WO2015097926A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2015097926A1 WO2015097926A1 PCT/JP2014/003207 JP2014003207W WO2015097926A1 WO 2015097926 A1 WO2015097926 A1 WO 2015097926A1 JP 2014003207 W JP2014003207 W JP 2014003207W WO 2015097926 A1 WO2015097926 A1 WO 2015097926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- radial direction
- rim
- tire radial
- rim guard
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C15/00—Tyre beads, e.g. ply turn-up or overlap
- B60C15/02—Seating or securing beads on rims
- B60C15/024—Bead contour, e.g. lips, grooves, or ribs
- B60C15/0242—Bead contour, e.g. lips, grooves, or ribs with bead extensions located radially outside the rim flange position, e.g. rim flange protectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C15/00—Tyre beads, e.g. ply turn-up or overlap
- B60C15/0009—Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
- B60C15/0054—Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with ply turn-up portion parallel and adjacent to carcass main portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C2013/005—Physical properties of the sidewall rubber
- B60C2013/007—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C15/00—Tyre beads, e.g. ply turn-up or overlap
- B60C15/06—Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
- B60C15/0628—Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a bead reinforcing layer
- B60C2015/0639—Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a bead reinforcing layer between carcass main portion and bead filler not wrapped around the bead core
Definitions
- the present invention relates to a pneumatic tire.
- a pneumatic tire When a pneumatic tire is mounted on an applicable rim and used in a vehicle, for example, the vehicle is brought too close to a road shoulder or a wall, so that a part of the rim may come into contact with a curb or a wall, resulting in damage to the rim.
- a pneumatic tire having an annular rim guard that protrudes outward in the tire radial direction from the rim line and outward in the tire width direction and continuously extends in the tire circumferential direction is generally used.
- Patent Document 1 a rim guard is provided on a pneumatic radial tire, and the curvature radius of the contour of the rim guard portion on the outer side in the tire radial direction of the rim guard is set to 15 mm to 40 mm.
- the radius of curvature of the portion is set to 15 mm to 40 mm.
- the present invention is intended to solve the above-mentioned problem, and provides a pneumatic tire that maintains the rim guard rim protection effect, reduces the rolling resistance of the tire, and ensures steering stability. With the goal.
- the gist configuration of the present invention is as follows.
- the pneumatic tire of the present invention includes a carcass composed of at least one ply straddling a toroidal shape between a pair of bead cores of the tire and being locked to the bead core, and a bead filler disposed on the outer side in the tire radial direction of the bead core.
- a rim guard that is located on the outer side in the tire radial direction than the separation point between the tire and the applied rim in a state where the tire is mounted on the applied rim, has a predetermined air pressure, and is unloaded, and projects outward in the tire width direction.
- the contour of the rim guard part located on the outer side in the tire radial direction from the outermost end in the tire width direction of the rim guard has a radius of curvature of 5 mm to 40 mm,
- a cord reinforcing layer extending adjacent to the bead filler and extending along the tire radial direction, Each cord of the cord reinforcing layer extends inclined with respect to the tire radial direction,
- the shortest distance L1 in the direction perpendicular to the tire inner surface between the cord reinforcement layer and the tire outer surface, and the distance L2 in the direction perpendicular to the tire inner surface from the apex position of the rim guard to the cord reinforcement layer 0.3 ⁇ L1 / L2 ⁇ 0.5 It is characterized by satisfying.
- the “rim width outermost end of the rim guard” refers to a point located on the outermost side in the tire width direction at the rim guard portion in the tire width direction cross section. When there are a plurality of such points, the point located on the outermost side in the tire radial direction is pointed out.
- the radius of curvature of the contour of the rim guard portion (rim portion in the rim guard radial direction) on the outer side in the tire radial direction than the outermost end in the tire width direction of the rim guard” means the rim guard tire from the outermost position in the tire width direction of the rim guard.
- the various dimensions of the pneumatic tire of the present invention refer to various dimensions when the tire is mounted on an applicable rim, set to a predetermined air pressure, and in a no-load state.
- applied rim is an industrial standard effective in the area where tires are produced and used.
- predetermined air pressure is the air pressure (maximum air pressure) corresponding to the predetermined load in the tire of the applicable size Point to.
- FIG. 3 is a cross-sectional view in the tire width direction around a bead portion of a tire half portion of a pneumatic tire according to an embodiment of the present invention in a state of being mounted on an applied rim. It is a figure shown about the outline
- FIG. 1 is a cross-sectional view in the tire width direction of a tire half portion of a pneumatic tire 1 according to an embodiment of the present invention mounted on an applicable rim.
- the pneumatic tire 1 includes a tread portion 2, a pair of sidewall portions 3 (only one part is shown) extending inward in the tire radial direction from the side portions of the tread portion 2, and tires from the sidewall portions 3. It has a pair of bead parts 4 (only one side is shown) extended inward in the diameter direction.
- the pneumatic tire 1 has a bead core 5 (only one side is shown in FIG. 1) embedded in each bead portion 4 and a toroid between the bead cores 5 and is locked to the bead core 5.
- 1 ply of radial carcass 6 (1 ply in FIG. 1).
- the radial carcass 6 is engaged with the bead core 5 by being folded back from the inside in the tire width direction around the bead core 5.
- 6a and a carcass folded portion 6b extending from the carcass main body portion 6a and folded around the bead core 5 from the inner side to the outer side in the tire width direction.
- the radial carcass 6 may be wound around, for example, the bead core 5 without being limited to the configuration of the pneumatic tire 1, and the tire width around the bead core 5 may be It may be folded back from the outside in the direction.
- FIG. 1 shows the case where the number of radial carcass plies is one, in the pneumatic tire of the present invention, the number of plies may be a plurality of plies as required. Further, FIG. 1 shows a case where the carcass is a radial carcass, but in the pneumatic tire of the present invention, the carcass may be a bias carcass.
- the pneumatic tire 1 extends along the radial carcass 6 in a region radially outside the bead core 5 embedded in the bead portion 4 and sandwiched between the carcass main body portion 6a and the carcass folded portion 6b.
- the bead filler 7 has a thickness that gradually decreases outward in the tire radial direction. 1 and 2, the bead filler 7 has a substantially triangular cross section.
- the pneumatic tire 1 has a rubber chafer 8 on the outer side in the tire width direction of the carcass folded portion 6b.
- the pneumatic tire 1 includes a cord reinforcing layer 9 that is disposed adjacent to the bead filler 7 (between the bead filler 7 and the carcass main body 6a in the illustrated example) and extends along the tire radial direction. ing.
- Each cord of the cord reinforcing layer 9 extends while being inclined with respect to the tire radial direction.
- the material of the cord is not particularly limited, but for example, polyethylene terephthalate can be used.
- a rim guard 10 that protrudes outward in the tire width direction and outward in the tire width direction from the rim line position RL provided on the surface of the rubber chafer 8 is provided. 1 and 2, the rim guard 10 has a substantially triangular cross section.
- the “rim line position” refers to a separation point between the tire and the applied rim in a state where the tire is mounted on the applied rim, set to a predetermined air pressure, and no load is applied.
- FIG. 2 is a cross-sectional view in the tire width direction around the bead portion 4 of the tire half portion of the pneumatic tire 1 according to the embodiment of the present invention in a state where the rim is attached to the applicable rim.
- the contour of the rim guard part 10a (hereinafter also referred to as the outer part in the rim guard radial direction) 10a outside the rim guard in the tire width direction has a radius of curvature of 5mm to 40mm. It is necessary to have R.
- the tire radial outer end 9a of the cord reinforcing layer 9 is radially outer than the tire radial outer end 10b of the rim guard portion 10a having a radius of curvature of 5 mm to 40 mm. In addition, it is located on the inner side in the tire radial direction from the tire maximum width position M. Further, in the example shown in FIGS.
- the inner end 9b in the tire radial direction of the cord reinforcing layer 9 is the inner side in the tire radial direction from the inner end 10c in the tire radial direction of the rim guard portion 10a having a radius of curvature of 5 mm to 40 mm, and
- the bead core 5 is located on the outer side in the tire radial direction from the outer end 5a in the tire radial direction.
- the pneumatic tire 1 has a shortest distance L1 in a direction perpendicular to the tire inner surface between the cord reinforcing layer 9 and the tire outer surface 11, and a perpendicular to the tire inner surface from the apex position 10so of the rim guard 10 to the cord reinforcing layer 9.
- the distance L2 in the direction is 0.3 ⁇ L1 / L2 ⁇ 0.5 It is necessary to satisfy.
- the effect of the pneumatic tire 1 of this embodiment is demonstrated.
- the volume of the rim guard portion increases as the curvature radius R of the contour of the rim guard radial direction outer portion 10a increases.
- transformation input of a tire width direction increases, so that the volume of this part is large. Therefore, as the curvature radius R increases, the hysteresis loss in the rim guard increases.
- the radius of curvature R is set to 40 mm or less, deformation of the outer portion in the rim guard radial direction is likely to occur, but an increase in volume of the outer portion in the rim guard radial direction can be suppressed. Can be suppressed.
- this portion is more easily deformed than the bead filler, so the deformation of the bead filler (which generally has a higher loss tangent) than the hysteresis loss due to the deformation of this portion.
- the hysteresis loss due to is relatively reduced. Therefore, rolling resistance in the entire tire can be reduced. If the radius of curvature R is 5 mm or more, the rim guard rim protecting effect can be ensured. Therefore, first, by setting the curvature radius R within the above range, it is possible to reduce the rolling resistance in the entire tire without impairing the protection effect of the rim.
- the curvature radius R is set to 40 mm or less as described above, the rigidity of the sidewall is lowered, and it is easily deformed.
- the sidewall is moderately set to such an extent that the deformation of the sidewall portion is not so hindered. Steering stability can be ensured by increasing the rigidity of the part, particularly the rigidity in the circumferential direction.
- the ratio L1 / L2 is 0.5 or less, the effect of improving the rigidity of the cord reinforcing layer 9 can be made more effective, ensuring steering stability and Reduction of rolling resistance can be ensured. That is, when the ratio L1 / L2 exceeds 0.5, the rigidity of the sidewall portion becomes too high and the riding comfort is lowered, and there is a concern that the rolling resistance is increased due to an increase in the rubber volume. .
- the ratio L1 / L2 is less than 0.3, the rigidity in the vicinity of the rim guard apex becomes higher than the rigidity in other areas, and the contribution of improving the rigidity of the cord reinforcing layer in the vicinity thereof is reduced.
- the ratio L1 / L2 is preferably in the range of 0.3 to 0.4 in order to achieve both of these performances at a high level.
- the outer end 9a in the tire radial direction of the cord reinforcing layer 9 is the outer side in the tire radial direction from the outer end 10b in the tire radial direction of the rim guard portion 10a having a radius of curvature of 5 mm to 40 mm.
- the inner end 9b in the tire radial direction of the cord reinforcing layer 9 is located on the inner side in the tire radial direction from the maximum width position M, and the inner side in the tire radial direction from the inner radial end 10c of the rim guard portion 10a having a radius of curvature of 5 mm to 40 mm.
- FIG. By positioning the tire radial direction outer end 9a of the cord reinforcing layer 9 in the above-described region, the influence on the tire weight is small and the influence on the rolling resistance can be minimized. Further, by positioning the inner end 9b in the tire radial direction of the cord reinforcing layer 9 in the above region, the cord reinforcing layer 9 is positioned in a region where the radius of curvature is 5 mm to 40 mm, thereby reducing the radius of curvature.
- the rigidity in the radial direction of the part that has become easily deformed to 40 mm or less is not increased so much (that is, the ease of bending deformation of the tire is not hindered), and the rigidity in the circumferential direction of the part is increased to improve the steering stability. Can be supplemented.
- the curvature radius R of the contour of the rim guard radial direction outer portion 10a is 5 mm to 15 mm.
- the effect obtained by setting the curvature radius R to 5 mm or more is the same as described above.
- the radius of curvature R is 15 mm or less, an increase in the volume of the rim guard radial direction outer portion can be further suppressed, and an increase in hysteresis loss in this portion can be further suppressed.
- the hysteresis loss due to the deformation of the bead filler (having a high loss tangent) is relatively further reduced as compared with the hysteresis loss due to the deformation of this portion. Therefore, rolling resistance in the entire tire can be further reduced.
- the radius of curvature R of the contour of the outer portion in the rim guard radial direction is 5 mm to 10 mm, for the same reason as above.
- the cord reinforcement layer 9 is arrange
- the shape of the rim guard 10 is substantially triangular in cross section.
- the shape of the rim guard 10 is not limited to this in the pneumatic tire of the present invention.
- a trapezoid or a trapezoid with a rounded apex may be formed, and a plurality of protrusions may be provided.
- the elastic modulus (EB) of the bead filler that can be used in the pneumatic tire of the present invention is preferably 200% to 3000% of the elastic modulus (ER) of the rim guard. If it is 200% or more, the rigidity of the bead portion can be ensured, and deformation of the bead portion is reduced, so that hysteresis loss can be reduced. On the other hand, if it exceeds 3000%, the rigidity of the sidewall portion may increase excessively, and the hysteresis loss of the tread portion may increase. Therefore, if the EB is within the above range of ER, the rolling resistance in the entire tire can be further reduced. In order to ensure rigidity, a higher value is preferable within this range. For the same reason as described above, EB is more preferably in a range of 1000% to 2000% of ER.
- the loss tangent (tan ⁇ B) of the bead filler that can be used in the pneumatic tire of the present invention is preferably more than 0% and 600% or less of the loss tangent (tan ⁇ R) of the rim guard. If it is 600% or less, an excessive increase in the hysteresis loss of the bead filler can be suppressed, and the rolling resistance in the entire tire can be further reduced. From the viewpoint of rolling resistance, the smaller the tan ⁇ B, the smaller the hysteresis loss. Therefore, tan ⁇ B is preferably smaller within this range. For the same reason as described above, tan ⁇ B is in the range of 20% to 300% of tan ⁇ R. More preferably it is.
- a pair of rim guards 10 are provided for the pair of bead portions 4, but in the pneumatic tire of the present invention, one bead portion is provided. Only a rim guard may be provided. In this case, the effect of the present invention can be obtained by mounting the tire on the vehicle with the side having the rim guard as the mounting outer side.
- the radially outer end 7ro of the bead filler 7 is located on the outer side in the tire radial direction from the vertex 10so of the rim guard 10, and is located on the inner side in the tire radial direction from the tire radial direction outer end 9a of the cord reinforcing layer 9. It is preferable. Since the radially outer end 7ro of the bead filler 7 is positioned on the outer side in the tire radial direction from the apex 10so of the rim guard 10, it is possible to reliably increase rigidity and further ensure steering stability. This is because the influence on the tire weight can be minimized by positioning the reinforcing layer 9 on the inner side in the tire radial direction from the outer end 9a in the tire radial direction.
- the curvature radius R2 formed by the outer contour portion 10d on the inner side in the tire radial direction from the vertex position 10so of the rim guard 10 is preferably larger than the curvature radius R.
- the radius of curvature R should be relatively small from the viewpoint of tire deformation.
- the rigidity in the vicinity of the rim of the tire should be increased to ensure steering stability. Because you can.
- the radius of curvature R2 is preferably 10 mm or more, and more preferably 15 mm or more, from the viewpoint of ensuring steering stability as described above.
- the radius of curvature R2 is preferably set to 40 mm or less.
- the folded end portion 6 c of the carcass 6 is preferably located on the outer side in the tire radial direction from the outer end 10 b in the tire radial direction of the rim guard portion 10. This is because steering stability can be further ensured.
- an imaginary line connecting the tire radial direction outer end 10b of the rim guard portion 10 and the tire radial innermost end 10e of the outer contour portion 10d inside the tire radial direction is defined as M1
- the rim guard 10 An imaginary line that passes through the vertex position 10so and is perpendicular to the tire inner surface 12 is M2, and among the areas of the rim guard portion 10 defined by the imaginary line M1, the area of the outer portion in the tire radial direction from the imaginary line M2 is A, and the imaginary line M2
- the area A is preferably smaller than the area B.
- the rim guard portion 10 has a small rubber volume from the viewpoint of deformation of the tire.
- the rim guard portion 10 compares the rubber volume in order to ensure steering stability. It is because it is preferable to make it large.
- the pneumatic tire (225 / 45R17) was attached to an applicable rim (7.5J) defined in JATMA standard to produce a rim assembled pneumatic tire.
- the pneumatic tire was mounted on a vehicle under the conditions of an internal pressure of 230 kPa and a load of 4.5 t, and the rolling resistance test shown below was performed.
- the pneumatic tire was run at a speed of 80 km / h on the surface of an iron plate having a diameter of 1.7 m.
- rolling resistance was measured and evaluated from the deceleration of the tire when the tire was made to travel inertially. Specifically, an index for relative evaluation with the evaluation result of Comparative Example 1 as 100 was calculated. The evaluation results are shown in Table 1.
- FIG. 3 shows an outline of the test method of the rim protection test.
- the tire 1 was laid sideways, one side of the tire was placed on the flat plate 30, and the iron plate 31 was placed on the other side. Then, a load was applied from the iron plate 31 side toward the flat plate 30 side, and the energy required until the rim flange 20a of the rim 20 on which the tire on the flat plate side was mounted contacted the flat plate 30 was calculated. Specifically, an index for relative evaluation with the evaluation result of Comparative Example 1 as 100 was calculated. The evaluation results are shown in Table 1.
- each of the tires according to Invention Examples 1 to 10 can reduce the rolling resistance of the tire and ensure the steering stability while maintaining the protective effect of the rim guard rim. You can see that
- the rolling resistance is further reduced by setting the curvature radius R to 15 mm or less, and the rolling resistance is further reduced by setting the curvature radius R to 10 mm or less. I understand.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
本発明の空気入りタイヤは、少なくとも1プライからなるカーカス(6)と、ビードコア(5)のタイヤ径方向外方に配置されたビードフィラー(7)と、離反点よりもタイヤ径方向外方に位置し、タイヤ幅方向外側に突出するリムガード(10)とを備え、該タイヤの幅方向断面において、前記リムガード(10)のタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分(10a)の輪郭が、5mm~40mmの曲率半径を有し、前記ビードフィラー(7)に隣接し、タイヤ径方向に沿って延びるコード補強層(9)を備え、前記コード補強層(9)の各コードは、タイヤ径方向に対して傾斜して延び、前記コード補強層(9)とタイヤ外表面とのタイヤ内面に垂直な方向の最短距離(L1)と、前記リムガード(10)の頂点位置から前記コード補強層(9)までのタイヤ内面に垂直な方向の距離(L2)とが、0.3≦L1/L2≦0.5を満たすことを特徴とする。
Description
本発明は、空気入りタイヤに関するものである。
空気入りタイヤを適用リムに装着して車両に使用する際、例えば、車両を路肩や壁に寄せ過ぎたために、リムの一部が縁石や壁に接触し、リムに損傷が生じることがある。このようなリムの損傷を防止するために、リムラインよりもタイヤ径方向外方に、タイヤ幅方向外側に突出し、タイヤ周方向に連続的に延びる、環状のリムガードを備えた空気入りタイヤが一般的に知られている。
そして、これまでに、リムガードの形状や寸法に変更を加え、空気入りタイヤの諸性能を向上させる研究が報告されてきた(例えば、特許文献1及び2参照)。
例えば、特許文献1では、空気入りラジアルタイヤにリムガードを設け、該リムガードのタイヤ径方向外側にあるリムガード部分の輪郭の曲率半径を15mm~40mmとしている。ここでは、上記部分の曲率半径を上記範囲に設定することによって、リムガードのリムの保護効果を確保しつつ、上記空気入りラジアルタイヤの質量を低減させている。
例えば、特許文献1では、空気入りラジアルタイヤにリムガードを設け、該リムガードのタイヤ径方向外側にあるリムガード部分の輪郭の曲率半径を15mm~40mmとしている。ここでは、上記部分の曲率半径を上記範囲に設定することによって、リムガードのリムの保護効果を確保しつつ、上記空気入りラジアルタイヤの質量を低減させている。
しかしながら、特許文献1に記載の発明では、リムガードの曲率半径を小さくしたことにより、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させることはできるものの、サイドウォール部の剛性が低下して変形しやすくなるため、ハンドル操作時の操縦安定性に向上の余地があった。
本発明は、上記の課題を解決しようとするものであり、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させ、かつ、操縦安定性を確保した空気入りタイヤを提供することを目的とする。
本発明の要旨構成は、以下の通りである。
本発明の空気入りタイヤは、タイヤの一対のビードコア間にトロイド状に跨り、該ビードコアに係止される、少なくとも1プライからなるカーカスと、前記ビードコアのタイヤ径方向外方に配置されたビードフィラーと、タイヤを適用リムに装着し、所定空気圧とし、無負荷とした状態におけるタイヤと適用リムとの離反点よりもタイヤ径方向外方に位置し、タイヤ幅方向外側に突出するリムガードとを備え、
該タイヤの幅方向断面において、
前記リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分の輪郭が、5mm~40mmの曲率半径を有し、
前記ビードフィラーに隣接し、タイヤ径方向に沿って延びるコード補強層を備え、
前記コード補強層の各コードは、タイヤ径方向に対して傾斜して延び、
前記コード補強層とタイヤ外表面とのタイヤ内面に垂直な方向の最短距離L1と、前記リムガードの頂点位置から前記コード補強層までのタイヤ内面に垂直な方向の距離L2とが、
0.3≦L1/L2≦0.5
を満たすことを特徴とする。
本発明の空気入りタイヤは、タイヤの一対のビードコア間にトロイド状に跨り、該ビードコアに係止される、少なくとも1プライからなるカーカスと、前記ビードコアのタイヤ径方向外方に配置されたビードフィラーと、タイヤを適用リムに装着し、所定空気圧とし、無負荷とした状態におけるタイヤと適用リムとの離反点よりもタイヤ径方向外方に位置し、タイヤ幅方向外側に突出するリムガードとを備え、
該タイヤの幅方向断面において、
前記リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分の輪郭が、5mm~40mmの曲率半径を有し、
前記ビードフィラーに隣接し、タイヤ径方向に沿って延びるコード補強層を備え、
前記コード補強層の各コードは、タイヤ径方向に対して傾斜して延び、
前記コード補強層とタイヤ外表面とのタイヤ内面に垂直な方向の最短距離L1と、前記リムガードの頂点位置から前記コード補強層までのタイヤ内面に垂直な方向の距離L2とが、
0.3≦L1/L2≦0.5
を満たすことを特徴とする。
なお、「リムガードのタイヤ幅方向最外端」とは、タイヤ幅方向断面において、リムガード部分においてタイヤ幅方向で最も外側に位置する点を指す。該点が複数存在する場合には、それらのうちタイヤ径方向で最も外側に位置する点を指すものとする。
またなお、「リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分(リムガード径方向外側部分)の輪郭の曲率半径」とは、リムガードのタイヤ幅方向最外側位置からリムガードのタイヤ径方向外側部分に沿って、リムガードのタイヤ径方向外側に向かう輪郭において、リムガードのタイヤ幅方向最外側位置とそれに最も近い変曲点との間の輪郭部分の曲率半径を指す(上記輪郭が1つ曲率半径のみ有する場合には、その曲率半径を指す)。
更になお、本発明の空気入りタイヤの諸寸法は、タイヤを適用リムに装着し、所定空気圧とし、無負荷状態としたときの諸寸法を指す。因みに、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) YEAR BOOK、欧州ではETRTO(European Tyre and Rim Technical Organisation) STANDARD MANUAL、米国ではTRA(THE TIRE and RIM ASSOCIATION INC.)YEAR BOOK等に規定されたリムを指し、「所定空気圧」とは、適用サイズのタイヤにおける所定の荷重に対応する空気圧(最高空気圧)を指す。
またなお、「リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分(リムガード径方向外側部分)の輪郭の曲率半径」とは、リムガードのタイヤ幅方向最外側位置からリムガードのタイヤ径方向外側部分に沿って、リムガードのタイヤ径方向外側に向かう輪郭において、リムガードのタイヤ幅方向最外側位置とそれに最も近い変曲点との間の輪郭部分の曲率半径を指す(上記輪郭が1つ曲率半径のみ有する場合には、その曲率半径を指す)。
更になお、本発明の空気入りタイヤの諸寸法は、タイヤを適用リムに装着し、所定空気圧とし、無負荷状態としたときの諸寸法を指す。因みに、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) YEAR BOOK、欧州ではETRTO(European Tyre and Rim Technical Organisation) STANDARD MANUAL、米国ではTRA(THE TIRE and RIM ASSOCIATION INC.)YEAR BOOK等に規定されたリムを指し、「所定空気圧」とは、適用サイズのタイヤにおける所定の荷重に対応する空気圧(最高空気圧)を指す。
本発明によれば、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させ、かつ、操縦安定性を確保した空気入りタイヤを提供することができる。
以下、本発明の実施形態について図面を参照して詳細に例示説明する。
図1に、適用リムに装着した状態の本発明の一実施形態にかかる空気入りタイヤ1のタイヤ半部のタイヤ幅方向断面図を示す。この空気入りタイヤ1は、トレッド部2と、該トレッド部2の側部からタイヤ径方向内方に延びる一対のサイドウォール部3(片側の一部のみ示す)と、該サイドウォール部3からタイヤ径方向内方に延びる一対のビード部4(片側のみ示す)とを有する。
また、この空気入りタイヤ1は、各ビード部4に埋設されたビードコア5(図1には片側のみ示す)と、該ビードコア5間にトロイド状に跨り、該ビードコア5に係止される、少なくとも1プライのラジアルカーカス6(図1では、1プライ)とを備えている。
なお、図1に示す本発明の一実施形態の空気入りタイヤ1では、ラジアルカーカス6は、ビードコア5の周りでタイヤ幅方向内側から外側へ折り返されることによってビードコア5に係止されるカーカス本体部6aと、該カーカス本体部6aから延び、ビードコア5の周りでタイヤ幅方向内側から外側に折り返されてなるカーカス折り返し部6bを有する。しかしながら、本発明の空気入りタイヤでは、この空気入りタイヤ1の構成に限定されることなく、ラジアルカーカス6は例えば、ビードコア5の周りに巻き付けられていてもよく、またビードコア5の周りでタイヤ幅方向外側から内側へ折り返されていてもよい。
またなお、図1ではラジアルカーカスのプライ数を1プライとした場合を示しているが、本発明の空気入りタイヤでは、プライ数は必要に応じて複数のプライとすることもできる。また、図1では、カーカスをラジアルカーカスとした場合を示しているが、本発明の空気入りタイヤでは、カーカスをバイアスカーカスとしてもよい。
またなお、図1ではラジアルカーカスのプライ数を1プライとした場合を示しているが、本発明の空気入りタイヤでは、プライ数は必要に応じて複数のプライとすることもできる。また、図1では、カーカスをラジアルカーカスとした場合を示しているが、本発明の空気入りタイヤでは、カーカスをバイアスカーカスとしてもよい。
更に、この空気入りタイヤ1は、ビード部4に埋設されたビードコア5のタイヤ径方向外方であって、カーカス本体部6aとカーカス折返し部6bとで挟まれた領域に、ラジアルカーカス6に沿ってタイヤ径方向外方に向けて厚みが漸減するビードフィラー7を有する。図1、2では、ビードフィラー7は、ほぼ断面三角形状をしている。
また、この空気入りタイヤ1は、カーカス折返し部6bのタイヤ幅方向外方に、ゴムチェーファー8を有する。
そして、この空気入りタイヤ1は、ビードフィラー7に隣接して(図示例ではビードフィラー7とカーカスの本体部6aとの間に)配置され、タイヤ径方向に沿って延びるコード補強層9を備えている。コード補強層9の各コードは、タイヤ径方向に対して傾斜して延びている。
なお、コードの材質は、特には限定しないが、例えば、ポリエチレンテレフタレート等を用いることができる。
そして、この空気入りタイヤ1は、ビードフィラー7に隣接して(図示例ではビードフィラー7とカーカスの本体部6aとの間に)配置され、タイヤ径方向に沿って延びるコード補強層9を備えている。コード補強層9の各コードは、タイヤ径方向に対して傾斜して延びている。
なお、コードの材質は、特には限定しないが、例えば、ポリエチレンテレフタレート等を用いることができる。
さらに、該ゴムチェーファー8表面に設けられたリムライン位置RLよりもタイヤ径方向外方に、タイヤ幅方向外側に突出し、タイヤ周方向に連続するリムガード10を備える。図1、2では、リムガード10は、ほぼ断面三角形状をしている。
因みに、「リムライン位置」とは、タイヤを適用リムに装着し、所定空気圧とし、無負荷とした状態におけるタイヤと適用リムとの離反点を指す。
因みに、「リムライン位置」とは、タイヤを適用リムに装着し、所定空気圧とし、無負荷とした状態におけるタイヤと適用リムとの離反点を指す。
図2に、適用リムに装着した状態の本発明の一実施形態にかかる空気入りタイヤ1のタイヤ半部のビード部4周辺におけるタイヤ幅方向断面図を示す。
ここで、この空気入りタイヤ1では、リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分(以下、リムガード径方向外側部分ともいう)10aの輪郭が、5mm~40mmの曲率半径Rを有することを必要とする。
ここで、この空気入りタイヤ1では、リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分(以下、リムガード径方向外側部分ともいう)10aの輪郭が、5mm~40mmの曲率半径Rを有することを必要とする。
ここで、図1、図2に示す例では、コード補強層9のタイヤ径方向外側端9aは、5mm~40mmの曲率半径を有するリムガード部分10aのタイヤ径方向外側端10bよりタイヤ径方向外側、且つ、タイヤ最大幅位置Mよりタイヤ径方向内側に位置している。
さらに、図1、図2に示す例では、コード補強層9のタイヤ径方向内側端9bは、5mm~40mmの曲率半径を有するリムガード部分10aのタイヤ径方向内側端10cよりタイヤ径方向内側、且つ、ビードコア5のタイヤ径方向外側端5aよりタイヤ径方向外側に位置している。
さらに、図1、図2に示す例では、コード補強層9のタイヤ径方向内側端9bは、5mm~40mmの曲率半径を有するリムガード部分10aのタイヤ径方向内側端10cよりタイヤ径方向内側、且つ、ビードコア5のタイヤ径方向外側端5aよりタイヤ径方向外側に位置している。
さらに、この空気入りタイヤ1は、コード補強層9とタイヤ外表面11とのタイヤ内面に垂直な方向の最短距離L1と、リムガード10の頂点位置10soからコード補強層9までのタイヤ内面に垂直な方向の距離L2とが、
0.3≦L1/L2≦0.5
を満たすことが必要である。
以下、本実施形態の空気入りタイヤ1の作用効果について説明する。
0.3≦L1/L2≦0.5
を満たすことが必要である。
以下、本実施形態の空気入りタイヤ1の作用効果について説明する。
この空気入りタイヤ1においては、リムガード径方向外側部分10aの輪郭の曲率半径Rが大きくなるほど、リムガード部分の体積は大きくなる。そして、この部分の体積が大きいほど、タイヤ幅方向の変形入力に対する、リムガードにおけるヒステリシスロスが増加する。そのため、曲率半径Rが大きくなるほど、リムガードにおけるヒステリシスロスが増加する。
ここで、曲率半径Rを40mm以下とすれば、リムガード径方向外側部分の変形が生じやすくなるものの、リムガード径方向外側部分の体積の増加を抑制することができるため、この部分のヒステリシスロスの増加を抑制することができる。また、タイヤ幅方向の変形入力に際して、この部分がビードフィラーと比較して変形しやすい状態となるため、この部分の変形によるヒステリシスロスと比較して、(一般に損失正接が高い)ビードフィラーの変形によるヒステリシスロスが相対的に低減する。そのため、タイヤ全体における転がり抵抗を低減させることができる。
また、曲率半径Rを、5mm以上とすれば、リムガードのリムの保護効果を確保することができる。
そのため、まず、曲率半径Rを上記範囲内に設定することで、リムの保護効果を損なうことなく、タイヤ全体における転がり抵抗を低減することができる。
ここで、曲率半径Rを40mm以下とすれば、リムガード径方向外側部分の変形が生じやすくなるものの、リムガード径方向外側部分の体積の増加を抑制することができるため、この部分のヒステリシスロスの増加を抑制することができる。また、タイヤ幅方向の変形入力に際して、この部分がビードフィラーと比較して変形しやすい状態となるため、この部分の変形によるヒステリシスロスと比較して、(一般に損失正接が高い)ビードフィラーの変形によるヒステリシスロスが相対的に低減する。そのため、タイヤ全体における転がり抵抗を低減させることができる。
また、曲率半径Rを、5mm以上とすれば、リムガードのリムの保護効果を確保することができる。
そのため、まず、曲率半径Rを上記範囲内に設定することで、リムの保護効果を損なうことなく、タイヤ全体における転がり抵抗を低減することができる。
ところで、上記のように曲率半径Rを40mm以下とすると、サイドウォールの剛性が低下し、変形しやすくなる。これに対し、本実施形態のタイヤによれば、まず、コードがタイヤ径方向に対して傾斜しているコード補強層9を備えるため、サイドウォール部の変形をさほど妨げない程度に適度にサイドウォール部の剛性、特に周方向の剛性を高めて操縦安定性を確保することができる。さらに、本実施形態の空気入りタイヤ1では、上記比L1/L2が、0.5以下であるため、コード補強層9の剛性向上効果をより有効にすることができ、操縦安定性の確保および転がり抵抗の低減を確実なものとすることができる。すなわち、上記比L1/L2が0.5を超えると、サイドウォール部の剛性が高くなりすぎて乗り心地性が低下してしまい、また、ゴムボリューム増大による転がり抵抗の増大の懸念も生じてしまう。一方で、上記比L1/L2が0.3未満だとリムガード頂点付近の剛性が他の領域の剛性より高くなり、その近傍でのコード補強層の剛性向上寄与が少なくなってしまう。特に上記比L1/L2を0.3~0.4の範囲とすることが、これらの性能を高いレベルで両立させる上で好ましい。
このように、本実施形態のタイヤによれば、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させ、かつ、操縦安定性を確保することができる。
このように、本実施形態のタイヤによれば、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させ、かつ、操縦安定性を確保することができる。
ここで、本発明にあっては、コード補強層9のタイヤ径方向外側端9aは、5mm~40mmの曲率半径を有するリムガード部分10aのタイヤ径方向外側端10bよりタイヤ径方向外側、且つ、タイヤ最大幅位置Mよりタイヤ径方向内側に位置し、コード補強層9のタイヤ径方向内側端9bは、5mm~40mmの曲率半径を有するリムガード部分10aのタイヤ径方向内側端10cよりタイヤ径方向内側、且つ、ビードコア5のタイヤ径方向外側端5aよりタイヤ径方向外側に位置することが好ましい。
コード補強層9のタイヤ径方向外側端9aを上記の領域に位置させることにより、タイヤ重量への影響も少なく、転がり抵抗への影響を最小限に抑えることができる。また、その上でコード補強層9のタイヤ径方向内側端9bを上記の領域に位置させることにより、曲率半径を5mm~40mmとした領域にコード補強層9を位置させ、これにより、曲率半径を40mm以下として変形しやすくなった部分の径方向の剛性をさほど増大させない程度に(すなわち、タイヤの撓み変形のしやすさは妨げずに)その部分の周方向剛性を高め、操縦安定性を効率的に補完することができる。
コード補強層9のタイヤ径方向外側端9aを上記の領域に位置させることにより、タイヤ重量への影響も少なく、転がり抵抗への影響を最小限に抑えることができる。また、その上でコード補強層9のタイヤ径方向内側端9bを上記の領域に位置させることにより、曲率半径を5mm~40mmとした領域にコード補強層9を位置させ、これにより、曲率半径を40mm以下として変形しやすくなった部分の径方向の剛性をさほど増大させない程度に(すなわち、タイヤの撓み変形のしやすさは妨げずに)その部分の周方向剛性を高め、操縦安定性を効率的に補完することができる。
この空気入りタイヤ1では、リムガード径方向外側部分10aの輪郭の曲率半径Rを、5mm~15mmとすることが好ましい。
曲率半径Rを5mm以上とすることによる効果は、上記と同様である。
また、曲率半径Rを15mm以下とすれば、リムガード径方向外側部分の体積の増加を更に抑制することができ、この部分のヒステリシスロスの増加を更に抑制することができる。また、この部分の変形によるヒステリシスロスと比較して、(損失正接が高い)ビードフィラーの変形によるヒステリシスロスが相対的に更に低減する。そのため、タイヤ全体における転がり抵抗を更に低減することができる。
曲率半径Rを5mm以上とすることによる効果は、上記と同様である。
また、曲率半径Rを15mm以下とすれば、リムガード径方向外側部分の体積の増加を更に抑制することができ、この部分のヒステリシスロスの増加を更に抑制することができる。また、この部分の変形によるヒステリシスロスと比較して、(損失正接が高い)ビードフィラーの変形によるヒステリシスロスが相対的に更に低減する。そのため、タイヤ全体における転がり抵抗を更に低減することができる。
この空気入りタイヤ1では、上記理由と同様に、リムガード径方向外側部分の輪郭の曲率半径Rを、5mm~10mmすることが更に好ましい。
また、本発明にあっては、コード補強層9は、ビードフィラー7とカーカス本体部6aとの間に配置されていることが好ましい。
この構成によれば、とりわけビードフィラーやカーカスプライといったタイヤの骨組み構造に隣接した位置にコード補強層が配置されるため、上述した操縦安定性への寄与を高めることができ、操縦安定性をさらに確保することができる。
この構成によれば、とりわけビードフィラーやカーカスプライといったタイヤの骨組み構造に隣接した位置にコード補強層が配置されるため、上述した操縦安定性への寄与を高めることができ、操縦安定性をさらに確保することができる。
図2に示す空気入りタイヤ1では、リムガード10の形状は、ほぼ断面三角形状をしているが、本発明の空気入りタイヤではこれに限定されることなく、その形状が、タイヤ幅方向断面において、台形や台形の頂点が丸みを帯びた形などをしていてもよく、また、突出部を複数有していてもよい。
本発明の空気入りタイヤに用いることができるビードフィラーの弾性率(EB)は、リムガードの弾性率(ER)の200%~3000%であることが好ましい。
200%以上とすれば、ビード部の剛性を確保することができ、ビード部変形が減少するのでヒステリシスロスを低減させことができる。また、3000%超となると、サイドウォール部の剛性が過度に増加して、トレッド部のヒステリシスロスが増加する虞がある。そのため、EBをERの上記範囲とすれば、タイヤ全体における転がり抵抗を更に低減させることができる。
また、剛性確保のため、この範囲内において高い方が好ましく、上記と同様の理由により、EBは、ERの1000%~2000%の範囲であることが更に好ましい。
200%以上とすれば、ビード部の剛性を確保することができ、ビード部変形が減少するのでヒステリシスロスを低減させことができる。また、3000%超となると、サイドウォール部の剛性が過度に増加して、トレッド部のヒステリシスロスが増加する虞がある。そのため、EBをERの上記範囲とすれば、タイヤ全体における転がり抵抗を更に低減させることができる。
また、剛性確保のため、この範囲内において高い方が好ましく、上記と同様の理由により、EBは、ERの1000%~2000%の範囲であることが更に好ましい。
そして、本発明の空気入りタイヤに用いることができるビードフィラーの損失正接(tanδB)は、リムガードの損失正接(tanδR)の0%超600%以下であることが好ましい。600%以下とすれば、ビードフィラーのヒステリシスロスの過度な増加を抑制して、タイヤ全体のおける転がり抵抗を更に低減させることができる。
また、転がり抵抗の観点からは、tanδBは小さいほどヒステリシスロスが小さいため、tanδBはこの範囲内で小さい方が好ましく、上記と同様の理由により、tanδBは、tanδRの20%~300%の範囲であることが更に好ましい。
また、転がり抵抗の観点からは、tanδBは小さいほどヒステリシスロスが小さいため、tanδBはこの範囲内で小さい方が好ましく、上記と同様の理由により、tanδBは、tanδRの20%~300%の範囲であることが更に好ましい。
なお、図1に示す本発明の一例の空気入りタイヤ1では、一対のビード部4に対して、一対のリムガード10が設けられているが、本発明の空気入りタイヤでは、一方のビード部にのみリムガードが設けられていてもよい。この場合、リムガードを備える側を装着外側として、タイヤを車両に装着することによって、上記本発明の効果を得ることができる。
さらに、本発明では、ビードフィラー7の径方向外側端7roは、リムガード10の頂点10soよりタイヤ径方向外側に位置し、コード補強層9のタイヤ径方向外側端9aよりタイヤ径方向内側に位置することが好ましい。ビードフィラー7の径方向外側端7roが、リムガード10の頂点10soよりタイヤ径方向外側に位置することにより、剛性を確実に増大させ、操縦安定性をより一層確保することができ、一方で、コード補強層9のタイヤ径方向外側端9aよりタイヤ径方向内側に位置することにより、タイヤ重量への影響を最小限に留めることができるからである。
ここで、図1、図2に示すように、リムガード10の頂点位置10soよりタイヤ径方向内側の外輪郭部分10dがなす曲率半径R2は、上記曲率半径Rより大きいことが好ましい。
曲率半径Rは、タイヤの変形の観点から比較的小さい方が良いが、曲率半径R2は、この曲率半径Rより大きくすることにより、タイヤのリム付近の剛性を高めて操縦安定性を確保することができるからである。
曲率半径Rは、タイヤの変形の観点から比較的小さい方が良いが、曲率半径R2は、この曲率半径Rより大きくすることにより、タイヤのリム付近の剛性を高めて操縦安定性を確保することができるからである。
また、曲率半径R2は、上述のように操縦安定性を確保する観点から、10mm以上とすることが好ましく、15mm以上とすることがより好ましい。一方で、ゴムゲージが増大するのを抑えて転がり抵抗の増大を抑制する観点からは、曲率半径R2は、40mm以下とすることが好ましい。
また、図1、図2に示すように、カーカス6の折り返し端部6cは、リムガード部分10のタイヤ径方向外側端10bよりタイヤ径方向外側に位置することが好ましい。操縦安定性をより一層確保することができるからである。
さらに、図2に示すように、リムガード部分10のタイヤ径方向外側端10bとタイヤ径方向内側の外輪郭部分10dのタイヤ径方向最内側端10eとを結んだ仮想線をM1とし、リムガード10の頂点位置10soを通りタイヤ内面12に垂直な仮想線をM2とし、仮想線M1により区画されるリムガード部分10の面積のうち、仮想線M2よりタイヤ径方向外側の部分の面積をA、仮想線M2よりタイヤ径方向内側の部分の面積をBとするとき、面積Aは、面積Bより小さいことが好ましい。
リムガード部分10の径方向外側部分は、タイヤの変形の観点からゴムボリュームが小さい方が好ましく、一方で、リムガード部分10の径方向内側部分は、操縦安定性を確保するために、ゴムボリュームを比較的大きくすることが好ましいからである。
リムガード部分10の径方向外側部分は、タイヤの変形の観点からゴムボリュームが小さい方が好ましく、一方で、リムガード部分10の径方向内側部分は、操縦安定性を確保するために、ゴムボリュームを比較的大きくすることが好ましいからである。
以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
本発明の効果を確かめるため、発明例1~10にかかるタイヤと、比較例1~5にかかるタイヤとを試作し、以下のタイヤ性能を評価する試験を行った。
各タイヤの緒元は、表1に示しており、表1に示す諸元以外は各タイヤで共通である。
なお、比較例2は、コード補強層を用いないタイヤである。
各タイヤの緒元は、表1に示しており、表1に示す諸元以外は各タイヤで共通である。
なお、比較例2は、コード補強層を用いないタイヤである。
<転がり抵抗>
空気入りタイヤ(225/45R17)を、JATMA規格に定める適用リム(7.5J)に装着して、リム組みした空気入りタイヤを作製した。そして、上記空気入りタイヤを、内圧230kPa、荷重4.5tの条件下、車両に装着し、以下に示す転がり抵抗試験を行った。ドラム試験機において、上記空気入りタイヤを、直径1.7mの鉄板表面上で速度80km/hで走行させた。そして、タイヤを慣性走行させたときのタイヤの減速度から転がり抵抗を測定して評価した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。評価結果を表1に示す。指数が小さいほど転がり抵抗が小さく、燃費性に優れることを示す。
<操縦安定性>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、ドライ路面上を走行した際の走行性能をドライバーによる官能により評価した。比較例1にかかるタイヤの評価結果を100とした場合の相対値で評価し、数値が大きい方が操縦安定性に優れていることを示す。
<リム保護性試験>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、リム組みした空気入りタイヤを作製した。そして、リム組みをしたままでの保管を想定し、内圧を充填せずに(内圧0kPaで)、以下のリム保護性試験を行った。
図3に、リム保護性試験の試験方法の概要について示す。アムスラー試験機において、タイヤ1を横倒しにして、タイヤの一方の面を平板30に向けて置き、もう一方の面上に鉄板31を置いた。そして、鉄板31側から平板30側に向けて荷重を印加し、平板側にあるタイヤが装着されたリム20のリムフランジ20aが平板30に接触するまでに要したエネルギーを算出した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。評価結果を表1に示す。指数が大きいほどリムの保護効果が高いことを示す。
<乗り心地性>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、ドライ路面上を走行した際の乗り心地性をドライバーによる官能により評価した。比較例1にかかるタイヤの評価結果を100とした場合の相対値で評価し、数値が大きい方が乗り心地性に優れていることを示す。 以下、表1にこれらの評価結果をタイヤ諸元と共に示す。
空気入りタイヤ(225/45R17)を、JATMA規格に定める適用リム(7.5J)に装着して、リム組みした空気入りタイヤを作製した。そして、上記空気入りタイヤを、内圧230kPa、荷重4.5tの条件下、車両に装着し、以下に示す転がり抵抗試験を行った。ドラム試験機において、上記空気入りタイヤを、直径1.7mの鉄板表面上で速度80km/hで走行させた。そして、タイヤを慣性走行させたときのタイヤの減速度から転がり抵抗を測定して評価した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。評価結果を表1に示す。指数が小さいほど転がり抵抗が小さく、燃費性に優れることを示す。
<操縦安定性>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、ドライ路面上を走行した際の走行性能をドライバーによる官能により評価した。比較例1にかかるタイヤの評価結果を100とした場合の相対値で評価し、数値が大きい方が操縦安定性に優れていることを示す。
<リム保護性試験>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、リム組みした空気入りタイヤを作製した。そして、リム組みをしたままでの保管を想定し、内圧を充填せずに(内圧0kPaで)、以下のリム保護性試験を行った。
図3に、リム保護性試験の試験方法の概要について示す。アムスラー試験機において、タイヤ1を横倒しにして、タイヤの一方の面を平板30に向けて置き、もう一方の面上に鉄板31を置いた。そして、鉄板31側から平板30側に向けて荷重を印加し、平板側にあるタイヤが装着されたリム20のリムフランジ20aが平板30に接触するまでに要したエネルギーを算出した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。評価結果を表1に示す。指数が大きいほどリムの保護効果が高いことを示す。
<乗り心地性>
上記のタイヤサイズの各空気入りタイヤを、JATMA規格に定める適用リム(7.5J)に装着して、ドライ路面上を走行した際の乗り心地性をドライバーによる官能により評価した。比較例1にかかるタイヤの評価結果を100とした場合の相対値で評価し、数値が大きい方が乗り心地性に優れていることを示す。 以下、表1にこれらの評価結果をタイヤ諸元と共に示す。
表1に示すように、発明例1~10にかかるタイヤは、いずれも、リムガードのリムの保護効果を保持しつつ、タイヤの転がり抵抗を低減させ、かつ、操縦安定性を確保することができていることがわかる。
また、表1に示すように、曲率半径Rを15mm以下とすることにより、より一層転がり抵抗が低減され、曲率半径Rを10mm以下とすることにより、さらにより一層転がり抵抗が低減されていることがわかる。
1 空気入りタイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
6a カーカス本体部
6b カーカス折り返し部
6c カーカス折り返し端部
7 ビードフィラー
8 ゴムチェーファー
9 コード補強層
10 リムガード
11 タイヤ外表面
12 タイヤ内面
20 リム
20a リムフランジ
30 平板
31 鉄板
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
6a カーカス本体部
6b カーカス折り返し部
6c カーカス折り返し端部
7 ビードフィラー
8 ゴムチェーファー
9 コード補強層
10 リムガード
11 タイヤ外表面
12 タイヤ内面
20 リム
20a リムフランジ
30 平板
31 鉄板
Claims (5)
- タイヤの一対のビードコア間にトロイド状に跨り、該ビードコアに係止される、少なくとも1プライからなるカーカスと、前記ビードコアのタイヤ径方向外方に配置されたビードフィラーと、タイヤを適用リムに装着し、所定空気圧とし、無負荷とした状態におけるタイヤと適用リムとの離反点よりもタイヤ径方向外方に位置し、タイヤ幅方向外側に突出するリムガードとを備える空気入りタイヤであって、
該タイヤの幅方向断面において、
前記リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分の輪郭が、5mm~40mmの曲率半径を有し、
前記ビードフィラーに隣接し、タイヤ径方向に沿って延びるコード補強層を備え、
前記コード補強層の各コードは、タイヤ径方向に対して傾斜して延び、
前記コード補強層とタイヤ外表面とのタイヤ内面に垂直な方向の最短距離L1と、前記リムガードの頂点位置から前記コード補強層までのタイヤ内面に垂直な方向の距離L2とが、
0.3≦L1/L2≦0.5
を満たすことを特徴とする、空気入りタイヤ。 - 前記コード補強層のタイヤ径方向外側端は、前記5mm~40mmの曲率半径を有する前記リムガード部分のタイヤ径方向外側端よりタイヤ径方向外側、且つ、タイヤ最大幅位置よりタイヤ径方向内側に位置し、
前記コード補強層のタイヤ径方向内側端は、前記5mm~40mmの曲率半径を有する前記リムガード部分のタイヤ径方向内側端よりタイヤ径方向内側、且つ、前記ビードコアのタイヤ径方向外側端よりタイヤ径方向外側に位置する、請求項1に記載の空気入りタイヤ。 - 前記リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分の輪郭が、5mm~15mmの曲率半径を有する、請求項1又は2に記載の空気入りタイヤ。
- 前記リムガードのタイヤ幅方向最外端よりもタイヤ径方向外側にあるリムガード部分の輪郭が、5mm~10mmの曲率半径を有する、請求項3に記載の空気入りタイヤ。
- 前記コード補強層は、前記ビードフィラーと前記カーカスの本体部との間に配置された、請求項1~4のいずれか一項に記載の空気入りタイヤ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-265354 | 2013-12-24 | ||
JP2013265354A JP5947783B2 (ja) | 2013-12-24 | 2013-12-24 | 空気入りタイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015097926A1 true WO2015097926A1 (ja) | 2015-07-02 |
Family
ID=53477851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003207 WO2015097926A1 (ja) | 2013-12-24 | 2014-06-16 | 空気入りタイヤ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5947783B2 (ja) |
WO (1) | WO2015097926A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112572069A (zh) * | 2019-09-30 | 2021-03-30 | 住友橡胶工业株式会社 | 轮胎轮辋组件 |
US20220134809A1 (en) * | 2020-10-29 | 2022-05-05 | Toyo Tire Corporation | Pneumatic tire |
CN115835968A (zh) * | 2020-06-10 | 2023-03-21 | 米其林集团总公司 | 包括至少一个具有保护突起物的胎侧的轮胎 |
EP4212355A1 (en) * | 2022-01-12 | 2023-07-19 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6790720B2 (ja) * | 2016-10-26 | 2020-11-25 | 住友ゴム工業株式会社 | 空気入りタイヤ |
DE102019216915A1 (de) * | 2019-11-04 | 2021-05-06 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen mit Felgenschutzrippe |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008265411A (ja) * | 2007-04-17 | 2008-11-06 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013220786A (ja) * | 2012-04-18 | 2013-10-28 | Bridgestone Corp | 空気入りタイヤ |
-
2013
- 2013-12-24 JP JP2013265354A patent/JP5947783B2/ja not_active Expired - Fee Related
-
2014
- 2014-06-16 WO PCT/JP2014/003207 patent/WO2015097926A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008265411A (ja) * | 2007-04-17 | 2008-11-06 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013220786A (ja) * | 2012-04-18 | 2013-10-28 | Bridgestone Corp | 空気入りタイヤ |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112572069A (zh) * | 2019-09-30 | 2021-03-30 | 住友橡胶工业株式会社 | 轮胎轮辋组件 |
CN115835968A (zh) * | 2020-06-10 | 2023-03-21 | 米其林集团总公司 | 包括至少一个具有保护突起物的胎侧的轮胎 |
US20220134809A1 (en) * | 2020-10-29 | 2022-05-05 | Toyo Tire Corporation | Pneumatic tire |
EP4212355A1 (en) * | 2022-01-12 | 2023-07-19 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP5947783B2 (ja) | 2016-07-06 |
JP2015120425A (ja) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5851921B2 (ja) | 空気入りタイヤ | |
JP5970334B2 (ja) | 空気入りタイヤ | |
JP5947783B2 (ja) | 空気入りタイヤ | |
US10632798B2 (en) | Pneumatic tire | |
WO2012050000A1 (ja) | 空気入りタイヤ | |
JP6052846B2 (ja) | 空気入りタイヤ | |
JP5750156B2 (ja) | 空気入りタイヤ | |
CN108473004B (zh) | 充气轮胎 | |
JP6377390B2 (ja) | ランフラットラジアルタイヤ | |
RU2643303C1 (ru) | Радиальная шина ранфлет | |
JP6342669B2 (ja) | 空気入りタイヤ | |
WO2015159468A1 (ja) | ランフラットタイヤ | |
EP3527406B1 (en) | Pneumatic tire | |
JP6292710B2 (ja) | 重荷重用空気入りタイヤ | |
JP2010111370A (ja) | 空気入りタイヤ | |
CN108473006B (zh) | 充气轮胎 | |
JP4816014B2 (ja) | 空気入りタイヤ | |
JP5308256B2 (ja) | 空気入りタイヤ | |
JP6214443B2 (ja) | 空気入りタイヤ | |
JPWO2012141149A1 (ja) | 自動二輪車用空気入りタイヤ | |
CN111070977A (zh) | 重型充气轮胎 | |
JP2016013795A (ja) | タイヤ | |
JP4079635B2 (ja) | 空気入りラジアルタイヤ | |
JP2017121848A (ja) | 空気入りタイヤ | |
JP2016068911A (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874433 Country of ref document: EP Kind code of ref document: A1 |