WO2014114161A1 - Ito薄膜溅射工艺方法及ito薄膜溅射设备 - Google Patents

Ito薄膜溅射工艺方法及ito薄膜溅射设备 Download PDF

Info

Publication number
WO2014114161A1
WO2014114161A1 PCT/CN2013/090419 CN2013090419W WO2014114161A1 WO 2014114161 A1 WO2014114161 A1 WO 2014114161A1 CN 2013090419 W CN2013090419 W CN 2013090419W WO 2014114161 A1 WO2014114161 A1 WO 2014114161A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
thin film
ito thin
sputtering power
reaction chamber
Prior art date
Application number
PCT/CN2013/090419
Other languages
English (en)
French (fr)
Inventor
耿波
叶华
文莉辉
杨玉杰
夏威
王厚工
丁培军
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Publication of WO2014114161A1 publication Critical patent/WO2014114161A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • the present invention relates to the field of semiconductors, and more particularly to a germanium thin film sputtering process and a germanium thin film sputtering apparatus. Background technique
  • GaN-based LEDs GaN-based LEDs
  • LEDs Light-Emitting Diodes
  • ITO film Indium Tin Oxide
  • a transparent conductive film has the advantages of high visible light transmittance, good electrical conductivity, abrasion resistance, corrosion resistance, etc., and adhesion between ITO film and GaN is good. Therefore, ITO is widely used as an electrode material for GaN-based LED chips.
  • the preparation method of the ITO film includes spraying, chemical vapor deposition, evaporation coating, and magnetron sputtering.
  • the ITO film prepared by the magnetron sputtering method has wide application because of its low resistivity, high visible light transmittance and high process repeatability.
  • the prior art DC magnetron sputtering apparatus mainly comprises a reaction chamber, a vacuum pump system, a substrate carrying a wafer, a DC sputtering power source, and a target sealed on the reaction chamber.
  • the DC sputtering power source applies sputtering work to the target.
  • the rate is such that a negative bias is formed on the target to cause a process gas glow discharge in the reaction chamber to generate a plasma.
  • the energy of the plasma is high enough, the metal atoms escape the surface of the target and deposit on the wafer.
  • the negative bias of the target during the start-up phase is very high.
  • the output voltage of the DC sputtering power supply during the start-up phase is higher than the preset voltage of the DC sputtering power supply, for example, if the DC sputtering power supply With an output power of 650W, the instantaneous ignition voltage of the target is about 1000V.
  • the sputtering particles Since the higher instantaneous ignition voltage causes the energy of the sputtered particles to be too high, the sputtering particles have a large impact on the P-type GaN film layer, causing damage to the GaN film layer, thereby causing contact between the ITO and the GaN layer. Excessive resistance, excessive contact resistance can cause high driving voltage of the LED chip and generate more heat, and attenuate the performance of the LED device. In addition, the damage of the GaN film layer will also cause the forward voltage (VF) value of the LED device to be too high. In severe cases, the VF value will rise to 6.5V or higher (the industry standard is generally 2.9-3.5V), resulting in serious device performance. decline. In addition, because the ITO target is prone to "poisoning" of the target during the deposition process, the target produces a nodule.
  • VF forward voltage
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes an ITO thin film sputtering process method and an ITO thin film sputtering apparatus, which can greatly reduce the instant initiation during sputtering deposition of an ITO thin film.
  • the radiance voltage can avoid excessive bombardment of the GaN layer due to excessive particle energy at the instant of priming, and thus can effectively reduce the damage to the GaN layer.
  • a new mechanism such as a baffle, this can not only improve the uniformity of film deposition, Moreover, the structure and operation of the equipment are also reduced, thereby reducing the manufacturing cost and labor cost of the equipment.
  • an ITO thin film sputtering process method comprising the steps of: S1, introducing a process gas into a reaction chamber, and setting a process gas pressure in the reaction chamber to be higher than a predetermined pressure for causing the process gas to glow discharge; S2, turning on the DC sputtering power source to apply sputtering power to the target, and limiting the output voltage of the DC sputtering power source to be less than or equal to a preset voltage value; S3 And reducing a process gas pressure in the reaction chamber below the predetermined pressure, the DC sputtering power source applying a sputtering power to the target to perform a sputtering process.
  • the process gas pressure in the reaction chamber is lower than the predetermined pressure, and the power value of the sputtering power of the DC sputtering power source is increased to be larger than
  • the power value of the sputtering power in step S2 is less than or equal to the rated power value of the DC sputtering power source.
  • the preset voltage value is 300V.
  • the sputtering power has a value ranging from 100 W to 300 W.
  • the sputtering power of the DC sputtering power source ranges from 600W to 2000W.
  • the output voltage of the DC sputtering power source ranges from 300V to 800V.
  • the predetermined pressure is 5 mTorr.
  • the process gas pressure in the reaction chamber is set to 10 mTorr.
  • the predetermined pressure is 15 mTorr.
  • the process gas pressure in the reaction chamber is set to 20 mTorr.
  • the present invention further provides an ITO thin film sputtering apparatus, comprising: a reaction chamber, the reaction chamber includes a top wall, a substrate supporting member and a target, and the target is disposed on the top a substrate supporting member disposed at a bottom of the reaction chamber, and the target and the substrate supporting member are disposed opposite to each other within the reaction chamber; a DC sputtering power source coupled to the target for applying sputtering power to the target;
  • the ITO thin film sputtering apparatus performs a thin film sputtering process on the substrate based on any of the above-described ITO thin film sputtering process methods.
  • the invention has the following beneficial effects:
  • the ITO thin film sputtering process deposits an ITO thin film on a GaN layer by a magnetron sputtering process.
  • the deposition process by limiting the output voltage of the DC sputtering power source to be less than or equal to a preset voltage value, and setting the process gas in the reaction chamber to be higher than a predetermined pressure capable of causing the process gas to glow discharge, Achieve the purpose and effect of Qihui.
  • the output voltage of the DC sputtering power supply is lowered, this can avoid excessive ignition voltage during the ignition process, thereby avoiding the GaN layer due to excessive energy of the sputtered particles at the instant of initiation.
  • the impact of the bombardment is large, which can reduce the bombardment damage to the GaN layer, thereby not only reducing the contact resistance between the ITO film and the GaN layer, but also reducing the chip driving voltage and improving the overall performance of the chip.
  • a new mechanism such as a baffle plate, this not only improves the uniformity of film deposition, but also the structure and operation of the device, thereby reducing the manufacturing cost and labor cost of the device.
  • the ITO thin film sputtering apparatus not only can avoid the high energy of the particles at the instant of priming by coupling the direct current sputtering power source to the target material and using the above ITO thin film sputtering process provided by the invention.
  • the bombardment force on the GaN layer is too large, so that damage to the GaN layer can be effectively reduced.
  • it since it is not necessary to add a new mechanism, it not only improves the uniformity of film deposition, but also the structure and operation of the device, thereby reducing the manufacturing cost and labor cost of the device.
  • Fig. 1 is a flow chart showing a method of sputtering an ITO thin film according to an embodiment of the present invention.
  • Fig. 2 is a schematic view showing an ITO thin film sputtering apparatus according to another embodiment of the present invention. detailed description
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features, either explicitly or implicitly.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • installation or connected to the external connection
  • connected can be mechanical or electrical
  • the specific meaning of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature is “on” the second feature unless otherwise explicitly stated and defined. Or “lower” may include direct contact of the first and second features, and may also include that the first and second features are not in direct contact but are contacted by additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • the present invention is based on the principle that: in the ITO thin film sputtering, since the excessive ignition voltage during the priming process causes the sputtering particles to have higher energy, the sputtering particles are applied to the P-type GaN film layer. The impact of the bombardment is large, causing damage to the GaN film layer, resulting in excessive contact resistance between the ITO and GaN layers. Therefore, the above technical problem can be solved as long as the above-mentioned ignition voltage can be lowered.
  • the inventors have found that: during the startup process, by reducing the output voltage of the DC sputtering power supply and simultaneously increasing the pressure of the process gas in the reaction chamber, it is possible to avoid the instantaneous energy of the illuminating particles under the premise of ensuring the normal ignition of the plasma. High, so that the bombardment force of the sputtered particles on the GaN layer can be reduced, and the damage to the GaN layer can be effectively reduced.
  • the above-mentioned ignition voltage refers to a transient high voltage applied to the target by the DC sputtering power source at the instant of plasma ignition, and the DC sputtering power source is applied to the target after the plasma is stabilized. The voltage is restored to its output voltage.
  • the ITO thin film sputtering process method comprises the following steps:
  • a process gas into the reaction chamber, and setting a process gas pressure in the reaction chamber to be higher than a predetermined pressure capable of causing a glow discharge of the process gas, which may be, but not limited to, argon (Ar) ;
  • the DC sputtering power source applies sputtering power to the target, thereby causing the process gas glow in the reaction chamber
  • the plasma is generated by discharging;
  • the preset voltage value refers to the voltage value of the DC sputtering power source output according to the process requirement, and the voltage value should be less than or equal to the rated voltage value of the DC sputtering power source.
  • S3 reducing the process gas pressure in the reaction chamber to below the predetermined pressure, and the DC sputtering power source applies sputtering power to the target to perform a sputtering process.
  • the ITO thin film sputtering process method of the present invention applies a sputtering power to a target by using a DC sputtering power source, and limits an output voltage of the DC sputtering power source to be less than or It is equal to the preset voltage value, that is, the output voltage of the DC sputtering power supply is low, so that the ignition voltage can be prevented from being too high during the ignition process, thereby avoiding the GaN layer due to the excessive energy of the sputtered particles.
  • the impact of the bombardment is large, which in turn can effectively reduce the damage to the GaN layer.
  • the process gas pressure in the reaction chamber is adjusted to be higher than a predetermined pressure capable of causing the process gas to glow and discharge, and smooth initiation can be achieved.
  • the predetermined pressure is 5 mTorr (in the prior art, the process gas pressure capable of causing the process gas to glow discharge is usually 2-5 mTorr), and the process gas pressure in the reaction chamber is set to be greater than 5 mTorr.
  • the process gas pressure in the reaction chamber is set to 10 mTorr.
  • the predetermined pressure is 15 mTorr, for example, the process gas pressure in the reaction chamber is set to 20 mTorr.
  • the process gas pressure in the reaction chamber is lowered below the predetermined pressure, and the DC sputtering power source applies sputtering power to the target to perform a thin film sputtering process.
  • the sputtering power and the process gas pressure in this step are as long as the requirements of the thin film sputtering process are satisfied.
  • the ITO thin film sputtering process provided by the present invention is applicable to, but not limited to, the fabrication of an LED chip, which is deposited on a GaN layer by a magnetron sputtering process.
  • the deposition process by limiting the output voltage of the DC sputtering power source below a preset voltage value, and setting the process gas in the reaction chamber to be higher than a predetermined pressure capable of causing the process gas to glow discharge, Achieve the purpose and effect of Qihui.
  • the ignition voltage can be prevented from being too high during the ignition process, thereby avoiding the GaN layer due to the excessive energy of the sputtering particles at the instant of initiation.
  • the bombardment is greater, which in turn can reduce the bombardment of the GaN layer.
  • the damage can not only reduce the contact resistance of the ITO film and the GaN layer, but also reduce the chip driving voltage, thereby improving the overall performance of the chip.
  • this since there is no need to add a new mechanism, this not only improves the uniformity of film deposition, but also the structure and operation of the device, so that the manufacturing cost and labor cost of the device can be low.
  • step Si t a process gas such as argon gas is introduced into the reaction chamber, and the process gas pressure in the reaction chamber is set to 20 mTorr to ensure subsequent operation.
  • the process gas can be smoothly illuminated in the reaction chamber.
  • step S2 the DC sputtering power source is turned on to apply sputtering power to the target, and the output voltage of the DC sputtering power source is limited to 300 V (ie, the preset voltage value is 300 V); the DC sputtering power source is directed to the target.
  • the sputtering power is applied to generate a plasma by the glow discharge of the process gas in the chamber.
  • the value of the sputtering power should be as small as possible.
  • the sputtering power can be selected within a range of 100 to 300 W according to the process requirements.
  • step S3 the process gas pressure in the reaction chamber is lowered below the predetermined pressure, for example, as low as 2 to 5 mTorr to ensure smooth sputtering.
  • the sputtering power of the DC sputtering power source may be adjusted within a range not exceeding the rated power value of the DC sputtering power source (usually 2000 W) according to the process requirements.
  • the sputtering power of the DC sputtering power source can be increased, that is, the power value of the sputtering power in step S3 is increased to be larger than the power value of the sputtering power in step S2, but should be less than or equal to the power value.
  • the sputtering power can be selected within a range of 600 to 2000 W according to the process requirements.
  • step S3 since the steps S1 and S2 are smoothly completed by lowering the output voltage of the DC sputtering power source, even when a higher output voltage is used in the step S3 to perform the sputtering process, That is, the release of the restriction on the output voltage of the DC sputtering power source does not adversely affect the GaN layer.
  • the output voltage is set to It is equal to the rated voltage value of the DC sputtering power supply (usually 800V), that is, in step S3, the voltage value of the output voltage can be increased from 300V in step S2 to 800V.
  • the output voltage of the DC sputtering power source may still be limited in step S3 according to the specific situation, that is, the 300V in step S2 is kept unchanged.
  • the peak value of the ignition voltage is 380 V during the start-up process, which is much lower than the peak value of the 1000 V start-up voltage in the prior art, thereby avoiding the instantaneous glow energy of the particles. If it is too high, the bombardment force of the sputtered particles on the GaN layer can be reduced, and the damage to the GaN layer can be effectively reduced.
  • the ITO thin film sputtering apparatus of the present invention will be described below with reference to Fig. 2 .
  • the apparatus performs a thin film sputtering process on the substrate in the above-described ITO thin film sputtering process provided by the present invention.
  • the ITO thin film sputtering apparatus includes a reaction chamber 1 and a DC sputtering power source (not shown).
  • the reaction chamber 1 includes a top wall 11, a cavity 12, a substrate supporting member 13, and a target 2.
  • the top wall 11 is in contact with the cavity 12 and is located at the top of the cavity 12, and the cavity 12 can be a cylindrical cavity;
  • the substrate supporting member 13 is disposed at the bottom of the reaction cavity 1,
  • the target 2 is disposed on the top wall 11 and disposed opposite to the substrate supporting member 13;
  • the substrate supporting member 13 such as a base is disposed inside the bottom of the cavity 12 for supporting the substrate 7.
  • a process gas source 4 is further disposed outside the cavity 12 for supplying a process gas such as argon into the cavity 12, and a flow meter may be disposed between the process gas source 4 and the cavity 12. 5.
  • a vacuum pump system 6 is provided outside the chamber 12, and the vacuum pump system 6 can evacuate the chamber 12. It will be appreciated that the substrate support member 13, the process gas source 4, the vacuum pump system 6, and the like are well known in the art and are well known to those skilled in the art and will not be described in detail herein.
  • a DC sputtering power source is coupled to the target 2 for applying sputtering power to the target 2.
  • the ITO thin film sputtering apparatus provided by the present invention is characterized in that the substrate is subjected to a thin film sputtering process by coupling a direct current sputtering power source to the target 2 and using the above-mentioned ITO thin film sputtering process provided by the present invention.
  • a sputtering power to the target 2 by using a DC sputtering power source, and limiting the output voltage of the DC sputtering power source to be less than or equal to a preset voltage value, that is, lowering the output voltage of the DC sputtering power supply, It is avoided that the ignition voltage is too high during the initiation process, so that the energy of the sputtering particles is too high due to the excessive energy of the sputtering particles, so that the damage to the GaN layer is large, and the damage to the GaN layer can be effectively reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

一种ITO薄膜溅射的方法,包括以下步骤:(1)向反应腔内通入工艺气体,并设定反应腔体内的工艺气体压力高于能使工艺气体辉光放电的预定压力;(2)开启直流溅射电源,向靶材施加溅射功率,并限制直流电源的输出电压,使其小于或等于预设电压值;(3)将反应腔体内的工艺气体压力降低到预定压力以下,用直流溅射电源向靶材施加溅射功率,进行溅射。还提供了一种基于所述ITO薄膜溅射方法的ITO薄膜溅射设备。

Description

I TO薄膜溅射工艺方法及 ITO薄膜溅射设备 技术领域
本发明涉及半导体领域,特别是涉及一种 ΙΤΟ薄膜溅射工艺方法及 ΙΤΟ 薄膜溅射设备。 背景技术
近年来, 由于发光二极管 ( Light-Emitting Diode, LED )的巨大市场需 求, GaN基 LED ( GaN-based LED , 氮化镓基 LED )被广泛应用于大功率照 明灯、 汽车仪表显示、 大面积的户外显示屏、 信号灯, 以及普通照明等不同 领域。
在 GaN基 LED芯片制造过程中, 由于 P型 GaN的低掺杂和 P型欧姆 金属接触的低透光率会引起较高接触电阻和低透光率, 这严重影响了 LED 芯片整体性能的提高。 为了提高出光效率和降低接触电阻, 需要开发适用于 P型 GaN的透明导电薄膜。 由于 ITO薄膜( Indium Tin Oxide, 掺锡氧化铟) 作为一种透明导电薄膜具有可见光透过率高、 导电性好、 抗磨损、 耐腐蚀等 优点, 且 ITO薄膜和 GaN之间粘附性好, 因此, ITO被广泛的应用于 GaN 基 LED芯片的电极材料。
ITO薄膜的制备方法包括喷涂、化学气相沉积、 蒸发镀膜及磁控溅射等 方法。 其中, 采用磁控溅射方法制备的 ITO薄膜由于具有较低的电阻率、较 高的可见光透过率以及较高的工艺重复性, 因此得到广泛的应用。
现有技术中的直流磁控溅射设备主要包括反应腔体、真空泵系统、承载 晶片的基台、 直流溅射电源以及密封在反应腔体上的靶材。 其中, 直流磁控 溅射工艺所采用的工艺参数通常为: 启辉及溅射气压: 2.8 mTorr (毫托, lTorr=133Pa ); 溅射功率: 650W; 靶材功率密度: 0.5W/cm2。 在采用该直流 磁控溅射设备进行溅射工艺的过程中, 直流溅射电源会向靶材施加溅射功 率, 以在靶材上形成负偏压, 从而使反应腔体内的工艺气体辉光放电而产生 等离子体。 当等离子体的能量足够高时,会使金属原子逸出靶材表面并沉积 在晶片上。 以下问题, 即: 靶材在启辉阶段的负偏压非常高, 换言之, 直流溅射电源在 启辉阶段的输出电压高于直流溅射电源的预设电压值, 例如, 若直流溅射电 源采用 650W的输出功率进行启辉, 则靶材的瞬间启辉电压约 1000V。 由于 较高的瞬间启辉电压会造成溅射粒子的能量过高, 这使得溅射粒子对 P型 GaN膜层的轰击力度较大, 造成 GaN膜层的损伤, 从而造成 ITO与 GaN层 的接触电阻过大, 过大的接触电阻会导致 LED芯片高的驱动电压和产生更 多的热, 并衰减 LED器件的性能。 此外, GaN膜层的损伤还会造成 LED器 件的正向电压 (VF )值过高, 严重时可造成 VF值升高至 6.5V以上(业界 标准一般为 2.9-3.5V ), 导致器件性能严重下降。 另外, 由于 ITO靶材在沉 积过程中易发生靶材 "中毒", 导致靶材产生节瘤。
为此, 现有技术中, 提出了在靶材和基台之间设置挡板。在直流溅射电 源在靶材上施加功率进行启辉时, 启辉瞬间形成的高能粒子将轰击在挡板 上, 因此可以避免损伤 GaN膜层。 待启辉数秒后, 移开挡板, 并进行正常 的溅射。但是, 增设挡板不仅会降低 TIO薄膜的均匀性, 而且还会使设备的 结构和操作复杂, 成本增加。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种 ITO 薄膜溅射工艺方法及 ITO薄膜溅射设备, 其能够实现在溅射沉积 ITO薄膜 过程中大幅减小瞬间启辉电压,从而可以避免在启辉瞬间因粒子能量过高而 造成对 GaN层的轰击力度过大,进而可以有效减小对 GaN层的损伤。而且, 由于不需要增加诸如挡板等的新机构, 这不仅可以提高薄膜沉积的均匀性, 而且还会筒化设备的结构和操作, 从而降低设备的制造成本和人力成本。 为实现本发明的目的而提出一种 ITO薄膜溅射工艺方法, 包括以下步 骤: S1 , 向反应腔体内通入工艺气体, 并设定所述反应腔体内的工艺气体压 力, 使其高于能够使工艺气体辉光放电的预定压力; S2, 开启直流溅射电 源, 以向靶材施加溅射功率, 并限制所述直流溅射电源的输出电压, 使其小 于或等于预设电压值; S3,将所述反应腔体内的工艺气体压力降低到所述预 定压力以下, 所述直流溅射电源向靶材施加溅射功率, 以进行溅射工艺。
优选的, 在所述步骤 S3中, 包含: 将所述反应腔体内的工艺气体压力 低到所述预定压力以下, 增大所述直流溅射电源的溅射功率的功率值, 使 其大于所述步骤 S2中的溅射功率的功率值, 且小于或等于该直流溅射电源 的额定功率值。
优选的, 在所述步骤 S2中, 所述预设电压值为 300V。
优选的, 在所述步骤 S2中, 所述溅射功率的取值范围在 100W~300W。 优选的, 所述直流溅射电源的溅射功率的取值范围在 600W~2000W。 优选的, 在所述步骤 S3中, 所述直流溅射电源的输出电压的取值范围 在 300V~800V。
优选的, 在所述步骤 Si t , 所述预定压力为 5毫托。
优选的, 在所述步骤 Si t , 将所述反应腔体内的工艺气体压力设定为 10毫托。
优选的, 在所述步骤 Si t , 所述预定压力为 15毫托。
优选的, 在所述步骤 si t , 将所述反应腔体内的工艺气体压力设定为 20毫托。
作为另一个技术方案, 本发明还提供一种 ITO薄膜溅射设备, 包括: 反应腔体, 所述反应腔体包含顶壁、基片支撑部件和靶材, 所述靶材设 置于所述顶壁上, 所述基片支撑部件设置在所述反应腔体的底部, 且所述靶 材与所述基片支撑部件彼此相对地设置在所述反应腔体之内; 以及 直流溅射电源,所述直流溅射电源耦接于所述靶材,用于向靶材施加溅 射功率;
其中, 所述 ITO薄膜溅射设备基于上述任一种 ITO薄膜溅射工艺方法 而对基片进行薄膜溅射工艺。 本发明具有以下有益效果:
本发明提供的 ITO薄膜溅射工艺方法, 其采用磁控溅射工艺将 ITO薄 膜沉积在 GaN层上。 在该沉积过程中, 通过限制直流溅射电源的输出电压 使其小于或等于预设电压值,并设定反应腔体内的工艺气体使其高于能够使 工艺气体辉光放电的预定压力,可以达到启辉的目的及效果。在启辉过程中, 由于降低了直流溅射电源的输出电压,这可以避免在启辉过程中启辉电压过 高, 从而可以避免启辉瞬间因溅射粒子的能量过高而导致对 GaN层的轰击 力度较大, 进而可以减小对 GaN层的轰击损伤, 从而不仅可以减小 ITO薄 膜与 GaN层的接触电阻, 而且还可以降低芯片驱动电压, 并提高芯片的整 体性能。 此外, 由于不需要增加诸如挡板等的新机构, 这不仅可以提高薄膜 沉积的均匀性, 而且还会筒化设备的结构和操作, 从而可以降低设备的制造 成本和人力成本。
本发明提供的 ITO薄膜溅射设备, 其通过将直流溅射电源耦接于靶材, 并采用本发明提供的上述 ITO薄膜溅射工艺,不仅可以避免在启辉瞬间因粒 子能量过高而造成对 GaN层的轰击力度过大, 从而可以有效减小对 GaN层 的损伤。 而且, 由于不需要增加新的机构, 这不仅可以提高薄膜沉积的均匀 性, 而且还会筒化设备的结构和操作, 从而可以降低设备的制造成本和人力 成本。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述 中将变得明显和容易理解, 其中:
图 1是根据本发明一个实施例的 ITO薄膜溅射工艺方法的流程框图; 图 2是根据本发明另一个实施例的 ITO薄膜溅射设备的示意图。 具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中 的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"中心"、 "纵向"、 "横向"、 "长 度,,、 "宽度,,、 "厚度,,、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直,,、 " j 平"、 "顶"、 "底 ""内"、 "外"、 "顺时针"、 "逆时针"等指示的方位或位置关系 为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和筒化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构 造和操作, 因此不能理解为对本发明的限制。
此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示 相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的 描述中, "多个"的含义是两个或两个以上, 除非另有明确具体的限定。
在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连 接"、 "固定 "等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆 卸连接, 或一体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相 连, 也可以通过中间媒介间接相连, 可以是两个元件内部的连通。 对于本领 域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体 含义。
在本发明中, 除非另有明确的规定和限定, 第一特征在第二特征之"上" 或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不 是直接接触而是通过它们之间的另外的特征接触。 而且, 第一特征在第二特 征"之上"、 "上方 "和"上面"包括第一特征在第二特征正上方和斜上方, 或仅 仅表示第一特征水平高度高于第二特征。 第一特征在第二特征 "之下"、 "下 方"和"下面"包括第一特征在第二特征正下方和斜下方, 或仅仅表示第一特 征水平高度小于第二特征。
本发明是基于以下原理提出的, 即: 在 ITO薄膜溅射中, 由于在启辉 过程中过高的启辉电压会造成溅射粒子能量较高, 这使得溅射粒子对 P型 GaN膜层的轰击力度较大, 造成 GaN膜层的损伤, 从而导致 ITO与 GaN层 的接触电阻过高。 因此, 只要能够降低上述启辉电压就可以解决上述技术问 题。 发明人发现: 在启辉过程中, 通过降低直流溅射电源的输出电压并且同 时提高反应腔体内的工艺气体的压力,可以在保证等离子体正常启辉的前提 下, 避免启辉瞬间粒子能量过高, 从而可以减小溅射粒子对 GaN层的轰击 力度, 进而可以有效减小对 GaN层的损伤。 上述启辉电压是指在等离子体 启辉瞬间, 直流溅射电源向靶材施加的一个高于预设电压值的瞬时高电压, 待等离子体稳定后, 直流溅射电源施加在靶材上的电压恢复为其输出电压。
下面参照图 1详细描述本发明提供的 ITO薄膜溅射工艺方法。
参照图 1所示, 该 ITO薄膜溅射工艺方法包括以下步骤:
51 , 向反应腔体内通入工艺气体, 并设定反应腔体内的工艺气体压力, 使其高于能够使工艺气体辉光放电的预定压力,该工艺气体可为但不限于氩 气(Ar );
52, 开启直流溅射电源, 并限制直流溅射电源的输出电压,使其小于或 等于预设电压值, 直流溅射电源向靶材施加溅射功率, 从而使反应腔体内的 工艺气体辉光放电而产生等离子体; 所谓预设电压值, 是指根据工艺需要而 设定的直流溅射电源输出的电压值,该电压值应小于或等于直流溅射电源的 额定电压值。 S3,将反应腔体内的工艺气体压力降低到上述预定压力以下,直流溅射 电源向靶材施加溅射功率, 以进行溅射工艺。
具体而言, 参照图 1所示, 本发明提供的 ITO薄膜溅射工艺方法, 其 通过利用直流溅射电源向靶材施加溅射功率,并限制该直流溅射电源的输出 电压使其小于或等于预设电压值, 即, 低了直流溅射电源的输出电压, 可 以避免在启辉过程中启辉电压过高,从而可以避免启辉瞬间因溅射粒子的能 量过高而导致对 GaN层的轰击力度较大, 进而可以有效地减小对 GaN层的 损伤。
可以理解的是, 由于步骤 S1中相对于现有技术降低了直流溅射电源的 输出电压, 而降低后的输出电压无法满足工艺的启辉条件, 为此, 在本发明 实施例中,通过在开启直流溅射电源之前,调整反应腔体内的工艺气体压力, 使其高于能够使工艺气体辉光放电的预定压力,可以实现顺利启辉。优选的, 预定压力为 5毫托(现有技术中, 能够使工艺气体辉光放电的工艺气体压力 通常为 2-5毫托), 将反应腔体内的工艺气体压力设定为大于 5毫托, 例如, 将反应腔体内的工艺气体压力设定为 10毫托。 进一步优选的, 预定压力为 15毫托, 例如, 将反应腔体内的工艺气体压力设定为 20毫托。
待完成启辉后, 将反应腔体内的工艺气体压力 低到该预定压力以下, 直流溅射电源向靶材施加溅射功率, 以进行薄膜溅射工艺。在该步骤中的溅 射功率以及工艺气体压力只要满足薄膜溅射工艺的要求即可。
本发明提供的 ITO薄膜溅射工艺方法,适用但不限于 LED芯片的制造, 其采用磁控溅射工艺将 ITO薄膜沉积在 GaN层上。 在进行沉积工艺的过程 中, 通过将直流溅射电源的输出电压限制在预设电压值以下, 并设定反应腔 体内的工艺气体使其高于能够使工艺气体辉光放电的预定压力,可以达到启 辉的目的和效果。 在启辉过程中, 由于降低了直流溅射电源的输出电压, 这 可以避免在启辉过程中启辉电压过高,从而可以避免启辉瞬间因溅射粒子的 能量过高而导致对 GaN层的轰击力度较大, 进而可以减小对 GaN层的轰击 损伤, 从而不仅可以减小 ITO薄膜与 GaN层的接触电阻, 而且还可以降低 芯片驱动电压, 进而可以提高芯片的整体性能。 而且, 由于不需要增加新的 机构,这不仅可以提高薄膜沉积的均匀性,而且还会筒化设备的结构和操作, 从而可以 P条低设备的制造成本和人力成本。
在本发明的一个优选实施例中, 在步骤 Si t , 向反应腔体内通入例如 氩气等的工艺气体, 并将反应腔体内的工艺气体压力设定为 20毫托, 以保 证在进行后续的步骤 S2时工艺气体在反应腔体内能够顺利启辉。
在步骤 S2中, 开启直流溅射电源, 以向靶材施加溅射功率, 并将直流 溅射电源的输出电压限制在 300V (即, 预设电压值为 300V ); 直流溅射电 源向靶材施加溅射功率,从而^ ^应腔体内的工艺气体辉光放电而产生等离 子体。 此外, 由于直流溅射电源的输出电压与溅射功率之间的对应关系为: 溅射功率越大, 输出电压越大; 反之, 则越小。 因此, 在步骤 S2中, 溅射 功率的取值应尽量小, 优选的, 该溅射功率可以根据工艺要求在 100~300W 的取值范围内选取。
在步骤 S3中, 将反应腔体内的工艺气体压力降低到该预定压力以下, 例如, 低至 2~5毫托, 以确保溅射工艺顺利进行。
进一步地, 在该优选实施例中, 在步骤 S3中, 还可以根据工艺需要在 不超过该直流溅射电源的额定功率值(通常在 2000W )的范围内调整直流溅 射电源的溅射功率, 优选的, 可以增大直流溅射电源的溅射功率, 即, 增大 步骤 S3中的溅射功率的功率值, 使其大于步骤 S2中的溅射功率的功率值, 但应小于或等于该直流溅射电源的额定功率值, 以提高溅射速率。 优选的, 该溅射功率可以根据工艺要求在 600~2000W的取值范围内选取。
需要说明的是, 在步骤 S3中, 由于步骤 S1和 S2通过降低直流溅射电 源的输出电压而顺利完成启辉, 因而在进行步骤 S3以进行溅射工艺时, 即 使采用较高的输出电压, 即, 解除对直流溅射电源的输出电压的限制也不会 对 GaN层产生不良影响。 例如, 优选的, 在步骤 S3中, 将输出电压设定为 等于直流溅射电源的额定电压值(通常为 800V ), 也就是说, 在步骤 S3中, 可以将输出电压的电压值由步骤 S2中的 300V提高至 800V。 当然, 在实际 应用中, 也可以根据具体情况在步骤 S3中仍然对直流溅射电源的输出电压 进行限制, 即, 保持步骤 S2中的 300V不变。
通过多次实际测量, 采用该优选实施例的步骤, 在启辉过程中, 启辉电 压的峰值为 380V, 远低于现有技术中 1000V的启辉电压的峰值, 从而避免 启辉瞬间粒子能量过高, 从而可以减小溅射粒子对 GaN层的轰击力度, 进 而可以有效减小对 GaN层的损伤。
下面参考图 2描述本发明的 ITO薄膜溅射设备。 该设备 于本发明 提供的上述 ITO薄膜溅射工艺方法对基片进行薄膜溅射工艺。
如图 2所示, ITO薄膜溅射设备包括反应腔体 1和直流溅射电源(图未 示出)。
其中, 反应腔体 1包含顶壁 11、 腔体 12、 基片支撑部件 13和靶材 2。 该顶壁 11与该腔体 12相接且位于该腔体 12的顶部,该腔体 12可为圆筒形 腔体; 该基片支撑部件 13设置在反应腔体 1的底部, 该靶材 2设置于顶壁 11且与基片支撑部件 13相对设置; 该基片支撑部件 13例如基台设在腔体 12的底部内侧, 用于支撑基片 7。
如图 2所示, 腔体 12外还设有工艺气体源 4, 用于向腔体 12内供入工 艺气体例如氩气, 在工艺气体源 4与腔体 12之间还可设有流量计 5, 用于 检测自工艺气体源 4流出的工艺气体的流量。 另外, 腔体 12外还设有真空 泵系统 6, 真空泵系统 6可对腔体 12内进行抽气。 可以理解的是, 关于基 片支撑部件 13、 工艺气体源 4、 真空泵系统 6等均已为现有技术, 且为本领 域的技术人员所熟知, 这里不再详细描述。
直流溅射电源耦接于靶材 2, 用于向靶材 2施加溅射功率。
本发明提供的 ITO薄膜溅射设备,其通过将直流溅射电源耦接于靶材 2, 并采用本发明提供的上述 ITO薄膜溅射工艺方法对基片进行薄膜溅射工艺, 即: 通过利用直流溅射电源向靶材 2施加溅射功率, 并限制该直流溅射电源 的输出电压使其小于或等于预设电压值, 即, 低了直流溅射电源的输出电 压, 可以避免在启辉过程中启辉电压过高, 从而可以避免启辉瞬间因溅射粒 子的能量过高而导致对 GaN层的轰击力度较大,进而可以有效地减小对 GaN 层的损伤。
需要说明的是, 本发明提供的 ITO薄膜溅射设备的其它构成例如磁控 管等均已为现有技术, 且为本领域的技术人员所熟知, 这里不再详细说明。
在本说明书的描述中,参考术语"一个实施例"、"一些实施例"、 "示例"、 "具体示例"、 或"一些示例"等的描述意指结合该实施例或示例描述的具体特 征、 结构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说 明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且, 描述的具体特征、 结构、材料或者特点可以在任何的一个或多个实施例或示 例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施 例是示例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱 离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行 变化、 修改、 替换和变型。

Claims

权 利 要 求 书
1. 一种 ITO薄膜溅射工艺方法, 其特征在于, 包括以下步骤:
51 ,向反应腔体内通入工艺气体,并设定所述反应腔体内的工艺气体压 力, 使其高于能够使工艺气体辉光放电的预定压力;
52, 开启直流溅射电源, 以向靶材施加溅射功率, 并限制所述直流溅射 电源的输出电压, 使其小于或等于预设电压值;
53,将所述反应腔体内的工艺气体压力降低到所述预定压力以下,所述 直流溅射电源向靶材施加溅射功率, 以进行溅射工艺。
2.根据权利要求 1所述的 ΙΤΟ薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S3中, 包含: 将所述反应腔体内的工艺气体压力降低到所述预定压 力以下, 增大所述直流溅射电源的溅射功率的功率值, 使其大于所述步骤 S2中的溅射功率的功率值, 且小于或等于该直流溅射电源的额定功率值。
3.根据权利要求 1所述的 ΙΤΟ薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S2中, 所述预设电压值为 300V。
4.根据权利要求 1所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S2中, 所述溅射功率的取值范围在 100至 300W。
5.根据权利要求 1所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S3中, 所述直流溅射电源的溅射功率的取值范围在 600至 2000W。
6.根据权利要求 1所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S3中, 所述直流溅射电源的输出电压的取值范围在 300至 800V。
7.根据权利要求 1所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S1中, 所述预定压力为 5毫托。
8.根据权利要求 7所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 Si t , 将所述反应腔体内的工艺气体压力设定为 10毫托。
9.根据权利要求 1所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S1中, 所述预定压力为 15毫托。
10.根据权利要求 9所述的 ITO薄膜溅射工艺方法, 其特征在于, 在所 述步骤 S1中, 将所述反应腔体内的工艺气体压力设定为 20毫托。
11. 一种 ITO薄膜溅射设备, 包括:
反应腔体, 所述反应腔体包含顶壁、基片支撑部件和靶材, 所述靶材设 置于所述顶壁上, 所述基片支撑部件设置在所述反应腔体的底部, 且所述靶 材与所述基片支撑部件相对设置在所述反应腔体之内; 以及
直流溅射电源,所述直流溅射电源耦接于所述靶材,用于向靶材施加溅 射功率;
其特征在于, 所述 ITO薄膜溅射设备基于权利要求 1-10任意一项所述 的 ITO薄膜溅射工艺方法对基片进行薄膜溅射工艺。
PCT/CN2013/090419 2013-01-22 2013-12-25 Ito薄膜溅射工艺方法及ito薄膜溅射设备 WO2014114161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310023126.6A CN103938164B (zh) 2013-01-22 2013-01-22 Ito薄膜溅射工艺方法及ito薄膜溅射设备
CN201310023126.6 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014114161A1 true WO2014114161A1 (zh) 2014-07-31

Family

ID=51186026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090419 WO2014114161A1 (zh) 2013-01-22 2013-12-25 Ito薄膜溅射工艺方法及ito薄膜溅射设备

Country Status (3)

Country Link
CN (1) CN103938164B (zh)
TW (1) TWI496915B (zh)
WO (1) WO2014114161A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966557B (zh) * 2013-02-05 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 Ito薄膜溅射工艺方法及ito薄膜溅射设备
CN106531615A (zh) * 2015-09-14 2017-03-22 映瑞光电科技(上海)有限公司 一种提高led芯片发光效率的制备方法
CN111725091A (zh) * 2019-03-22 2020-09-29 北京北方华创微电子装备有限公司 优化工艺流程的方法及装置、存储介质和半导体处理设备
CN110400858A (zh) * 2019-06-25 2019-11-01 湖南红太阳光电科技有限公司 一种hjt电池双层透明导电氧化物薄膜的制备方法
CN113832439A (zh) * 2021-08-24 2021-12-24 华能新能源股份有限公司 一种薄膜制备方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184742A (ja) * 1992-12-22 1994-07-05 Tdk Corp スパッタリング方法及び装置
US6379508B1 (en) * 1998-03-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. Method for forming thin film
JP2002241934A (ja) * 2001-02-09 2002-08-28 Canon Inc スパッタ方法およびスパッタ装置
JP2006002220A (ja) * 2004-06-17 2006-01-05 Pioneer Electronic Corp スパッタリング装置、プラズマディスプレイパネルの製造方法、プラズマ表示装置及びその製造方法
CN101476110A (zh) * 2009-01-13 2009-07-08 大连理工大学 会切磁场约束icp增强电离的非平衡磁控溅射薄膜沉积装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311645A (ja) * 1995-05-19 1996-11-26 Teijin Ltd Ito成膜装置
US6074279A (en) * 1997-02-28 2000-06-13 Tosoh Corporation Process for producing sputtering target
US6383345B1 (en) * 2000-10-13 2002-05-07 Plasmion Corporation Method of forming indium tin oxide thin film using magnetron negative ion sputter source
JP4959118B2 (ja) * 2004-04-30 2012-06-20 株式会社アルバック スパッタリング装置及びスパッタリング装置用のターゲット
TWI288434B (en) * 2005-01-14 2007-10-11 Jun-Dar Hwang A novel transparent ohmic contacts of indium TiN oxide (ITO) to n-type GaN
CN102453881B (zh) * 2010-10-27 2014-07-16 北京北方微电子基地设备工艺研究中心有限责任公司 物理气相沉积设备及磁控溅射方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184742A (ja) * 1992-12-22 1994-07-05 Tdk Corp スパッタリング方法及び装置
US6379508B1 (en) * 1998-03-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. Method for forming thin film
JP2002241934A (ja) * 2001-02-09 2002-08-28 Canon Inc スパッタ方法およびスパッタ装置
JP2006002220A (ja) * 2004-06-17 2006-01-05 Pioneer Electronic Corp スパッタリング装置、プラズマディスプレイパネルの製造方法、プラズマ表示装置及びその製造方法
CN101476110A (zh) * 2009-01-13 2009-07-08 大连理工大学 会切磁场约束icp增强电离的非平衡磁控溅射薄膜沉积装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, WEIQI ET AL.: "Analysis of Conditions on Sputter Deposition", GUIZHOU SCIENCE, vol. 29, no. 2, April 2011 (2011-04-01), pages 1 - 4 *

Also Published As

Publication number Publication date
TWI496915B (zh) 2015-08-21
CN103938164B (zh) 2016-08-31
CN103938164A (zh) 2014-07-23
TW201430153A (zh) 2014-08-01

Similar Documents

Publication Publication Date Title
WO2014114161A1 (zh) Ito薄膜溅射工艺方法及ito薄膜溅射设备
US8227323B2 (en) Method for manufacturing semiconductor device
CN104157749B (zh) Ito膜层的制备方法及led芯片的制备方法
TW200537972A (en) Organic light-emitting device and method of manufacturing a cathode in organic light-emitting devices
KR20160141833A (ko) ITO 박막의 증착 방법 및 GaN 기반 LED 칩
CN109545937A (zh) 一种高亮度侧镀倒装led芯片及其制作方法
TWI510661B (zh) ITO film sputtering processing method and ITO film sputtering equipment
CN107488828B (zh) 形成薄膜的方法以及形成氮化铝薄膜的方法
CN103912807B (zh) 大功率led光引擎
WO2015135249A1 (zh) 图案化多绝缘材质电路基板
CN105200379B (zh) 沉积薄膜的磁控溅射方法
CN108767083B (zh) 一种应力可调的垂直结构led芯片及其制备方法
CN108796459B (zh) 薄膜沉积方法
CN109764264B (zh) 一种深海照明led光源装置及制备方法
CN105331940B (zh) 用于在衬底上沉积金属膜的方法及led器件
JP2009054889A (ja) Ito電極及びその作製方法、並びに窒化物半導体発光素子
CN104086223B (zh) 一种led用高效散热陶瓷基板的制作方法
US6113750A (en) Method of forming thin metal films
CN103427033A (zh) 导电薄膜、其制备方法及应用
JP5497301B2 (ja) 半導体発光素子及びその製造方法
CN103872216B (zh) 大功率led光源模块
CN110289344B (zh) 形成钝化保护层的方法、发光二极管及其制作方法
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
CN201390780Y (zh) 一种微波真空金属镀膜装置
TW201231702A (en) Sputtering apparatus and method for forming in metal oxide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872612

Country of ref document: EP

Kind code of ref document: A1