层303,该隔离层303覆盖第一导电层301。厚度为4μm,在隔离层303上进行图形化压印,形成第二网线状沟槽42’,多个第二网线状沟槽42’排列形成随机网格,然后采用刮涂技术在沟槽中填充导电材料并烧结得到第二导电层302。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种双层透明导电膜,其特征在于,包括
    第一基底;
    第一压印胶层,设于所述第一基底上,所述第一压印胶层上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
    第一导电层,包括填充在所述第一网线状沟槽的导电材料;
    增粘层,设于所述第一压印胶层和所述第一导电层上;
    第二基底,设于所述增粘层上;
    第二压印胶层,设于所述第二基底上,所述第二压印胶层上设有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
    第二导电层,包括填充在第二网线状沟槽的导电材料。
  2. 根据权利要求1所述的双层透明导电膜,其特征在于,所述随机网格的单元的中央的空白区域的面积占所述第一导电层的面积的比例大于95%,所述规则网格的单元的中央的空白区域的面积占所述第二导电层的面积的比例大于95%。
  3. 根据权利要求1所述的双层透明导电膜,其特征在于,所述随机网格的单元为不规则的四边形。
  4. 根据权利要求1所述的双层透明导电膜,其特征在于,所述规则网格的单元为矩形。
  5. 根据权利要求1所述的双层透明导电膜,其特征在于,所述随机网格为不规则的多边形网格,所述不规则的多边形网格的网格线的斜率范围在(-1,1)的网格线的数量大于斜率(-∞,-1)和(1,+∞)的网格线的数量或网格线斜率范围(-1,1)的网格线的数量小于斜率(-∞,-1)和(1,+∞)的网格线的数量。
  6. 根据权利要求1所述的双层透明导电膜,其特征在于,所述规则网格为正六边形网格。
  7. 根据权利要求1所述的双层透明导电膜,其特征在于,所述随机网格为不规则的多边形网格,所述不规则的多边形网格的网格线在各个角度上分布均匀,所述分布均匀满足:两个节点之间的网格线与水平方向X轴形成θ角,所述θ角成均匀分布,所述均匀分布为统计每一条随机网格的θ值;然后按照50的步距,统计落在每个角度区间内网格线的概率pi,由此在0~1800以内的36个角度区间得到p1、p2……至p36;pi满足标准差小于算术均值的20%。
  8. 一种双层透明导电膜的制备方法,其特征在于,包括:
    在第一基底的表面涂布压印胶,得到第一压印胶层,在所述第一压印胶层上进行图形化压印,形成第一网线状沟槽,所述第一网线状沟槽形成第一网格;
    在所述第一网线状沟槽中填充导电材料并烧结,形成第一导电层;
    在所述第一导电层上粘接一层增粘层;
    在所述增粘层上粘接第二基底,在所述第二基底上涂布压印胶,得到第二压印胶层,在所述第二压印胶层上进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
    在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
  9. 一种双层透明导电膜,其特征在于,包括:
    基底,
    第一压印胶层,设于所述基底的一个表面上,所述第一压印胶层上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
    第一导电层,包括填充在第一网线状沟槽的导电材料;
    第二压印胶层,设于所述基底的另一个表面上,所述第二压印胶层上设有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
    第二导电层,包括填充在第二网线状沟槽的导电材料。
  10. 一种双层透明导电膜的制备方法,其特征在于,包括:
    在基底的一个表面涂布压印胶,得到第一压印胶层,在所述第一压印胶层上进行图形化压印,形成第一网线状沟槽,所述第一网线状沟槽形成第一网格;
    在所述第一网线状沟槽中填充导电材料并烧结,形成第一导电层;
    在基底的另一表面涂布压印胶,得到第二压印胶层,在所述第二压印胶层上进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;
    在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
  11. 一种双层透明导电膜,其特征在于,包括:
    基底,所述基底上设有第一网线状沟槽,所述第一网线状沟槽形成第一网格;
    第一导电层,包括填充在第一网线状沟槽的导电材料;
    隔离层,设置在所述第一导电层上,所述隔离层上有第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
    第二导电层,包括填充在第二网线状沟槽的导电材料。
  12. 一种双层透明导电膜的制备方法,其特征在于,包括:
    在基底的表面进行图形化压印,形成第一网线状沟槽;所述第一网线状沟槽形成第一网格;
    在所述第一网线状沟槽中填充并烧结导电材料,形成第一导电层;
    在所述第一导电层的表面涂布聚合物,形成隔离层,在所述隔离层进行图形化压印,形成第二网线状沟槽,所述第二网线状沟槽形成第二网格,所述第一网格和第二网格中其中之一为规则网格,另一个为随机网格;及
    在所述第二网线状沟槽中填充导电材料并烧结,形成第二导电层。
PCT/CN2013/078930 2013-02-04 2013-07-05 双层透明导电膜及其制备方法 WO2014117477A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014559081A JP6184985B2 (ja) 2013-02-04 2013-07-05 二層透明導電膜及びその製造方法
KR1020137026020A KR101536573B1 (ko) 2013-02-04 2013-07-05 이중층의 투명 전도성 필름 및 이의 제조방법
US14/000,098 US9313896B2 (en) 2013-02-04 2013-07-05 Double-layered transparent conductive film and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310043999.3 2013-02-04
CN201310043999.3A CN103426500B (zh) 2013-02-04 2013-02-04 双层透明导电膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2014117477A1 true WO2014117477A1 (zh) 2014-08-07

Family

ID=49651113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078930 WO2014117477A1 (zh) 2013-02-04 2013-07-05 双层透明导电膜及其制备方法

Country Status (5)

Country Link
JP (1) JP6184985B2 (zh)
KR (1) KR101536573B1 (zh)
CN (1) CN103426500B (zh)
TW (1) TWI493573B (zh)
WO (1) WO2014117477A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116082A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Mesh electrode
CN111831171A (zh) * 2020-06-05 2020-10-27 深圳市鸿合创新信息技术有限责任公司 Pet基材的制备方法及电容膜、电容式触屏模组、整机模组

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645338B1 (ko) * 2014-06-11 2016-08-03 주식회사 알.에프.텍 도전 패턴이 형성된 투명 필름 및 이의 제조방법
KR101681749B1 (ko) 2015-03-26 2016-12-01 가천대학교 산학협력단 투명전극 소재의 제조 방법
KR101681745B1 (ko) 2015-03-26 2016-12-01 가천대학교 산학협력단 투명전극 소재
CN108008853B (zh) * 2017-11-20 2020-01-10 武汉华星光电半导体显示技术有限公司 一种触控传感器及其导电膜结构
CN109041557B (zh) * 2018-07-16 2020-04-24 苏州维业达触控科技有限公司 一种金属网格及其制作方法
CN111148419A (zh) * 2018-11-05 2020-05-12 苏州大学 一种多层屏蔽膜及其制造方法
CN112117120A (zh) * 2019-06-19 2020-12-22 苏州维业达触控科技有限公司 无线充电线圈、无线充电线圈的制作方法及其应用
KR20210085958A (ko) * 2019-12-31 2021-07-08 미래나노텍(주) 스크린 장치
KR102480837B1 (ko) * 2021-01-11 2022-12-22 숭실대학교 산학협력단 투명 발광소자 디스플레이 및 전극 배선부의 폭 결정 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102708946A (zh) * 2012-05-09 2012-10-03 崔铮 双面图形化透明导电膜及其制备方法
CN102902856A (zh) * 2012-09-27 2013-01-30 中国科学院苏州纳米技术与纳米仿生研究所 金属网导电薄膜的随机网格设计方法、导电膜及其制作方法
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741677B1 (ko) * 2006-03-06 2007-07-23 삼성전기주식회사 임프린팅에 의한 기판의 제조방법
JP5345859B2 (ja) * 2009-01-07 2013-11-20 富士フイルム株式会社 導電性フイルムの製造方法、導電性フイルム及び透明発熱体
US8970515B2 (en) * 2009-02-26 2015-03-03 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
JP2010271782A (ja) * 2009-05-19 2010-12-02 Toshiba Mobile Display Co Ltd タッチパネル及び画像表示装置
JP5335554B2 (ja) * 2009-05-19 2013-11-06 キヤノン株式会社 画像処理装置及び画像処理方法
KR101082607B1 (ko) * 2009-10-16 2011-11-10 엘지이노텍 주식회사 터치패널용 면상 부재 및 그 제조 방법
CN102063951B (zh) * 2010-11-05 2013-07-03 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
JPWO2012093530A1 (ja) * 2011-01-06 2014-06-09 リンテック株式会社 透明導電性積層体および有機薄膜デバイス
CN102222538B (zh) * 2011-03-11 2012-12-05 苏州纳格光电科技有限公司 图形化的柔性透明导电薄膜及其制法
TWI428667B (zh) * 2011-06-09 2014-03-01 Shih Hua Technology Ltd 觸摸屏面板的製備方法
US9323370B2 (en) * 2012-03-22 2016-04-26 Sharp Kabushiki Kaisha Electrode sheet, touch panel, and display device
CN102723126B (zh) * 2012-05-09 2015-10-21 南昌欧菲光科技有限公司 一种基于随机网格的图形化透明导电薄膜
CN202677865U (zh) * 2012-05-09 2013-01-16 南昌欧菲光科技有限公司 一种基于随机网格的图形化透明导电薄膜
CN203150154U (zh) * 2013-02-04 2013-08-21 南昌欧菲光科技有限公司 双层透明导电膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102708946A (zh) * 2012-05-09 2012-10-03 崔铮 双面图形化透明导电膜及其制备方法
CN102902856A (zh) * 2012-09-27 2013-01-30 中国科学院苏州纳米技术与纳米仿生研究所 金属网导电薄膜的随机网格设计方法、导电膜及其制作方法
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116082A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Mesh electrode
CN111831171A (zh) * 2020-06-05 2020-10-27 深圳市鸿合创新信息技术有限责任公司 Pet基材的制备方法及电容膜、电容式触屏模组、整机模组
CN111831171B (zh) * 2020-06-05 2023-05-30 深圳市鸿合创新信息技术有限责任公司 Pet基材的制备方法及电容膜、电容式触屏模组、整机模组

Also Published As

Publication number Publication date
CN103426500B (zh) 2016-03-09
JP6184985B2 (ja) 2017-08-23
TWI493573B (zh) 2015-07-21
TW201432725A (zh) 2014-08-16
KR20140108610A (ko) 2014-09-12
CN103426500A (zh) 2013-12-04
JP2015511392A (ja) 2015-04-16
KR101536573B1 (ko) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2014117477A1 (zh) 双层透明导电膜及其制备方法
WO2014146382A1 (zh) 触摸屏及其制造方法
TWI541838B (zh) 透明導電膜中之導電結構、透明導電膜及製作方法
KR102017155B1 (ko) 터치스크린 패널 및 그의 제조방법
JP7235510B2 (ja) タッチパネル及びその製造方法、タッチ表示装置
TWI489362B (zh) 觸控感測結構及其形成方法
WO2014117478A1 (zh) 引线电极及其制备方法
WO2014117479A1 (zh) 透明导电膜
CN108241456A (zh) 触控感测模组及其制作方法以及应用其的触控显示面板
CN203133452U (zh) 一种阵列基板及液晶显示装置
WO2023098113A1 (zh) 触控面板以及显示装置
US20170060303A1 (en) Method for manufacturing touch panel, touch panel and touch display device
WO2014153895A1 (zh) 电容式透明导电膜及其制造方法
CN108470849B (zh) 一种柔性基板及其制作方法
TW201445409A (zh) 單層多點式觸控導電膜及其製備方法
WO2014146384A1 (zh) 触摸屏及其导电层
WO2019037224A1 (zh) 显示屏及其制备方法
WO2020124791A1 (zh) 触控面板及其制造方法
CN108336125B (zh) 一种彩膜基板及其制备方法、显示面板、显示装置
CN110658951A (zh) 一种触控基板及其制作方法、触控显示装置
TW201520837A (zh) 觸控面板及其製作方法
CN107015705A (zh) 一种触控显示装置、触控面板及其制作方法
CN110211929A (zh) 阵列基板及其制造方法
WO2020118904A1 (zh) 触控面板及其制造方法
CN106773523B (zh) 一种掩膜板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14000098

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014559081

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026020

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873229

Country of ref document: EP

Kind code of ref document: A1