WO2014115835A1 - 安定化ジルコニア粉末およびその前駆体の製造方法 - Google Patents

安定化ジルコニア粉末およびその前駆体の製造方法 Download PDF

Info

Publication number
WO2014115835A1
WO2014115835A1 PCT/JP2014/051489 JP2014051489W WO2014115835A1 WO 2014115835 A1 WO2014115835 A1 WO 2014115835A1 JP 2014051489 W JP2014051489 W JP 2014051489W WO 2014115835 A1 WO2014115835 A1 WO 2014115835A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
aqueous solution
hydroxide
powder
sulfate
Prior art date
Application number
PCT/JP2014/051489
Other languages
English (en)
French (fr)
Inventor
一志 上村
光輝 戸石
Original Assignee
Dowaハイテック株式会社
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaハイテック株式会社, Dowaエレクトロニクス株式会社 filed Critical Dowaハイテック株式会社
Priority to KR1020157011940A priority Critical patent/KR102120035B1/ko
Priority to CN201480003312.6A priority patent/CN104837774B/zh
Publication of WO2014115835A1 publication Critical patent/WO2014115835A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium

Definitions

  • the present invention relates to a method for producing a fine powder of zirconia, particularly a powder of partially stabilized zirconia or stabilized zirconia, and a precursor thereof.
  • partially stabilized zirconia and stabilized zirconia are collectively referred to as stabilized zirconia.
  • Zirconia is a high-melting-point ceramic and is excellent in heat resistance and corrosion resistance. Therefore, zirconia is one of the important materials in the field of fine ceramics and is generally used in sintered bodies. Zirconia is monoclinic at normal temperature, but when the temperature is raised, the crystal system undergoes phase transition to tetragonal system. Although this phase transition is reversible, the phase transition from the monoclinic system to the tetragonal system involves a volume shrinkage of about 4%. Therefore, the sintered body of zirconia is repeatedly heated and lowered, It leads to destruction.
  • stabilized zirconia is a product in which a stabilizer such as yttrium oxide, rare earth oxide, calcium oxide, magnesium oxide, aluminum oxide is dissolved in zirconia, and has a low stabilizer content.
  • a stabilizer such as yttrium oxide, rare earth oxide, calcium oxide, magnesium oxide, aluminum oxide is dissolved in zirconia, and has a low stabilizer content.
  • partially stabilized zirconia and those having a high stabilizer content are stabilized zirconia. Therefore, in order to suppress the destruction of the zirconia sintered body, it is necessary that the stabilizer is uniformly distributed in the stabilized zirconia powder as a sintering raw material.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-141619 (Patent Document 1) and Japanese Patent Laid-Open No. 2003-206137 (Patent Document 2) disclose a method using zirconium dissolved in a starting material.
  • Patent Document 2 an acidic aqueous solution containing zirconium, an element serving as a stabilizer, and sulfate ions is heated to partially adsorb or incorporate the stabilizing element.
  • the pH of the system is raised to convert zirconium basic sulfate to hydroxide, and the stabilizing element is used as a hydroxide to coexist with zirconium hydroxide.
  • the hydroxide containing zirconium and the stabilizing element obtained by precipitating is roasted to obtain a stabilized zirconia powder.
  • Patent Document 1 and Patent Document 2 both use zirconium oxychloride as a zirconium source.
  • zirconium oxychloride is the most readily available zirconium salt that is soluble in acidic aqueous solutions.
  • zirconium oxychloride When zirconium oxychloride is dissolved in water, it hydrolyzes, and zirconium partially binds to hydroxide ions and releases chloride ions and protons. Therefore, the aqueous solution of zirconium oxychloride is strongly acidic and free chloride. It will contain ions.
  • the concentration of zirconium oxychloride aqueous solution as a starting material is increased, the quality of the resulting stabilized zirconia powder tends to vary, and when stored at room temperature after the calcination step, As a result, it was found that some of them easily undergo phase transformation from tetragonal system to monoclinic system. It was found that as the concentration of zirconium oxychloride increases, the concentration of free chloride ions released into the aqueous solution increases, which inhibits the uniform incorporation of stabilizer elements into the zirconium hydroxide. .
  • the present invention provides a stabilized zirconium powder using an acidic aqueous solution as a starting material and a method for producing a precursor thereof, by reducing the concentration of free chloride ions in the starting material in a low temperature range.
  • An object of the present invention is to provide a method for producing a stabilized zirconium powder having excellent sinterability and stable quality and a precursor thereof at low cost.
  • the present invention provides the following. That is, [1] Zirconium carbonate is dissolved in an aqueous solution in which zirconium oxychloride is dissolved, and the molar ratio of Zr / Cl in the aqueous solution exceeds 0.50 and is 1.00 or less, preferably 0.60 or more and 0.84 or less.
  • a step of dissolving a compound containing one or more kinds of stabilizing elements selected from the group consisting of rare earth elements, magnesium and aluminum in the aqueous solution prepared by adjusting Zr / Cl, the zirconium and the stabilizing elements A step of dissolving a compound containing sulfate ions in an aqueous solution containing one or more of the following, and then heating the aqueous solution to 50 ° C.
  • the basicity of the zirconium The pH of the aqueous solution containing the sulfate precipitate is adjusted to 8 to 12, and the sulfate ion of the zirconium basic sulfate precipitate is placed as a hydroxide ion.
  • co-precipitating the stabilizing element with the zirconium hydroxide as a hydroxide, and the stabilizing element hydroxide and zirconium water is also known as a hydroxide, and the stabilizing element hydroxide and zirconium water.
  • the rare earth element here means scandium, yttrium and lanthanoid.
  • a stabilized zirconium powder starting from an acidic aqueous solution and a precursor thereof, and a method for producing the stabilized zirconium powder having excellent low-temperature sinterability and stable quality and the precursor thereof. It became possible to manufacture the body at a low cost.
  • zirconium source In the method for producing a stabilized zirconium powder and a precursor thereof according to the present invention, zirconium oxychloride soluble in an acidic aqueous solution is used as a starting zirconium source, and a zirconium carbonate salt is further dissolved in the aqueous solution.
  • zirconium carbonate salt examples include zirconium carbonate and ammonium zirconium carbonate.
  • the zirconium carbonate salt can be directly dissolved in a zirconium oxychloride aqueous solution in a solid state, but it is preferably mixed in the zirconium oxychloride aqueous solution in an aqueous solution from the viewpoint of uniformity of reaction. In addition, it is preferable to perform these reaction at 45 degrees C or less. In addition, these reactions may be performed under a stirring condition using a known stirring means. An aqueous solution of zirconium carbonate is usually used stably in an alkaline region.
  • Carbonic acid groups cannot exist stably in the acidic region, and zirconium carbonate alone hydrolyzes rapidly to form a hydroxide precipitate, but it remains soluble when dissolved in an aqueous zirconium oxychloride solution. Is possible. This is probably because zirconium derived from a zirconium carbonate salt reacted with a soluble zirconium compound present in the aqueous solution to form a soluble inorganic polymer containing a hydroxyl group.
  • the total zirconium concentration is not particularly specified, but it is preferably 2.77 to 3.78 mol / L when the zirconium carbonate salt is dissolved.
  • the total zirconium concentration is less than 2.77 mol / L, the amount of stabilized zirconium powder obtained by one treatment is small, which increases the manufacturing cost, which is not preferable. If the total zirconium concentration exceeds 3.78 mol / L, it is not preferable because the basic sulfate of zirconium is likely to precipitate when sulfate ions described later are added. That is, the basic sulfate of zirconium is a poorly soluble salt, and even if any of the total zirconium concentration, sulfate ion concentration and hydroxide ion concentration increases, the salt easily precipitates exceeding the solubility product. . In order to obtain the uniformity of the final product, the basic sulfate of zirconium needs to be precipitated under controlled conditions.
  • the molar ratio of the total zirconium concentration to the total chloride ion concentration when the zirconium carbonate salt is dissolved in the zirconium oxychloride aqueous solution the Zr / Cl ratio, More than 0.5 to 1, preferably 0.60 to 0.85.
  • Addition of a zirconium carbonate salt to a zirconium oxychloride aqueous solution is effective in reducing the free chloride ion concentration even in a small amount, but the effect becomes even clearer when the Zr / Cl ratio is 0.60 or more. .
  • the Zr / Cl ratio exceeds 1, it is not preferable because the basic sulfate of zirconium is likely to precipitate when sulfate ions described later are added.
  • the addition of zirconium carbonate salt in an acidic aqueous solution is also a neutralization phenomenon due to hydrolysis, and increases the number of hydroxide ions bound to zirconium, so that the basic sulfate of zirconium is easily precipitated.
  • the Zr / Cl ratio is 1, the total chloride ion concentration is 1 ⁇ 2 of the initial concentration, and the free chloride ion concentration also decreases accordingly.
  • the zirconium carbonate salt is dissolved in an aqueous zirconium oxychloride solution in order to stabilize the zirconium salt when it is finally roasted into zirconia.
  • the stabilizing element compound is dissolved in the aqueous solution.
  • the stabilizing element one or more selected from the group consisting of rare earth elements (for example, yttrium), magnesium and aluminum are added. These stabilizing elements can be added and dissolved in a solid state in the form of an oxide or a salt such as chloride, but it is preferable to dissolve in advance and add in the form of an aqueous solution.
  • the addition amount of the stabilizing element is not particularly specified, and is an amount necessary for finally stabilizing the total amount of zirconium contained in the aqueous solution obtained by dissolving a zirconium carbonate salt in an aqueous zirconium oxychloride solution. May be calculated and added. In addition, it is preferable to perform these reaction at 45 degrees C or less. In addition, these reactions may be performed under a stirring condition using a known stirring means.
  • zirconium hydroxide is obtained once through a basic sulfate of zirconium capable of controlling the reaction rate.
  • the zirconium species present in the aqueous solution in which the zirconium oxychloride and zirconium carbonate salt of the present invention are dissolved contains a larger amount of hydroxyl groups than that in the aqueous solution of zirconium oxychloride alone.
  • Examples of the source of sulfate ions that can be used in the present invention include soluble sulfates such as sodium sulfate and ammonium sulfate, but considering the load of wastewater treatment after the completion of the series of steps of the present invention, Use is preferred.
  • the amount of sulfate ion added in the present invention is preferably 0.4 to 0.5 mol / L, more preferably 0.45 to 0.48 mol / L with respect to the total zirconium concentration of 1 mol / L.
  • the precipitation rate of the basic sulfate of zirconium is controlled by the reaction temperature. That is, when the liquid temperature of an aqueous solution containing zirconium and sulfate ions is increased, the dissociation of water is promoted, and the hydroxide ion concentration increases, thereby exceeding the solubility product of zirconium basic sulfate.
  • the dissociation product K W of water is 1.00 ⁇ 10 ⁇ 14 at 25 ° C., but 5.47 ⁇ 10 ⁇ 14 at 50 ° C.
  • the rate of temperature rise of the aqueous solution containing zirconium, a stabilizing element and sulfate ions is not particularly specified, but is preferably 0.43 to 0.87 ° C./min.
  • the rate of temperature rise is less than 0.43 ° C./min, the reaction takes too much time, and when it exceeds 0.87 ° C./min, the precipitation rate of the basic sulfate of zirconium is increased and the resulting precipitate is uneven. It tends to be a thing.
  • the ultimate temperature (holding temperature) of the aqueous solution containing zirconium, a stabilizing element and sulfate ions is 50 ° C. or higher.
  • An ultimate temperature of less than 50 ° C. is not preferable because a long time is required for the reaction.
  • the ultimate temperature is preferably 80 to 90 ° C.
  • the upper limit of the reached temperature of the reaction solution in the present invention may be 100 ° C. (boiling point).
  • the reached temperature should be 90 ° C. or less. preferable.
  • the reaction time (holding time) at the ultimate temperature (holding temperature) is suitably 30 to 60 minutes.
  • these reactions may be performed under a stirring condition using a known stirring means.
  • the reaction solution in which a basic sulfate of zirconium is precipitated to form a slurry is subjected to a neutralization treatment to subsequently add an alkali, and the sulfate ions contained in the basic sulfate are converted to hydroxide ions.
  • a neutralization treatment to subsequently add an alkali
  • the sulfate ions contained in the basic sulfate are converted to hydroxide ions.
  • a stabilizing element is coprecipitated with a hydroxide of zirconium as a hydroxide to obtain a composite hydroxide of zirconium and a stabilizing element.
  • the pH at which the neutralization treatment is carried out is preferably 8-12, more preferably 9-11.
  • a pH of less than 8 is not preferable because it takes a long time for the substitution reaction of hydroxide ions.
  • the pH exceeds 12 the amount of chemicals necessary for neutralization increases, and alkali cations are easily incorporated as impurities in the hydroxides of zirconium and stabilizing elements, which is not preferable.
  • Sodium hydroxide, ammonium hydroxide, etc. can be used for the neutralization treatment.
  • the temperature of the neutralization treatment is not particularly specified, but from the viewpoint of promoting the reaction, it is preferably performed at a temperature as high as the retention temperature for precipitation of the basic sulfate of zirconium described above.
  • the reaction time for the neutralization treatment is suitably 50 to 70 minutes. In addition, you may perform these reaction on stirring conditions using a well-known stirring means.
  • Solid-liquid separation The solid phase composite hydroxide co-precipitated in the neutralization step is separated by a known solid-liquid separation means such as decantation, filtration, and centrifugation, and the composite hydroxide is recovered. Since the recovered composite hydroxide contains sulfate ions and alkali cations as impurities, it is washed with pure water or dilute ammonia water to remove impurities, and then dehydrated and dried by a known drying means. . Through the series of steps described above, a composite hydroxide of zirconium and a stabilizing element, which is a precursor of stabilized zirconia and has excellent quality uniformity, is obtained.
  • the composite hydroxide of zirconium and a stabilizing element which is a precursor of the stabilized zirconia, is roasted at 500 to 1200 ° C., preferably 700 to 1200 ° C., using a known heating means, thereby improving the quality.
  • a stabilized zirconia powder having excellent uniformity can be obtained.
  • the stabilized zirconia powder may be pulverized using a known pulverizing means.
  • the pH values described in this specification are based on JIS Z8802, using a glass electrode, and as a pH standard solution, oxalate and phthalate buffer solutions in the acidic range, and neutral phosphates in the neutral range. And a phosphate buffer, and a value measured by a pH meter calibrated using borate and carbonate buffers in an alkaline region, respectively.
  • the pH of the high temperature aqueous solution is a value obtained by directly reading the measured value indicated by the pH meter compensated by the temperature compensation electrode.
  • Example 1 In an air-conditioned room, without special heating, zirconium oxychloride 805.63g (2.5mol of ZrOCl 2 ⁇ 8H 2 O: Zr2.5mol , containing Cl5.0Mol) the 429.81mL pure After being dissolved in water, 554.96 g of zirconium carbonate (containing 2ZrO 2 ⁇ CO 2 ⁇ nH 2 O: containing 2.5 mol of Zr) was added to the aqueous solution and dissolved to obtain a total zirconium content of 4.2 mol and a Zr / A first zirconium aqueous solution having a Cl ratio of 0.84 was prepared.
  • the zirconium amount of the zirconium carbonate used here is a value calculated by assuming that the remaining amount is ZrO 2 from the weight reduction rate after 1000 ° C. ignition loss.
  • the first zirconium aqueous solution is diluted with pure water to dissolve the second zirconium aqueous solution having a ZrO 2 concentration of 367.5 g / L and yttrium oxide (Y 2 O 3 99%) with hydrochloric acid,
  • An aqueous yttrium solution diluted to 180 g / L with a Y 2 O 3 concentration and anhydrous sodium sulfate powder (Na 2 SO 4 99.5%) as a sulfate ion source were prepared.
  • the second zirconium aqueous solution (626 mL) and the yttrium aqueous solution (66 mL) were mixed, and further pure water (1674 mL) was added to obtain 2366 mL of a raw material aqueous solution.
  • the raw material aqueous solution at this time was colorless and transparent, and the liquid temperature was 28 ° C.
  • the aqueous raw material solution has a ZrO 2 concentration of 100 g / L, and the stabilizer Y 2 O 3 is finally equivalent to 2.75 mol% as Y 2 O 3 / PSZ (PSZ is partially stabilized zirconia). It is the composition which becomes.
  • the above-mentioned composite hydroxide was roasted at four levels of 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. in the atmosphere using an electric furnace, and the obtained four levels of calcined powder were respectively Zr Using a 3 mm ⁇ pulverized media, pulverization was performed for 2 hours by a planetary ball mill. The resulting powder is dried, uniaxial hydraulic was molded to a 1ton / cm 2 (98MPa) at a press, per unit area at cold isostatic molding machine 1.5ton / cm 2 (147MPa ) Was used to create a molded body. The molded body was fired at 1250 ° C.
  • the thus obtained sintered body was subjected to a density measurement by the Archimedes method, the 800 ° C. calcined powder 5.83g / cm 3, 900 °C the calcined powder 5.83g / cm 3, 1000 °C calcined powder in the 5.89g / cm 3, 1100 °C calcined powder to obtain a result that 5.93 g / cm 3.
  • Example 2 805.63 g of zirconium oxychloride (2.5 mol of ZrOCl 2 .8H 2 O: containing Zr 2.5 mol and Cl 5.0 mol) was dissolved in 484.81 mL of pure water, and then 37.37 g of zirconium carbonate was added to the aqueous solution. (2ZrO 2 ⁇ CO 2 ⁇ nH 2 O: containing 1.7 mol of Zr) was added and dissolved to prepare a third zirconium aqueous solution having a total zirconium content of 3.65 mol and a Zr / Cl ratio of 0.73. .
  • the zirconium amount of the zirconium carbonate used here is a value calculated by the method described in Example 1.
  • the third zirconium aqueous solution was diluted with pure water, and the ZrO 2 concentration was 317.5 g / L.
  • the fourth aqueous zirconium solution yttrium oxide (Y 2 O 3 99%) dissolved in hydrochloric acid, diluted with water to a Y 2 O 3 concentration of 180 g / L, and anhydrous as a sulfate ion source Sodium sulfate powder (Na 2 SO 4 99.5%) was prepared.
  • the above-mentioned composite hydroxide was roasted at 4 levels of 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. in the atmosphere using an electric furnace, and the obtained 4 levels of calcined powder were respectively Using Zr 3 mm ⁇ grinding media, grinding was performed for 2 hours with a planetary ball mill. The resulting powder is dried, pressure after molding so that 1ton / cm 2 (98MPa) at uniaxial hydraulic press, 1.5 ton / cm 2 with cold isostatic molding machine (147 MPa) A molded body was created. The molded body was fired at 1250 ° C. for 2 hours in the atmosphere using an electric furnace to obtain four types of stabilized zirconia sintered bodies.
  • the thus obtained sintered body was subjected to a density measurement by the Archimedes method, the 800 ° C. calcined powder 5.84g / cm 3, 900 °C the calcined powder 5.82g / cm 3, 1000 °C calcined powder Then, 5.90 g / cm 3 was obtained, and 5.92 g / cm 3 was obtained with the 1100 ° C. calcined powder.
  • Example 3 805.65 g of zirconium oxychloride (2.5 mol of ZrOCl 2 .8H 2 O: containing Zr 2.5 mol and Cl 5.0 mol) was dissolved in 429.81 mL of pure water, and 188.69 g of zirconium carbonate was added to the aqueous solution. (2ZrO 2 ⁇ CO 2 ⁇ nH 2 O: containing Zr 0.85 mol) was added and dissolved to prepare a fifth zirconium aqueous solution having a total zirconium content of 3.25 mol and a Zr / Cl ratio of 0.65. .
  • the zirconium amount of the zirconium carbonate used here is a value calculated by the method described in Example 1.
  • the fifth zirconium aqueous solution was diluted with pure water, and the ZrO 2 concentration was 269.7 g / L.
  • the sixth zirconium aqueous solution yttrium oxide (Y 2 O 3 99%) dissolved in hydrochloric acid, diluted with water to a Y 2 O 3 concentration of 180 g / L, and anhydrous as a sulfate ion source Sodium sulfate powder (Na 2 SO 4 99.5%) was prepared.
  • the 853 mL of the sixth zirconium aqueous solution and 66 mL of the yttrium aqueous solution were mixed, and 1447 mL of pure water was further added to obtain 2366 mL of an aqueous raw material solution.
  • the raw material aqueous solution at this time was colorless and transparent, and the liquid temperature was 28 ° C.
  • the aqueous raw material solution has a ZrO 2 concentration of 100 g / L, and the stabilizer Y 2 O 3 is finally equivalent to 2.75 mol% as Y 2 O 3 / PSZ (PSZ is partially stabilized zirconia). It is the composition which becomes.
  • the above-mentioned composite hydroxide was roasted at 4 levels of 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. in the atmosphere using an electric furnace, and the obtained 4 levels of calcined powder were respectively Using Zr 3 mm ⁇ grinding media, grinding was performed for 2 hours by a planetary ball mill.
  • the resulting powder is dried, pressure after molding so that 1ton / cm 2 (98MPa) at uniaxial hydraulic press, 1.5 ton / cm 2 with cold isostatic molding machine (147 MPa)
  • a molded body was created.
  • the molded body was fired at 1250 ° C. for 2 hours in the atmosphere using an electric furnace to obtain four types of stabilized zirconia sintered bodies.
  • the thus obtained sintered body was subjected to a density measured by an Archimedes method, 800 ° C. calcined in powder 5.82g / cm 3, 900 °C the calcined powder 5.85g / cm 3, 1000 °C calcined the powder in the 5.88g / cm 3, 1100 °C calcined powder to obtain a result that 5.91 g / cm 3.
  • anhydrous sodium sulfate powder Na 2 SO 4 99.5%
  • 876 mL of the seventh zirconium aqueous solution and 57 mL of the yttrium aqueous solution were mixed, and 1124 mL of pure water was further added to obtain 2057 mL of a raw material aqueous solution.
  • the raw material aqueous solution at this time was colorless and transparent, and the liquid temperature was 28 ° C.
  • the aqueous raw material solution has a ZrO 2 concentration of 100 g / L, and the stabilizer Y 2 O 3 is finally equivalent to 2.75 mol% as Y 2 O 3 / PSZ (PSZ is partially stabilized zirconia). It is the composition which becomes.
  • PSZ is partially stabilized zirconia
  • a composite hydroxide containing zirconium which is a precursor of stabilized zirconia and a stabilizer was obtained.
  • the hydroxide was roasted at 1100 ° C. in the air in an electric furnace.
  • the above-mentioned composite hydroxide was roasted at four levels of 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. in the atmosphere using an electric furnace, and the obtained four levels of calcined powder were respectively Zr Using a 3 mm ⁇ pulverized media, pulverization was performed for 2 hours by a planetary ball mill. The resulting powder is dried, pressure after molding so that 1ton / cm 2 (98MPa) at uniaxial hydraulic press, 1.5 ton / cm 2 with cold isostatic molding machine (147 MPa) A molded body was created. The molded body was fired at 1250 ° C.
  • the thus obtained sintered body was subjected to density measurement by the Archimedes method, 800 ° C. in calcining the powder 4.31g / cm 3, 900 °C provisionally in fired powder 5.63g / cm 3, 1000 °C calcined powder With 5.79 g / cm 3 and 1100 ° C. calcined powder, a result of 5.74 g / cm 3 was obtained.
  • Table 1 shows the results of the sintered density test described above.
  • the sintered body exhibits a good sintered density even at 800 ° C. It has become possible to produce an excellent and stable quality stabilized zirconium powder and its precursor at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】酸性の水溶液を出発物質とし、低温域での焼結性に優れ、かつ、安定した品質の安定化ジルコニウム粉末およびその前駆体を安価に製造する方法を提供する。 【解決手段】オキシ塩化ジルコニウムを溶解した水溶液中に炭酸ジルコニウム塩を溶解して水溶液中のZr/Clのモル比を調整した水溶液に、希土類元素、マグネシウムおよびアルミニウムからなる群から選ばれる一種または二種以上の安定化元素を含む化合物および硫酸塩イオンを含む化合物を溶解し、その水溶液を加熱してジルコニウムの塩基性硫酸塩を析出させた後、ジルコニウムの塩基性硫酸塩の析出物の硫酸塩イオンを水酸イオンと置換してジルコニウムの水酸化物とするとともに、前記の安定化元素を水酸化物として前記のジルコニウムの水酸化物と共沈させることにより安定化ジルコニア粉末の前駆体を得るとともに、それを焙焼して安定化ジルコニウム粉末を得る。

Description

安定化ジルコニア粉末およびその前駆体の製造方法
 本発明は、ジルコニアの微粉末、特に部分安定化ジルコニアまたは安定化ジルコニアの粉末およびそれらの前駆体の製造方法に関する。なお、本明細書においては、部分安定化ジルコニアおよび安定化ジルコニアを総称して、安定化ジルコニアと呼ぶ。
 ジルコニアは、高融点のセラミックスであり、耐熱性や耐食性に優れているので、ファインセラミックスの分野では重要な材料の一つであり、一般には焼結体で用いられることが多い。ジルコニアは常温では単斜晶系であるが、温度を上げて行くと、その結晶系が正方晶系に相転移する。この相転移は可逆的なものであるが、単斜晶系から正方晶系への相転移は、約4%の体積収縮を伴うので、ジルコニアの焼結体は、昇降温を繰り返すことにより、破壊に至る。この破壊を防ぐために、ジルコニアに酸化イットリウム、希土類酸化物、酸化カルシウム、酸化マグネシウム、酸化アルミニウム等の安定化剤を固溶させたものが安定化ジルコニアであり、安定化剤の含有量の少ないものが部分安定化ジルコニア、安定化剤の含有量の多いものが安定化ジルコニアである。従って、ジルコニア焼結体の破壊を抑制するためには、焼結原料である安定化ジルコニア粉末中に安定化剤が均一に分布していることが必要となる。
 この様な安定化ジルコニウム粉末の製造方法として、従来より各種の手段が用いられてきたが、その中で、低コストで一度に大量の粉末を製造することが可能な方法として、酸性の水溶液中に溶解したジルコニウムを出発物質とする方法が、特開昭61-141619号公報(特許文献1)および特開2003-206137号公報(特許文献2)に開示されている。
 特許文献1および特許文献2に開示されている方法は、いずれも、ジルコニウム、安定化剤となる元素、および、硫酸塩イオンを含む酸性の水溶液を加熱して安定化元素を一部吸着若しくは取り込んだジルコニウムの塩基性硫酸塩を析出させた後、系のpHを上昇させてジルコニウムの塩基性硫酸塩を水酸化物に変換するとともに、安定化元素を水酸化物としてジルコニウムの水酸化物と共沈させ、得られたジルコニウムと安定化元素とを含む水酸化物を焙焼して安定化ジルコニア粉末を得るというものである。
 ところで、特許文献1および特許文献2に開示されている方法は、いずれも、ジルコニウム源としてオキシ塩化ジルコニウムを用いたものである。これは、酸性の水溶液中で可溶なジルコニウム塩で、実用上最も入手が容易なものが、オキシ塩化ジルコニウムであるためである。オキシ塩化ジルコニウムを水に溶解すると加水分解を起こし、ジルコニウムが一部水酸イオンと結合するとともに、塩化物イオンおよびプロトンを放出するため、オキシ塩化ジルコニウムの水溶液は強酸性を呈し、遊離の塩化物イオンを含むものとなる。
 本発明者等の検討によると、オキシ塩化ジルコニウムの水溶液を出発物質として、その濃度を高くすると、得られる安定化ジルコニア粉末の品質にバラツキが生じ易く、仮焼工程後、常温で保存する際に、正方晶系から単斜晶系への相変態を起こし易いものが一部生成することが判明した。その原因として、オキシ塩化ジルコニウムの濃度の増加とともに水溶液中に放出される遊離の塩化物イオン濃度が増加し、ジルコニウムの水酸化物中へ安定化剤元素の均一な取り込みを阻害することが判明した。なお、ジルコニウムの塩基性硫酸塩を析出させる工程において、オキシ塩化ジルコニウムに由来する塩化物イオンは全て遊離し、次工程の中和処理において、ジルコニウムの水酸化物と安定化元素の水酸化物との均一な共沈を妨げることが推定された。この様な不均一性を回避するためには、安定化ジルコニア粉を得るためにより高温で焼成する必要があり、エネルギーコストが増大するという問題があった。従って、酸性の水溶液から安定化ジルコニア粉末を得る方法においては、出発物質である水溶液中の遊離の塩化物イオン濃度を低減する必要があったが、脱塩化物イオン処理を行うためには、高価な設備が必要であり、製造コストが増大するという問題があった。
特開昭61-141619号公報 特開2003-206137号公報
 本発明は、上記の問題点に鑑み、酸性の水溶液を出発物質とした安定化ジルコニウム粉末およびその前駆体の製造方法において、出発物質中の遊離塩化物イオン濃度を低減することにより、低温域での焼結性に優れ、安定した品質の安定化ジルコニウム粉末およびその前駆体を安価に製造する方法を提供することを目的とする。
 上記の目的を達成するために、本発明は、以下を提供する。すなわち、
 [1]オキシ塩化ジルコニウムを溶解した水溶液中に炭酸ジルコニウム塩を溶解して水溶液中のZr/Clのモル比を0.50を超え1.00以下、好ましくは0.60以上0.84以下とする工程、前記のZr/Clを調整した水溶液に、希土類元素、マグネシウムおよびアルミニウムからなる群から選ばれる一種または二種以上の安定化元素を含む化合物を溶解する工程、前記のジルコニウムおよび安定化元素の一種または二種以上を含む水溶液に、さらに硫酸塩イオンを含む化合物を溶解した後、その水溶液を50℃以上に加熱し、ジルコニウムの塩基性硫酸塩を析出させる工程、前記のジルコニウムの塩基性硫酸塩の析出物を含む水溶液のpHを8~12とし、前記のジルコニウムの塩基性硫酸塩の析出物の硫酸塩イオンを水酸イオンと置換してジルコニウムの水酸化物とするとともに、前記の安定化元素を水酸化物として前記のジルコニウムの水酸化物と共沈させる工程、および、前記の安定化元素の水酸化物とジルコニウムの水酸化物とが共沈した固相を固液分離により回収する工程、とを含む、安定化ジルコニア粉末の前駆体の製造方法、および、
 [2]前記の安定化ジルコニア粉末の前駆体を焙焼する工程をさらに含む、安定化ジルコニア粉末の製造方法、
である。
 ここでいう希土類元素とは、スカンジウム、イットリウムおよびランタノイドを意味する。
 本発明の方法を用いることにより、酸性の水溶液を出発物質とした安定化ジルコニウム粉末およびその前駆体の製造方法において、低温焼結性に優れ、かつ、安定した品質の安定化ジルコニウム粉末およびその前駆体を安価に製造することが可能になった。
[ジルコニウム源]
 本発明の安定化ジルコニウム粉末およびその前駆体の製造方法においては、出発物質のジルコニウム源として、酸性の水溶液に可溶なオキシ塩化ジルコニウムを用い、さらにその水溶液に炭酸ジルコニウム塩を溶解する。本発明に使用可能な炭酸ジルコニウム塩としては、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム等が挙げられる。炭酸ジルコニウム塩は、オキシ塩化ジルコニウム水溶液に固体状態で直接溶解することも可能であるが、反応の均一性の観点から、水溶液の状態でオキシ塩化ジルコニウム水溶液に混合することが好ましい。なお、これらの反応は、45℃以下で行うことが好ましい。また、これらの反応は、公知の撹拌手段を用いて、撹拌条件下で行っても良い。
 炭酸ジルコニウム塩の水溶液は、通常アルカリ性域で安定に用いられる。酸性域では炭酸基が安定に存在できず、炭酸ジルコニウム塩単独では急速に加水分解して水酸化物の沈殿を形成するが、オキシ塩化ジルコニウム水溶液に溶解した場合には、可溶性の状態を保つことが可能である。これは、炭酸ジルコニウム塩由来のジルコニウムが、水溶液中に存在していた可溶性のジルコニウム化合物と反応して、水酸基を含む可溶性の無機ポリマーを形成したためと考えられる。
 本発明においては、全ジルコニウム濃度については特に規定するものではないが、炭酸ジルコニウム塩を溶解した時点で2.77~3.78mol/Lとすることが好ましい。全ジルコニウム濃度が2.77mol/L未満では、1回の処理により得られる安定化ジルコニウム粉末の量が少なく、製造コストの増大を招くので好ましくない。全ジルコニウム濃度が3.78mol/Lを超えると、後述する硫酸塩イオンを添加した際に、ジルコニウムの塩基性硫酸塩が析出し易くなるので、好ましくない。すなわち、ジルコニウムの塩基性硫酸塩は難溶性の塩であり、全ジルコニウム濃度、硫酸塩イオン濃度および水酸イオン濃度のいずれかが増加しても、溶解度積を超えて当該塩が析出し易くなる。なお、最終生成物の均一性を得るためには、ジルコニウムの塩基性硫酸塩は、コントロールした条件下で析出させる必要がある。
[Zr/Cl比]
 本発明の安定化ジルコニウム粉末およびその前駆体の製造方法においては、オキシ塩化ジルコニウム水溶液に炭酸ジルコニウム塩を溶解した際の全ジルコニウム濃度と全塩化物イオン濃度とのモル比、Zr/Cl比、を0.5超え~1、好ましくは0.60~0.85とする。オキシ塩化ジルコニウム水溶液への炭酸ジルコニウム塩の添加は、少量でも遊離塩化物イオン濃度の低減に効果を有するが、Zr/Cl比を0.60以上とすることにより、その効果がより一層明確になる。Zr/Cl比が1を超えると、後述する硫酸塩イオンを添加した際に、ジルコニウムの塩基性硫酸塩が析出し易くなるので、好ましくない。すなわち、酸性水溶液中への炭酸ジルコニウム塩の添加は、加水分解による中和現象でもあり、ジルコニウムと結合する水酸イオンの数を増加させるため、ジルコニウムの塩基性硫酸塩を析出し易くすることになる。なお、例えば、Zr/Cl比が1の場合、全塩化物イオン濃度は初期の1/2となり、それに応じて遊離の塩化物イオン濃度も減少する。
[安定化元素]
 本発明の安定化ジルコニウム粉末およびその前駆体の製造方法においては、ジルコニウム塩を最終的に焙焼してジルコニアとした際にそれを安定化させるために、オキシ塩化ジルコニウム水溶液に炭酸ジルコニウム塩を溶解した水溶液に、安定化元素の化合物を溶解する。安定化元素としては、希土類元素(例えばイットリウム)、マグネシウムおよびアルミニウムからなる群から選ばれる一種または二種以上を添加する。これらの安定化元素は酸化物や、塩化物等の塩の形態の固体状態で添加して溶解することも可能であるが、予め溶解して水溶液の形態で添加することが好ましい。なお、本発明において、安定化元素の添加量は特に規定するものではなく、オキシ塩化ジルコニウム水溶液に炭酸ジルコニウム塩を溶解した水溶液に含まれる全ジルコニウム量を最終的に安定化するのに必要な量を算出して添加すればよい。なお、これらの反応は、45℃以下で行うことが好ましい。また、これらの反応は、公知の撹拌手段を用いて、撹拌条件下で行っても良い。
[ジルコニウムの塩基性硫酸塩の析出]
 前記のオキシ塩化ジルコニウム、炭酸ジルコニウム塩、および安定化元素の化合物を溶解した水溶液に、さらに硫酸塩イオンを溶解した後、その水溶液の温度を50℃以上に上昇させ、安定化元素を一部吸着若しくは取り込んだジルコニウムの塩基性硫酸塩を析出させる。これは、ジルコニウムを含む酸性の水溶液を中和して、ジルコニウムの水酸化物を直接得ようとすると、沈殿形成反応が急速に進行し、生成する沈殿が不純物を含み易くなる等、不均質な水酸化物の沈殿となるので、反応速度を制御可能なジルコニウムの塩基性硫酸塩を一度経由して、均一なジルコニウムの水酸化物を得るものである。なお、本発明のオキシ塩化ジルコニウムと炭酸ジルコニウム塩を溶解した水溶液中に存在するジルコニウム化学種は、オキシ塩化ジルコニウム単独の水溶液中のそれと比較して多量の水酸基を含有し、オキシ塩化ジルコニウムと炭酸ジルコニウム塩を溶解した水溶液から出発した場合、オキシ塩化ジルコニウム単独の水溶液から出発した場合と比較して、低い温度でジルコニウムの塩基性硫酸塩の析出が開始するため、本発明の製造方法の方が、従来法と比較して、エネルギーコストが安くなるという、副次的なメリットも存在する。
 本発明において使用可能な硫酸塩イオンの添加源としては、硫酸ナトリウム、硫酸アンモニウム等の可溶性硫酸塩が挙げられるが、本発明の一連の工程の終了後の排水処理の負荷を考慮すると、硫酸ナトリウムの使用が好ましい。
 本発明における硫酸塩イオンの添加量としては、全ジルコニウム濃度1mol/Lに対して好ましくは0.4~0.5mol/L、より好ましくは0.45~0.48mol/Lの範囲とする。硫酸塩イオンの添加量が0.4mol/L未満では、ジルコニウムの塩基性硫酸塩の析出が生起し難くなり、硫酸塩イオンの添加量が0.5mol/Lを超えると、ジルコニウムの塩基性硫酸塩ではなく、ジルコニウムの硫酸塩が生成するようになる。
 本発明において、ジルコニウムの塩基性硫酸塩の析出速度は、その反応温度によってコントロールされる。すなわち、ジルコニウムと硫酸塩イオンとを含む水溶液の液温を上昇すると水の解離が促進され、水酸イオン濃度が増加することにより、ジルコニウムの塩基性硫酸塩の溶解度積を超えることになる。因みに、水の解離積Kは、25℃で1.00×10-14であるが、50℃では5.47×10-14である。本発明においては、ジルコニウム、安定化元素および硫酸塩イオンを含む水溶液の昇温速度は特に規定するものではないが、0.43~0.87℃/minが好ましい。昇温速度が0.43℃/min未満では、反応に時間が掛かりすぎ、0.87℃/minを超えると、ジルコニウムの塩基性硫酸塩の析出速度が速くなり、得られる沈殿が不均一なものとなり易い。なお、昇温速度を変化させることにより、種結晶の発生状況が変化するため、最終的に得られるジルコニウムの水酸化物の凝集状態を変化させることが可能である。ジルコニウム、安定化元素および硫酸塩イオンを含む水溶液の到達温度(保持温度)は50℃以上とする。到達温度が50℃未満では、反応に長時間を要するので好ましくない。なお、反応時間短縮の観点からは、到達温度を80~90℃とするのが好ましい。本発明における反応溶液の到達温度の上限としては、100℃(沸点)でも構わないが、反応の際の反応溶液からの水の蒸発が無視できなくなるので、到達温度を90℃以下とするのが好ましい。到達温度(保持温度)における反応時間(保持時間)は30~60分が適当である。また、これらの反応は、公知の撹拌手段を用いて、撹拌条件下で行っても良い。
[中和処理]
 本発明においては、ジルコニウムの塩基性硫酸塩を析出させてスラリー状となった反応溶液に、引き続きアルカリを添加する中和処理を施し、塩基性硫酸塩に含まれる硫酸塩イオンを水酸イオンと置換することにより、ジルコニウムの水酸化物に変化させるとともに、安定化元素も水酸化物としてジルコニウムの水酸化物と共沈させ、ジルコニウムと安定化元素との複合水酸化物を得る。中和処理を行うpHは8~12が好ましく、9~11がより好ましい。pHが8未満では、水酸イオンの置換反応に長時間を要するので好ましくない。また、pHが12を超えると、中和に必要な薬品量が増加するとともに、ジルコニウムおよび安定化元素の水酸化物中にアルカリカチオンが不純物として取り込まれ易くなるので好ましくない。中和処理には、水酸化ナトリウム、水酸化アンモニウム等を使用することが出来る。本発明においては、中和処理の温度は特に規定するものではないが、反応促進の観点から、上述のジルコニウムの塩基性硫酸塩の析出の保持温度と同程度の高い温度で行うのが好ましい。中和処理の反応時間は、50~70分が適当である。なお、これらの反応は、公知の撹拌手段を用いて、撹拌条件下で行っても良い。
[固液分離]
 前記の中和処理工程において共沈した固相の複合水酸化物を、デカンテーション、濾過、遠心分離等の公知の固液分離手段に分離し、複合水酸化物を回収する。回収された複合水酸化物は、不純物として硫酸塩イオンやアルカリカチオンを含んでいるので、純水や希アンモニア水を用いて洗浄し、不純物を除去した後、公知の乾燥手段により脱水、乾燥する。
 以上の一連の工程により、安定化ジルコニアの前駆体である、品質の均一性に優れるジルコニウムと安定化元素の複合水酸化物が得られる。
[焙焼]
前記の安定化ジルコニアの前駆体である、ジルコニウムと安定化元素の複合水酸化物を、公知の加熱手段を用い、500~1200℃、好ましくは700~1200℃で焙焼することにより、品質の均一性に優れる安定化ジルコニアの粉体が得られる。所望の粒径の安定化ジルコニア粉末を得るためには、公知の粉砕手段を用いて、前記の安定化ジルコニアの粉体を粉砕すれば良い。
[pH測定]
 本明細書に記載のpHの値は、JIS Z8802に準拠し、ガラス電極を用い、pH標準液として、酸性域ではシュウ酸塩およびフタル酸塩緩衝液を、中性域では中性リン酸塩およびリン酸塩緩衝液を、アルカリ性域ではほう酸塩および炭酸塩緩衝液を、それぞれ用いて較正したpH計により測定した値を言う。また、高温の水溶液のpHは、温度補償電極により補償されたpH計の示す測定値を直接読み取った値である。
[実施例1]
 空調された室内において、特別に加温することなしに、805.63gのオキシ塩化ジルコニウム(2.5molのZrOCl・8HO:Zr2.5mol、Cl5.0molを含有)を429.81mLの純水に溶解した後、その水溶液に554.96gの炭酸ジルコニウム(2ZrO・CO・nHO:Zr2.5molを含有)を添加し、溶解して、全ジルコニウム含有量4.2molかつZr/Cl比が0.84の第一のジルコニウム水溶液を準備した。なお、ここで用いた炭酸ジルコニウムのジルコニウム量は、1000℃強熱減量後の重量減少率から、残量を全てZrOと仮定し算出した値である。
 前記の第一のジルコニウム水溶液を純水で希釈し、ZrO濃度で367.5g/Lとした第二のジルコニウム水溶液と、酸化イットリウム(Y 99%)を塩酸で溶解し、水で希釈してY濃度で180g/Lとしたイットリウム水溶液と、硫酸塩イオン源として無水硫酸ナトリウム粉末(NaSO 99.5%)とをそれぞれ用意した。
 前記の第二のジルコニウム水溶液626mLと、前記のイットリウム水溶液66mLとを混合し、さらに純水1674mLを添加して2366mLの原料水溶液を得た。この時の原料水溶液は無色透明で、液温度は28℃であった。なお、この原料水溶液はZrO濃度で100g/Lであり、安定化剤のYが最終的に、Y/PSZ(PSZは部分安定化ジルコニア)として2.75mol%相当になる組成である。
 この原料水溶液に106.57gの無水硫酸ナトリウム粉末を添加し、溶解して、ZrO含量に対し硫酸塩イオンの量を0.46質量%とした後、0.57℃/minの速度で80℃まで加熱し、更にその温度に60分間保持してジルコニアの塩基性硫酸塩の沈殿が析出したスラリーを得た。この時のpHは0.78であった。
 前記の80℃のスラリーに48質量%NaOH水溶液を4.2g/minの速度で添加し、スラリーのpHを8.7とし、その状態で60分間保持した。なお、pHをこの値にするために、NaOHを215g添加した。
 最終的に得られたスラリーを吸引濾過し、ZrO-kg当たり10Lに相当する量の0.2mol%アンモニア水およびZrO-kg当たり90Lに相当する量の純水で沈殿を洗浄した後、棚段乾燥機で大気下120℃で乾燥させることにより、安定化ジルコニアの前駆体であるジルコニウムと安定化剤とを含む複合水酸化物を得た。
 次いで前述の複合水酸化物を、電気炉を用い大気下にて800℃、900℃、1000℃および1100℃の4水準で焙焼を行ない、得られた4水準の仮焼粉をそれぞれ、Zr製3mmφの粉砕メディアを用い、遊星ボールミルにより2時間粉砕処理を行なった。得られた粉末を乾燥させ、1軸油圧プレス機にて1ton/cm(98MPa)となるように成型した後、冷間等方圧成型機にて単位面積あたり1.5ton/cm(147MPa)の圧力で成型体を作成した。その成型体を、電気炉を用い大気下にて1250℃-2Hr焼成を行い、4種類の安定化ジルコニア焼結体を得た。
 そこで得られた焼結体を、アルキメデス法により密度測定を行ったところ、800℃仮焼粉では5.83g/cm、900℃仮焼粉では5.83g/cm、1000℃仮焼粉では5.89g/cm、1100℃仮焼粉では5.93g/cmとの結果を得た。
[実施例2]
 805.63gのオキシ塩化ジルコニウム(2.5molのZrOCl・8HO:Zr2.5mol、Cl5.0molを含有)を484.81mLの純水に溶解した後、その水溶液に377.37gの炭酸ジルコニウム(2ZrO・CO・nHO:Zr1.7molを含有)を添加し、溶解して、全ジルコニウム含有量3.65molかつZr/Cl比が0.73の第三のジルコニウム水溶液を準備した。なお、ここで用いた炭酸ジルコニウムのジルコニウム量は、実施例1に記載の方法で算出した値である
 前記の第三のジルコニウム水溶液を純水で希釈し、ZrO濃度で317.5g/Lとした第四のジルコニウム水溶液と、酸化イットリウム(Y 99%)を塩酸で溶解し、水で希釈してY濃度で180g/Lとしたイットリウム水溶液と、硫酸塩イオン源として無水硫酸ナトリウム粉末(NaSO 99.5%)とをそれぞれ用意した。
前記の第四のジルコニウム水溶液724mLと、前記のイットリウム水溶液66mLとを混合し、さらに純水1576mLを添加して2366mLの原料水溶液を得た。この時の原料水溶液は無色透明で、液温度は28℃であった。なお、この原料水溶液はZrO濃度で100g/Lであり、安定化剤のYが最終的に、Y/PSZ(PSZは部分安定化ジルコニア)として2.75mol%相当になる組成である。
 この原料水溶液に106.57gの無水硫酸ナトリウム粉末を添加し、溶解して、ZrO含量に対し硫酸塩イオンの量を0.46質量%とした後、0.57℃/minの速度で80℃まで加熱し、更にその温度に60分間保持してジルコニアの塩基性硫酸塩の沈殿が析出したスラリーを得た。この時のpHは0.55であった。
 前記の80℃のスラリーに48質量%NaOH水溶液を4.2g/minの速度で添加し、スラリーのpHを8.7とし、その状態で60分間保持した。なお、pHをこの値にするために、NaOHを245g添加した。
 最終的に得られたスラリーを吸引濾過し、ZrO-kg当たり10Lに相当する量の0.2mol%アンモニア水およびZrO-kg当たり90Lに相当する量の純水で沈殿を洗浄した後、棚段乾燥機で大気下120℃で乾燥させることにより、安定化ジルコニアの前駆体であるジルコニウムと安定化剤とを含む複合水酸化物を得た。
 次いで前述の複合水酸化物を、電気炉を用い、大気下にて800℃、900℃、1000℃および1100℃の4水準で焙焼を行ない、得られた4水準の仮焼粉をそれぞれ、Zr製3mmφの粉砕メデイアを用い、遊星ボールミルにより2時間粉砕処理を行なった。得られた粉末を乾燥させ、1軸油圧プレス機にて1ton/cm(98MPa)となるように成型した後、冷間等方圧成型機にて1.5ton/cm(147MPa)の圧力で成型体を作成した。その成型体を、電気炉を用い大気下にて1250℃-2Hr焼成を行い、4種類の安定化ジルコニア焼結体を得た。
 そこで得られた焼結体を、アルキメデス法により密度測定を行ったところ、800℃仮焼粉では5.84g/cm、900℃仮焼粉では5.82g/cm、1000℃仮焼粉では5.90g/cm、1100℃仮焼粉では5.92g/cmとの結果を得た。
[実施例3]
 805.65gのオキシ塩化ジルコニウム(2.5molのZrOCl・8HO:Zr2.5mol、Cl5.0molを含有)を429.81mLの純水に溶解した後、その水溶液に188.69gの炭酸ジルコニウム(2ZrO・CO・nHO:Zr0.85molを含有)を添加し、溶解して、全ジルコニウム含有量3.25molかつZr/Cl比が0.65の第五のジルコニウム水溶液を準備した。なお、ここで用いた炭酸ジルコニウムのジルコニウム量は、実施例1に記載の方法で算出した値である
 前記の第五のジルコニウム水溶液を純水で希釈し、ZrO濃度で269.7g/Lとした第六のジルコニウム水溶液と、酸化イットリウム(Y 99%)を塩酸で溶解し、水で希釈してY濃度で180g/Lとしたイットリウム水溶液と、硫酸塩イオン源として無水硫酸ナトリウム粉末(NaSO 99.5%)とをそれぞれ用意した。
 前記の第六のジルコニウム水溶液853mLと、前記のイットリウム水溶液66mLとを混合し、さらに純水1447mLを添加して2366mLの原料水溶液を得た。この時の原料水溶液は無色透明で、液温度は28℃であった。なお、この原料水溶液はZrO濃度で100g/Lであり、安定化剤のYが最終的に、Y/PSZ(PSZは部分安定化ジルコニア)として2.75mol%相当になる組成である。
 この原料水溶液に106.57gの無水硫酸ナトリウム粉末を添加し、溶解して、ZrO含量に対し硫酸塩イオンの量を0.46質量%とした後、0.57℃/minの速度で80℃まで加熱し、更にその温度に60分間保持してジルコニアの塩基性硫酸塩の沈殿が析出したスラリーを得た。この時のpHは0.39であった。
 前記のスラリーに48質量%NaOH水溶液を4.2g/minの速度で添加し、スラリーのpHを8.7とし、その状態で60分間保持した。なお、pHをこの値にするために、NaOHを277g添加した。
 最終的に得られたスラリーを吸引濾過し、ZrO-kg当たり10Lに相当する量の0.2mol%アンモニア水およびZrO-kg当たり90Lに相当する量の純水で沈殿を洗浄した後、棚段乾燥機で大気下120℃で乾燥させることにより、安定化ジルコニアの前駆体であるジルコニウムと安定化剤とを含む複合水酸化物を得た。
 次いで前述の複合水酸化物を、電気炉を用い、大気下にて800℃、900℃、1000℃および1100℃の4水準で焙焼を行ない、得られた4水準の仮焼粉をそれぞれ、Zr製3mmφの粉砕メディアを用い、遊星ボールミルにより2時間粉砕処理を行なった。得られた粉末を乾燥させ、1軸油圧プレス機にて1ton/cm(98MPa)となるように成型した後、冷間等方圧成型機にて1.5ton/cm(147MPa)の圧力で成型体を作成した。その成型体を、電気炉を用い大気下にて1250℃-2Hr焼成を行い、4種類の安定化ジルコニア焼結体を得た。
 そこで得られた焼結体を、アルキメデス法にて密度測定を行ったところ、800℃仮焼粉では5.82g/cm、900℃仮焼粉では5.85g/cm、1000℃仮焼粉では5.88g/cm、1100℃仮焼粉では5.91g/cmとの結果を得た。
[比較例1]
 805.65gのオキシ塩化ジルコニウム(2.5molのZrOCl・8HO:Zr2.5mol、Cl5.0molを含有)を601.7mLの純水に溶解した後、さらに純水で希釈し、ZrO濃度で228.2g/Lとした第七のジルコニウム水溶液と、酸化イットリウム(Y 99%)を塩酸で溶解し、水で希釈してY濃度で180g/Lとしたイットリウム水溶液と、硫酸塩イオン源として無水硫酸ナトリウム粉末(NaSO 99.5%)とをそれぞれ用意した。
 前記の第七のジルコニウム水溶液876mLと、前記のイットリウム水溶液57mLとを混合し、さらに純水1124mLを添加して2057mLの原料水溶液を得た。この時の原料水溶液は無色透明で、液温度は28℃であった。なお、この原料水溶液はZrO濃度で100g/Lであり、安定化剤のYが最終的に、Y/PSZ(PSZは部分安定化ジルコニア)として2.75mol%相当になる組成である。
 この原料水溶液に92.67gの無水硫酸ナトリウム粉末を添加し、溶解して、ZrO含量に対し硫酸塩イオンの量を0.46質量%とした後、0.57℃/minの速度で80℃まで加熱し、更にその温度に60分間保持してジルコニアの塩基性硫酸塩の沈殿が析出したスラリーを得た。この時のpHは0.21であった。
 前記のスラリーに48質量%NaOH水溶液を4.2g/minの速度で添加し、スラリーのpHを8.7とし、その状態で60分間保持した。なお、pHをこの値にするために、NaOHを286g添加した。
 最終的に得られたスラリーを吸引濾過し、ZrO-kg当たり10Lに相当する量の0.2mol%アンモニア水およびZrO-kg当たり90Lに相当する量の純水で沈殿を洗浄した後、棚段乾燥機で大気下120℃で乾燥させることにより、安定化ジルコニアの前駆体であるジルコニウムと安定化剤とを含む複合水酸化物を得た。
 次いで前述水酸化物を電気炉にて大気下1100℃で焙焼を行った。
 次いで前述の複合水酸化物を、電気炉を用い大気下にて800℃、900℃、1000℃および1100℃の4水準で焙焼を行ない、得られた4水準の仮焼粉をそれぞれ、Zr製3mmφの粉砕メディアを用い、遊星ボールミルにより2時間粉砕処理を行なった。得られた粉末を乾燥させ、1軸油圧プレス機にて1ton/cm(98MPa)となるように成型した後、冷間等方圧成型機にて1.5ton/cm(147MPa)の圧力で成型体を作成した。その成型体を、電気炉を用い大気下にて1250℃-2Hr焼成を行い、4種類の安定化ジルコニア焼結体を得た。
 そこで得られた焼結体をアルキメデス法により密度測定を行ったところ、800℃仮焼粉では4.31g/cm、900℃仮焼粉では5.63g/cm、1000℃仮焼粉では5.79g/cm、1100℃仮焼粉では5.74g/cmとの結果を得た。
 以上の焼結体密度試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から明らかな様に、本発明の安定化ジルコニア粉末およびその前駆体の製造方法を用いることにより、800℃での焼結においても良好な焼結体密度を示す、低温焼結性に優れ、安定した品質の安定化ジルコニウム粉末およびその前駆体を安価に製造することが可能になった。

Claims (3)

  1.  オキシ塩化ジルコニウムを溶解した水溶液中に炭酸ジルコニウム塩を溶解して水溶液中のZr/Clのモル比を0.5超え~1とする工程、
     前記のZr/Clを調整した水溶液に、希土類元素、マグネシウムおよびアルミニウムからなる群から選ばれる一種または二種以上の安定化元素を含む化合物を溶解する工程、
     前記のジルコニウムおよび安定化元素の一種または二種以上を含む水溶液に、さらに硫酸塩イオンを含む化合物を溶解した後、該水溶液を50℃以上に加熱し、ジルコニウムの塩基性硫酸塩を析出させる工程、
     前記のジルコニウムの塩基性硫酸塩の析出物を含む水溶液のpHを8~12とし、前記のジルコニウムの塩基性硫酸塩の析出物の硫酸塩イオンを水酸イオンと置換してジルコニウムの水酸化物とするとともに、前記の安定化元素を水酸化物として前記のジルコニウムの水酸化物と共沈させる工程、および、
     前記の安定化元素の水酸化物とジルコニウムの水酸化物とが共沈した固相を固液分離により回収する工程、
    を有する、安定化ジルコニア粉末の前駆体の製造方法。
  2.  前記Zr/Clのモル比を0.6~0.84とする、請求項1に記載の安定化ジルコニア粉末の前駆体の製造方法。
  3.  請求項1または請求項2に記載の安定化ジルコニア粉末の前駆体を焙焼する工程をさらに有する、安定化ジルコニア粉末の製造方法。
PCT/JP2014/051489 2013-01-25 2014-01-24 安定化ジルコニア粉末およびその前駆体の製造方法 WO2014115835A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157011940A KR102120035B1 (ko) 2013-01-25 2014-01-24 안정화 지르코니아 분말 및 이의 전구체의 제조방법
CN201480003312.6A CN104837774B (zh) 2013-01-25 2014-01-24 稳定化氧化锆粉末及其前体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012165A JP5611382B2 (ja) 2013-01-25 2013-01-25 安定化ジルコニア粉末およびその前駆体の製造方法
JP2013-012165 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115835A1 true WO2014115835A1 (ja) 2014-07-31

Family

ID=51227624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051489 WO2014115835A1 (ja) 2013-01-25 2014-01-24 安定化ジルコニア粉末およびその前駆体の製造方法

Country Status (4)

Country Link
JP (1) JP5611382B2 (ja)
KR (1) KR102120035B1 (ja)
CN (1) CN104837774B (ja)
WO (1) WO2014115835A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2793248T3 (es) * 2016-03-30 2020-11-13 Daiichi Kigenso Kagaku Kogyo Polvo fino de zirconia y método de producción para el mismo
CN113371756B (zh) * 2021-07-13 2023-04-25 河南工业大学 一种La-Sc-ZrO2纳米晶体材料及其制备方法
CN115340126B (zh) * 2022-09-15 2024-04-12 包头稀土研究院 稀土锆酸盐颗粒及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111922A (ja) * 1982-12-14 1984-06-28 Dowa Chem Kk 酸化ジルコニウム微粉末の製造法
JPS61141619A (ja) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd ジルコニア微粉体の製造法
JPH0789724A (ja) * 1993-09-21 1995-04-04 Shell Internatl Res Maatschappij Bv ジルコニアの製造方法
JPH08325015A (ja) * 1994-12-21 1996-12-10 Eniricerche Spa 触媒または触媒担体として有用な、純粋および混合酸化物ジルコニアの球体、微小球体およびウオッシュコートを製造するためのゾルーゲル製法
JP2003206137A (ja) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd 部分安定化または安定化ジルコニア微粉体とその前駆体およびそれらの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911922A (ja) * 1982-07-14 1984-01-21 Jeco Co Ltd 車輪駆動装置
KR0142920B1 (ko) * 1995-06-21 1998-07-15 강박광 고순도 옥시염화지르코늄 결정의 제조방법
FR2812630B1 (fr) * 2000-08-04 2002-10-04 Rhodia Terres Rares Zircone sous forme de poudre fine, hydroxycarbonate de zirconium et leurs procedes de preparation
CN1202016C (zh) * 2002-02-28 2005-05-18 柳云珍 一种四水硫酸锆生产工艺
CN101100379B (zh) * 2007-07-10 2010-11-03 北京有色金属研究总院 制备纳米晶和非晶复合结构氧化钇稳定氧化锆球形粉方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111922A (ja) * 1982-12-14 1984-06-28 Dowa Chem Kk 酸化ジルコニウム微粉末の製造法
JPS61141619A (ja) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd ジルコニア微粉体の製造法
JPH0789724A (ja) * 1993-09-21 1995-04-04 Shell Internatl Res Maatschappij Bv ジルコニアの製造方法
JPH08325015A (ja) * 1994-12-21 1996-12-10 Eniricerche Spa 触媒または触媒担体として有用な、純粋および混合酸化物ジルコニアの球体、微小球体およびウオッシュコートを製造するためのゾルーゲル製法
JP2003206137A (ja) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd 部分安定化または安定化ジルコニア微粉体とその前駆体およびそれらの製造方法

Also Published As

Publication number Publication date
JP2014141383A (ja) 2014-08-07
JP5611382B2 (ja) 2014-10-22
CN104837774B (zh) 2017-02-22
KR20150109326A (ko) 2015-10-01
KR102120035B1 (ko) 2020-06-08
CN104837774A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
US10196313B2 (en) Zirconia fine powder and production method therefor
ES2441842T3 (es) Producto sinterizado a base de aluminio y circona
KR101323697B1 (ko) 지르코늄 산화물 및 그 제조 방법
JP4470378B2 (ja) ジルコニア焼結体およびその製造方法
US20070179041A1 (en) Zirconia Ceramic
CN107285770B (zh) 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
WO2019189275A1 (ja) セラミックス粉末、焼結体及び電池
Li et al. Synthesis of nanocrystalline yttria powder and fabrication of Cr, Nd: YAG transparent ceramics
CN105503178A (zh) 一种低温常压快速烧结全稳定氧化锆粉体的方法
JP5611382B2 (ja) 安定化ジルコニア粉末およびその前駆体の製造方法
CN108530057A (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
Mamana et al. Influence of the synthesis process on the features of Y2O3-stabilized ZrO2 powders obtained by the sol–gel method
JP5703549B2 (ja) アルミナドープジルコニアナノ粒子及びその製造方法
CN104496466A (zh) 一种高固溶度弛豫型纳米无铅压电陶瓷及其制备方法
Liu et al. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd: YAG nanopowders
JPH0346407B2 (ja)
JP2007015898A (ja) 酸化ジルコニウム粉末の製造方法及び酸化ジルコニウム粉末
JP2003206137A (ja) 部分安定化または安定化ジルコニア微粉体とその前駆体およびそれらの製造方法
KR101747901B1 (ko) 이트리아 안정화 지르코니아의 제조방법
JPS61141619A (ja) ジルコニア微粉体の製造法
RU2600636C2 (ru) Способ получения нанокристаллического порошка диоксида циркония
JP5140909B2 (ja) 酸化アルミニウム含有希土類元素添加酸化セリウム粉体
CN114787086A (zh) 氧化锆粉末、氧化锆烧结体及氧化锆烧结体的制造方法
JP2021127285A (ja) ジルコニア焼結体、及び、ジルコニア粉末
RU2776575C1 (ru) Способ получения циркона

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011940

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743602

Country of ref document: EP

Kind code of ref document: A1