WO2019037224A1 - 显示屏及其制备方法 - Google Patents

显示屏及其制备方法 Download PDF

Info

Publication number
WO2019037224A1
WO2019037224A1 PCT/CN2017/107140 CN2017107140W WO2019037224A1 WO 2019037224 A1 WO2019037224 A1 WO 2019037224A1 CN 2017107140 W CN2017107140 W CN 2017107140W WO 2019037224 A1 WO2019037224 A1 WO 2019037224A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
planarization layer
touch electrode
opening
planarization
Prior art date
Application number
PCT/CN2017/107140
Other languages
English (en)
French (fr)
Inventor
叶剑
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/756,307 priority Critical patent/US10719151B2/en
Publication of WO2019037224A1 publication Critical patent/WO2019037224A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display screen and a method of fabricating the same.
  • the touch screen that is required to be matched with the same needs to be flexible and wrapable.
  • the traditional ITO-based touch screen cannot meet the requirements of flexible touch.
  • the touch screen usually matched with the OLED is separately fabricated, and then a transparent touch display module is formed on the OLED by an optical transparent adhesive to increase the overall thickness. It is not conducive to the winding, and at the same time increases the bonding process, which is not conducive to the overall thinness and thinness of the flexible touch display.
  • the invention provides a display screen and a preparation method thereof, which can reduce the overall thickness of the display screen and facilitate the flexible and wrapable characteristics.
  • another technical solution adopted by the present invention is to provide a method for preparing a display screen, the preparation method comprising: providing a thin film transistor array substrate; preparing a first flat on the thin film transistor array substrate Forming a composite structure layer on the first planarization layer, the composite structure layer includes a first touch electrode and an anode layer, and the first touch electrode and the anode layer are disposed in different layers, and The first touch electrode is located at a gap between two adjacent anode layers, and includes: depositing the anode layer on the first planarization layer, wherein the first planarization layer is provided with a first opening Depositing a second planarization layer on the first planarization layer, wherein a second opening is disposed on the second planarization layer corresponding to the first opening, and the anode layer passes through the first An opening and the second opening are connected to a drain of the thin film transistor array substrate; and the first touch electrode is prepared on the second planarization layer;
  • the display screen includes: a thin film transistor array substrate; a first planarization layer deposited on the thin film transistor array substrate; a structural layer is deposited on the first planarization layer, the composite structure layer includes a first touch electrode and an anode layer, and the first touch electrode and the anode layer are disposed in different layers or in the same layer And the first touch electrode is located at a gap between two adjacent anode layers; an organic light emitting layer is deposited on the composite structure layer; and a patterned cathode layer is deposited on the organic light emitting layer and serves as a second touch electrode; an encapsulation layer formed on the cathode layer.
  • another technical solution adopted by the present invention is to provide a method for preparing a display screen, the preparation method comprising: providing a thin film transistor array substrate; preparing a first flat on the thin film transistor array substrate Forming a composite structure layer on the first planarization layer, the composite structure layer includes a first touch electrode and an anode layer, and the first touch electrode and the anode layer are disposed in different layers, and The first touch electrode is located at a gap between two adjacent anode layers; an organic light-emitting layer and a patterned cathode layer are sequentially prepared on the composite structure layer, and the patterned cathode layer serves as a second touch Control electrode; package to form the display.
  • the invention has the beneficial effects of providing a display screen and a preparation method thereof, the cathode layer being used as the second touch by integrating the first touch electrode into the interior of the display screen and on the different or the same layer as the anode layer.
  • the electrode can reduce the overall thickness of the display screen, and is advantageous for achieving flexible and wrapable characteristics.
  • FIG. 1 is a schematic flow chart of an embodiment of a display screen of the present invention.
  • FIG. 2 is a schematic flow chart of the first embodiment of step S3 in FIG. 1 of the present invention.
  • step S31 in FIG. 2 of the present invention is a schematic flow chart of an embodiment of step S31 in FIG. 2 of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a first touch electrode according to the present invention.
  • FIG. 5 is a schematic flow chart of the second embodiment of the step S3 in Figure 1 of the present invention.
  • FIG. 6 is a schematic flow chart of an embodiment of step S33a in FIG. 5 of the present invention.
  • Figure 7 is a schematic flow chart of the first embodiment of step S3 in Figure 1 of the present invention.
  • Figure 8 is a schematic structural view of a first embodiment of the display screen of the present invention.
  • Figure 9 is a schematic structural view of a second embodiment of the display screen of the present invention.
  • Figure 10 is a schematic view showing the structure of a third embodiment of the display screen of the present invention.
  • FIG. 1 is a schematic flow chart of an embodiment of a display screen manufacturing method according to the present invention.
  • an array substrate is provided first.
  • the array substrate may be a transparent material, and may be any substrate such as glass, ceramic substrate or transparent plastic.
  • the invention is not limited thereto, and in the embodiment, the array substrate used is a glass substrate.
  • TFT Thin Film Transistor
  • a first planarization layer is prepared on the thin film transistor array substrate described above, and the first planarization layer is an organic photoresist material. Further, a first opening is formed in the drain of the first planarization layer corresponding to the thin film transistor structure.
  • the composite structural layer specifically includes a first touch electrode, a second planarization layer, and an anode layer. Moreover, according to whether the first touch electrode and the anode layer are on the same layer, the following two cases can be classified:
  • the first touch electrode and anode layer are on different layers
  • the first touch electrode and the anode layer are located on different layers, and the first touch electrode is located at the gap between two adjacent anode layers, and the preparation process thereof is also divided into the following two cases:
  • step S3 may further include the following sub-steps:
  • the first touch electrode may be the driving electrode TX or the sensing electrode RX.
  • step S31 further includes the following sub-steps:
  • the deposition manner of the metal conductive layer includes, but is not limited to, deposition methods such as physical deposition and chemical vapor deposition, which are not limited herein.
  • the metal conductive layer is prepared on the first planarization layer by physical deposition, and the material of the metal conductive layer may be one of silver, titanium, aluminum, and molybdenum.
  • FIG. 4 is a schematic structural diagram of a first touch electrode according to an embodiment of the present invention.
  • the shape of the first touch electrode may be a continuous conductive strip electrode formed by connecting a plurality of diamond patterns together.
  • the conductive strip electrodes formed by connecting other shaped cells to each other are not specifically limited in the present invention.
  • the second planarization layer is an organic photoresist material. Further, at the first opening of the second planarization layer corresponding to the first planarization layer, a second opening is provided.
  • a pixel electrode layer that is, an anode layer, is deposited on the second planarization layer, and the material of the anode layer may include, but not limited to, titanium oxide and silver.
  • the anode layer overlaps the drains in the thin film transistor structure through the first openings and the second openings on the first planarization layer and the second planarization layer.
  • the first touch electrode is located at a gap position between two adjacent anode layers.
  • step S3 may further include the following sub-steps:
  • the difference between the preparation process of the composite structure layer in this embodiment and the preparation process of the composite structure layer in FIG. 2 is that the composite structure layer in FIG. 2 is prepared by sequentially preparing a first touch electrode and a second on the first planarization layer.
  • the planarization layer and the anode layer, and the composite structure layer in this embodiment sequentially prepares the anode layer, the second planarization layer, and the first touch electrode on the first planarization layer, and the specific steps are as follows:
  • a pixel electrode layer that is, an anode layer (Anode) is deposited on the first planarization layer, and the material of the anode layer may include, but not limited to, titanium oxide and silver.
  • the anode layer overlaps with the drain in the thin film transistor structure through the first opening on the first planarization layer.
  • a second planarization layer is then formed on the first planarization layer, the second planarization layer being an organic photoresist material. Further, at the first opening of the second planarization layer corresponding to the first planarization layer, a second opening is provided, and the second opening causes the anode layer to leak out.
  • the first touch electrode may be the driving electrode TX or the sensing electrode RX.
  • step S33a further includes the following sub-steps:
  • the deposition manner of the metal conductive layer includes, but is not limited to, deposition methods such as physical deposition and chemical vapor deposition, which are not limited herein.
  • the metal conductive layer is prepared on the second planarization layer by physical deposition, and the material of the metal conductive layer may be one of silver, titanium, aluminum, and molybdenum.
  • the metal conductive layer is exposed, developed, and etched by a mask pre-positioned with a specific electrode pattern to form a first touch electrode having a lattice structure.
  • the trace of the first touch electrode grid structure needs to avoid developing a photo pixel electrode region, that is, an anode layer region, and the conductive layers of the grid structure are alternately connected to each other to form a horizontal or vertical continuous conduction.
  • Strip-shaped first touch electrode may also be a continuous strip-shaped electrode formed by connecting a plurality of diamond-shaped patterns together or a conductive strip-shaped electrode formed by connecting other shaped units to each other, and the present invention does not specifically limited.
  • step S3 may further include the following sub-steps:
  • a metal conductive layer is deposited on the entire surface of the first planarization layer, and the deposition manner of the metal conductive layer includes, but is not limited to, deposition methods such as physical deposition and chemical vapor deposition, which are not limited herein.
  • the metal conductive layer is deposited on the first planarization layer by physical deposition, and the material of the metal conductive layer may be one of silver, titanium, aluminum, and molybdenum.
  • a mask having a specific electrode pattern is preliminarily formed, and an anode is formed by exposure, development, and etching, and a first touch electrode having a grid structure at a gap position between adjacent anodes (drive electrode) Or induction electrode).
  • the first touch electrode and the anode are insulated from each other independently, and the grid-shaped conductive layer forms strip-shaped first touch electrodes that are alternately connected to each other to form a lateral or longitudinal continuous conduction.
  • the metal conductive electrode pattern of the mesh structure is not limited, such as a continuous strip electrode formed by connecting a plurality of diamond patterns together or a conductive strip electrode formed by connecting other shaped cells to each other.
  • an organic light-emitting layer and a patterned cathode layer are sequentially prepared on the composite structure layer.
  • the organic light-emitting layer may specifically include a pixel defining layer and an OLED pixel layer, and the preparation method thereof may include, but not limited to, evaporation or inkjet printing, which is not further limited herein.
  • a metal cathode layer is deposited on the entire surface of the organic light-emitting layer, and the metal cathode layer is prepared in the same manner as the method for preparing the first touch electrode and the anode layer, that is, a mask covered with a specific electrode pattern. (Mask), the cathode layer is patterned by exposure, development, and dry etching to form a strip-shaped second touch electrode, and the cathode layer may be a sensing electrode or a driving electrode.
  • the first touch electrode is a driving electrode
  • the second touch electrode that is, the cathode layer is a sensing electrode
  • the first touch electrode is a sensing electrode
  • the The cathode layer is a drive electrode. And it is applicable to the case where the anode layer and the first touch electrode are located in the same layer or different layers, and the description is not repeated here.
  • An encapsulation layer is formed on the patterned cathode layer to protect the OLED display panel from the influence of moisture and oxygen in the surrounding environment to reduce its life cycle.
  • the encapsulation method refer to the packaging technology of the existing OLED display, which is not further limited herein.
  • the cathode layer is used as the second touch electrode, and the anode layer is located on the same/different layer, respectively, and the touch film can be omitted. Process to reduce the overall thickness of the display.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a display screen according to the present invention.
  • the display screen 10 includes a thin film transistor array substrate 11, a first planarization layer 12, a composite structure layer 13, an organic light-emitting layer 14, a cathode layer 15, and an encapsulation layer 16.
  • the thin film transistor array substrate 11 further includes an array substrate A and a thin film transistor (TFT) structure B.
  • the array substrate A may be a transparent material, and may be any substrate such as glass, ceramic substrate or transparent plastic.
  • the thin film transistor (TFT) structure B may further include a buffer layer 111, a semiconductor layer 112, a gate insulating layer 113, a gate layer 114, an interlayer dielectric layer 115, and a source/drain layer 116.
  • the first planarization layer 12 is deposited on the thin film transistor array substrate 11 , the first planarization layer 12 is an organic photoresist material, and the first planarization layer 12 is corresponding to the drain 116 in the thin film transistor structure B. First opening C.
  • the composite structure layer 13 further includes a first touch electrode 131, a second planarization layer 132, and an anode layer 133 which are sequentially deposited on the first planarization layer 12.
  • the first touch electrode of the first touch electrode 131 may be the driving electrode TX or the sensing electrode RX, and may be prepared from one of silver, titanium, aluminum, and molybdenum.
  • the second planarization layer 132 is an organic photoresist material, and the second planarization layer 132 corresponds to the first opening C of the first planarization layer 12, and is provided with a second opening D.
  • the material of the anode layer 133 may be, but not limited to, titanium oxide and silver.
  • the anode layer 133 overlaps the drain 116 in the structure of the thin film transistor B through the first opening C and the second opening D on the first planarizing layer 12 and the second planarizing layer 132. Further, in this embodiment, the first touch electrode and the anode layer are located on different layers, and the first touch electrode is located at a gap between two adjacent anode layers.
  • the organic light emitting layer 14 may further include a pixel defining layer 141 and an OLED pixel layer 142.
  • the patterned cathode layer 15 is deposited on the organic light-emitting layer 14.
  • the cathode layer 15 is patterned to form a strip-shaped second touch electric power, and the cathode layer 15 can be a sensing electrode or a driving electrode. That is to say, if the first touch electrode 131 is a driving electrode, the cathode layer 15 here is a sensing electrode. If the first touch electrode 131 is a sensing electrode, the cathode layer 15 here is Drive the electrode. And it is applicable to the case where the anode layer and the first touch electrode are located in the same layer or different layers, and the description will not be repeated in the following embodiments.
  • the encapsulation layer 16 is formed on the cathode layer 15 to protect the OLED display panel from the influence of moisture and oxygen in the surrounding environment to reduce its life cycle.
  • the overall thickness of the display screen can be reduced, and the flexible wrap can be realized. Characteristics.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a display screen according to the present invention.
  • the structure of the first embodiment of the display screen in FIG. 8 is substantially the same, except that the composite structure layer in FIG. 8 is different from the composite structure layer in this embodiment, as follows:
  • the display screen 20 includes a thin film transistor array substrate 21, a first planarization layer 22, a composite structure layer 23, an organic light-emitting layer 24, a cathode layer 25, and an encapsulation layer 26.
  • the composite structure layer 23 further includes an anode layer 231, a second planarization layer 232, and a first touch electrode 233 which are sequentially deposited on the first planarization layer 22 .
  • the first touch electrode and the anode layer are located on different layers, and the first touch electrode is located at a gap between two adjacent anode layers.
  • the overall thickness of the display screen can be reduced, and the flexible wrap can be realized. Characteristics.
  • FIG. 10 is a schematic structural diagram of a third embodiment of a display screen according to the present invention.
  • the difference between the present embodiment and the display screens of FIG. 8 and FIG. 9 is that, in this embodiment, the first touch electrodes of the anode layer are located on the same layer, and the details are as follows:
  • the display screen 30 includes a thin film transistor array substrate 31, a first planarization layer 32, a composite structure layer 33, an organic light-emitting layer 34, a cathode layer 35, and an encapsulation layer 36.
  • the composite structure layer 33 further includes a first touch electrode 331 and an anode layer 332 deposited on the first planarization layer 32 .
  • the anode layer 332 and the first touch electrode 331 are located on the same layer.
  • the first touch electrode is integrated in the interior of the display screen and is located on the same layer as the anode layer, and the cathode layer serves as the second touch electrode, which can reduce the overall thickness of the display screen, and is convenient for flexible folding. characteristic.
  • the cathode layer serves as the second touch electrode, which can reduce the overall thickness of the display screen, and is convenient for achieving flexibility.
  • the characteristics of the wrap are described below.
  • the present invention provides a display screen and a method of fabricating the same by integrating a first touch electrode into the interior of the display screen and on a different or the same layer as the anode layer.
  • the second touch electrode As the second touch electrode, the overall thickness of the display screen can be reduced, which is advantageous for achieving flexible and wrapable characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示屏(10)及其制备方法,显示屏(10)包括:薄膜晶体管阵列基板(11);第一平坦化层(12),沉积于薄膜晶体管阵列基板(11)上;层叠结构,沉积于第一平坦化层(12)上,层叠结构包括第一触控电极(131)、第二平坦化层(132)以及阳极层(133),第一触控电极(131)及阳极层(133)设置在不同层;有机发光层(14),沉积于层叠结构上;图形化的阴极层(15),沉积于有机发光层(14)上且作为第二触控电极;封装层(16),形成于阴极层(15)上。能够减少显示屏(10)的整体厚度,利于实现柔性可绕折的特性。

Description

显示屏及其制备方法
【技术领域】
本发明涉及显示技术领域,特别是涉及一种显示屏及其制备方法。
【背景技术】
随着柔性显示屏OLED技术的快速发展,要求与之搭配的触摸屏同样需要具有柔性可绕折的特点,传统的基于ITO材质的触摸屏已无法满足柔性触控的要求。
由于OLED自身内部结构的限制及生产工艺的复杂性,通常与之搭配的触摸屏需单独制作,然后通过光学透明胶贴合在OLED的上方形成完整的触控显示模组,增加了整体的厚度,不利于绕折,同时增加了贴合工艺,不利于柔性触控显示屏整体的轻薄化。
【发明内容】
本发明提供一种显示屏及其制备方法,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示屏的制备方法,所述制备方法包括:提供一薄膜晶体管阵列基板;在所述薄膜晶体管阵列基板上制备第一平坦化层;在所述第一平坦化层上制备复合结构层,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层,且所述第一触控电极位于两相邻所述阳极层的间隙处,包括:在所述第一平坦化层上沉积所述阳极层,所述第一平坦化层上设有第一开孔;在所述第一平坦化层上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接;在所述第二平坦化层上制备所述第一触控电极;
在所述复合结构层上依次制备有机发光层及图形化的阴极层,且所述图形化的阴极层作为第二触控电极;封装以形成所述显示屏;其中,所述阳极层的材料为氧化钛及银中的一种,所述第一触控电极的材料为银、钛、铝及钼中的一种。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示屏,所述显示屏包括:薄膜晶体管阵列基板;第一平坦化层,沉积于所述薄膜晶体管阵列基板上;复合结构层,沉积于所述第一平坦化层上,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层或设置在同层,且所述第一触控电极位于两相邻所述阳极层的间隙处;有机发光层,沉积于所述复合结构层上;图形化的阴极层,沉积于所述有机发光层上且作为第二触控电极;封装层,形成于所述阴极层上。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示屏的制备方法,所述制备方法包括:提供一薄膜晶体管阵列基板;在所述薄膜晶体管阵列基板上制备第一平坦化层;在所述第一平坦化层上制备复合结构层,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层,且所述第一触控电极位于两相邻所述阳极层的间隙处;在所述复合结构层上依次制备有机发光层及图形化的阴极层,且所述图形化的阴极层作为第二触控电极;封装以形成所述显示屏。
本发明的有益效果是:提供一种显示屏及其制备方法,通过在将第一触控电极集成于显示屏的内部且和阳极层位于不同或相同层上,将阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
【附图说明】
图1是本发明显示屏一实施方式的流程示意图;
图2是本发明图1中步骤S3的第一实施方式的流程示意图;
图3是本发明图2中步骤S31的一实施方式的流程示意图;
图4是本发明第一触控电极一实施方式的结构示意图;
图5是本发明图1中步骤S3的第二实施方式的流程示意图;
图6是本发明图5中步骤S33a的一实施方式的流程示意图;
图7是本发明图1中步骤S3的第一实施方式的流程示意图;
图8是本发明显示屏第一实施方式的结构示意图;
图9是本发明显示屏第二实施方式的结构示意图;
图10是本发明显示屏第三实施方式的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1,图1为本发明显示屏制备方法一实施方式的流程示意图。
S1,提供一薄膜晶体管阵列基板。
该步骤中,先提供一阵列基板。该阵列基板可以为透明材质,具体可以是玻璃、陶瓷基板或者透明塑料等任意形式的基板,此处本发明不做具体限定,且在本实施例中,所采用的阵列基板为玻璃基板。
进一步,在该阵列基板上制备薄膜晶体管结构(Thin Film Transistor, TFT),具体可以包括以下制作步骤:
在上述的阵列基板上依次沉积缓冲层(buffer layer),半导体层(active layer)、栅极绝缘层(gate insulation layer)、栅极层(gate layer)层间介电层(interlayer dielectric layer)以及源漏层(source drain),且其制备方法及过程可以参照现有技术中制备薄膜晶体管结构的方法及工艺,此处本发明不做限定。
S2,在所薄膜晶体管阵列基板上制备第一平坦化层。
在上述的薄膜晶体管阵列基板上制备第一平坦化层,该第一平坦化层为有机光阻材料。进一步在第一平坦化层对应上述薄膜晶体管结构中的漏极处,开设有第一开孔。
S3,在第一平坦化层上制备复合结构层。
其中,该复合结构层具体包括第一触控电极、第二平坦化层以及阳极层。且,按照第一触控电极和阳极层是否在同一层上可以分为以下两种情况:
1. 第一触控电极和阳极层位于不同层上
照第一触控电极和阳极层位于不同层上,且第一触控电极位于两相邻阳极层的间隙处的情况,其制备流程也分为如下两种情况:
a)参阅图2,即步骤S3进一步可以包括如下子步骤:
S31,在第一平坦化层上制备第一触控电极。
其中,第一触控电极可以为驱动电极TX或感应电极RX。
参阅图3,步骤S31进一步包括如下子步骤:
S311,在第一平坦化层上沉积金属导电层。
步骤S311中,该金属导电层的沉积方式包括但不限于物理沉积、化学气相沉积等沉积方式,此处不做限定。本发明中通过物理沉积的方式在第一平坦化层上制备该金属导电层,且该金属导电层的材料可以为银、钛、铝及钼中的一种。
S312,图形化金属导电层,以形成具有网格结构的第一触控电极。
通过预设有特定电极图案的光罩(Mask),对该金属导电层进行曝光、显影、蚀刻以形成具有网格结构的第一触控电极。其中,该第一触控电极网格结构的走线在设计的时候需要避开发光像素电极区域,即阳极层区域,且网格结构的导电层形成相互交错彼此连接形成横向或者纵向连续导通的条状第一触控电极。参见图4,图4为本发明第一触控电极一实施方式的结构示意图,具体地,该第一触控电极的形状也可是多个菱形图案连接在一起形成的连续导通的条状电极或者其他形状的单元彼此连接形成的导通的条状电极,本发明不做具体限定。
S32,在第一平坦化层及第一触控电极上沉积第二平坦化层。
其中,该第二平坦化层为有机光阻材料。进一步在第二平坦化层对应第一平坦化层的第一开孔处,设置有第二开孔。
S33,在第二平坦化层上沉积阳极层。
接着在上述第二平坦化层上沉积像素电极层,即阳极层(Anode),且该阳极层的材料可以为包括但不限于氧化钛及银。其中,阳极层通过上述第一平坦化层及第二平坦化层上的第一开孔及第二开孔与薄膜晶体管结构中的漏极搭接。且本实施例中,第一触控电极位于俩相邻阳极层中间的间隙位置处。
b)参阅图5,步骤S3进一步还可以包括如下子步骤:
本实施例中复合结构层的制备流程和图2中复合结构层的制备流程的不同之处在于,图2中的复合结构层是依次第一平坦化层上制备第一触控电极、第二平坦化层以及阳极层,而本实施例中的复合结构层是依次在第一平坦化层上制备阳极层、第二平坦化层以及第一触控电极,且具体步骤如下:
S31a,在第一平坦化层上沉积阳极层。
在第一平坦化层上沉积像素电极层,即阳极层(Anode),该阳极层的材料可以为包括但不限于氧化钛及银。其中,阳极层通过上述第一平坦化层上的第一开孔和薄膜晶体管结构中的漏极搭接。
S32a,在第一平坦化层上沉积第二平坦化层。
接着第一平坦化层上制备第二平坦化层,该第二平坦化层为有机光阻材料。进一步在第二平坦化层对应第一平坦化层的第一开孔处,设置有第二开孔,且该第二开孔使得该阳极层漏出。
S33a,在第二平坦化层上制备第一触控电极。
其中,第一触控电极可以为驱动电极TX或感应电极RX。
参阅图6,步骤S33a进一步包括如下子步骤:
S331a,在第二平坦化层上沉积金属导电层。
步骤S311a中,该金属导电层的沉积方式包括但不限于物理沉积、化学气相沉积等沉积方式,此处不做限定。本发明中通过物理沉积的方式在第二平坦化层上制备该金属导电层,且该金属导电层的材料可以为银、钛、铝及钼中的一种。
S332a,图形化金属导电层,以形成具有网格结构的第一触控电极。
通过预设有特定电极图案的光罩(Mask),对该金属导电层进行曝光、显影、蚀刻以形成具有网格结构的第一触控电极。其中,该第一触控电极网格结构的走线在设计的时候需要避开发光像素电极区域,即阳极层区域,且网格结构的导电层形成相互交错彼此连接形成横向或者纵向连续导通的条状第一触控电极。具体地,该第一触控电极的形状也可是多个菱形图案连接在一起形成的连续导通的条状电极或者其他形状的单元彼此连接形成的导通的条状电极,本发明不做具体限定。
2)第一触控电极和阳极层位于同一层上
参见图7,步骤S3还可以进一步包括如下子步骤:
S31b,在第一平坦化层上依次制备第一触控电极及阳极层。
在第一平坦化层的表面整面沉积层金属导电层,该金属导电层的沉积方式包括但不限于物理沉积、化学气相沉积等沉积方式,此处不做限定。本发明中通过物理沉积的方式在第一平坦化层上沉积该金属导电层,且该金属导电层的的材料可以为银、钛、铝及钼中的一种。
S32b,图形化金属导电层及阳极层。
本实施例中,采用预设有特定电极图案的光罩(Mask),通过曝光、显影、蚀刻同时形成阳极以及位于相邻阳极中间间隙位置的具有网格结构的第一触控电极(驱动电极或者感应电极)。第一触控电极与阳极之间彼此独立相互绝缘,网格状导电层形成相互交错彼此连接形成横向或者纵向连续导通的条状第一触控电极。其中网格结构的金属导电电极图案不作限定,如可以为多个菱形图案连接在一起形成的连续导通的条状电极或者其他形状的单元彼此连接形成的导通的条状电极。
S4,在复合结构层上依次制备有机发光层及图形化的阴极层。
其中,有机发光层具体可以包括像素定义层以及OLED像素层,且其制备方法可以采用包括但不限于蒸镀或者喷墨打印法,此处不做进一步的限定。
进一步,在上述的有机发光层上方整面沉积金属阴极层,且该金属阴极层的制备方式同上述制备第一触控电极和阳极层的方法类似,即通过预设有特定电极图案的光罩(Mask),通过曝光、显影、干刻的方式对阴极层进行图案化,形成条状的第二触控电极,且该阴极层可以为感应电极或驱动电极。也即是说,若上述的第一触控电极为驱动电极,则此处的第二触控电极,即阴极层为感应电极,若上述的第一触控电极为感应电极,则此处的阴极层为驱动电极。且对于阳极层和第一触控电极位于同层或不同层的情况都适用,此处不再重复描述。
S5,封装以形成显示屏。
在图形化后的阴极层上形成一封装层,以保护OLED显示屏受周围环境水气与氧气的影响而降低其生命周期。且其封装方法可以参见现有的OLED显示屏的封装技术,此处不做进一步限定。
上述实施方式中,通过将显示屏的第一触控电极集成到显示屏的内部,阴极层作为第二触控电极,且和阳极层分别位于相同/不同层上,能够省略单独制作触摸薄膜的工艺,减少显示屏的整体厚度。
请参阅图8,图8为本发明显示屏第一实施方式的结构示意图。如图所示,该显示屏10包括:薄膜晶体管阵列基板11、第一平坦化层12、复合结构层13、有机发光层14、阴极层15以及封装层16。
其中,薄膜晶体管阵列基板11进一步包括阵列基板A以及薄膜晶体管(TFT)结构B,阵列基板A可以为透明材质,具体可以是玻璃、陶瓷基板或者透明塑料等任意形式的基板。薄膜晶体管(TFT)结构B进一步可以包括缓冲层111,半导体层112、栅极绝缘层113、栅极层114、层间介电层115以及源漏层116。
第一平坦化层12沉积于上述薄膜晶体管阵列基板11上,该第一平坦化层12为有机光阻材料,且第一平坦化层12对应薄膜晶体管结构B中的漏极116处,开设有第一开孔C。
在本实施例中,复合结构层13进一步包括依次沉积于第一平坦化层12上的第一触控电极131、第二平坦化层132以及阳极层133。
其中,第一触控电极131第一触控电极可以为驱动电极TX或感应电极RX,且其可以由银、钛、铝及钼中的一种制备而成。第二平坦化层132为有机光阻材料,且第二平坦化层132对应第一平坦化层12的第一开孔C处,设置有第二开孔D。阳极层133的材料可以为包括但不限于氧化钛及银。其中,阳极层133通过上述第一平坦化层12及第二平坦化层132上的第一开孔C及第二开孔D与薄膜晶体管B结构中的漏极116搭接。进一步,本实施例中,照第一触控电极和阳极层位于不同层上,且第一触控电极位于两相邻阳极层的间隙处的情况。
有机发光层14进一步可以包括像素定义层141以及OLED像素层142。
图形化的阴极层15,沉积于有机发光层14上,该阴极层15通过图案化形成条状的第二触控电,且阴极层15可以为感应电极或驱动电极。也即是说,若上述的第一触控电极131为驱动电极,则此处的阴极层15为感应电极,若上述的第一触控电极131为感应电极,则此处的阴极层15为驱动电极。且对于阳极层和第一触控电极位于同层或不同层的情况都适用,下面的实施例中不再重复描述
封装层16,形成于阴极层15上,以保护OLED显示屏受周围环境水气与氧气的影响而降低其生命周期。
上述实施方式,通过将第一触控电极集成于显示屏的内部且和阳极层位于不同层上,将阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
请参阅图9,图9为本发明显示屏第二实施方式的结构示意图。本实施例中,和图8中显示屏第一实施方式的结构大致相同,其不同之处在于,图8中的复合结构层和本实施例中的复合结构层不同,如下:
本实施例中,显示屏20包括:薄膜晶体管阵列基板21、第一平坦化层22、复合结构层23、有机发光层24、阴极层25以及封装层26。
其中,复合结构层23进一步包括依次沉积于第一平坦化层22上的阳极层231、第二平坦化层232以及第一触控电极233。本实施例中,照第一触控电极和阳极层位于不同层上,且第一触控电极位于两相邻阳极层的间隙处的情况。其余结构可以参照图8中的各结构的描述,此处不再赘述。
上述实施方式,通过将第一触控电极集成于显示屏的内部且和阳极层位于不同层上,将阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
请参阅图10,图10为本发明显示屏第三实施方式的结构示意图。本实施例与图8及图9中的显示屏的不同之处在于,本实施例中,阳极层第一触控电极位于同一层上,具体描述如下:
本实施例中,显示屏30包括:薄膜晶体管阵列基板31、第一平坦化层32、复合结构层33、有机发光层34、阴极层35以及封装层36。
其中,复合结构层33进一步包括沉积于第一平坦化层32上的第一触控电极331及阳极层332。其中,阳极层332及第一触控电极331位于同一层上。其余结构的描述请参见图7中显示屏具体结构的描述,此处不再赘述。
上述实施方式,通过将第一触控电极集成于显示屏的内部且和阳极层位于同层上,阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
进一步地,图8至图10中各实施例中,所有结构的制备或原理请详见上述制备方法中的描述,此处不再赘述。
上述实施例中,通过将第一触控电极集成于显示屏的内部且和阳极层位于相同/不同层上,阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
综上所述,本领域技术人员容易理解,本发明提供一种显示屏及制备方法,通过在将第一触控电极集成于显示屏的内部且和阳极层位于不同或相同层上,阴极层作为第二触控电极,能够减少显示屏的整体厚度,利于实现柔性可绕折的特性。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种显示屏的制备方法,其中,所述制备方法包括:
    提供一薄膜晶体管阵列基板;
    在所述薄膜晶体管阵列基板上制备第一平坦化层;
    在所述第一平坦化层上制备复合结构层,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层,且所述第一触控电极位于两相邻所述阳极层的间隙处,包括:
    在所述第一平坦化层上沉积所述阳极层,所述第一平坦化层上设有第一开孔;
    在所述第一平坦化层上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接;
    在所述第二平坦化层上制备所述第一触控电极;
    在所述复合结构层上依次制备有机发光层及图形化的阴极层,且所述图形化的阴极层作为第二触控电极;
    封装以形成所述显示屏;
    其中,所述阳极层的材料为氧化钛及银中的一种,所述第一触控电极的材料为银、钛、铝及钼中的一种。
  2. 根据权利要求1所述的制备方法,其中,所述在所述第一平坦化层上制备复合结构层包括:
    在所述第一平坦化层上制备所述第一触控电极,所述第一平坦化层上设有第一开孔;
    在所述第一平坦化层及所述第一触控电极上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔;
    在所述第二平坦化层上沉积阳极层,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接。
  3. 根据权利要求2所述的制备方法,其中,所述在所述第一平坦化层制备所述第一触控电极包括:
    在所述第一平坦化层上沉积金属导电层;
    图形化所述金属导电层,以形成具有网格结构的第一触控电极。
  4. 根据权利要求1所述的制备方法,其中,所述在所述第一平坦化层上制备复合结构层包括:
    在所述第一平坦化层上沉积所述阳极层,所述第一平坦化层上设有第一开孔;
    在所述第一平坦化层上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接;
    在所述第二平坦化层上制备所述第一触控电极。
  5. 一种显示屏,其中,所述显示屏包括:
    薄膜晶体管阵列基板;
    第一平坦化层,沉积于所述薄膜晶体管阵列基板上;
    复合结构层,沉积于所述第一平坦化层上,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层或设置在同层,且所述第一触控电极位于两相邻所述阳极层的间隙处;
    有机发光层,沉积于所述复合结构层上;
    图形化的阴极层,沉积于所述有机发光层上且作为第二触控电极;
    封装层,形成于所述阴极层上。
  6. 根据权利要求5所述的显示屏,其中,所述复合结构层包括:
    第一触控电极,设置于所述第一平坦化层上,所述第一平坦化层上有第一开孔;
    第二平坦化层,沉积于所述第一平坦化层及所述第一触控电极上,所述第二平坦化层上对应所述第一开孔处设置有第二开孔;
    阳极层,沉积于所述第二平坦化层上,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板中的漏极连接。
  7. 根据权利要求5所述的显示屏,其中,所述复合结构层包括:
    阳极层,沉积于所述第一平坦化层上,所述第一平坦化层上有第一开孔;
    第二平坦化层,沉积于所述第一平坦化层上,所述第二平坦化层上对应所述第一开孔处设置有第二开孔,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板中的漏极连接;
    第一触控电极,设置于所述第二平坦化层上。
  8. 根据权利要求5所述的显示屏,其中,所述复合结构层包括:
    第一触控电极/阳极层,形成于所述第一平坦化层上。
  9. 根据权利要求5所述的显示屏,其中,所述阳极层的材料为氧化钛及银中的一种,所述第一触控电极的材料为银、钛、铝及钼中的一种。
  10. 一种显示屏的制备方法,其中,所述制备方法包括:
    提供一薄膜晶体管阵列基板;
    在所述薄膜晶体管阵列基板上制备第一平坦化层;
    在所述第一平坦化层上制备复合结构层,所述复合结构层包括第一触控电极及阳极层,所述第一触控电极及所述阳极层设置在不同层,且所述第一触控电极位于两相邻所述阳极层的间隙处;
    在所述复合结构层上依次制备有机发光层及图形化的阴极层,且所述图形化的阴极层作为第二触控电极;
    封装以形成所述显示屏。
  11. 根据权利要求10所述的制备方法,其中,所述在所述第一平坦化层上制备复合结构层包括:
    在所述第一平坦化层上制备所述第一触控电极,所述第一平坦化层上设有第一开孔;
    在所述第一平坦化层及所述第一触控电极上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔;
    在所述第二平坦化层上沉积阳极层,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接。
  12. 根据权利要求11所述的制备方法,其中,所述在所述第一平坦化层制备所述第一触控电极包括:
    在所述第一平坦化层上沉积金属导电层;
    图形化所述金属导电层,以形成具有网格结构的第一触控电极。
  13. 根据权利要求10所述的制备方法,其中,所述在所述第一平坦化层上制备复合结构层包括:
    在所述第一平坦化层上沉积所述阳极层,所述第一平坦化层上设有第一开孔;
    在所述第一平坦化层上沉积所述第二平坦化层,所述第二平坦化层上对应所述第一开孔处设置有第二开孔,所述阳极层通过所述第一开孔及所述第二开孔与所述薄膜晶体管阵列基板的漏极连接;
    在所述第二平坦化层上制备所述第一触控电极。
  14. 根据权利要求10所述的制备方法,其中,所述阳极层的材料为氧化钛及银中的一种,所述第一触控电极的材料为银、钛、铝及钼中的一种。
PCT/CN2017/107140 2017-08-21 2017-10-20 显示屏及其制备方法 WO2019037224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/756,307 US10719151B2 (en) 2017-08-21 2017-10-20 Display screen and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710723022.4A CN107526468B (zh) 2017-08-21 2017-08-21 显示屏及其制备方法
CN201710723022.4 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037224A1 true WO2019037224A1 (zh) 2019-02-28

Family

ID=60681827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107140 WO2019037224A1 (zh) 2017-08-21 2017-10-20 显示屏及其制备方法

Country Status (2)

Country Link
CN (1) CN107526468B (zh)
WO (1) WO2019037224A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183122B (zh) 2017-12-18 2020-11-17 武汉华星光电半导体显示技术有限公司 触控显示装置及其制作方法
CN112470285A (zh) * 2018-07-19 2021-03-09 深圳市柔宇科技股份有限公司 柔性显示面板及其制作方法、显示装置及掩膜版
CN111326540B (zh) * 2018-11-29 2023-08-22 上海和辉光电股份有限公司 一种显示面板、显示面板的制备方法及显示装置
CN109947303B (zh) * 2019-01-29 2023-03-21 广州国显科技有限公司 显示面板及其制备方法、显示装置
CN110504286B (zh) 2019-08-01 2020-10-27 武汉华星光电半导体显示技术有限公司 触控显示面板
CN111755486A (zh) * 2020-06-16 2020-10-09 武汉华星光电半导体显示技术有限公司 一种触控屏及电子装置
CN111722761A (zh) * 2020-07-14 2020-09-29 武汉华星光电半导体显示技术有限公司 触控显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029903A (ko) * 2013-09-11 2015-03-19 엘지디스플레이 주식회사 고저항성 봉지재와 유기 발광 다이오드 장치 및 이들의 제조 방법
CN104850268A (zh) * 2015-06-10 2015-08-19 京东方科技集团股份有限公司 一种触控显示面板、触控显示装置及制作方法
CN104978066A (zh) * 2015-06-18 2015-10-14 昆山国显光电有限公司 触控面板和显示装置
CN105552106A (zh) * 2016-01-29 2016-05-04 上海天马微电子有限公司 Oled面板以及触控检测方法
CN205353991U (zh) * 2016-01-26 2016-06-29 上海天马微电子有限公司 一种有机发光触控显示面板及有机发光触控显示装置
CN106654067A (zh) * 2017-01-11 2017-05-10 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN106887450A (zh) * 2017-03-14 2017-06-23 武汉华星光电技术有限公司 柔性内嵌式触控结构及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928492A (zh) * 2013-12-13 2014-07-16 上海天马有机发光显示技术有限公司 触控显示面板及其形成方法、触控显示器及其形成方法
CN106098742A (zh) * 2016-08-18 2016-11-09 信利(惠州)智能显示有限公司 有机发光显示装置及制造方法
CN106775062A (zh) * 2016-11-25 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管触控显示面板和触控显示装置
CN107024796A (zh) * 2017-06-21 2017-08-08 上海天马微电子有限公司 一种显示面板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029903A (ko) * 2013-09-11 2015-03-19 엘지디스플레이 주식회사 고저항성 봉지재와 유기 발광 다이오드 장치 및 이들의 제조 방법
CN104850268A (zh) * 2015-06-10 2015-08-19 京东方科技集团股份有限公司 一种触控显示面板、触控显示装置及制作方法
CN104978066A (zh) * 2015-06-18 2015-10-14 昆山国显光电有限公司 触控面板和显示装置
CN205353991U (zh) * 2016-01-26 2016-06-29 上海天马微电子有限公司 一种有机发光触控显示面板及有机发光触控显示装置
CN105552106A (zh) * 2016-01-29 2016-05-04 上海天马微电子有限公司 Oled面板以及触控检测方法
CN106654067A (zh) * 2017-01-11 2017-05-10 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN106887450A (zh) * 2017-03-14 2017-06-23 武汉华星光电技术有限公司 柔性内嵌式触控结构及其制作方法

Also Published As

Publication number Publication date
CN107526468A (zh) 2017-12-29
CN107526468B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2019037224A1 (zh) 显示屏及其制备方法
WO2019100523A1 (zh) 一种柔性触控显示屏的制作方法
WO2018196112A1 (zh) Ltps阵列基板及其制作方法
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
WO2019114063A1 (zh) Oled 触控显示面板及其制备方法
WO2019100455A1 (zh) 一种柔性触控显示屏及其制作方法
WO2019090911A1 (zh) 一种有机薄膜晶体管阵列基板及其制备方法、显示装置
WO2018023855A1 (zh) Oled薄膜封装结构及其制作方法
WO2016119280A1 (zh) 氧化物薄膜晶体管及其制作方法
WO2019090838A1 (zh) 一种oled器件、oled显示面板及制备方法
WO2018196078A1 (zh) 阵列基板及制造方法、显示装置
WO2019178928A1 (zh) 一种显示面板的制作方法、显示面板及显示装置
WO2019075813A1 (zh) 微型led显示面板及微型led显示器
WO2019090856A1 (zh) 一种oled触控显示面板及其驱动方法
WO2019015146A1 (zh) 一种显示面板及其制程
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2019015191A1 (zh) 一种显示面板及其制程
WO2019041480A1 (zh) Coa显示面板及其制作方法、coa显示装置
WO2013177823A1 (zh) 液晶面板及其彩色滤光片基板和制造方法
WO2018094815A1 (zh) Oled器件的制作方法及oled器件
WO2017049663A1 (zh) 一种彩膜阵列基板及其制造方法、显示装置
WO2017071054A1 (zh) 一种显示面板及其制造方法
WO2017063207A1 (zh) 阵列基板及其制造方法
WO2017128597A1 (zh) 液晶显示面板、tft基板及其制造方法
WO2016078112A1 (zh) 薄膜晶体管基板的制作方法及制造设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922746

Country of ref document: EP

Kind code of ref document: A1