WO2014115546A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014115546A1
WO2014115546A1 PCT/JP2014/000311 JP2014000311W WO2014115546A1 WO 2014115546 A1 WO2014115546 A1 WO 2014115546A1 JP 2014000311 W JP2014000311 W JP 2014000311W WO 2014115546 A1 WO2014115546 A1 WO 2014115546A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
bead
rim
axial direction
radial direction
Prior art date
Application number
PCT/JP2014/000311
Other languages
English (en)
French (fr)
Inventor
一人 大▲崎▼
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013009088A external-priority patent/JP5829632B2/ja
Priority claimed from JP2013028103A external-priority patent/JP5722935B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/761,432 priority Critical patent/US10266015B2/en
Priority to RU2015135504A priority patent/RU2618358C2/ru
Priority to CN201480005554.9A priority patent/CN105121187B/zh
Priority to EP14743677.8A priority patent/EP2949483B1/en
Priority to BR112015017378-0A priority patent/BR112015017378A2/pt
Publication of WO2014115546A1 publication Critical patent/WO2014115546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10819Characterized by the structure of the bead portion of the tire

Definitions

  • the present invention relates to a pneumatic tire.
  • the tire maximum width position and the tire outer surface are rim flanges for side rubber in the vicinity of the bead portion where the amount of rubber used is large. It has been proposed to reduce the amount of rubber by the volume of the recess and thereby reduce the tire weight by providing a recess with the outer surface of the tire between the rim separation point away from the inner side in the tire axial direction. Yes.
  • an object of the present invention is to provide a pneumatic tire capable of ensuring excellent durability while realizing weight reduction of the tire.
  • the bead portion is deformed by devising the shape of the tire outer surface of the bead portion. It has been found that the influence on the end portion of the carcass ply by can be reduced, and the present invention has been completed.
  • the pneumatic tire according to the present invention includes a tread portion, a pair of sidewall portions, and a pair of bead portions, and extends in a toroid shape between a pair of bead cores embedded in the bead portion.
  • a carcass comprising at least one ply that includes a ply main body and a ply turn-up portion extending from the ply main body and turning around each bead core from the inner side to the outer side in the tire axial direction;
  • a pneumatic tire having a recess that is recessed inward in the tire axial direction on the outer surface of the tire up to the tire maximum width position, A straight line that passes through the center of gravity of the bead core and is parallel to the tire axial direction in a cross-section in the tire axial direction in a non-rim assembled state in which the width between the pair of bead portions is a specified rim width that is not assembled to the rim and the outside of the tire
  • a first intersection that is an intersection with the surface, a straight line parallel to the tire axial direction passing through a point on the outer side in the tire radial direction of the bead core 50% of the maximum width in the tire radial direction from the outermost end in the tire radial direction of the bead
  • the rim separation point means that the outer surface of the tire is the rim flange when the tire is assembled to the specified rim, the normal maximum internal pressure specified according to the tire size is filled, and no load is applied. The point that leaves the state of contact.
  • the specified rim is an industrial standard that is effective in the area where tires are produced and used. In the United States, it is a standard rim defined by TRA (The Tire and Rim Association Inc.) YEAR BOOK according to the tire size.
  • the normal maximum internal pressure is the air pressure corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in JATMA and the like.
  • the width between the pair of bead portions is defined as the specified rim width.
  • the distance between the bead heel portions of the pair of bead portions in the tire axial direction is the rim width defined in the above-mentioned JATMA or the like (extracting the tire performance). Rim width suitable for).
  • the end portion of the carcass ply folded portion can be separated from the region that receives the reaction force from the rim flange, and the load on the end portion of the folded portion can be suppressed. It is possible to ensure the excellent durability of the tire while simultaneously enjoying the effect of reducing the weight of the tire by forming the tire.
  • the outer surface of the tire in the non-rim assembled state, has a center of curvature in the order from the bead heel portion to the tire maximum width position in the tire radial direction in order.
  • One or more arcs located on the inner side in the tire axial direction from the surface, one or more arcs having a center of curvature located on the outer side in the tire axial direction from the outer surface of the tire, and a center of curvature located on the inner side in the tire axial direction from the outer surface of the tire And one or more arcs.
  • the weight of the tire can be reduced by reducing the amount of side rubber.
  • the reaction force of a rim flange can be disperse
  • load concentration on the end of the carcass ply turn-up portion is suppressed, and it is possible to ensure better tire durability.
  • the rubber thickness gradually decreases toward the outside in the tire radial direction in at least a part of the tire radial direction region including the concave portion, and then the tire It is preferable that the thickness is constant over the tire radial direction region up to 1 ⁇ 2 of the tire cross-section height toward the radially outer side.
  • the rubber thickness is the shortest distance of rubber from the cord surface of the member in the tire to the outer surface of the tire.
  • the cord surface of the member means a cord surface closest to the outer surface of the tire among members existing in each region such as a carcass and a chafer.
  • the constant thickness means that the maximum rubber thickness and the minimum rubber thickness in the region are within a range of ⁇ 10% of the average rubber thickness.
  • the tire thickness can be reduced by reducing the rubber thickness outside the bead portion in the tire radial direction while securing the rubber thickness in the vicinity of the bead portion to avoid strain concentration on the end portion of the carcass ply folded portion. Can be more fully reduced in weight.
  • the pneumatic tire according to the present invention includes, in the non-rim assembled state, a third intersection that is an intersection of a straight line that passes through the center of gravity of the bead core and is parallel to the tire axial direction and the ply folded portion, and the bead core tire.
  • Two intersections of the fourth intersection that is the intersection of the straight line parallel to the tire axial direction passing through a point 50% outside the tire radial direction maximum width of the bead core in the tire radial direction from the radially outermost end and the ply turn-up portion
  • the angle ⁇ formed by the ply turn-up portion inclination line passing through the tire and the tire axial direction is preferably 70 to 100 °.
  • the end portion of the ply turn-up portion can be separated from the deformation region by the rim flange, and the occurrence of distortion at the end portion can be suppressed. it can. Further, the end portion of the carcass ply turn-up portion can be further separated from the region receiving the reaction force from the rim flange, and the load on the end portion of the turn-up portion can be further suppressed, so a recess is formed in the side rubber. While enjoying the effect of reducing the weight of the tire, it is possible to sufficiently ensure excellent tire durability.
  • the tire is mounted on a specified rim, filled with the normal maximum internal pressure, and in the rim assembly state in which there is no load, the tire outer surface and the rim flange are separated in the tire axial direction.
  • the distance gradually increases toward the outer side in the tire radial direction, and the maximum separation distance is preferably 10 to 30% of the maximum width in the tire axial direction of the bead core.
  • the maximum separation distance refers to a distance in the tire axial direction between the flange end and a contact point between the straight line passing through the flange end and parallel to the tire axial direction and the tire outer surface.
  • the rubber thickness in the tire axial direction on the straight line drawn in parallel to the tire axial direction through the center of gravity of the bead core passes through the center of gravity of the bead core in the non-rim assembled state. It is preferably 70 to 300% of the rubber thickness in the tire radial direction on a straight line drawn parallel to the tire radial direction.
  • the reaction force from the rim flange can be uniformly received by the entire rubber near the bead heel portion.
  • the influence on the end portion of the ply turn-back portion is reduced, and the occurrence of ply end separation can be further suppressed.
  • the bead base width of the bead portion is preferably 200 to 260% of the maximum width in the tire axial direction of the bead core.
  • the bead base width refers to the length from the bead toe of the bead part to the intersection of the tangent line of the bead base part and the outer surface straight line of the back surface of the bead.
  • the bead base portion when the tire is mounted on the rim, the bead base portion can be brought into contact with the bead seat portion with a sufficient area, and the reaction force from the rim flange is caused by the rubber near the bead base portion. Can absorb enough. As a result, the influence on the end portion of the ply turn-back portion is reduced, and the occurrence of ply end separation can be further suppressed.
  • the bead seat portion refers to a portion in the tire axial direction of the bead seat from the intersection of the tangent line of the bead back surface portion at the rim separation point and the extended line of the bead seat portion to the hump.
  • the pneumatic tire of the present invention extends from the intersection of the outer surface straight line of the bead back surface portion and the tangent of the bead base portion of the bead portion to the end portion of the ply turn-up portion.
  • the distance in the tire radial direction is preferably 100 to 225% of the maximum width in the tire axial direction of the bead core.
  • the carcass ply can be shortened to reduce the weight of the tire.
  • the pneumatic tire of the present invention extends from the intersection of the outer surface straight line of the bead back surface portion and the tangent of the bead base portion of the bead portion to the end portion of the ply turn-up portion.
  • the carcass ply can be shortened to reduce the weight of the tire.
  • FIG. 2 is an enlarged view of a bead portion and a sidewall portion on one side in FIG. 1.
  • A is the figure which showed the contact state of the bead part and a rim flange in the state which mounted
  • FIG. 2 is an enlarged view of a bead portion and a sidewall portion on one side in FIG. 1.
  • FIG. 2 is an enlarged view of a bead portion and a sidewall portion on one side in FIG. 1. It is a figure which shows the tire axial direction cross section of the pneumatic tire of this invention in the state which is mounted
  • FIG. 2 is an enlarged view of a bead portion and a sidewall portion on one side in FIG. 1.
  • FIG. 2 is an enlarged view of a bead portion and a sidewall portion on one side in FIG. 1.
  • FIG. 1 shows a pneumatic tire 1 according to the present invention (hereinafter referred to as “non-rim assembled state”) in a state (hereinafter referred to as “non-rim assembled state”) in which the width between a pair of bead portions is a specified rim width before being assembled to a rim.
  • FIG. 2 is a view showing a cross section in the tire axial direction.
  • the tire 1 includes a tread portion 2, a pair of sidewall portions 3 and 3, and a pair of bead portions 4 and 4. Further, a ply body 6a extending in a toroidal shape between a pair of bead cores 5 and 5 embedded in the bead parts 4 and 4, and a tire axial direction around each bead core 5 and 5 extending from the ply body 6a.
  • the ply folded portion 6b is not folded along the outer surface of the bead core 5 around the bead core 5, but after being folded along the bead core 5, in this embodiment, substantially parallel to the ply main body portion 6a. It extends outward in the tire radial direction.
  • the tire 1 further has a recess 7 that is recessed inward in the tire axial direction on the tire outer surface in the tire radial direction region from the rim separation point F to the tire maximum width position P 3 of the sidewall portion 3. .
  • the tire axial direction is a direction indicated by an arrow X
  • the tire radial direction is a direction indicated by an arrow Y
  • the tire maximum width position P 3 of the sidewall portion 3 refers to the outermost end of the sidewall portion 3 in the tire axial direction.
  • the concave portion 7 is formed on at least a part of the region of the tire so that the entire region is included in the outer surface of the tire in the tire radial direction region between the rim separation point F and the tire maximum width position P 3. In the embodiment, it is provided in the vicinity of the bead portion 4 and is formed by being thinned so as to be concave toward the inner side in the tire axial direction.
  • the rubber material corresponding to the volume of the recess 7 can be omitted, so that the tire weight is reduced. As a result, the rolling resistance of the tire can be reduced.
  • FIG. 2 shown next is an enlarged view of a part of the bead portion 4 and the sidewall portion 3 on one side in FIG.
  • a first intersection point P 1 is an intersection of the axially parallel straight line and a tire outer surface, 50% tire diameter of the tire radial direction maximum width a of the bead core 5 from the tire radial direction outermost end P 5 of the bead core 5
  • the outer surface straight line of the back surface of the bead passing through two intersection points P 1 and P 2 of the second intersection point P 2 which is an intersection point of the straight line parallel to the tire axial direction and passing through an arbitrary point P 6 on the outer side in the direction and the tire outer surface It is important that the angle ⁇ formed by L 1 and the tire axial direction X is 70 to 100 °.
  • the center of gravity C 5 of the bead core 5 refers to the center of gravity of the cross-sectional shape itself, not the actual center of gravity considering the weight.
  • the width between the bead portions is defined as the specified rim width.
  • the distance between the bead heel portions 8 and 8 of the bead portions 4 and 4 of the tire 1 is set to the rim width (tire of the tire) defined in the above-mentioned JATMA or the like.
  • the angle ⁇ is a value measured in this state.
  • the angle ⁇ is an angle between the outer surface straight line L 1 of the bead back surface portion and the tire axial direction X and is outside the tire surface direction L 1 of the bead back surface portion, and the first intersection point An angle that is located on the outer side in the tire radial direction from a straight line passing through P 1 and parallel to the tire axial direction.
  • FIG. 3A shows a case where the pneumatic tire 1 according to the present invention is mounted on a specified rim and the normal maximum internal pressure is set to an angle ⁇ formed by the outer surface straight line L 1 of the rear surface of the bead and the tire axial direction X of 80 °.
  • FIG. 5 is a view showing a contact state between a bead portion 4 and a rim flange 20 when a specified load is set.
  • FIG. 5 is a view showing a contact state between a bead portion 4 and a rim flange 20 when a specified load is set.
  • the angle ⁇ formed between the outer surface straight line L 1 and the tire axial direction X of the bead rear portion was 60 °, the conventional pneumatic tire 101 mounted on a prescribed rim, normal maximum pressure It is the figure which showed the contact state of the bead part 40 and the rim flange 200 at the time of setting it as prescription
  • the concave portion is provided in the side rubber in the tire radial direction region from the rim separation point to the tire maximum width position, the weight of the tire can be reduced, but the thickness of the side rubber is reduced and the rigidity of the bead portion is reduced. Therefore, when the tire is attached to the rim, the tire is pressed against the rim and receives a reaction force from the rim flange, so that the rubber of the bead portion is easily deformed.
  • the bead portion 40 and the rim flange 200 The contact region S 2 (hatched portion) is a region extending from the bead heel portion 80 to the vicinity of the rim flange end 200a.
  • the end 90 of the ply turnup portion 60b is positioned closer to the contact region S 2, the end 90 is susceptible to influence of the reaction force of the rim flange 200, with the deformation of the bead portion 40 In some cases, distortion occurred and ply end separation occurred.
  • the rising angle ⁇ of the outer surface of the tire on the outer side in the tire radial direction from the bead heel portion 8, that is, the outer surface of the back surface of the bead is set to the conventional pneumatic tire.
  • the contact area S 1 (hatched part) between the bead portion 4 and the rim flange 20 is positioned on the inner side in the tire radial direction from the conventional contact area S 2 , that is, closer to the bead heel portion 8 by making the size larger than 101. It becomes.
  • the end portion 9 of the ply turnup portion 6b is made to be spaced apart from the contact region S 1, the influence of the end 9 due to the reaction force of the rim flange 20 is significantly suppressed than conventional ply end It becomes possible to realize a highly durable pneumatic tire that does not cause separation.
  • the tire outer surface of the bead back portion is set so that the angle ⁇ is 70 to 100 °, the tire is attached to the rim, and the normal maximum internal pressure is set. Even in the case of a specified load, it is possible to reduce the influence of the rim flange 20 on the end portion 9 of the ply turn-up portion 6b as much as possible, and as a result, to provide a pneumatic tire with sufficient durability. Is possible.
  • the angle ⁇ is set in the range of 70 to 100 ° when the end portion 9 of the folded portion 6b is sufficiently separated from the rim flange 20 when the angle ⁇ is set to 70 ° or more. It is because generation
  • the angle ⁇ formed by the outer surface straight line L 1 of the bead back surface portion and the tire axial direction X is 80 to 90 °. This is because the end portion 9 of the folded portion 6b can be sufficiently separated from the rim flange 20 by setting the angle to 80 ° or more, and the generation of distortion at the end portion 9 can be further suppressed. This is because the end portion 9 is separated from the ply main body portion 6a, and distortion generated by the deformation of the ply main body portion 6a can be further suppressed.
  • the outer surface of the tire is between the bead heel portion 8 and the tire maximum width position P 3, and the outer side in the tire radial direction.
  • the center of curvature C 3 is defined by the one or more arcs are in axially inward from the outer surface of the tire.
  • the bead portion 4 and the rim flange 20 in the vicinity of the bead heel portion 8 can be sufficiently brought into contact with the entire contact region S1.
  • the reaction force of the rim flange 20 is dispersed throughout the region S1.
  • the load on the end portion 9 of the carcass ply turn-up portion 6b is reduced, and the occurrence of ply end separation can be suppressed.
  • the shape of the tire outer surface of a part of the side rubber convex toward the inside of the tire the amount of rubber can be reduced and the weight of the tire can be reduced.
  • FIG. 4 only three arcs whose centers of curvature are C 1 , C 2 , and C 3 are shown, but the tire outer surface between the arc of the center of curvature C 1 and the arc of the center of curvature C 2 is A plurality of arcs having other centers of curvature are drawn so as to be smoothly continuous. Further, for example, the recess 7 is not drawn by only one arc as shown in FIG. 4, but may be defined by a plurality of arcs. Further, the center of curvature and the radius of curvature that define the shape of the outer surface of the tire are not limited to the example shown in FIG.
  • the rubber thickness d gradually decreases toward the outer side in the tire radial direction in at least a part of the tire radial direction region including the concave portion 7, and thereafter the tire radial direction. It is preferable that the thickness is constant over the tire radial direction region up to 1 ⁇ 2 of the tire cross-section height H toward the outside.
  • the rubber thickness d means the shortest distance of rubber from the cord surface closest to the tire outer surface to the tire outer surface among the members existing in the region such as carcass and chafer in the tire.
  • the tire cross-sectional height H is a distance in the tire radial direction from the bead heel portion 8 to the outermost end in the tire radial direction.
  • the constant thickness means that the maximum rubber thickness and the minimum rubber thickness are within ⁇ 10% of the average rubber thickness in the region from the end of the gradually decreasing portion to 1/2 of the tire cross-section height H.
  • the third intersection P 7 that is the intersection of the straight line passing through the center of gravity C 5 of the bead core 5 and parallel to the tire axial direction and the ply turn-up portion 6 b and the outermost end in the tire radial direction of the bead core 5.
  • a fourth intersection P 8 that is an intersection of a straight line passing through an arbitrary point P 6 outside the tire radial direction 50% of the maximum tire radial width a of the bead core 5 from P 5 and parallel to the tire axial direction and the ply turn-up portion 6b.
  • the angle ⁇ formed by the ply turn-up portion inclination line L 2 passing through the two intersections P 7 and P 8 and the tire axial direction is preferably 70 to 100 °.
  • the angle ⁇ is an outer side in the tire axial direction from the ply turn-up portion inclination line L 2 among the angles formed by the ply turn-up portion inclination line L 2 and the tire axial direction X, and passes through the third intersection P 7 . It means the angle located on the outer side in the tire radial direction than the straight line parallel to the tire axial direction.
  • the end portion 9 of the ply turn-up portion 6b can be separated from the rim flange 20, and the occurrence of distortion at the end portion 9 is suppressed. be able to. Further, the end portion of the carcass ply turn-up portion can be further separated from the region receiving the reaction force from the rim flange, and the load on the end portion of the turn-up portion can be further suppressed, so a recess is formed in the side rubber. While enjoying the effect of reducing the weight of the tire, it is possible to sufficiently ensure excellent tire durability.
  • the angle ⁇ is set to 70 ° or more because the end 9 is sufficiently separated from the rim flange 20 when the angle ⁇ is set to be equal to or greater than this angle, and the occurrence of distortion at the end 9 can be suppressed. is there.
  • the angle ⁇ is set to 100 ° or less, if the angle ⁇ exceeds 100 °, the end 9 may come into contact with the bead core 5, and if the folded portion 6b is wound around the bead core 5, the manufacturing cost is increased. This is because there is a case where becomes higher. If the angle exceeds 110 °, the end portion 9 becomes too close to the ply body portion 6a, and the distortion of the ply turn-up portion 6b due to the deformation of the ply body portion 6a becomes large.
  • the tire outer surface and the rim flange 20 are mounted in a rim assembly state in which the tire is mounted on a specified rim, filled with a normal maximum internal pressure, and in a no-load state.
  • the distance t in the tire axial direction increases gradually toward the outer side in the tire radial direction, and the maximum distance t max of the distance t is 10-30% of the maximum width b of the bead core 5 in the tire axial direction. It is preferable.
  • the separation distance t refers to the shortest distance in the tire axial direction from the outer surface of the tire to the innermost end in the tire axial direction of the rim flange 20, and as described above, the maximum separation distance t max refers to the flange. It means the distance in the tire axial direction between the end and the contact point between the straight line passing through the flange end and parallel to the tire axial direction and the tire outer surface.
  • the maximum tire axial width b of the bead core 5 is a line parallel to the tire radial direction passing through the innermost end of the bead core 5 and parallel to the tire radial direction passing through the outermost end of the bead core 5 in the tire axial direction. This is the distance between the two lines.
  • the contact area between the tire and the rim flange is closer to the inner side in the tire radial direction than in the prior art, so even if the bead portion is deformed by the reaction force of the rim flange, the ply The influence on the end portion 9 of the folded portion 6b is reduced, and the occurrence of ply end separation can be further suppressed.
  • the maximum separation distance t max is set to 10-30% of the maximum width b in the tire axial direction of the bead core 5 by 10% or more, so that the rubber deformation of the bead portion is caused by the reaction force of the rim flange. Even if it occurs, the influence on the end portion 9 of the ply turn-up portion 6b is reduced.
  • the rubber thickness m in the tire axial direction on a straight line passing through the center of gravity C 5 of the bead core 5 and parallel to the tire axial direction is the center of gravity C 5 of the bead core 5. It is preferably 70 to 300% of the rubber thickness n in the tire radial direction on a straight line passing through and parallel to the tire radial direction.
  • the bead base width W is preferably 200 to 260% of the maximum width b of the bead core 5 in the tire axial direction.
  • the bead base width W is the length from the bead toe 12 of the bead part 4 to the intersection P 9 between the tangent L 3 of the outer surface of the bead base part and the outer surface straight line L 1 of the bead back part.
  • the bead base width W is less than 200% of the maximum width b in the tire axial direction of the bead core 5, the load on the rear surface of the bead increases and the reaction force from the rim flange increases.
  • h is preferably 100 to 225% of the maximum width b of the bead core 5 in the tire axial direction. More preferably, it is 135 to 200% of the maximum width b of the bead core 5 in the tire axial direction.
  • the amount of the carcass ply 6 used can be reduced and the tire weight can be further reduced. Further, in reducing the amount of the carcass ply 6 used, it is possible to reduce the manufacturing cost by adopting a structure in which the folded height of the ply folded portion 6b is kept relatively low instead of the structure in which the folded portion is wound around the bead core 5. Can be suppressed.
  • the width between the pair of bead portions 4 and 4 in the tire axial cross section of FIG. The tire outer surface of the back surface of the bead up to the intersection P 10 between the straight line passing through the end P 5 and parallel to the tire axial direction X and the tire outer surface is located at the center of curvature C 6 on the inner side in the tire axial direction from the tire outer surface.
  • the width between the bead portions is defined as the specified rim width.
  • the distance in the width direction between the bead heels 8 and 8 of the bead portions 4 and 4 of the tire 1 is set to the rim width (tire Rim width suitable for drawing out the performance of the above), and the above dimensions are values measured in this state.
  • the heel portion 8 from the intersection point A 1 of the tire radial direction line and the outer surface of the tire passing through the bead core center C 5, a line parallel to the tire outer surface to the outer contour line of the street bead base portion of the bead core center C 5 to an intersection a 2 and refers to the tire outer surface portion.
  • FIG. 3 (a) shows a pneumatic tire 1 according to the present invention having a radius of curvature R defining the outer surface of the bead back surface of 15 mm, mounted on a specified rim, and having a normal maximum internal pressure and a specified load. It is the figure which showed the contact state of the bead part 4 and the rim flange 20 in the case.
  • FIG. 3 (b) shows a case where a conventional pneumatic tire 101 having a radius of curvature R of an arc defining the outer surface of the tire on the back surface of the bead is 140 mm is mounted on a specified rim, and a normal maximum internal pressure is set. It is the figure which showed the contact state of the bead part 40 and the rim flange 200 at the time of doing.
  • the weight of the tire can be reduced, but the thickness of the side rubber is reduced and the rigidity of the bead portion is reduced. Therefore, when the tire is attached to the rim, the tire is pressed against the rim and receives a reaction force from the rim flange, so that the rubber of the bead portion is easily deformed.
  • the contact area S 2 (hatched portion) between the bead portion 40 and the rim flange 200 is The region extends from the bead toe 120 to the vicinity of the rim flange end 200a.
  • the radius of curvature of the tire outer surface of the bead back surface is relatively large, when the tire is mounted on the rim, the tire outer surface around the rim separation point F and the tire outer surface around the bead toe 120 in the bead portion 40. The surface makes strong contact with the rim flange 200.
  • the contact pressure of the tire outer surface and the rim flange 200 of the bead portion 40 in the contact area S 2 includes a peripheral rim separation point F, bead toe 120 particularly high around the contact pressure at the periphery bead heel portion 80 and the low state Become.
  • the end 90 of the ply turn-up portion 60b is close to the rim separation point F where the contact pressure increases, the end 90 is easily affected by the reaction force of the rim flange 200, and the bead portion In some cases, distortion occurs with the deformation of 40 and ply end separation occurs.
  • the bead portion 4 and the rim are reduced by making the radius of curvature R of the outer surface of the bead back surface smaller than that of the conventional pneumatic tire 101.
  • the contact region S 1 (hatch portion) with the flange 20 is located on the inner side in the tire radial direction than the conventional contact region S 2 , that is, closer to the bead heel portion 8.
  • the rim separation point F is closer to the inner side in the tire radial direction than the conventional pneumatic tire.
  • the radius of curvature R is relatively small, when the tire is mounted on the rim, the fit with the rim flange is improved by adapting to the shape of the bent bead seat end of the rim flange 20. Then, the contact pressure of the bead portion 4 of the outer surface of the tire and the rim flange 20 in the contact area S 1 becomes substantially uniform in the contact area S within 1. Therefore, the end portion 9 of the ply turnup portion 6b, it is possible away from the contact region S 1, the contact pressure is distributed within the contact region S 1, as in the prior art, the closest rim separation to the end portion 9 There is no particular increase in contact pressure at point F.
  • the radius of curvature R is set in the range of 10 to 80 mm because if the radius is less than 10 mm, the radius is extremely small, the contact pressure is locally increased, and the contact pressure is not uniformly distributed. .
  • the radius of curvature R exceeds 80 mm, the rising angle of the outer surface of the bead back surface from the bead heel portion 8 to the outer side in the tire radial direction becomes small, and the end portion 9 of the folded portion 6b is sufficiently separated from the rim separation point F. This is because it is difficult to separate.
  • the curvature radius R is more preferably 15 to 70 mm.
  • the tires of the examples according to the present invention and the tires of the comparative examples are prepared, and by comparing the durability of the bead portions of these tires, Separation resistance at the edge was evaluated.
  • the tire of Example 1 has a tire size of 275 / 80R22.5, and has a recess in the region from the rim separation point to the tire maximum width position as shown in FIG.
  • the surface angle ⁇ is 70 °
  • each specification is a pneumatic tire as shown in Table 1.
  • the tires of Examples 2 to 14 conform to the tire structure of Example 1 except that each specification is changed to the values shown in Table 1.
  • the tire of Comparative Example 1 conforms to the structure of the tire of Example 1 except that the angle ⁇ of the tire outer surface of the bead back surface portion is 60 °. Further, the tire of Comparative Example 2 conforms to the structure of the tire 1 of Example 1 except that the angle ⁇ of the tire outer surface of the bead back surface portion is 110 °.
  • the separation resistance is evaluated by assembling each tire on a specified rim, adjusting the internal pressure to 875 kPa, and then initializing a load load (3395 kgf) corresponding to the maximum load capacity (specified load) specified by JATMA.
  • the drum test was performed under the condition that the load was set to 60 km / h and the separation was generated in the carcass ply, the vibration was increased, and the drum travel distance until the test was forced to be stopped was measured. .
  • the measurement distance thus obtained is shown as an index in Table 1 with the travel distance of the tire of Comparative Example 1 as 100. In addition, it represents that it is excellent in the separation resistance, so that a value is large.
  • the tire weight reduction amount (kg) in Table 1 represents a reduction amount (rubber weight (kg)) from the tire based on a tire having no recess.
  • the tire of Reference Example 1 has a tire size of 275 / 80R22.5, and as shown in FIG. 2, the radius of curvature R of the outer surface of the tire on the back surface of the bead is 15 mm. It is a street pneumatic tire.
  • the tires of Reference Examples 2 to 16 conform to the tire structure of Reference Example 1 except that each specification is changed to the values shown in Table 1.
  • the tire of Reference Comparative Example 1 conforms to the structure of the tire of Reference Example 1 except that the radius of curvature R of the outer surface of the bead back surface portion is 140 mm.
  • the tire of Reference Comparative Example 2 conforms to the structure of the tire of Reference Example 1 except that the radius of curvature R of the outer surface of the bead back surface portion is 5 mm.
  • the tire of the reference example realizes weight reduction by the concave portion, and the separation resistance of the tire is improved as compared with the tire of the reference comparative example 1, and the durability can be secured at a high level. I understood.
  • the tire of the reference example has a locally increased contact pressure compared to the tire of the reference comparative example 2, cannot uniformly distribute the contact pressure, and causes separation on the rear surface of the tire. It was.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 プライ本体部及びプライ折り返し部からなる少なくとも一枚のプライによるカーカスを備え、リム離反点からサイドウォール部のタイヤ最大幅位置までのタイヤ外表面に、タイヤ軸方向内側に凹となる凹部を有する空気入りタイヤであり、非リム組状態におけるタイヤ軸方向断面において、第一交点及び第二交点の2つの交点を通るビード背面部の外表面直線と、タイヤ軸方向とがなす角度αは、70~100°である。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 近年、環境への配慮及び経済性の観点から、自動車の燃費を向上することが求められている。このような背景の下、タイヤにおいては、転がり抵抗を低減することが希求されており、そのために、タイヤの構成部材や各部材の重量を削減することが行われている。
 タイヤの重量削減の方途としては、ゴムの使用量を低減することが有効であり、特許文献1では、ゴム使用量の多いビード部近傍のサイドゴムにつき、タイヤ最大幅位置とタイヤ外表面がリムフランジから離れるリム離反点との間の、タイヤの外表面をタイヤ軸方向内側に抉って凹部を設けることで、凹部の体積分のゴムを低減し、これによりタイヤ重量を低減することが提案されている。
特開2000-158919号公報
 しかしながら、特許文献1のように、ビード部近傍のタイヤ外表面に凹部を設けると、サイドゴムの厚みが減少してビード部の剛性が低下することから、タイヤをリムに対して押し付けて装着した際に、リムフランジからの反力を受けてビード部が変形し、このビード部変形の影響によってカーカスプライの端部に歪みが生じて、その結果、プライ端セパレーションが発生するおそれがある。
 そこで、上述のように、タイヤの軽量化を享受しつつ、同時に、プライ端セパレーションが発生すること無く、高い次元でのタイヤの耐久性能を確保することが求められていた。
 従って、本発明の目的は、タイヤの軽量化を実現すると同時に、優れた耐久性を確保し得る空気入りタイヤを提供することにある。
 上記目的を達成すべく発明者が鋭意研究を重ねた結果、ビード部近傍のサイドゴムに凹部を設けた場合にあっても、ビード部のタイヤ外表面の形状を工夫することによればビード部変形によるカーカスプライの端部への影響を低減できることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
(1)本発明の空気入りタイヤは、トレッド部と、一対のサイドウォール部と、一対のビード部とを連ねて成り、前記ビード部に埋設された一対のビードコア間にトロイド状に延在するプライ本体部と、該プライ本体部から延びて各ビードコアの周りをタイヤ軸方向内側から外側に折り返すプライ折り返し部とからなる少なくとも一枚のプライによるカーカスを備え、さらに、リム離反点から前記サイドウォール部のタイヤ最大幅位置までのタイヤ外表面にタイヤ軸方向内側に凹となる凹部を有する空気入りタイヤであって、
 リムに組み付けておらず且つ前記一対のビード部間の幅を規定リム幅とした、非リム組状態における、タイヤ軸方向断面において、前記ビードコアの重心を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第一交点と、前記ビードコアのタイヤ径方向最外側端より該ビードコアのタイヤ径方向最大幅の50%タイヤ径方向外側の点を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第二交点の、2つの交点を通るビード背面部の外表面直線と、タイヤ軸方向とが成す角度αは70~100°であることを特徴とする。
 ここで、リム離反点とは、規定リムにタイヤを組付け、タイヤサイズに応じて規定された正規最大内圧を充填し、且つ無負荷の状態にした際に、タイヤの外表面がリムフランジとの接触状態から離れる点のことを言う。なお、規定リムとは、タイヤが生産され、使用される地域に有効な産業規格であって、日本では日本自動車タイヤ協会のJATMA YEAR BOOK、欧州ではETRO(European Tire and Rim Technical Organization)STANDARD MANUAL、米国ではTRA(The Tire and Rim Association Inc.)YEAR BOOK等に、タイヤサイズに応じて規定された標準リムのことである。また、正規最大内圧とは、上記のJATMA等に記載されている適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧のことである。また、一対のビード部間の幅を規定リム幅にするとは、一対のビード部の、各ビードヒール部間のタイヤ軸方向距離を、前述のJATMA等に規定されたリム幅(タイヤの性能を引き出すのに適したリム幅)にすることを言う。
 本発明の構成によれば、カーカスのプライ折り返し部の端部をリムフランジからの反力を受ける領域から離隔して、折り返し部の端部への負荷を抑制することができるため、サイドゴムに凹部を形成することによるタイヤの軽量化の効果を享受しつつ、同時に、優れたタイヤの耐久性を確保することが可能となる。
(2)本発明の空気入りタイヤは、前記非リム組状態において、タイヤ外表面は、ビードヒール部から前記タイヤ最大幅位置までの間でタイヤ径方向外側に向かって順に、曲率中心が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧と、曲率中心が該タイヤ外表面よりタイヤ軸方向外側に在る一以上の円弧と、曲率中心が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧とで画定されることが好ましい。
 かかる構成によれば、サイドゴム量を減じて、タイヤの軽量化を図ることができる。また、ビードヒール部近傍のビード部とリムフランジとを十分に接触させることにより、リムフランジの反力をビード部全体に分散させることができる。その結果、カーカスのプライ折り返し部の端部への負荷集中が抑制され、より優れたタイヤの耐久性を確保することが可能となる。
(3)本発明の空気入りタイヤは、前記非リム組状態において、前記凹部を含むタイヤ径方向領域内の少なくとも一部にて、ゴム厚みが、タイヤ径方向外側に向かって漸減し、その後タイヤ径方向外側に向かってタイヤ断面高さの1/2までのタイヤ径方向領域に亘り、一定の厚みであることが好ましい。
 なお、ゴム厚みとは、タイヤ内の部材のコード表面からタイヤ外表面までのゴムの最短距離のことである。部材のコード表面とは、カーカスやチェーファー等、領域毎に存在する各部材のうち、最もタイヤ外表面に近いコード表面のことを言う。また、一定の厚みであるとは、その領域内での最大ゴム厚み及び最小ゴム厚みが、平均ゴム厚みの±10%の範囲内であることを意味する。
 かかる構成によれば、ビード部近傍ではゴム厚みを確保してカーカスのプライ折り返し部の端部への歪集中を回避しつつ、ビード部よりもタイヤ径方向外側のゴム厚みを減じることにより、タイヤの軽量化をより十分に図ることができる。
(4)本発明の空気入りタイヤは、前記非リム組状態において、前記ビードコアの重心を通りタイヤ軸方向に平行な直線と前記プライ折り返し部との交点である第三交点と、前記ビードコアのタイヤ径方向最外側端より該ビードコアのタイヤ径方向最大幅の50%タイヤ径方向外側の点を通りタイヤ軸方向に平行な直線と前記プライ折り返し部との交点である第四交点の、2つの交点を通るプライ折り返し部傾斜線と、タイヤ軸方向とが成す角度βは70~100°であることが好ましい。
 このように、プライ折り返し部の角度を調節することによれば、リムフランジによる変形領域から、プライ折り返し部の端部を離隔することができ、該端部での歪みの発生を抑制することができる。また、カーカスのプライ折り返し部の端部をリムフランジからの反力を受ける領域から更に離隔して、折り返し部の端部への負荷を更に抑制することができるため、サイドゴムに凹部を形成することによるタイヤの軽量化の効果を享受しつつ、同時に、優れたタイヤの耐久性を十分に確保することができる。
(5)本発明の空気入りタイヤは、タイヤを規定リムに装着し、正規最大内圧を充填し且つ無負荷の状態であるリム組状態において、タイヤ外表面及びリムフランジ間のタイヤ軸方向の離間距離は、タイヤ径方向外側に向かって漸増するとともに、該離間距離の最大離間距離は、前記ビードコアのタイヤ軸方向最大幅の10~30%の長さであることが好ましい。
 なお、最大離間距離とは、フランジ端と、フランジ端を通りタイヤ軸方向に平行に引いた直線とタイヤ外表面との接点との間のタイヤ軸方向距離のことを言う。
 かかる構成によれば、タイヤとリムフランジとの接触領域が、従来よりもタイヤ径方向内側寄りとなるため、ビード部のゴム変形によるプライ折り返し部の端部への影響が低減され、プライ端セパレーションの発生をさらに抑制することが可能となる。
(6)本発明の空気入りタイヤは、前記非リム組状態において、前記ビードコアの重心を通りタイヤ軸方向に平行に引いた直線上の、タイヤ軸方向のゴム厚みは、前記ビードコアの重心を通りタイヤ径方向に平行に引いた直線上の、タイヤ径方向のゴム厚みの70~300%であることが好ましい。
 かかる構成によれば、タイヤをリムに装着した際に、リムフランジからの反力をビードヒール部近傍のゴム全体で均一に受けることができる。その結果、プライ折り返し部の端部への影響が低減され、プライ端セパレーションの発生をさらに抑制することが可能となる。
(7)本発明の空気入りタイヤは、前記非リム組状態において、前記ビード部のビードベース幅は、前記ビードコアのタイヤ軸方向最大幅の200~260%であることが好ましい。
 なお、ビードベース幅とは、ビード部のビードトゥから、ビードベース部の接線とビード背面部の外表面直線との交点までの長さのことを言う。
 かかる構成によれば、タイヤをリムに装着した際に、ビードシート部に対してビードベース部を十分な面積で接触させることができ、リムフランジからの反力を、ビードベース部近傍のゴムで十分に吸収することができる。その結果、プライ折り返し部の端部への影響が低減され、プライ端セパレーションの発生をさらに抑制することが可能となる。ここで、ビードシート部とは、リム離反点におけるビード背面部の接線とビードシート部の延長線との交点から、ハンプに到るまでの、ビードシートのタイヤ軸方向の部分のことを言う。
(8)本発明の空気入りタイヤは、前記非リム組状態において、前記ビード背面部の外表面直線と前記ビード部のビードベース部の接線との交点から、前記プライ折り返し部の端部までのタイヤ径方向距離は、前記ビードコアのタイヤ軸方向最大幅の100~225%であることが好ましい。
 かかる構成によれば、カーカスプライを短くしてタイヤの重量を低減できる。
(9)本発明の空気入りタイヤは、前記非リム組状態において、前記ビード背面部の外表面直線と前記ビード部のビードベース部の接線との交点から、前記プライ折り返し部の端部までのタイヤ径方向距離は、前記ビードコアのタイヤ軸方向最大幅の135~200%であることを特徴とする、前記(8)に記載の空気入りタイヤである。
 かかる構成によれば、カーカスプライを短くしてタイヤの重量を低減できる。
 本発明によれば、タイヤの軽量化を実現すると同時に、優れた耐久性を確保し得る空気入りタイヤを提供することができる。
本発明の一実施形態に係る、非リム組状態における、本発明の空気入りタイヤのタイヤ軸方向断面を示す図である。 図1における、片側のビード部及びサイドウォール部の拡大図である。 (a)は、本発明に従う空気入りタイヤを規定リムに装着し、正規最大内圧を充填し、規定荷重とした状態における、ビード部とリムフランジとの接触状態を示した図である。(b)は、従来の空気入りタイヤを規定リムに装着し、正規最大内圧を充填し、規定荷重とした状態における、ビード部とリムフランジとの接触状態を示した図である。 図1における、片側のビード部及びサイドウォール部の拡大図である。 図1における、片側のビード部及びサイドウォール部の拡大図である。 規定リムに装着し、正規最大内圧を充填し且つ無負荷の状態における、本発明の空気入りタイヤのタイヤ軸方向断面を示す図である。 図1における、片側のビード部及びサイドウォール部の拡大図である。 図1における、片側のビード部及びサイドウォール部の拡大図である。
 以下、図面を参照しながら、本発明に従う空気入りタイヤの一実施形態を詳細に説明する。
 図1は、リムに組付ける前であり、且つ一対のビード部間の幅を規定リム幅とした状態(以下、「非リム組状態」と言う)における、本発明の空気入りタイヤ1(以下、「タイヤ」と呼ぶ)のタイヤ軸方向断面を示す図である。
 タイヤ1は、トレッド部2と、一対のサイドウォール部3、3と、一対のビード部4、4を備えている。また、ビード部4、4に埋設された一対のビードコア5、5間にトロイド状に延在するプライ本体部6aと、該プライ本体部6aから延びて各ビードコア5、5の周りをタイヤ軸方向内側から外側に折り返したプライ折り返し部6bとからなる、少なくとも一枚のプライによるカーカス6を備えている。
 プライ折り返し部6bは、ビードコア5の周囲に、ビードコア5の外表面に沿って巻き回されることなく、ビードコア5に沿って折り返された後、この実施形態ではプライ本体部6aと略平行に、タイヤ径方向外側へ延びている。
 タイヤ1は、さらに、リム離反点Fからサイドウォール部3のタイヤ最大幅位置P3までのタイヤ径方向領域内のタイヤ外表面に、タイヤ軸方向内側に凹となる凹部7を有している。
 なお、図1において、タイヤ軸方向とは、矢印Xで示される方向であり、タイヤ径方向とは、矢印Yで示される方向である。また、サイドウォール部3のタイヤ最大幅位置P3とは、サイドウォール部3の、タイヤ軸方向の最外側端のことを言う。
 凹部7は、このリム離反点F及びタイヤ最大幅位置P3との間のタイヤ径方向領域のタイヤの外表面に、当該領域にその全体が含まれるように、当該領域の少なくとも一部、本実施形態ではビード部4の近傍に設けられており、タイヤ軸方向内側に向かって凹となるように、肉抜きされて形成されている。
 このように、リム離反点Fからタイヤ最大幅位置P3までのサイドゴム領域に対して凹部7を設けることにより、凹部7の体積分のゴム材を省くことができるため、タイヤの重量が低減され、ひいてはタイヤの転がり抵抗を低減することが可能となる。
 次に示す図2は、図1における、片側のビード部4及びサイドウォール部3の一部を拡大した図である。
 本発明にあっては、上記の構成に加えて、図2のタイヤ軸方向断面の、一対のビード部4、4間の幅を規定リム幅とした場合に、ビードコア5の重心C5を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第一交点P1と、ビードコア5のタイヤ径方向最外側端P5より該ビードコア5のタイヤ径方向最大幅aの50%タイヤ径方向外側の任意の点P6を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第二交点P2の、2つの交点P1、P2を通るビード背面部の外表面直線L1と、タイヤ軸方向Xとが成す角度αが、70~100°であることが肝要である。
 ここで、本発明において、ビードコア5の重心C5とは、重量を加味した実際の重心ではなく、断面形状自体の重心を指すものとする。また、ビード部間の幅を規定リム幅にするとは、タイヤ1のビード部4、4の、各ビードヒール部8、8間の幅方向距離を、前述のJATMA等に規定されたリム幅(タイヤの性能を引き出すのに適したリム幅)にすることであり、角度αは、当該状態で計測した値である。また、角度αとは、ビード背面部の外表面直線L1とタイヤ軸方向Xとが成す角度のうち、ビード背面部の外表面直線L1よりタイヤ軸方向外側であり、且つ、第一交点P1を通りタイヤ軸方向に平行な直線よりもタイヤ径方向外側に位置する角度のことを言う。
 図3(a)は、ビード背面部の外表面直線L1とタイヤ軸方向Xとが成す角度αを80°とした、本発明に従う空気入りタイヤ1を規定リムに装着し、正規最大内圧とし、規定荷重とした際の、ビード部4とリムフランジ20との接触状態を示した図である。一方、図3(b)は、ビード背面部の外表面直線L1とタイヤ軸方向Xとが成す角度αを60°とした、従来の空気入りタイヤ101を規定リムに装着し、正規最大内圧とし、規定荷重とした際の、ビード部40とリムフランジ200との接触状態を示した図である。
 前述の通り、リム離反点からタイヤ最大幅位置までのタイヤ径方向領域内のサイドゴムに凹部を設けた場合、タイヤの軽量化を図ることはできるが、サイドゴムの厚みが減少してビード部の剛性が低下することから、タイヤをリムに対して装着すると、タイヤがリムに押し付けられてリムフランジから反力を受け、ビード部のゴムが変形し易くなる。
 まず、図3(b)に示すように、従来の空気入りタイヤ101にあっては、タイヤをリムに装着し、正規最大内圧とし、規定荷重とした際、ビード部40とリムフランジ200との接触領域S2(ハッチ部分)は、ビードヒール部80からリムフランジ端200aの近傍にまで亘る領域となる。このように、プライ折り返し部60bの端部90が接触領域S2に近い位置にあることから、端部90は、リムフランジ200の反力による影響を受け易く、ビード部40の変形に伴って歪みが生じ、プライ端セパレーションが発生する場合があった。
 これに対し、図3(a)に示す本発明の空気入りタイヤ1では、ビードヒール部8よりタイヤ径方向外側のタイヤ外表面、すなわちビード背面部の外表面の立ち上がり角度αを従来の空気入りタイヤ101よりも大きくしたことにより、ビード部4とリムフランジ20との接触領域S1(ハッチ部分)が、従来の接触領域S2よりもタイヤ径方向内側に、すなわちビードヒール部8寄りに位置することとなる。その結果、プライ折り返し部6bの端部9は、接触領域S1から離隔されることになり、リムフランジ20の反力による端部9への影響が従来よりも格段に抑制されて、プライ端セパレーションが生じることの無い、耐久性の高い空気入りタイヤを実現することが可能となる。
 このように、角度αが70~100°となるようにビード背面部のタイヤ外表面を設定することを特徴とする本発明の構成によれば、タイヤをリムに装着し、正規最大内圧とし、規定荷重とした場合においても、リムフランジ20からの、プライ折り返し部6bの端部9への影響を極力低減することができ、その結果、耐久性を十分に確保した空気入りタイヤを提供することが可能となる。
 ここで、角度αを70~100°の範囲に設定するのは、70°以上とした場合に、折り返し部6bの端部9をリムフランジ20から十分に離隔して、端部9での歪み発生を抑制することができるからである。一方、100°以下とするのは、プライ本体部6aから端部9を離隔して、プライ本体部6aの変形により発生する歪を抑制することができるからである。
 また、ビード背面部の外表面直線L1とタイヤ軸方向Xとが成す角度αは、80~90°とすることがさらに好ましい。80°以上とすることで、折り返し部6bの端部9をリムフランジ20から十分に離隔して、端部9での歪み発生を更に抑制することができるからであり、一方、90°以下とすることで、プライ本体部6aから端部9を離隔して、プライ本体部6aの変形により発生する歪を更に抑制することができるからである。
 また、本発明の空気入りタイヤにあっては、図4に示すように、非リム組状態において、タイヤ外表面が、ビードヒール部8からタイヤ最大幅位置P3までの間で、タイヤ径方向外側に向かって順に、曲率中心C1が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧と、曲率中心C2が該タイヤ外表面よりタイヤ軸方向外側に在る一以上の円弧と、曲率中心C3が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧とで画定されることが好ましい。
 このように、ビードヒール部8のタイヤ外表面の形状をタイヤ外側に凸とすることにより、ビードヒール部8近傍のビード部4とリムフランジ20とを、接触領域S1の全体で十分に接触させることができるので、リムフランジ20の反力が当該領域S1の全体で分散される。その結果、カーカスのプライ折り返し部6bの端部9への負荷が低減され、プライ端セパレーションの発生を抑制することが可能となる。
 また、サイドゴムの一部のタイヤ外表面の形状を、タイヤ内側に凸とすることにより、ゴム量を低減して、タイヤの軽量化を図ることができる。
 なお、図4では、曲率中心をそれぞれC1、C2、C3とする3つの円弧のみを示したが、曲率中心C1の円弧及び曲率中心C2の円弧の間のタイヤ外表面は、他の曲率中心を有する複数の円弧によって、滑らかに連続するように描かれている。
 また、例えば凹部7は、図4に示すように一つの円弧のみによって描かれるものではなく、複数の円弧によって画定されるものであってもよい。また、タイヤ外表面の形状を画定する曲率中心及び曲率半径は、図4に示した例に限られるものではない。
 また、図4に示すように、非リム組状態において、凹部7を含むタイヤ径方向領域内の少なくとも一部にて、ゴム厚みdは、タイヤ径方向外側に向かって漸減し、その後タイヤ径方向外側に向かってタイヤ断面高さHの1/2までのタイヤ径方向領域に亘り、一定の厚みであることが好ましい。
 ここで、ゴム厚みdとは、タイヤ内のカーカスやチェーファー等、その領域に存在する部材のうち、最もタイヤ外表面に近いコード表面からタイヤ外表面までのゴムの最短距離のことを言う。タイヤ断面高さHとは、ビードヒール部8からタイヤ径方向最外側端までのタイヤ径方向距離のことである。また、一定の厚みであるとは、漸減する部分の終端からタイヤ断面高さHの1/2までの領域内での、最大ゴム厚み及び最小ゴム厚みが、平均ゴム厚みの±10%の範囲内であることを意味する。
 このように、ビード部4の近傍では、ゴム厚みを比較的厚く確保することで、リムフランジ20からの反力によって、カーカスの折り返し部6bの端部9へ歪みが集中することを回避することができる。また、ゴム厚みを漸減させて、この領域内でゴム厚みの差が生じるのを抑制することにより、ビード部の局所的な変形を防ぐことができ、更には、タイヤに空気を充填した際に、剛性、耐久性、操縦安定性等の性能を確保するために必要となる所定のゴム厚みを有する領域が、タイヤ軸方向外側の力を均等に受けることができ、良好な操縦安定性を確保することが可能となる。
 さらに、図5に示すように、ビードコア5の重心C5を通りタイヤ軸方向に平行な直線とプライ折り返し部6bとの交点である第三交点P7と、ビードコア5のタイヤ径方向最外側端P5より該ビードコア5のタイヤ径方向最大幅aの50%タイヤ径方向外側の任意の点P6を通りタイヤ軸方向に平行な直線とプライ折り返し部6bとの交点である第四交点P8の、2つの交点P7、P8を通るプライ折り返し部傾斜線L2と、タイヤ軸方向とが成す角度βは、70~100°であることが好ましい。
 なお、角度βとは、プライ折り返し部傾斜線L2とタイヤ軸方向Xとが成す角度のうち、プライ折り返し部傾斜線L2よりタイヤ軸方向外側であり、且つ、第三交点P7を通りタイヤ軸方向に平行な直線よりもタイヤ径方向外側に位置する角度のことを言う。
 このように、プライ折り返し部6bの角度を調節することによれば、リムフランジ20から、プライ折り返し部6bの端部9を離隔することができ、該端部9での歪みの発生を抑制することができる。また、カーカスのプライ折り返し部の端部をリムフランジからの反力を受ける領域から更に離隔して、折り返し部の端部への負荷を更に抑制することができるため、サイドゴムに凹部を形成することによるタイヤの軽量化の効果を享受しつつ、同時に、優れたタイヤの耐久性を十分に確保することができる。
 なお、角度βを70°以上とするのは、この角度以上とした場合に、端部9がリムフランジ20から十分に離隔し、端部9での歪みの発生を抑制することができるからである。一方、角度βを100°以下とするのは、100°超としてしまうと、端部9がビードコア5に接触するおそれがあり、また、折り返し部6bをビードコア5に巻き回す構造にすると、製造コストが高くなる場合があるからである。そして、110°超としてしまうと、端部9がプライ本体部6aに近づき過ぎて、プライ本体部6aの変形に起因するプライ折り返し部6bの歪が大きくなってしまうからである。
 また、本発明にあっては、図6に示すように、タイヤを規定リムに装着し、正規最大内圧を充填し、且つ無負荷の状態であるリム組状態において、タイヤ外表面及びリムフランジ20間のタイヤ軸方向の離間距離tは、タイヤ径方向外側に向かって漸増するとともに、該離間距離tの最大離間距離tmaxは、ビードコア5のタイヤ軸方向最大幅bの10~30%の長さであることが好ましい。
 ここで、離間距離tとは、タイヤの外表面から、リムフランジ20のタイヤ軸方向最内側端までのタイヤ軸方向最短距離のことを言い、前述の通り、最大離間距離tmaxとは、フランジ端と、フランジ端を通りタイヤ軸方向に平行に引いた直線とタイヤ外表面との接点との間のタイヤ軸方向距離のことを言う。また、ビードコア5のタイヤ軸方向最大幅bとは、ビードコア5のタイヤ軸方向最内側端を通りタイヤ径方向に平行な線と、ビードコア5のタイヤ軸方向最外側端を通りタイヤ径方向に平行な線との間の距離のことを言う。
 本発明の構成によれば、タイヤとリムフランジとの接触領域が従来よりもタイヤ径方向内側寄りになるため、リムフランジの反力によりビード部のゴム変形が生じた場合であっても、プライ折り返し部6bの端部9への影響が低減され、プライ端セパレーションの発生をさらに抑制することが可能となる。
 なお、最大離間距離tmaxを、ビードコア5のタイヤ軸方向最大幅bの10~30%の長さとするのは、10%以上とすることにより、リムフランジの反力によりビード部のゴム変形が生じた場合であっても、プライ折り返し部6bの端部9への影響が低減されるからであり、一方、30%以下とすることにより、急激な剛性段差を無くし、かつ端部9がプライ本体部6aへ近づき過ぎるのを防ぎ端部9の歪を抑制できるからである。
 また、図7に示すように、非リム組状態において、ビードコア5の重心C5を通りタイヤ軸方向に平行に引いた直線上の、タイヤ軸方向のゴム厚みmは、ビードコア5の重心C5を通りタイヤ径方向に平行に引いた直線上の、タイヤ径方向のゴム厚みnの70~300%であることが好ましい。
 このように、ビードヒール部8における、ビードコア5周囲のゴム厚みを略均一にすることにより、タイヤをリムに装着した際に、リムフランジ20からの反力を、ビードヒール部8近傍のゴム全体で均一に受けることができる。その結果、プライ折り返し部6bの端部9に局所的に負荷がかかるようなことはなく、端部9への負荷が低減されて、プライ端セパレーションの発生をさらに抑制することが可能となる。
 また、非リム組状態において、ビードベース幅Wは、ビードコア5のタイヤ軸方向最大幅bの200~260%であることが好ましい。
 ここで、ビードベース幅Wとは、ビード部4のビードトゥ12から、ビードベース部の外表面の接線L3と前記ビード背面部の外表面直線L1との交点P9までの長さのことを言う。
 ビードベース幅Wを上記長さに設定することで、タイヤをリムに装着した際に、リムのビードシート部に対してビードベース部11を十分な面積で接触させることができ、リムフランジからの反力を、ビードベース部近傍のゴムで確実に吸収することができる。その結果、プライ折り返し部の端部への影響が低減され、プライ端セパレーションの発生を抑制して、タイヤの耐久性をさらに確保することが可能となる。
 なお、ビードベース幅Wを、ビードコア5のタイヤ軸方向最大幅bの200%未満とすると、ビード背面部における負荷が増えて、リムフランジからの反力が大きくなる。そのため、端部9への影響が大きくなり、端部9での歪が増大してしまう。また、260%超とすると、ビード部のゴム重量が増えて、軽量化に反する上、ビード部の体積が増大して、発熱が増加する虞がある。
 また、非リム組状態において、ビード背面部の外表面直線L1とビードベース部11の外表面の接線L3との交点P9から、プライ折り返し部6bの端部9までのタイヤ径方向距離hは、ビードコア5のタイヤ軸方向最大幅bの100~225%であることが好ましい。さらに好ましくは、ビードコア5のタイヤ軸方向最大幅bの135~200%である。
 このように、プライ折り返し部6bの折り返し高さを比較的低く抑える構造を採用することにより、カーカスプライ6の使用量を低減してタイヤ重量をさらに減量することができる。また、カーカスプライ6の使用量を低減するに当たり、折り返し部をビードコア5に巻き回す構造ではなく、このようにプライ折り返し部6bの折り返し高さを比較的低く抑える構造を採用することで、製造コストの増加を抑制することができる。
 更に、上記の構成に加えて、図8のタイヤ軸方向断面の、一対のビード部4、4間の幅を規定リム幅とした場合に、ビードヒール部8から、ビードコア5のタイヤ径方向最外側端P5を通りタイヤ軸方向Xに平行な直線とタイヤ外表面との交点P10までのビード背面部のタイヤ外表面が、曲率中心C6が該タイヤ外表面よりもタイヤ軸方向内側に位置し、曲率半径Rが10~80mmである一以上の円弧で画定されることが肝要である。
 ここで、ビード部間の幅を規定リム幅にするとは、タイヤ1のビード部4、4の、各ビードヒール8、8間の幅方向距離を、前述のJATMA等に規定されたリム幅(タイヤの性能を引き出すのに適したリム幅)にすることを言い、上記寸法は、当該状態で計測した値である。また、ビードヒール部8とは、ビードコア中心C5を通るタイヤ径方向線とタイヤ外表面との交点A1から、ビードコア中心C5を通りビードベース部の外輪郭線に平行な線とタイヤ外表面との交点A2までの、タイヤ外表面部分のことを言う。
 図3(a)は、ビード背面部のタイヤ外表面を画定する円弧の曲率半径Rを15mmとした、本発明に従う空気入りタイヤ1を規定リムに装着し、正規最大内圧とし、規定荷重とした際の、ビード部4とリムフランジ20との接触状態を示した図である。一方、図3(b)は、ビード背面部のタイヤ外表面を画定する円弧の曲率半径Rを140mmとした、従来の空気入りタイヤ101を規定リムに装着し、正規最大内圧とし、規定荷重とした際の、ビード部40とリムフランジ200との接触状態を示した図である。
 前述の通り、リム離反点からタイヤ最大幅位置までのタイヤ径方向領域内のサイドゴムに凹部を設けた場合、タイヤの軽量化を図ることはできるが、サイドゴムの厚みが減少してビード部の剛性が低下することから、タイヤをリムに対して装着すると、タイヤがリムに押し付けられてリムフランジから反力を受け、ビード部のゴムが変形し易くなる。
 まず、従来の空気入りタイヤ101にあっては、図3(b)に示すように、タイヤをリムに装着した際、ビード部40とリムフランジ200との接触領域S2(ハッチ部分)は、ビードトゥ120からリムフランジ端200aの近傍にまで亘る領域となる。そして、ビード背面部のタイヤ外表面の曲率半径が比較的大きいことから、タイヤをリムに装着した際、ビード部40のうち、特にリム離反点F周辺のタイヤ外表面及びビードトゥ120周辺のタイヤ外表面がリムフランジ200と強く接触する。すなわち、接触領域S2内におけるビード部40のタイヤ外表面及びリムフランジ200の接触圧は、リム離反点F周辺と、ビードトゥ120周辺で特に高く、ビードヒール部80周辺での接触圧は低い状態となる。
 このように、プライ折り返し部60bの端部90が、接触圧が高くなるリム離反点Fに近い位置となることから、端部90は、リムフランジ200の反力による影響を受け易く、ビード部40の変形に伴って歪みが生じ、プライ端セパレーションが発生する場合があった。
 これに対し、図3(a)に示す本発明の空気入りタイヤ1では、ビード背面部のタイヤ外表面の曲率半径Rを従来の空気入りタイヤ101よりも小さくしたことにより、ビード部4とリムフランジ20との接触領域S1(ハッチ部分)が、従来の接触領域S2よりもタイヤ径方向内側に、すなわちビードヒール部8寄りに位置することとなる。換言すれば、リム離反点Fが、従来の空気入りタイヤよりもタイヤ径方向内側寄りとなる。さらに、曲率半径Rが比較的小さいことから、タイヤをリムに装着した際、リムフランジ20の屈曲したビードシート端部の形状に適合して、リムフランジとのフィット性が向上する。そうすると、接触領域S1内におけるビード部4のタイヤ外表面及びリムフランジ20の接触圧は、当該接触領域S1内で略均一となる。従って、プライ折り返し部6bの端部9を、接触領域S1から遠ざけることができるとともに、接触領域S1内で接触圧が分散されるため、従来のように、端部9に最も近いリム離反点Fで特に接触圧が高くなるようなことが無い。その結果、リムフランジ20の反力による端部9への影響が従来よりも格段に抑制されて、プライ端セパレーションが生じることの無い、耐久性の高い空気入りタイヤを実現することが可能となるのである。
 ここで、曲率半径Rを10~80mmの範囲に設定するのは、10mm未満とすると、半径が極端に小さく、接触圧が局所的に高くなり、接地圧の均一な分散がなされないからである。一方、曲率半径Rを80mm超にすると、ビード背面部の外表面の、ビードヒール部8からタイヤ径方向外側への立ち上がり角度が小さくなり、折り返し部6bの端部9をリム離反点Fから十分に離隔することが難しいからである。また、曲率半径Rは、15~70mmとすることがさらに好ましい。
 次に、本発明の効果を確かめるために、本発明に従う実施例のタイヤと、比較例のタイヤを用意し、これらのタイヤのビード部の耐久性を比較することにより、カーカスのプライ折り返し部の端部における耐セパレーション性を評価した。
 実施例1のタイヤは、タイヤのサイズが275/80R22.5であり、図1に示すように、リム離反点からタイヤ最大幅位置までの領域内に凹部を有し、ビード背面部のタイヤ外表面の角度αが70°であり、各諸元が表1に示す通りの空気入りタイヤである。
 実施例2~14のタイヤは、各諸元を表1に示す値に変化させた以外は、実施例1のタイヤの構造に準ずるものである。
 比較例1のタイヤは、ビード背面部のタイヤ外表面の角度αが60°であること以外は、実施例1のタイヤの構造に準ずるものである。
 また、比較例2のタイヤは、ビード背面部のタイヤ外表面の角度αが110°であること以外は、実施例1のタイヤ1の構造に準ずるものである。
 耐セパレーション性の評価は、具体的には、各タイヤを規定リムに組み、内圧を875kPaに調整した後、JATMAに規定の最大負荷能力(規定荷重)のに対応する負荷荷重(3395kgf)を初期荷重とし、速度を60km/hとした条件下でドラム試験を行い、カーカスプライにセパレーションが発生して振動が大きくなり、試験の中断を余儀なくされるまでのドラム走行距離を測定することにより行った。このようにして得られた測定距離を、比較例1のタイヤの走行距離を100とした時の指数として、表1に結果を示す。なお、値が大きいほど、耐セパレーション性に優れていることを表す。
 また、表1のタイヤ重量低減量(kg)とは、凹部を有していないタイヤを基準とし、そのタイヤからの低減量(ゴム重量(kg))を表したものである。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例のタイヤは、凹部により軽量化を実現するとともに、比較例1のタイヤと比較してタイヤの耐セパレーション性が向上し、高い次元で耐久性を確保できることが分かった。
 また、実施例のタイヤは、比較例2のタイヤと比較して、プライ端部が外表面に近過ぎるため、劣化性、外傷性が低下することが確認された。
 参考例1のタイヤは、タイヤのサイズが275/80R22.5であり、図2に示すように、ビード背面部のタイヤ外表面の曲率半径Rが15mmであり、各諸元が表1に示す通りの空気入りタイヤである。参考例2~16のタイヤは、各諸元を表1に示す値に変化させた以外は、参考例1のタイヤの構造に準ずるものである。参考比較例1のタイヤは、ビード背面部のタイヤ外表面の曲率半径Rが140mmであること以外は、参考例1のタイヤの構造に準ずるものである。また、参考比較例2のタイヤは、ビード背面部のタイヤ外表面の曲率半径Rが5mmであること以外は、参考例1のタイヤの構造に準ずるものである。
 耐セパレーション性の評価は、上記実施例の場合と同様に行った。ここでは、参考比較例1のタイヤの走行距離を100とした時の指数として、表1に結果を示す。また、タイヤ重量低減量の評価も、上記実施例の場合と同様に行った。
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、参考例のタイヤは、凹部により軽量化を実現するとともに、参考比較例1のタイヤと比較して、タイヤの耐セパレーション性が向上し、高い次元で耐久性を確保できることが分かった。また、参考例のタイヤは、参考比較例2のタイヤと比較して、接触圧が局所的に大きくなり、接地圧の均一な分散ができない上、タイヤ背面におけるセパレーションの要因となることが確認された。
 この発明によれば、十分な軽量化を実現すると同時に、優れた耐久性を確保し得る空気入りタイヤを提供することが可能となった。
 1 空気入りタイヤ、2 トレッド部、 3 サイドウォール部、 4 ビード部、 5 ビードコア、6 カーカス、6a プライ本体部、6b プライ折り返し部、7 凹部、8 ビードヒール部、9 プライ折り返し部6bの端部、11 ビードベース部、12 ビードトゥ、20 リムフランジ、A1 ビードコア5の中心C5を通るタイヤ径方向線とタイヤ外表面との交点、A2 ビードコア5の中心C5を通り、ビードベース11の外輪郭線に平行な線と、タイヤ外表面との交点、F リム離反点、C1、C2、C3 曲率中心、C5 ビードコア5の重心、C6 ビード背面部のタイヤ外表面の曲率中心、H タイヤ断面高さ、L1 ビード背面部の外表面直線、L2 プライ折り返し部傾斜線、L3 ビードベース部11の外表面の接線、P1 第一交点、P2 第二交点、P3 タイヤ最大幅位置、P5 ビードコア5のタイヤ径方向最外側端、P6 ビードコアのタイヤ径方向最外側端P5よりビードコア5のタイヤ径方向最大幅aの50%タイヤ径方向外側の点、P7 第三交点、P8 第四交点、P9 ビードベース部の外表面の接線L3とビード背面部の外表面直線L1との交点、P10 ビードコア5のタイヤ径方向最外側端P5を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点、W ビードベース幅、X タイヤ軸方向、Y タイヤ径方向、a ビードコア5のタイヤ径方向最大幅、b ビードコア5のタイヤ軸方向最大幅、d ゴム厚み、h 交点P9から、端部9までのタイヤ径方向距離、m ビードコアの重心を通りタイヤ軸方向に平行に引いた直線上の、タイヤ軸方向のゴム厚み、n ビードコアの重心を通りタイヤ径方向に平行に引いた直線上の、タイヤ径方向のゴム厚み、t 離間距離、tmax 最大離間距離、α ビード背面部の外表面直線L1とタイヤ軸方向Xとがなす角度、β プライ折り返し部傾斜線L2とタイヤ軸方向Xとがなす角度

Claims (9)

  1.  トレッド部と、一対のサイドウォール部と、一対のビード部とを連ねて成り、前記ビード部に埋設された一対のビードコア間にトロイド状に延在するプライ本体部と、該プライ本体部から延びて各ビードコアの周りをタイヤ軸方向内側から外側に折り返すプライ折り返し部とからなる少なくとも一枚のプライによるカーカスを備え、さらに、リム離反点から前記サイドウォール部のタイヤ最大幅位置までのタイヤ外表面にタイヤ軸方向内側に凹となる凹部を有する空気入りタイヤであって、
     リムに組み付けておらず且つ前記一対のビード部間の幅を規定リム幅とした、非リム組状態における、タイヤ軸方向断面において、前記ビードコアの重心を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第一交点と、前記ビードコアのタイヤ径方向最外側端より該ビードコアのタイヤ径方向最大幅の50%タイヤ径方向外側の点を通りタイヤ軸方向に平行な直線とタイヤ外表面との交点である第二交点の、2つの交点を通るビード背面部の外表面直線と、タイヤ軸方向とが成す角度αは70~100°であることを特徴とする空気入りタイヤ。
  2.  前記非リム組状態において、タイヤ外表面は、ビードヒール部から前記タイヤ最大幅位置までの間でタイヤ径方向外側に向かって順に、曲率中心が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧と、曲率中心が該タイヤ外表面よりタイヤ軸方向外側に在る一以上の円弧と、曲率中心が該タイヤ外表面よりタイヤ軸方向内側に在る一以上の円弧とで画定されることを特徴とする請求項1に記載の空気入りタイヤ。
  3.  前記非リム組状態において、前記凹部を含むタイヤ径方向領域内の少なくとも一部にて、ゴム厚みが、タイヤ径方向外側に向かって漸減し、その後タイヤ径方向外側に向かってタイヤ断面高さの1/2までのタイヤ径方向領域に亘り、一定の厚みである
    ことを特徴とする請求項1又は2に記載の空気入りタイヤ。
  4.  前記非リム組状態において、前記ビードコアの重心を通りタイヤ軸方向に平行な直線と前記プライ折り返し部との交点である第三交点と、前記ビードコアのタイヤ径方向最外側端より該ビードコアのタイヤ径方向最大幅の50%タイヤ径方向外側の点を通りタイヤ軸方向に平行な直線と前記プライ折り返し部との交点である第四交点の、2つの交点を通るプライ折り返し部傾斜線と、タイヤ軸方向とが成す角度βは70°~100°であることを特徴とする請求項1~3のいずれか一項に記載の空気入りタイヤ。
  5.  タイヤを規定リムに装着し、正規最大内圧を充填し且つ無負荷の状態であるリム組状態において、タイヤ外表面及びリムフランジ間のタイヤ軸方向の離間距離は、タイヤ径方向外側に向かって漸増するとともに、該離間距離の最大離間距離は、前記ビードコアのタイヤ軸方向最大幅の10~30%の長さであることを特徴とする請求項1~4のいずれか一項に記載の空気入りタイヤ。
  6.  前記非リム組状態において、前記ビードコアの重心を通りタイヤ軸方向に平行に引いた直線上の、タイヤ軸方向のゴム厚みは、前記ビードコアの重心を通りタイヤ径方向に平行に引いた直線上の、タイヤ径方向のゴム厚みの70~300%であることを特徴とする請求項1~5のいずれか一項に記載の空気入りタイヤ。
  7.  前記非リム組状態において、前記ビード部のビードベース幅は、前記ビードコアのタイヤ軸方向最大幅の200~260%であることを特徴とする請求項1~6のいずれか一項に記載の空気入りタイヤ。
  8.  前記非リム組状態において、前記ビード背面部の外表面直線と前記ビード部のビードベース部の接線との交点から、前記プライ折り返し部の端部までのタイヤ径方向距離は、前記ビードコアのタイヤ軸方向最大幅の100~225%であることを特徴とする請求項1~7のいずれか一項に記載の空気入りタイヤ。
  9.  前記非リム組状態において、前記ビード背面部の外表面直線と前記ビード部のビードベース部の接線との交点から、前記プライ折り返し部の端部までのタイヤ径方向距離は、前記ビードコアのタイヤ軸方向最大幅の135~200%であることを特徴とする請求項8に記載の空気入りタイヤ。
PCT/JP2014/000311 2013-01-22 2014-01-22 空気入りタイヤ WO2014115546A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/761,432 US10266015B2 (en) 2013-01-22 2014-01-22 Pneumatic tire
RU2015135504A RU2618358C2 (ru) 2013-01-22 2014-01-22 Пневматическая шина
CN201480005554.9A CN105121187B (zh) 2013-01-22 2014-01-22 充气轮胎
EP14743677.8A EP2949483B1 (en) 2013-01-22 2014-01-22 Pneumatic tire
BR112015017378-0A BR112015017378A2 (pt) 2013-01-22 2014-01-22 pneumático

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-009088 2013-01-22
JP2013009088A JP5829632B2 (ja) 2013-01-22 2013-01-22 空気入りタイヤ
JP2013028103A JP5722935B2 (ja) 2013-02-15 2013-02-15 空気入りタイヤ
JP2013-028103 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014115546A1 true WO2014115546A1 (ja) 2014-07-31

Family

ID=51227338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000311 WO2014115546A1 (ja) 2013-01-22 2014-01-22 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10266015B2 (ja)
EP (1) EP2949483B1 (ja)
CN (1) CN105121187B (ja)
BR (1) BR112015017378A2 (ja)
RU (1) RU2618358C2 (ja)
WO (1) WO2014115546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364751B2 (en) 2018-10-11 2022-06-21 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763188B2 (ja) * 2016-04-18 2020-09-30 住友ゴム工業株式会社 空気入りタイヤ
FR3069191A1 (fr) * 2017-07-18 2019-01-25 Compagnie Generale Des Etablissements Michelin Pneumatique dont la zone du bourrelet est allegee
FR3082147B1 (fr) * 2018-06-08 2021-05-28 Michelin & Cie Ensemble jante et extenseur flexible pour ensemble roulant
JP7183689B2 (ja) * 2018-10-22 2022-12-06 住友ゴム工業株式会社 重荷重用空気入りタイヤ
DE102021110569A1 (de) 2020-04-30 2021-11-04 Toyo Tire Corporation Luftreifen
DE102021110586B4 (de) 2020-04-30 2022-12-01 Toyo Tire Corporation Luftreifen
DE102021110594B4 (de) 2020-04-30 2022-12-08 Toyo Tire Corporation Luftreifen
US20220153068A1 (en) * 2020-11-18 2022-05-19 The Goodyear Tire & Rubber Company Radial tire
JP2023015837A (ja) * 2021-07-20 2023-02-01 横浜ゴム株式会社 タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263113A (ja) * 1995-11-29 1997-10-07 Bridgestone Corp トラック及びバス用15°テーパラジアルタイヤ
JP2000158919A (ja) 1998-11-24 2000-06-13 Bridgestone Corp 空気入りタイヤ
JP2000301916A (ja) * 1999-04-23 2000-10-31 Bridgestone Corp 空気入りラジアルタイヤ
JP2005193868A (ja) * 2004-01-09 2005-07-21 Sumitomo Rubber Ind Ltd 乗用車用ラジアルタイヤ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861098A (en) 1996-11-27 1999-01-19 Mdk Enterprises, Inc. Apparatus and method for removing grease from drain water in restaurant operations
US5565047A (en) * 1993-08-25 1996-10-15 Sumitomo Rubber Industries, Ltd. Pneumatic tire with specified carcass line for reduced road noise
JP3384760B2 (ja) * 1998-12-15 2003-03-10 住友ゴム工業株式会社 チューブレスタイヤ
US6527025B1 (en) 1998-09-11 2003-03-04 Sumitomo Rubber Industries, Ltd. Tubeless tire
ES2242578T3 (es) 1999-01-28 2005-11-16 Bridgestone Corporation Cubierta neumatica.
JP3325004B2 (ja) 1999-10-21 2002-09-17 住友ゴム工業株式会社 空気入りタイヤ
JP2002337516A (ja) 2001-05-21 2002-11-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
WO2006134776A1 (ja) 2005-06-17 2006-12-21 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
CN101484519B (zh) 2006-07-11 2012-06-06 住友橡胶工业株式会社 三角胶条用橡胶组合物及具有使用该组合物的三角胶条的轮胎
CN101077684B (zh) 2007-06-29 2010-04-14 青岛双星轮胎工业有限公司 全钢丝载重子午线轮胎的新型子口结构
US20100269968A1 (en) * 2007-10-19 2010-10-28 Bridgestone Corporation Pneumatic tire
JP2010012829A (ja) 2008-07-01 2010-01-21 Yokohama Rubber Co Ltd:The 空気入りタイヤのタイヤ・リム組立体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263113A (ja) * 1995-11-29 1997-10-07 Bridgestone Corp トラック及びバス用15°テーパラジアルタイヤ
JP2000158919A (ja) 1998-11-24 2000-06-13 Bridgestone Corp 空気入りタイヤ
JP2000301916A (ja) * 1999-04-23 2000-10-31 Bridgestone Corp 空気入りラジアルタイヤ
JP2005193868A (ja) * 2004-01-09 2005-07-21 Sumitomo Rubber Ind Ltd 乗用車用ラジアルタイヤ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Michelin XI2 no Cut Sample no Shashin", TIRE SHOP ARROBA, 22 September 2008 (2008-09-22), XP008180164, Retrieved from the Internet <URL:http://arroba-tire.com/223.jpg> *
BOEING 747-400 NO ZENRIN NO TIRE NO CUT MODEL NO SHASHIN, 23 May 2012 (2012-05-23), XP008180165, Retrieved from the Internet <URL:http://userdisk.webry.biglobe.ne.jp/001/970/68/N000/000/003/136965847167413127684_IMG_8569.JPG> *
TOSHIYA TAKAHASHI, TIRE NO CUT MODEL NO SHASHIN, March 2012 (2012-03-01), XP008180161, Retrieved from the Internet <URL:http://ad.impress.co.jp/special/bridgestone1203_2/image12.htm> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364751B2 (en) 2018-10-11 2022-06-21 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
BR112015017378A2 (pt) 2020-10-20
CN105121187A (zh) 2015-12-02
US10266015B2 (en) 2019-04-23
RU2618358C2 (ru) 2017-05-03
RU2015135504A (ru) 2017-03-02
EP2949483B1 (en) 2018-12-26
EP2949483A1 (en) 2015-12-02
CN105121187B (zh) 2018-06-01
US20150352908A1 (en) 2015-12-10
EP2949483A4 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2014115546A1 (ja) 空気入りタイヤ
JP5390392B2 (ja) 空気入りタイヤ
JP5851921B2 (ja) 空気入りタイヤ
WO2014064880A1 (ja) 空気入りタイヤ
JP6454471B2 (ja) ランフラットラジアルタイヤ
WO2012147356A1 (ja) 空気入りタイヤ
WO2015115163A1 (ja) ランフラットラジアルタイヤ
WO2015159468A1 (ja) ランフラットタイヤ
WO2015122116A1 (ja) 空気入りタイヤ
JP5722935B2 (ja) 空気入りタイヤ
WO2015097926A1 (ja) 空気入りタイヤ
JP5829632B2 (ja) 空気入りタイヤ
JP2013095287A (ja) 乗用車用空気入りタイヤ
JP2015209004A (ja) サイド補強型ランフラットラジアルタイヤ
JP6347979B2 (ja) サイド補強型ランフラットラジアルタイヤ
WO2012066766A1 (ja) 空気入りタイヤ
WO2016021568A1 (ja) 二輪自動車用タイヤ
JP2010111370A (ja) 空気入りタイヤ
CN111070976B (zh) 重载荷用充气轮胎
JP5366566B2 (ja) 空気入りタイヤ
WO2012141149A1 (ja) 自動二輪車用空気入りタイヤ
JP6434235B2 (ja) タイヤ
JP6214443B2 (ja) 空気入りタイヤ
JP7180273B2 (ja) 重荷重用空気入りタイヤ
JP5804870B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14761432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014743677

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017378

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015135504

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015017378

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150721

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: BR

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2427 DE 11/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015017378

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE AS TRADUCOES SIMPLES DAS FOLHAS DE ROSTO DAS CERTIDOES DE DEPOSITO DAS PRIORIDADES JP 2013-009088 E JP 2013-028103; OU DECLARACOES DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NAS PRIORIDADES REIVINDICADAS, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTAS (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DOS PEDIDOS NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI, POIS SE ENCONTRAM EM JAPONES.ESCLARECA A INCLUSAO DE ? KENJI SUGIMURA? NO QUADRO DE INVENTORES DA PETICAO INICIAL NO 860150155143 DE 21/07/2015, UMA VEZ QUE O MESM

ENP Entry into the national phase

Ref document number: 112015017378

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150721