WO2014115382A1 - モータ制御装置及び電動コンプレッサ - Google Patents

モータ制御装置及び電動コンプレッサ Download PDF

Info

Publication number
WO2014115382A1
WO2014115382A1 PCT/JP2013/078140 JP2013078140W WO2014115382A1 WO 2014115382 A1 WO2014115382 A1 WO 2014115382A1 JP 2013078140 W JP2013078140 W JP 2013078140W WO 2014115382 A1 WO2014115382 A1 WO 2014115382A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
connector
smoothing capacitor
motor control
control device
Prior art date
Application number
PCT/JP2013/078140
Other languages
English (en)
French (fr)
Inventor
洋介 大根田
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201380070586.2A priority Critical patent/CN104919698B/zh
Priority to US14/762,344 priority patent/US9780714B2/en
Publication of WO2014115382A1 publication Critical patent/WO2014115382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage

Definitions

  • the present invention relates to a motor control device for an electric compressor used in a vehicle air conditioner or the like.
  • An electric compressor compresses and supplies a refrigerant in a refrigeration cycle for air conditioning in a vehicle, and is generally disposed in an engine room of a vehicle.
  • Such an electric compressor includes a compression mechanism section that compresses refrigerant, a motor that rotates a rotor of the compression mechanism section, and an inverter that drives the motor by supplying electric power, and these are installed in a case. ing.
  • a connector is connected to the case of the electric compressor, and power from a battery as a power source is supplied.
  • Patent Document 1 is conventionally disclosed.
  • an insertion / extraction detection circuit is provided in the connector, and when the state in which the connector is disconnected is detected, the voltage stored in the smoothing capacitor is discharged.
  • the present invention has been proposed in view of the above-described circumstances, and an object thereof is to provide a motor control device and an electric compressor that can reduce the cost by preventing an increase in size and complexity of a connector. To do.
  • the present invention provides a motor control device that controls a motor of an electric compressor connected to a power source via a connector, and that detects detection current that is supplied to the motor at a predetermined time period.
  • a current detector a voltage detector that detects a voltage across a smoothing capacitor that smoothes a voltage from the power source when the detection current is supplied by the detection current supplier, and a voltage detector that is detected by the voltage detector;
  • An insertion / removal determination unit that determines insertion / removal of the connector based on a change in voltage between both ends of the smoothing capacitor is provided.
  • the insertion / extraction determination unit determines that the connector has been disconnected when the voltage across the smoothing capacitor has decreased by a predetermined value or more.
  • the discharge unit further discharges the smoothing capacitor to reduce the voltage across the smoothing capacitor to a predetermined value or less.
  • an electric compressor equipped with the motor control device may be used.
  • FIG. 1 is a block diagram illustrating a configuration of an electric compressor including a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of the IGBT switching device.
  • FIG. 3 is a flowchart showing a processing procedure of connector insertion / removal determination processing by the motor control device according to the embodiment of the present invention.
  • FIG. 4 is a timing chart for explaining connector insertion / extraction determination processing by the motor control device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of an electric compressor including a motor control device according to the present embodiment.
  • the electric compressor 1 includes an inverter 7 connected to a power source 3 via a connector 5, a motor 9 driven by the inverter 7, and a compression mechanism unit 11 driven by the motor 9. ing.
  • the power source 3 is a DC power source such as an in-vehicle battery, is connected to the connector 5 by a harness, and supplies DC power to the inverter 7.
  • the connector 5 is electrically connected to the power source 3 and the inverter 7 by being attached to a socket provided in the electric compressor 1.
  • the inverter 7 converts the DC power supplied from the power supply 3 into three-phase AC power and supplies it to the motor 9.
  • the smoothing capacitor 13 smoothes the DC voltage supplied from the power source 3, and the voltage detector 15 detects the voltage across the smoothing capacitor 13.
  • the IGBT switching device 17 outputs a three-phase alternating current having a UVW phase by a switching element provided therein to drive the motor 9 by PWM.
  • the IGBT switching device 17 includes six IGBTs 1 to 6 which are switching elements, and allows current to flow in any phase of UVW by combining ON and OFF of these IGBTs 1 to 6. Yes.
  • the current is passed through the UV phase by turning on the IGBT 3 and the IGBT 5.
  • the value of the current flowing in the UV phase can be determined by the time to turn on the IGBT 3 and the IGBT 5.
  • the motor control device 19 controls the drive of the motor 9 by controlling the IGBT switching device 17, and also performs the insertion / extraction determination process of the connector 5 described later.
  • the motor control device 19 includes a detection current supply unit 21, a voltage detection unit 23, an insertion / extraction determination unit 25, and a discharge unit 27.
  • the detection current supply unit 21 supplies the detection current to the motor 9 at a predetermined time period by controlling the IGBT switch 17.
  • the voltage detection unit 23 acquires the voltage across the smoothing capacitor 13 detected by the voltage detector 15 when the detection current is supplied by the detection current supply unit 21.
  • the insertion / removal determination unit 25 determines the insertion / removal of the connector 5 based on the change in the voltage across the smoothing capacitor 13 acquired by the voltage detection unit 23. In particular, the insertion / extraction determination unit 25 determines that the connector 5 has been disconnected when the voltage across the smoothing capacitor 13 has decreased by a predetermined value or more.
  • the discharge unit 27 discharges the smoothing capacitor 13 and reduces the voltage across the smoothing capacitor 13 to a specified value or less.
  • the motor control device 19 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU, and peripheral devices. By executing a specific program, the detection current supply unit 21 and the voltage detection unit 23 are configured. It operates as the insertion / extraction determination unit 25 and the discharge unit 27. In the present embodiment, the case where the motor control device 19 is applied to an electric compressor has been described. However, the present invention can also be applied to control of a motor installed in another device.
  • the motor 9 is, for example, a three-phase AC synchronous motor, and is driven by AC power output from the inverter 7.
  • a three-phase AC motor is shown as an example, but a three-phase AC motor may not be three-phase as long as it is a multi-phase AC motor.
  • the compression mechanism 11 includes a cylinder housing and a rotor, and the rotor is rotated by the rotation of the motor 9 to compress the refrigerant.
  • the detection current supply unit 21 supplies the detection current to the motor 9 at a predetermined time period by turning on and off the switching element of the IGBT switching device 17.
  • the detection current is supplied at times t1, t2, t3, and t5 in a time period T.
  • This time period T is set so that a detection current flows in an arbitrary phase of the motor 9, and is set to a length of about 0.1 to 10 milliseconds.
  • the time period T is set so that the detection current flows in the UV phase of the motor 9.
  • the current value of the detection current is set to a very small value, so that the reactive current can be minimized.
  • step S20 the voltage detector 23 detects the voltage across the smoothing capacitor 13 when the detection current is supplied. Since the voltage across the smoothing capacitor 13 is detected by the voltage detector 15, the voltage across the smoothing capacitor 13 can be detected by obtaining the voltage from the voltage detector 15.
  • step S ⁇ b> 30 the insertion / extraction determination unit 25 determines whether the connector 5 is inserted / removed based on a change in the voltage across the smoothing capacitor 13. Specifically, it is determined whether or not the voltage across the smoothing capacitor 13 has decreased by a predetermined value or more. If the voltage has not decreased by a predetermined value or more, it is determined that the connector 5 is in a connected state. On the other hand, when the voltage across the smoothing capacitor 13 decreases by a predetermined value or more, it is determined that the connector 5 is disconnected. In the state where the connector 5 is connected, since the voltage is supplied from the power source 3, the voltage across the smoothing capacitor 13 does not change even when the detection current is supplied.
  • the insertion / extraction of the connector 5 can be determined by periodically flowing the detection current and monitoring the voltage across the smoothing capacitor 13.
  • the voltage across the smoothing capacitor 13 does not change even when a detection current is passed.
  • the voltage across the smoothing capacitor 13 decreases when the detection current is passed at time t5.
  • the magnitude of the decrease in the voltage across the smoothing capacitor 13 is determined according to the value of the detected current, and therefore a predetermined value for determining insertion / removal may be set according to the detected current.
  • step S30 whether or not the connector 5 is inserted / removed is determined in step S30, and if the voltage across the smoothing capacitor 13 has not decreased by a predetermined value or more, it is determined that the connector 5 is in a connected state, and step S10. Returning to step S10, steps S10 to S30 are repeated.
  • the insertion / removal determination unit 25 determines that the connector 5 has been detached and proceeds to step S40.
  • step S40 the discharge unit 27 discharges the smoothing capacitor 13 to reduce the voltage across the smoothing capacitor 13 to a specified value or less.
  • the discharge unit 27 controls the switching element of the IGBT switching device 17 to cause a discharge current as shown in FIG. 4 to flow, thereby lowering the voltage across the smoothing capacitor 13 to a specified value or less.
  • the current value of the discharge current may be set according to the capacity of the smoothing capacitor 13.
  • the detection current is supplied to the motor at a predetermined time period, and the insertion / extraction of the connector 5 is determined by the change in the voltage across the smoothing capacitor 13 at this time. To do. Thereby, it is not necessary to provide an insertion / extraction detection circuit in the connector 5, and the size and complexity of the connector 5 can be prevented and the cost can be reduced.
  • the motor control device 19 it is determined that the connector 5 has been detached when the voltage across the smoothing capacitor 13 drops by a predetermined value or more, so by monitoring the voltage across the smoothing capacitor 13 The insertion / extraction of the connector 5 can be reliably detected.
  • the smoothing capacitor 13 when it is determined that the connector 5 is detached, the smoothing capacitor 13 is discharged to reduce the voltage across the smoothing capacitor 13 to a specified value or less. As a result, when the connector 5 is detached, the voltage across the smoothing capacitor 13 can be immediately reduced, and safety can be improved.
  • the motor control device 19 according to this embodiment is applied to the electric compressor 1, the connector 5 can be prevented from being enlarged and complicated, so that the cost of the electric compressor 1 can be reduced. Particularly, when the electric compressor 1 is mounted on a vehicle, space saving is required. Therefore, if the motor control device 19 according to this embodiment can be applied to the electric compressor 1 to prevent the connector 5 from being enlarged, the space can be saved. It is effective in realizing.
  • the detection current is supplied to the motor at a predetermined time period, and the insertion / extraction of the connector is determined by the change in the voltage of the smoothing capacitor at this time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Inverter Devices (AREA)
  • Compressor (AREA)

Abstract

 本発明のモータ制御装置19は、所定の時間周期でモータ9に検知電流を供給し、検知電流が供給されたときに平滑コンデンサ13の両端電圧を検出して、この両端電圧の変化によってコネクタ5の挿抜を判定する。そして、コネクタ5が離脱していると判定された場合には平滑コンデンサ13を放電して平滑コンデンサ13の両端電圧を規定値以下まで低下させる。

Description

モータ制御装置及び電動コンプレッサ
 本発明は、車両用エアコン等に用いられる電動コンプレッサのモータ制御装置に関する。
 電動コンプレッサは、車内空調を行うために、冷凍サイクルの中で冷媒を圧縮して供給するものであり、一般的には車両のエンジンルーム内に配置されている。このような電動コンプレッサは、冷媒を圧縮する圧縮機構部と、圧縮機構部のロータを回転させるモータと、モータに電力を供給して駆動するインバータとを備えており、これらがケース内に設置されている。電動コンプレッサのケースにはコネクタが接続されており、電源であるバッテリからの電力が供給されている。
 ここで、電源に接続されたコネクタが活線状態において抜かれると、電源からの電圧供給が停止するので、平滑コンデンサに蓄えられた電圧はインバータ内部の素子からの漏れ電流によって放電する。しかし、放電量が小さいため、平滑コンデンサの電圧が安全な値まで低下するにはタイムラグが発生し、感電する恐れがあった。そこで、このような感電を防止するために、従来では特許文献1が開示されている。この特許文献1に開示された電源装置ではコネクタに挿抜検知回路を設け、コネクタが抜けている状態を検知すると、平滑コンデンサに蓄えられた電圧を放電していた。
特開平7-325629号公報
 しかしながら、上述した特許文献1に開示された電源装置では、コネクタに挿抜検知回路を設けていたので、コネクタ自体が大型化して構造が複雑になり、これによって高コストになってしまうという問題点があった。
そこで、本発明は、上述した実情に鑑みて提案されたものであり、コネクタの大型化及び複雑化を防止してコストを低減することのできるモータ制御装置及び電動コンプレッサを提供することを目的とする。
 上述した課題を解決するために、本発明は、電源にコネクタを介して接続された電動コンプレッサのモータを制御するモータ制御装置であって、所定の時間周期で前記モータに検知電流を供給する検知電流供給部と、前記検知電流供給部によって前記検知電流が供給されたときに、前記電源からの電圧を平滑する平滑コンデンサの両端電圧を検出する電圧検出部と、前記電圧検出部によって検出された前記平滑コンデンサの両端電圧の変化によって前記コネクタの挿抜を判定する挿抜判定部とを備えたことを特徴とする。
 また、上記挿抜判定部は、前記平滑コンデンサの両端電圧が所定値以上低下した場合に前記コネクタが離脱したと判定する。
 さらに、前記挿抜判定部によって前記コネクタが離脱していると判定された場合に、前記平滑コンデンサを放電して前記平滑コンデンサの両端電圧を規定値以下まで低下させる放電部をさらに備えている。
 また、上記モータ制御装置を備えた電動コンプレッサとしてもよい。
図1は、本発明の一実施形態に係るモータ制御装置を備えた電動コンプレッサの構成を示すブロック図である。 図2は、IGBTスイッチング器の構成を示す図である。 図3は、本発明の一実施形態に係るモータ制御装置によるコネクタの挿抜判定処理の処理手順を示すフローチャートである。 図4は、本発明の一実施形態に係るモータ制御装置によるコネクタの挿抜判定処理を説明するためのタイミングチャートである。
 以下、本発明を適用した一実施形態について図面を参照して説明する。
 [電動コンプレッサの構成]
 図1は本実施形態に係るモータ制御装置を備えた電動コンプレッサの構成を示すブロック図である。図1に示すように、電動コンプレッサ1は、電源3にコネクタ5を介して接続されたインバータ7と、インバータ7によって駆動されるモータ9と、モータ9によって駆動される圧縮機構部11とを備えている。
 電源3は、車載バッテリ等の直流電源であり、ハーネスによってコネクタ5に接続され、インバータ7に直流電力を供給している。
 コネクタ5は、電動コンプレッサ1に設けられたソケットに装着することにより、電源3とインバータ7とを電気的に接続する。
 インバータ7は、電源3から供給された直流電力を3相の交流電力に変換してモータ9に供給しており、平滑コンデンサ13と、電圧検出器15と、IGBTスイッチング器17と、モータ制御装置19とを備えている。ここで、平滑コンデンサ13は電源3から供給された直流電圧を平滑化しており、電圧検出器15は平滑コンデンサ13の両端電圧を検出している。
 IGBTスイッチング器17は、内部に備えたスイッチング素子によってUVW相を有する3相交流を出力してモータ9をPWM駆動する。例えば、図2に示すように、IGBTスイッチング器17は、スイッチング素子である6つのIGBT1~6を備え、これらのIGBT1~6のON、OFFを組み合わせることによってUVWの任意の相に電流を流している。図2では、IGBT3とIGBT5をONすることによって、UV相に電流を流している。このとき、UV相に流れる電流値は、IGBT3とIGBT5をONする時間によって決定することができる。
 モータ制御装置19は、IGBTスイッチング器17を制御することによってモータ9の駆動を制御するとともに、後述するコネクタ5の挿抜判定処理を実行している。ここで、モータ制御装置19は、検知電流供給部21と、電圧検出部23と、挿抜判定部25と、放電部27とを備えている。
 検知電流供給部21は、IGBTスイッチング器17を制御することによって所定の時間周期でモータ9に検知電流を供給する。
 電圧検出部23は、検知電流供給部21によって検知電流が供給されたときに、電圧検出器15で検出された平滑コンデンサ13の両端電圧を取得する。
 挿抜判定部25は、電圧検出部23が取得した平滑コンデンサ13の両端電圧の変化によってコネクタ5の挿抜を判定する。特に、挿抜判定部25は、平滑コンデンサ13の両端電圧が所定値以上低下した場合にコネクタ5が離脱したと判定する。
 放電部27は、挿抜判定部25によってコネクタ5が離脱していると判定された場合に、平滑コンデンサ13を放電して平滑コンデンサ13の両端電圧を規定値以下まで低下させる。
 ここで、モータ制御装置19は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路と周辺機器から構成されており、特定のプログラムを実行することにより、検知電流供給部21、電圧検出部23、挿抜判定部25及び放電部27として動作する。尚、本実施形態では、モータ制御装置19を電動コンプレッサに適用した場合について説明しているが、その他の装置に設置されたモータの制御に適用することも可能である。
 モータ9は、例えば3相交流同期モータであり、インバータ7から出力される交流電力によって駆動されている。本実施形態では3相の交流モータを一例として示しているが、複数相の交流モータであれば3相でなくてもよい。
 圧縮機構部11は、シリンダハウジングとロータとを備え、モータ9の回転によってロータが回転して冷媒の圧縮を行っている。
 [コネクタの挿抜判定処理の手順]
 次に、本実施形態に係るモータ制御装置19によるコネクタの挿抜判定処理の手順を図3のフローチャート及び図4のタイミングチャートを参照して説明する。
 図3に示すように、まずステップS10において、検知電流供給部21は、IGBTスイッチング器17のスイッチング素子をON、OFFすることによって所定の時間周期でモータ9に検知電流を供給する。例えば、図4に示すように時間周期Tで、時刻t1、t2、t3、t5に検知電流を供給する。この時間周期Tは、モータ9の任意の相に検知電流が流れるように設定されており、0.1~10m秒程度の長さに設定されている。例えば、本実施形態ではモータ9のUV相に検知電流が流れるように時間周期Tが設定されている。また、検知電流の電流値は微小な値に設定されており、これによって無効電流を最小限に抑えることができる。
 次に、ステップS20において、電圧検出部23は、検知電流が供給されたときに平滑コンデンサ13の両端電圧を検出する。平滑コンデンサ13の両端電圧は、電圧検出器15で検出されているので、電圧検出器15から取得することによって平滑コンデンサ13の両端電圧を検出することができる。
 次に、ステップS30において、挿抜判定部25は、平滑コンデンサ13の両端電圧の変化によってコネクタ5の挿抜を判定する。具体的には、平滑コンデンサ13の両端電圧が所定値以上低下したか否かを判定し、所定値以上低下していない場合にはコネクタ5は接続された状態であると判定する。一方、平滑コンデンサ13の両端電圧が所定値以上低下した場合にはコネクタ5が離脱した状態であると判定する。コネクタ5が接続された状態では、電源3から電圧が供給されているので、検知電流を流しても平滑コンデンサ13の両端電圧は変化しない。しかし、コネクタ5が離脱した状態では、検知電流を流すと、平滑コンデンサ13に蓄えられた電圧が放電されるので、平滑コンデンサ13の両端電圧は低下する。したがって、検知電流を周期的に流して平滑コンデンサ13の両端電圧を監視することにより、コネクタ5の挿抜を判定することができる。
 例えば、図4に示すように時刻t1~t3では、コネクタ5が接続された状態であるため、検知電流を流しても平滑コンデンサ13の両端電圧は変化しない。しかし、時刻t4にコネクタ5が離脱すると、時刻t5に検知電流を流した際に平滑コンデンサ13の両端電圧は低下する。このとき、平滑コンデンサ13の両端電圧が低下する大きさは、検知電流の値に応じて決まるので、挿抜を判定するための所定値についても検知電流に応じて設定すればよい。
 このようにしてステップS30においてコネクタ5の挿抜の判定が行われ、平滑コンデンサ13の両端電圧が所定値以上低下していない場合には、コネクタ5は接続された状態であると判定してステップS10に戻り、ステップS10~S30の処理を繰り返し実行する。
 一方、平滑コンデンサ13の両端電圧が所定値以上低下した場合には、挿抜判定部25はコネクタ5が離脱したと判定してステップS40に進む。
 ステップS40では、放電部27が平滑コンデンサ13を放電して平滑コンデンサ13の両端電圧を規定値以下まで低下させる。具体的には、放電部27がIGBTスイッチング器17のスイッチング素子を制御することによって、図4に示すような放電電流を流し、これによって平滑コンデンサ13の両端電圧を規定値以下まで低下させる。放電電流の電流値については、平滑コンデンサ13の容量に応じて設定すればよい。
 このようにして平滑コンデンサ13の放電が完了すると、本実施形態に係るコネクタの挿抜判定処理は終了する。
 以上詳細に説明したように、本実施形態に係るモータ制御装置19では、所定の時間周期でモータに検知電流を供給し、このときの平滑コンデンサ13の両端電圧の変化によってコネクタ5の挿抜を判定する。これにより、コネクタ5に挿抜検知回路を設ける必要がなくなり、コネクタ5の大型化及び複雑化を防止してコストを低減することができる。
 また、本実施形態に係るモータ制御装置19によれば、平滑コンデンサ13の両端電圧が所定値以上低下した場合にコネクタ5が離脱したと判定するので、平滑コンデンサ13の両端電圧を監視することによってコネクタ5の挿抜を確実に検出することができる。
 さらに、本実施形態に係るモータ制御装置19では、コネクタ5が離脱していると判定した場合に、平滑コンデンサ13を放電して平滑コンデンサ13の両端電圧を規定値以下まで低下させる。これにより、コネクタ5が離脱すると、直ちに平滑コンデンサ13の両端電圧を低下させることができ、安全性を高めることができる。
 また、本実施形態に係るモータ制御装置19を電動コンプレッサ1に適用すれば、コネクタ5の大型化及び複雑化を防止できるので、電動コンプレッサ1のコストを低減することができる。特に、電動コンプレッサ1を車両に搭載する場合には、省スペースが要求されるので、本実施形態に係るモータ制御装置19を電動コンプレッサ1に適用してコネクタ5の大型化を防止できれば、省スペースの実現に有効である。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 本出願は、2013年1月25日に出願された日本国特許願第2013-012166号に基づく優先権を主張しており、この出願の内容が参照により本発明の明細書に組み込まれる。
 本発明の一態様に係るモータ制御装置及び電動コンプレッサによれば、所定の時間周期でモータに検知電流を供給し、このときの平滑コンデンサの電圧の変化によってコネクタの挿抜を判定する。これにより、コネクタに挿抜検知回路を設ける必要がなくなり、コネクタの大型化及び複雑化を防止してコストを低減することができる。したがって、本発明の一態様に係るモータ制御装置及び電動コンプレッサは、産業上利用可能である。
 1 電動コンプレッサ
 3 電源
 5 コネクタ
 7 インバータ
 9 モータ
 11 圧縮機構部
 13 平滑コンデンサ
 15 電圧検出器
 17 IGBTスイッチング器
 19 モータ制御装置
 21 検知電流供給部
 23 電圧検出部
 25 挿抜判定部
 27 放電部

Claims (5)

  1.  電源にコネクタを介して接続された電動コンプレッサのモータを制御するモータ制御装置であって、
     所定の時間周期で前記モータに検知電流を供給する検知電流供給部と、
     前記検知電流供給部によって前記検知電流が供給されたときに、前記電源からの電圧を平滑する平滑コンデンサの両端電圧を検出する電圧検出部と、
     前記電圧検出部によって検出された前記平滑コンデンサの両端電圧の変化によって前記コネクタの挿抜を判定する挿抜判定部と
    を備えたことを特徴とするモータ制御装置。
  2.  前記挿抜判定部は、前記平滑コンデンサの両端電圧が所定値以上低下した場合に前記コネクタが離脱したと判定することを特徴とする請求項1に記載のモータ制御装置。
  3.  前記挿抜判定部によって前記コネクタが離脱していると判定された場合に、前記平滑コンデンサを放電して前記平滑コンデンサの両端電圧を規定値以下まで低下させる放電部をさらに備えたことを特徴とする請求項1または2に記載のモータ制御装置。
  4.  請求項1~3のいずれか1項に記載されたモータ制御装置を備えた電動コンプレッサ。
  5.  電源にコネクタを介して接続された電動コンプレッサのモータを制御するモータ制御装置であって、
     所定の時間周期で前記モータに検知電流を供給する検知電流供給手段と、
     前記検知電流供給手段によって前記検知電流が供給されたときに、前記電源からの電圧を平滑する平滑コンデンサの両端電圧を検出する電圧検出手段と、
     前記電圧検出手段によって検出された前記平滑コンデンサの両端電圧の変化によって前記コネクタの挿抜を判定する挿抜判定手段と
    を備えたことを特徴とするモータ制御装置。
PCT/JP2013/078140 2013-01-25 2013-10-17 モータ制御装置及び電動コンプレッサ WO2014115382A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380070586.2A CN104919698B (zh) 2013-01-25 2013-10-17 电动机控制装置以及电动压缩机
US14/762,344 US9780714B2 (en) 2013-01-25 2013-10-17 Motor control device and electric compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-012166 2013-01-25
JP2013012166A JP5953240B2 (ja) 2013-01-25 2013-01-25 モータ制御装置及び電動コンプレッサ

Publications (1)

Publication Number Publication Date
WO2014115382A1 true WO2014115382A1 (ja) 2014-07-31

Family

ID=51227188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078140 WO2014115382A1 (ja) 2013-01-25 2013-10-17 モータ制御装置及び電動コンプレッサ

Country Status (4)

Country Link
US (1) US9780714B2 (ja)
JP (1) JP5953240B2 (ja)
CN (1) CN104919698B (ja)
WO (1) WO2014115382A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696470B2 (ja) 2017-03-24 2020-05-20 株式会社豊田自動織機 電動圧縮機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325629A (ja) * 1994-05-31 1995-12-12 Nemitsuku Ramuda Kk 電源装置
JP2002186259A (ja) * 2000-12-12 2002-06-28 Murata Mach Ltd 活線挿抜回路及び単錘駆動システム
JP2002315306A (ja) * 2001-04-16 2002-10-25 Matsushita Electric Ind Co Ltd 自動車用空調装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729228B2 (ja) * 1997-10-17 2005-12-21 サンデン株式会社 電気自動車用空調装置の漏電防止制御装置
JP3734236B2 (ja) * 1997-12-10 2006-01-11 サンデン株式会社 電気自動車用空調装置の電源入力回路
JP4595248B2 (ja) * 2001-06-06 2010-12-08 パナソニック株式会社 自動車用空調装置
JP5284028B2 (ja) * 2008-10-01 2013-09-11 株式会社ジェイテクト 電動パワーステアリング装置
JP5135161B2 (ja) * 2008-10-17 2013-01-30 カルソニックカンセイ株式会社 電動コンプレッサ
JP5434381B2 (ja) * 2009-08-31 2014-03-05 株式会社デンソー 車載電動機の駆動装置
JP2012205459A (ja) * 2011-03-28 2012-10-22 Panasonic Corp 電動コンプレッサ
JP4898964B1 (ja) * 2011-03-28 2012-03-21 パナソニック株式会社 電動コンプレッサ
JP2012207641A (ja) * 2011-03-30 2012-10-25 Panasonic Corp 電動コンプレッサの駆動装置
KR101804713B1 (ko) * 2013-10-18 2018-01-10 미쓰비시덴키 가부시키가이샤 직류 전원 장치, 전동기 구동 장치, 공기 조화기 및 냉장고

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325629A (ja) * 1994-05-31 1995-12-12 Nemitsuku Ramuda Kk 電源装置
JP2002186259A (ja) * 2000-12-12 2002-06-28 Murata Mach Ltd 活線挿抜回路及び単錘駆動システム
JP2002315306A (ja) * 2001-04-16 2002-10-25 Matsushita Electric Ind Co Ltd 自動車用空調装置

Also Published As

Publication number Publication date
US9780714B2 (en) 2017-10-03
JP2014143879A (ja) 2014-08-07
CN104919698A (zh) 2015-09-16
JP5953240B2 (ja) 2016-07-20
US20150357957A1 (en) 2015-12-10
CN104919698B (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
CN106464172B (zh) 压缩机驱动装置、具有它的压缩机和具有它们的制冷循环装置
US10158318B2 (en) Control device for in-vehicle electric motor
KR101976983B1 (ko) 차재용 전동 압축기
US9692332B2 (en) Power conversion device
JP2015136275A (ja) 車両用制御装置
WO2008149721A1 (ja) 電動圧縮機の制御装置
JP5822745B2 (ja) 気体圧縮装置
KR100983932B1 (ko) 제어 장치
JP2007060855A (ja) 空気調和装置
JP5490612B2 (ja) 空気調和装置
JP5851522B2 (ja) モータ駆動装置
JP5953240B2 (ja) モータ制御装置及び電動コンプレッサ
CN111615785A (zh) 电动压缩机
US20170310269A1 (en) Control apparatus and control method of ac rotary machine
JP6203126B2 (ja) 密閉型圧縮機駆動装置
JP2008070075A (ja) 空気調和機
JP6935696B2 (ja) 空気調和機
US20120100012A1 (en) Method for controlling electric compressor
JP2008099507A (ja) 空気調和機用インバータ装置
JP2018174630A (ja) 車載用電動圧縮機
JP2008099505A (ja) 空気調和機用インバータ装置
CN114599881B (zh) 控制装置、电动压缩机、控制方法及计算机可读取的记录介质
JP6890072B2 (ja) 電動圧縮機の制御装置、電動圧縮機、移動体用の空気調和装置及び電動圧縮機の制御方法
JP2004286239A (ja) 冷却装置の制御方法
JP2006288125A (ja) インバータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872989

Country of ref document: EP

Kind code of ref document: A1