WO2014115375A1 - 希土類磁石用スパッタリングターゲット及びその製造方法 - Google Patents
希土類磁石用スパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2014115375A1 WO2014115375A1 PCT/JP2013/076186 JP2013076186W WO2014115375A1 WO 2014115375 A1 WO2014115375 A1 WO 2014115375A1 JP 2013076186 W JP2013076186 W JP 2013076186W WO 2014115375 A1 WO2014115375 A1 WO 2014115375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- earth magnet
- rare earth
- target
- neodymium
- rare
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
- H01F41/183—Sputtering targets therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
Definitions
- the present invention relates to a sputtering target suitable for manufacturing a rare earth magnet film by a sputtering method or a pulse laser deposition method, and a method for manufacturing the sputtering target.
- neodymium magnets have the highest magnetic energy product among existing magnets, so they can be applied to energy fields such as MEMS (Micro Electro Mechanical Systems) and energy harvest (energy harvesting), and medical equipment fields. Expected.
- MEMS Micro Electro Mechanical Systems
- energy harvest energy harvesting
- Such a rare-earth magnet thin film is produced using a PVD (Physical Vapor Deposition) method such as a sputtering method (Patent Document 1, Non-Patent Document 1) or a pulse laser deposition method (Patent Document 2, Non-Patent Document 2).
- PVD Physical Vapor Deposition
- a sputtering method Patent Document 1, Non-Patent Document 1
- a pulse laser deposition method Patent Document 2, Non-Patent Document 2
- the rare-earth magnet thin films produced by these methods have not yet achieved the same magnetic properties as bulk magnets, and have not yet been commercialized at this stage.
- the target material used when producing the thin film of the rare earth magnet has high purity, fine and uniform crystal grains.
- purity it is said that oxygen, which is a gas component, has a great influence on magnetic properties (Patent Document 4, Non-Patent Document 4).
- the composition variation of the thin film is large, it will affect the magnetic properties, so there are few voids (voids) and segregation in the target material, and the composition ratio of the constituent elements is uniform in the thickness direction of the target material. Known to be important.
- a melting method with high purity and high density can be obtained, but since it is difficult to control the particle size and composition, it is usually produced by a sintering method excellent in controlling the particle size and composition.
- the sintering method has more manufacturing processes than the melting method, and there is a problem in the manufacturing process that oxygen which has a great influence on the magnetic properties of the rare-earth magnet thin film is likely to be mixed. Is required.
- JP 2012-207274 A JP 2009-091613 PR International Publication No. 2005/091315 Pamphlet JP 2009-231391 A
- the present invention relates to a sintered compact target capable of obtaining a rare earth magnet thin film, particularly a neodymium magnet (Nd—Fe—B magnet) thin film having excellent mass production and reproducibility and good magnetic properties, and a method for producing the same.
- a rare earth magnet thin film particularly a neodymium magnet (Nd—Fe—B magnet) thin film having excellent mass production and reproducibility and good magnetic properties
- the issue is to provide.
- the present inventor has conducted extensive research and has improved the magnetic properties of the rare-earth magnet thin film by strictly controlling the crystal grain size, relative density, composition variation, and impurity concentration of the target. The knowledge that it was possible to get it.
- the present invention 1) A rare earth magnet target having neodymium, iron and boron as essential components, wherein the average crystal grain size is 10 to 200 ⁇ m, 2) The rare earth magnet target according to 1) above, wherein the relative density is 97% or more, 3) The rare earth magnet target according to 1) or 2) above, wherein the composition variation of neodymium is within 10% as a coefficient of variation with respect to the thickness direction of the target, 4) The rare earth magnet target according to any one of 1) to 3) above, wherein the oxygen content is 1000 wtppm or less, 5) A raw material mainly composed of neodymium, iron, and boron is melted and cast in a vacuum to produce an alloy ingot.
- the alloy ingot is finely pulverized by a gas atomizing method using an inert gas.
- the present invention enables stable film formation by a sputtering method or a pulse laser deposition method. It has an excellent effect that it is possible to improve the magnetic characteristics and improve productivity.
- FIG. 1 It is a figure which shows the relationship between sintering pressure and sintering temperature, and a sintering characteristic. It is a figure which shows the particle size distribution of the atomized powder in Example 1. 3 is a view showing an external appearance photograph of a sintered compact target of Example 1. FIG. It is a figure which shows the composition distribution of the thickness direction of the sintered compact target of Example 1. FIG.
- the rare earth magnet target of the present invention contains neodymium (Nd), iron (Fe) and boron (B) as essential components, and if necessary, rare earth elements such as Dy, Pr, Tb, Ho, Sm, Co, Cu
- a transition metal element such as Cr, Ni, a typical metal element such as Al, or the like can be added as a component composition of a rare earth magnet.
- the target of the present invention is characterized by comprising fine and uniform crystal grains having an average crystal grain size of 10 to 200 ⁇ m.
- the coercive force is inversely proportional to the logarithm of the square of the crystal grain size, it is effective to refine the crystal grains, and the average crystal grain size is 200 ⁇ m or less.
- the crystal grains are made in the gas atomizing step, and the oxygen content may increase as the surface area of the gas atomized powder increases. Therefore, the average crystal grain size is set to 10 ⁇ m or more.
- the rare earth magnet target of the present invention is characterized in that the relative density is 97% or more. More preferably, it is 99% or more.
- the relative density is 97% or more. More preferably, it is 99% or more.
- the target of the present invention is characterized in that the composition variation of neodymium is small in the thickness direction, and preferably the variation coefficient is within 10%.
- the target of the present invention is a high-purity target with a low impurity content, and particularly, the oxygen content as a gas component is set to 1000 wtppm or less. Since oxygen is known to have a great influence on the magnetic properties among the gas components, it is possible to obtain stable and good magnetic properties by reducing this as much as possible.
- the rare earth magnet target of the present invention can be produced, for example, as follows. First, neodymium (Nd) and iron (Fe) having a purity of 3N5 (99.95%) or higher, preferably 4N (99.99%), more preferably 4N5 (99.995%) or higher, and 3N (99.9). %) Or more boron (B) or ferroboron is prepared as an essential raw material.
- these raw materials are melted and cast in a high vacuum of about 2 ⁇ 10 ⁇ 4 Torr or less to produce an alloy ingot. Thereafter, the alloy ingot is redissolved and then gas atomized with an inert gas to produce a fine powder.
- a sintered body can be produced by sintering the fine powder obtained in this manner by hot pressing or hot isostatic pressing. Then, the sintered body can be machined such as surface polishing to produce a rare earth magnet target for forming a thin film.
- the fine powder when producing the fine powder, as described above, it is preferable to use a gas atomizing method in which an inert gas is jetted at high speed from an nozzle in an inert atmosphere and rapidly solidified. If there is residual oxygen in the atmosphere, it becomes easy to form a natural oxide film on the surface of the fine powder during rapid solidification. After inserting the raw material into the atomizer, vacuuming is performed immediately before introducing an inert gas. This is very important.
- the average crystal grain size can be controlled to 10 to 200 ⁇ m.
- the average crystal grain size means a diameter corresponding to a cumulative 50% of the measured particle size distribution.
- the obtained fine powder is sintered by hot pressing or hot isostatic pressing.
- sintering is performed in an inert atmosphere or a high vacuum of about 5 ⁇ 10 ⁇ 4 Torr or less.
- the pressure was 15 MPa
- an unsintered portion remained at a temperature of 600 ° C., but the entire sintering was possible at a temperature of 650 ° C. or higher.
- the sintering temperature and pressure were increased, partial seizure occurred in the mold, and the pressure at which seizure did not occur at a temperature of 950 ° C. was 25 MPa.
- the sintering conditions in which sintering without seizure is possible and the relative density is 97% or more are as follows: temperature: 700 ° C. to 950 ° C., pressure: 10 MPa to 25 MPa. It is a range.
- the sintered body produced as described above can be processed into a target shape suitable for the application by mechanical processing such as grinding and polishing.
- the thin film which consists of rare earth magnets can be produced for the produced target by sputtering method or pulse laser deposition method.
- Example 1 As raw materials, neodymium having a purity of 3N5, iron having a purity of 4N, and ferroboron having a purity of 2N were prepared. All the raw materials were block-shaped. These were weighed so as to have a composition of Nd15-Fe75-B10, and then put into a cold crucible furnace of a water-cooled copper crucible and melted at 1320 ° C. for 60 minutes or more under a vacuum of 1 ⁇ 10 ⁇ 4 Torr. An alloy ingot of about 6 kg was produced.
- the apparatus was evacuated to 1 ⁇ 10 ⁇ 2 Torr, an inert gas was introduced, the temperature was raised to 1420 ° C., and the mixture was held for about 10 minutes. Thereafter, an inert gas was sprayed at about 1.5 MPa into the dropped molten metal to obtain a fine powder having an average particle size of about 60 ⁇ m as shown in FIG.
- this fine powder was filled in a press mold and brought into a vacuum atmosphere, and then pressurized to 15 MPa, and sintered at a temperature of 900 ° C. for 2 hours. Then, after cooling this to normal temperature, the outer peripheral part and the upper and lower surfaces were ground and polished to produce a disk-shaped target having a diameter of 76 mm and a thickness of 4 mm as shown in FIG. As a result of observing this target with SEM, the average crystal grain size was about 70 ⁇ m. Further, the relative density of this target material was examined by the Archimedes method, and as a result, it was 99%.
- the composition variation of Nd, Fe, and B in the thickness direction of the prepared target was measured using EPMA, and the range of 1.54 mm from the surface was measured at intervals of 4 ⁇ m.
- the result is shown in FIG.
- the measurement of EPMA is performed by cutting a disk-shaped target material in the thickness direction, irradiating the cut surface with an electron beam, and scanning in the depth direction.
- the compositional variation of the component elements was investigated.
- the Nd composition variation coefficient was 8.0%
- the Fe composition variation coefficient was 7.8%
- the B composition variation coefficient was 8.5%. It was found that the coefficient of variation was small and the target material was excellent in the uniformity of each component composition.
- the gas component concentration of the target by the LECO method, the gas component was reduced to 920 ppm for oxygen, 750 ppm for carbon, 10 ppm for nitrogen, and 50 ppm for hydrogen. *
- this target is attached to a backing plate, and a Ta buffer layer, an NdFeB layer (40 nm), and a Ta cap layer are formed on a Si substrate on which a thermal oxide film is formed by sputtering under an Ar pressure of 1 ⁇ 10 ⁇ 2 Torr. Continuous film formation was performed.
- the Ta layer was formed using a tantalum target separately. As a result of BH curve measurement for the rare-earth magnet thin film, a good magnetic characteristic with a coercive force of 1.1 T was obtained.
- Example 1 Unlike Example 1, a target was prepared by a dissolution method. As raw materials, neodymium with a purity of 3N5, iron with a purity of 4N, and ferroboron with a purity of 2N were prepared. An alloy ingot of about 6 kg was produced by melting at 1320 ° C. for 60 minutes or more under a vacuum of 1 ⁇ 10 ⁇ 4 Torr. In order to prevent the occurrence of microcracks in the ingot, the cooling method was furnace cooling. Next, after grinding the upper part, the lower part, and the outer peripheral part of this ingot, the outer peripheral part and the upper and lower surfaces were ground and polished to produce a disk-shaped target of ⁇ 76 mm ⁇ thickness 4 mm. As a result of observing this target using SEM in the same manner as in Example 1, the average crystal grain size was about 210 ⁇ m. Moreover, as a result of investigating the relative density of this target material by the Archimedes method, it was 100%.
- the composition variation of Nd, Fe, and B in the thickness direction of the produced target was measured in the range of 1.54 mm at intervals of 4 ⁇ m with respect to the thickness direction of the target using EPMA as in Example 1. .
- the Nd coefficient of variation of the target material of Comparative Example 1 was 30%
- the coefficient of variation of Fe was 32%
- the coefficient of variation of B was 35%.
- oxygen contained 340 ppm, carbon 120 ppm, nitrogen 10 ppm, and hydrogen 40 ppm.
- this target was attached to a backing plate, and a Ta buffer layer, an NdFeB layer (40 nm), and a Ta cap layer were continuously formed on a Si substrate on which a thermal oxide film was formed in the same manner as in Example 1 to form a rare-earth magnet thin film.
- a Ta buffer layer an NdFeB layer (40 nm), and a Ta cap layer were continuously formed on a Si substrate on which a thermal oxide film was formed in the same manner as in Example 1 to form a rare-earth magnet thin film.
- the sintered compact target of the present invention was able to form a high-quality rare earth magnet thin film having good magnetic properties by using a sputtering method or a pulse laser deposition method, MEMS (Micro Electro Mechanical Systems) or It is useful in energy fields such as energy harvest (energy harvesting) and medical equipment fields.
- MEMS Micro Electro Mechanical Systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Thin Magnetic Films (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
1)ネオジム、鉄、ボロンを必須成分とする希土類磁石ターゲットにおいて、平均結晶粒径が10~200μmであることを特徴とする希土類磁石ターゲット、
2)相対密度が97%以上であることを特徴とする上記1)記載の希土類磁石ターゲット、
3)ターゲットの厚さ方向に対してネオジムの組成変動が変動係数で10%以内であることを特徴とする上記1)又は2)記載の希土類磁石ターゲット、
4)酸素含有量が1000wtppm以下であることを特徴とする上記1)~3)のいずれか一に記載の希土類磁石ターゲット、
5)ネオジム、鉄、ボロンを主成分とする原料を真空中で溶解、鋳造して合金インゴットを作製し、次に、この合金インゴットを不活性ガスを用いたガスアトマイズ法にて微粉砕した後、この微粉末をホットプレス又は熱間静水圧プレスで焼結することを特徴とする希土類磁石ターゲットの製造方法、
6)焼結圧力が10MPa以上25MPa以下、焼結温度が700℃以上950℃以下とすることを特徴とする上記5)記載の希土類磁石ターゲットの製造方法、
7)水冷銅製坩堝を使用したコールドクルーシブル溶解法にて原料を溶解することを特徴とする上記5)又は6)記載の希土類磁石ターゲットの製造方法、を提供する。
そして、本発明のターゲットは、その平均結晶粒径が10~200μmの微細で均一な結晶粒から構成されることを特徴とする。一般に、保磁力は結晶粒径の2乗の対数に反比例することから結晶粒の微細化が有効であり、その平均結晶粒径は200μm以下とする。一方、結晶粒はガスアトマイズ工程で作り込みがなされ、ガスアトマイズ粉の表面積が増加するについて酸素含有量が増加するおそれがあるため、その平均結晶粒径を10μm以上とする。
酸素はガス成分の中でも磁気特性に大きな影響を及ぼすことが知られていることから、これを極力低減することで、安定的で良好な磁気特性を得ることが可能となる。
まず、純度3N5(99.95%)以上、好ましくは4N(99.99%)、さらに好ましくは4N5(99.995%)以上のネオジム(Nd)及び鉄(Fe)と、3N(99.9%)以上のボロン(B)若しくはフェロボロンを必須原料として準備する。
原料として、純度3N5のネオジム、純度4Nの鉄、純度2Nのフェロボロンを準備した。なお、いずれの原料もブロック状のものを用いた。これらをNd15-Fe75-B10の組成となるように秤量を行った後、水冷銅製坩堝のコールドクルーシブル炉に投入して、1×10-4Torrの真空下で1320℃、60分以上溶融して、約6kgの合金インゴットを作製した。
実施例1と異なり、溶解法によりターゲットを作製した。原料として、純度3N5のネオジム、純度4Nの鉄、純度2Nのフェロボロンを準備し、Nd15-Fe75-B10の組成となるように秤量を行った後、水冷銅製坩堝のコールドクルーシブル炉に投入して、1×10-4Torrの真空下で1320℃、60分以上溶融して、約6kgの合金インゴットを作製した。なお、インゴット内のマイクロクラックの発生を防止するために、冷却方法は炉冷とした。次に、このインゴットの上部、下部及び外周部を研削した後、外周部及び上下面を研削、研磨により、φ76mm×厚さ4mmの円盤状ターゲットを作製した。このターゲットを実施例1と同様にSEMを用いて観察した結果、その平均結晶粒径は、約210μmであった。また、このターゲット材をアルキメデス法によって相対密度を調べた結果、100%であった。
次に、このターゲットをバッキングプレートの取り付け、実施例1と同様に熱酸化膜を形成したSi基板上にTaバッファ層、NdFeB層(40nm)、Taキャップ層を連続成膜して希土類磁石の薄膜を作製した。B-Hカーブ測定を行った結果、保磁力は0.7Tとなり、良好な磁気特性は得られなかった。
Claims (7)
- ネオジム、鉄、ボロンを必須成分とする希土類磁石ターゲットにおいて、平均結晶粒径が10~200μmであることを特徴とする希土類磁石ターゲット。
- 相対密度が97%以上であることを特徴とする請求項1記載の希土類磁石ターゲット。
- ターゲットの厚さ方向に対してネオジムの組成変動が変動係数で10%以内であることを特徴とする請求項1又は2記載の希土類磁石ターゲット。
- 酸素含有量が1000wtppm以下であることを特徴とする請求項1~3のいずれか一項に記載の希土類磁石ターゲット。
- ネオジム、鉄、ボロンを主成分とする原料を真空中で溶解、鋳造して合金インゴットを作製し、次に、この合金インゴットを不活性ガスを用いたガスアトマイズ法にて微粉砕した後、この微粉末をホットプレス又は熱間静水圧プレスで焼結することを特徴とする希土類磁石ターゲットの製造方法。
- 焼結圧力が10MPa以上25MPa以下、焼結温度が700℃以上950℃以下とすることを特徴とする請求項5記載の希土類磁石ターゲットの製造方法。
- 水冷銅製坩堝を使用したコールドクルーシブル溶解法にて原料を溶解することを特徴とする請求項5又は6記載の希土類磁石ターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13873045.2A EP2857547B1 (en) | 2013-01-28 | 2013-09-27 | Method for making a rare-earth magnet sputtering target |
JP2014528356A JP5877517B2 (ja) | 2013-01-28 | 2013-09-27 | 希土類磁石用スパッタリングターゲット及びその製造方法 |
US14/425,083 US20150262752A1 (en) | 2013-01-28 | 2013-09-27 | Sputtering Target for Rare-Earth Magnet and Production Method Therefor |
CN201380045400.8A CN105026607B (zh) | 2013-01-28 | 2013-09-27 | 稀土磁铁用溅射靶及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013012788 | 2013-01-28 | ||
JP2013-012788 | 2013-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115375A1 true WO2014115375A1 (ja) | 2014-07-31 |
Family
ID=51227182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076186 WO2014115375A1 (ja) | 2013-01-28 | 2013-09-27 | 希土類磁石用スパッタリングターゲット及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150262752A1 (ja) |
EP (1) | EP2857547B1 (ja) |
JP (1) | JP5877517B2 (ja) |
CN (1) | CN105026607B (ja) |
WO (1) | WO2014115375A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016140113A1 (ja) * | 2015-03-04 | 2016-09-09 | Jx金属株式会社 | 磁性材スパッタリングターゲット及びその製造方法 |
WO2021162081A1 (ja) * | 2020-02-13 | 2021-08-19 | 山陽特殊製鋼株式会社 | スパッタリングターゲット材及びその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5861246B2 (ja) | 2014-06-04 | 2016-02-16 | Jx日鉱日石金属株式会社 | 希土類薄膜磁石及びその製造方法並びに希土類薄膜磁石形成用ターゲット |
JP6178521B2 (ja) | 2014-10-27 | 2017-08-09 | Jx金属株式会社 | 希土類薄膜磁石及びその製造方法 |
JP6395969B2 (ja) | 2016-03-07 | 2018-09-26 | Jx金属株式会社 | 希土類薄膜磁石及びその製造方法 |
US11072842B2 (en) | 2016-04-15 | 2021-07-27 | Jx Nippon Mining & Metals Corporation | Rare earth thin film magnet and method for producing same |
CN107799253A (zh) * | 2017-10-27 | 2018-03-13 | 包头稀土研究院 | 稀土金属旋转靶材的制造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499010A (ja) * | 1990-07-18 | 1992-03-31 | Yaskawa Electric Corp | 希土類合金薄膜磁石の形成方法 |
JPH07106179A (ja) * | 1993-09-30 | 1995-04-21 | Aichi Steel Works Ltd | 膜状希土類磁石の製造方法 |
JPH09219313A (ja) * | 1995-12-08 | 1997-08-19 | Hitachi Metals Ltd | R−tm−b系硬磁性薄膜およびその製造方法 |
JPH11288812A (ja) * | 1998-04-01 | 1999-10-19 | Sumitomo Special Metals Co Ltd | 高保磁力R−Fe−B系薄膜磁石及びその製造方法 |
WO2005091315A1 (ja) | 2004-03-23 | 2005-09-29 | Japan Science And Technology Agency | R−Fe−B系薄膜磁石及びその製造方法 |
WO2007119271A1 (ja) * | 2006-03-20 | 2007-10-25 | Namiki Seimitsu Houseki Kabushiki Kaisha | 薄膜希土類磁石及びその製造方法 |
JP2009091613A (ja) | 2007-10-05 | 2009-04-30 | Nagasaki Univ | 成膜方法及び成膜装置 |
JP2009231391A (ja) | 2008-03-19 | 2009-10-08 | Hitachi Metals Ltd | R−t−b系焼結磁石 |
JP2012207274A (ja) | 2011-03-30 | 2012-10-25 | Hitachi Metals Ltd | 永久磁石薄膜用スパッタリングターゲット及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219074A (ja) * | 1990-01-23 | 1991-09-26 | Seiko Epson Corp | スパッタリング用ターゲットの製造方法 |
JPH0421522A (ja) * | 1990-05-17 | 1992-01-24 | Tosoh Corp | 超伝導体膜用ターゲット |
CN1047683C (zh) * | 1992-09-30 | 1999-12-22 | 上海申建冶金机电技术工程公司 | 一种微晶稀土永磁体的制造方法 |
US20030052000A1 (en) * | 1997-07-11 | 2003-03-20 | Vladimir Segal | Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method |
JPH11319752A (ja) * | 1998-05-12 | 1999-11-24 | Sumitomo Metal Mining Co Ltd | 希土類元素含有物からの有価組成物の回収方法、及びこれにより得られた合金粉末 |
JP2000348919A (ja) * | 1999-06-04 | 2000-12-15 | Sumitomo Special Metals Co Ltd | ナノコンポジット結晶質焼結磁石およびその製造方法 |
CN101389784B (zh) * | 2006-02-22 | 2011-04-20 | Jx日矿日石金属株式会社 | 含有高熔点金属的烧结体溅射靶 |
JP4348396B1 (ja) * | 2008-12-26 | 2009-10-21 | 田中貴金属工業株式会社 | 再生ターゲットの製造方法 |
-
2013
- 2013-09-27 US US14/425,083 patent/US20150262752A1/en not_active Abandoned
- 2013-09-27 JP JP2014528356A patent/JP5877517B2/ja active Active
- 2013-09-27 WO PCT/JP2013/076186 patent/WO2014115375A1/ja active Application Filing
- 2013-09-27 EP EP13873045.2A patent/EP2857547B1/en active Active
- 2013-09-27 CN CN201380045400.8A patent/CN105026607B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499010A (ja) * | 1990-07-18 | 1992-03-31 | Yaskawa Electric Corp | 希土類合金薄膜磁石の形成方法 |
JPH07106179A (ja) * | 1993-09-30 | 1995-04-21 | Aichi Steel Works Ltd | 膜状希土類磁石の製造方法 |
JPH09219313A (ja) * | 1995-12-08 | 1997-08-19 | Hitachi Metals Ltd | R−tm−b系硬磁性薄膜およびその製造方法 |
JPH11288812A (ja) * | 1998-04-01 | 1999-10-19 | Sumitomo Special Metals Co Ltd | 高保磁力R−Fe−B系薄膜磁石及びその製造方法 |
WO2005091315A1 (ja) | 2004-03-23 | 2005-09-29 | Japan Science And Technology Agency | R−Fe−B系薄膜磁石及びその製造方法 |
WO2007119271A1 (ja) * | 2006-03-20 | 2007-10-25 | Namiki Seimitsu Houseki Kabushiki Kaisha | 薄膜希土類磁石及びその製造方法 |
JP2009091613A (ja) | 2007-10-05 | 2009-04-30 | Nagasaki Univ | 成膜方法及び成膜装置 |
JP2009231391A (ja) | 2008-03-19 | 2009-10-08 | Hitachi Metals Ltd | R−t−b系焼結磁石 |
JP2012207274A (ja) | 2011-03-30 | 2012-10-25 | Hitachi Metals Ltd | 永久磁石薄膜用スパッタリングターゲット及びその製造方法 |
Non-Patent Citations (4)
Title |
---|
H. FUKUNAGA; T. KAMIKAWATOKO; M. NAKANO; T. YAMASHITA, J. APPL. PHYS., vol. 109, 2011, pages 07A758 - 1,07A758-3 |
KAZUHIRO HONO; TADAKATSU OHKUBO; H. SEPEHRI-AMIN, JOURNAL OF JAPAN INSTITUTE OF METALS, vol. 76, no. 1, January 2012 (2012-01-01), pages 2 |
N.M. DEMPSEY; A. WALTHER; F. MAY; D. GIVORD; K. KHLOPKOV; O. GUTFEISCH, APPL. PHYS. LETT., vol. 90, 2007, pages 092509 - 1,092509-3 |
YASUHIRO UNE; MASATO SAGAWA, JOURNAL OF JAPAN INSTITUTE OF METALS, vol. 76, no. 1, January 2012 (2012-01-01), pages 12 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016140113A1 (ja) * | 2015-03-04 | 2016-09-09 | Jx金属株式会社 | 磁性材スパッタリングターゲット及びその製造方法 |
WO2021162081A1 (ja) * | 2020-02-13 | 2021-08-19 | 山陽特殊製鋼株式会社 | スパッタリングターゲット材及びその製造方法 |
JP7564626B2 (ja) | 2020-02-13 | 2024-10-09 | 山陽特殊製鋼株式会社 | スパッタリングターゲット材及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2857547A4 (en) | 2015-12-09 |
CN105026607B (zh) | 2017-05-31 |
JPWO2014115375A1 (ja) | 2017-01-26 |
CN105026607A (zh) | 2015-11-04 |
EP2857547A1 (en) | 2015-04-08 |
EP2857547B1 (en) | 2017-08-23 |
JP5877517B2 (ja) | 2016-03-08 |
US20150262752A1 (en) | 2015-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5877517B2 (ja) | 希土類磁石用スパッタリングターゲット及びその製造方法 | |
US9269389B2 (en) | Sputtering target of magnetic material | |
JP6215329B2 (ja) | ネオジム、鉄、ボロンを主成分とする希土類粉末又はスパッタリングターゲットの製造方法、同希土類元素からなる粉末又はスパッタリングターゲット及びネオジム、鉄、ボロンを主成分とする希土類磁石用薄膜又はその製造方法 | |
KR101474946B1 (ko) | R-Fe-B계 희토류 소결 자석 | |
JP7220300B2 (ja) | 希土類永久磁石材料、原料組成物、製造方法、応用、モーター | |
JP6483803B2 (ja) | 磁性材スパッタリングターゲット及びその製造方法 | |
US20140083847A1 (en) | Fe-Pt-C Based Sputtering Target | |
JP2004100000A (ja) | 珪化鉄スパッタリングターゲット及びその製造方法 | |
TWI387661B (zh) | Manufacturing method of nickel alloy target | |
CN103842112B (zh) | 用于稀土烧结磁铁的原料合金铸片及其制造方法 | |
CN106783130B (zh) | 制备低重稀土高矫顽力钕铁硼磁体的方法 | |
KR20000067821A (ko) | 희토류 영구자석의 제조방법 | |
CN107464684B (zh) | 烧结磁体的处理方法 | |
JP2024023206A (ja) | 異方性希土類焼結磁石及びその製造方法 | |
JP2024020341A (ja) | 異方性希土類焼結磁石及びその製造方法 | |
JP6094848B2 (ja) | 垂直磁気記録媒体用Fe−Co系合金軟磁性膜の製造方法 | |
CN108695031B (zh) | R-t-b系稀土类烧结磁铁用合金及r-t-b系稀土类烧结磁铁的制造方法 | |
JP6030009B2 (ja) | 希土類磁石用スパッタリングターゲット及びその製造方法 | |
WO2017111700A1 (en) | Sputtering target of ruthenium-containing alloy and production method thereof | |
JP2894695B2 (ja) | 希土類金属−鉄族金属ターゲットおよびその製造方法 | |
CN116288196A (zh) | 一种CoFeB靶材及其制备方法 | |
JP2019207954A (ja) | 希土類永久磁石 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380045400.8 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014528356 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873045 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013873045 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013873045 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14425083 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |