WO2015135249A1 - 图案化多绝缘材质电路基板 - Google Patents

图案化多绝缘材质电路基板 Download PDF

Info

Publication number
WO2015135249A1
WO2015135249A1 PCT/CN2014/077369 CN2014077369W WO2015135249A1 WO 2015135249 A1 WO2015135249 A1 WO 2015135249A1 CN 2014077369 W CN2014077369 W CN 2014077369W WO 2015135249 A1 WO2015135249 A1 WO 2015135249A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
patterned multi
metal
insulation material
high thermal
Prior art date
Application number
PCT/CN2014/077369
Other languages
English (en)
French (fr)
Inventor
高鞠
Original Assignee
苏州晶品光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶品光电科技有限公司 filed Critical 苏州晶品光电科技有限公司
Publication of WO2015135249A1 publication Critical patent/WO2015135249A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Definitions

  • the present invention relates to the technical field of electronic component printed wiring boards, and more particularly to a patterned multi-insulation material circuit board having excellent heat dissipation performance.
  • the former itself requires a lot of space, while the latter is more due to the large thermal expansion coefficient of the ceramic, and cannot form a large ceramic insulating layer, and if the ceramic insulating layer is larger than a certain size, Repeated hot and cold cycles in the solder joints due to stresses are prone to cracks or shedding, resulting in connection failure or even short-circuit failure.
  • the conductive layer is required to have good heat dissipation capability. Therefore, as package density and reliability requirements increase, consideration should be given to using substrates and thermally conductive layers with better thermal conductivity.
  • FR4 printed circuit boards are commonly used in current electronic devices.
  • an important factor affecting the reliability index is the operating temperature of components.
  • 55% of the failure rate of the electronic device is caused by the temperature exceeding the specified value of the electronic component.
  • Temperature has different effects on the performance of various types of components.
  • temperature has the greatest impact on semiconductor devices.
  • a large number of semiconductor devices used in electronic equipment, such as integrated operational amplifiers, TTL logic chips, various power supply voltage regulator chips, etc., whose basic components are PN junctions, are very sensitive to temperature changes, and generally increase the temperature by 10 ° C.
  • the leakage current will be doubled. This change with temperature will directly cause the product to drift at the normal operating point, and the maximum allowable power consumption will decrease.
  • Temperature also has a certain influence on the performance parameters of the RC components. When the temperature rises, it will The thermal noise inside the resistor is intensified, the resistance value deviates from the nominal value, and the power dissipation is allowed to decrease. The effect on the capacitor is to change the parameters such as capacitance and dielectric loss angle, which leads to changes in parameters such as the RC time constant in the circuit, which affects the reliability of the entire electronic device. In order to reduce the performance impact of temperature on components, it is necessary to use a circuit board with good heat dissipation and high reliability.
  • an object of the present invention is to provide a patterned multi-insulation material circuit board.
  • the patterned multi-insulation circuit board according to the present invention has the advantages of relatively low cost and high thermal conductivity, puncture resistance and reliable performance.
  • the patterned multi-insulation material circuit substrate of the present invention includes a metal substrate, wherein: the metal substrate is formed with a resin insulating layer and a highly thermally conductive insulating layer, and the high thermal conductive insulating layer is used as a semiconductor component.
  • the susceptor, the resin insulating layer is used as a pedestal of other electronic components, and the semiconductor component and the other electronic component are electrically connected by a metal connector.
  • the metal substrate has a plurality of resin insulating layers and a plurality of high thermal conductive insulating layers; and the resin insulating layers are disposed adjacent to each other or spaced apart; the high thermal conductive insulating layers are adjacent or spaced apart; The resin insulating layer and the high thermal conductive insulating layer are disposed adjacent to each other or at intervals.
  • the metal connecting body is a lead, a bump and/or a bridge using silver, gold or copper.
  • the metal substrate is made of an alloy material selected from the group consisting of aluminum, copper, nickel, iron, gold, silver, titanium, molybdenum, silicon, magnesium, lead, tin, indium, gallium or alloys thereof.
  • the metal substrate is made of copper or a copper alloy, aluminum or aluminum alloy, and single crystal silicon or polycrystalline silicon or the like.
  • the metal substrate is subjected to a surface treatment step, and the surface treatment step includes any one or more of a roughening treatment, a pickling, an alkali washing, an acid etching, and an alkali etching.
  • a metal or non-metal transition layer is formed on the surface of the metal substrate.
  • the surface of the metal substrate is subjected to surface treatment to form an anodized film or an insulating paint film on the surface thereof.
  • the high thermal conductive insulating layer is made of a ceramic material or a non-metallic single crystal material.
  • the ceramic material is selected from one or more of an oxide, a nitride, a carbide or a composite thereof.
  • the ceramic material is formed by a sintering or vacuum coating method, and the vacuum coating method is selected from the group consisting of evaporation and sputtering. Plating, ion plating, reactive sputtering, and chemical vapor deposition.
  • the thermal conductivity of the highly thermally conductive insulating layer ranges from 50 500 W/mK, preferably to 100 500 W/mK.
  • the thickness of the high thermal conductive insulating layer is 20 ⁇ 500 ⁇ , preferably 20 ⁇ 200 ⁇ .
  • the semiconductor component or other electronic component is connected to the metal wire or the metal connecting post by wave soldering, reflow soldering, eutectic soldering or using a conductive adhesive.
  • the power of the semiconductor component is 0.5 W or more, preferably 3 W or more, and more preferably 5 W or more.
  • the resin insulating layer is a cured resin containing a thermosetting resin and a curing agent.
  • the resin insulating layer is a cured resin containing a thermosetting resin, a curing agent, and an inorganic filler.
  • thermosetting resin is one selected from the group consisting of an epoxy resin, a silicone resin, a phenol resin, and an imide resin.
  • the inorganic filler is selected from one or more of silicon dioxide, aluminum oxide, aluminum nitride, silicon nitride or boron nitride.
  • the thermal conductivity of the resin insulating layer is 0.5 W/mK or more, and preferably the thermal conductivity is 1.0 W/mK or more, for example
  • the resin insulating layer has a thickness of 20 to 1000 ⁇ m, and preferably has a thickness ranging from 20 to 500 ⁇ m.
  • the present invention can provide an insulating metal substrate for electronic component packaging with significantly improved heat dissipation and high reliability by providing ceramic insulating plates and resin insulating plates of different thermal conductivity and different materials. Since the performance of the semiconductor device is temperature sensitive, For ceramic devices, ceramic pedestals with excellent heat conduction and heat dissipation performance are used, and ordinary resin insulating materials are used for other electronic components, thereby avoiding brittle failure which may be caused by enlargement of ceramic plates, and improving the reliability of the circuit substrate; According to the present invention, by processing the metal substrate, an insulating layer resistant to high voltage breakdown, such as a specially treated anodized layer or a paint film layer, can be formed on the surface of the metal substrate, and the package density and the reliability of the package can be further improved.
  • an insulating layer resistant to high voltage breakdown such as a specially treated anodized layer or a paint film layer
  • the circuit board of the present invention can be used for various semiconductor chip-containing substrates.
  • heat dissipation of a CPU or the like in a computer circuit can be improved
  • heat dissipation of a semiconductor chip such as IGBT bipolar in an inverter circuit can be improved
  • a wireless module in a wireless communication circuit can be improved.
  • Such heat dissipation improves the heat dissipation of the management chip in the power management circuit.
  • FIG. 1 is a schematic structural view of a patterned multi-insulation circuit board with a semiconductor component and other electronic components according to the present invention. detailed description
  • the patterned multi-insulation material circuit substrate of the present invention includes a metal substrate on which a resin insulating layer and a high thermal conductive insulating layer are formed, and the high thermal conductive insulating layer is used as a pedestal of the semiconductor component.
  • the resin insulating layer is used as a pedestal of other electronic components, and the semiconductor component and the other electronic components are electrically connected by a metal connecting body.
  • the metal connector is a lead, bump and/or bridge using silver, gold or copper. Specifically, for example, soldering, brazing, a highly thermally conductive adhesive or the like may be used for electrical connection, and preferably soldering.
  • the semiconductor chip described in the present invention may be, for example, an IGBT bipolar chip, a CPU chip, a wireless communication chip, a management chip or other semiconductor chip in an inverter circuit.
  • the power of the semiconductor component is 0.5 W or more, preferably 3 W or more, and more preferably 5 W or more.
  • the circuit board of the present invention can be applied to a power of 0.5 W, regardless of economic factors.
  • the semiconductor device described in the present invention may also be a high power LED chip, for example, a single LED chip having a power of 1 W or more, preferably 3 W or more.
  • the LED refers to a light-emitting diode, which refers to a light-emitting semiconductor element having a contact area for supplying power to a diode.
  • semiconductor light emitting diodes may be formed of one or more lanthanum elements and one or more PN junctions (III-V semiconductors) of group V elements.
  • III-V semiconductor materials that can be used for LEDs include: nitrides such as gallium nitride or indium gallium nitride; and phosphides such as indium gallium phosphide.
  • Other types of m-v materials can also be used, as well as other families of inorganic materials.
  • the metal substrate has a plurality of resin insulating layers and a plurality of high thermal conductive insulating layers; and the resin insulating layers are disposed adjacent to each other or spaced apart; the high thermal conductive insulating layers are adjacent or spaced apart; The resin insulating layer and the high thermal conductive insulating layer are disposed adjacent to each other or at intervals.
  • the metal substrate may be made of an alloy material selected from the group consisting of aluminum, copper, nickel, iron, gold, silver, titanium, molybdenum, silicon, magnesium, lead, tin, indium, gallium or alloys thereof.
  • the metal substrate is made of copper or a copper alloy, aluminum or aluminum alloy, and single crystal silicon or polycrystalline silicon or the like.
  • the thickness of the metal substrate can be selected according to actual needs, for example, from 0.1 mm to several tens of millimeters.
  • the substrate is preferably copper or a copper alloy. Specifically, aluminum having a purity of less than 99% by mass or less is preferable.
  • the metal substrate is subjected to a surface treatment process, and the surface treatment step may include a roughening treatment, Various processes such as pickling, alkali washing, acid etching, or alkali etching.
  • a typical method for forming a roughened surface a method of sequentially performing mechanical roughening treatment, alkali etching treatment, acid cleaning treatment, and electrochemical graining treatment using an electrolytic solution on a metal substrate may be mentioned.
  • the metal substrate is subjected to a plurality of mechanical roughening treatments, an alkali etching treatment, an acid descaling treatment, and a method of electrochemical graining treatment using different electrolytic solutions; however, the present invention is not limited thereto.
  • the acid may be an inorganic acid and/or an organic acid, and the inorganic acid may be, for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or the like; and the organic acid may be, for example, a carboxylic acid or a sulfonic acid, such as formic acid, acetic acid, tartaric acid, Oxalic acid, malic acid, ascorbic acid, and benzoic acid.
  • the base to be used may be, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an organic base such as tetramethylammonium hydroxide or trimethyl(hydroxyethyl)ammonium hydroxide.
  • the alkali solution or the acid solution may contain a corrosion inhibitor, and may further contain other components such as a surfactant and a chelating agent.
  • the surface treatment may further form an anodized film or an electrically insulating paint film layer on the surface of the metal substrate to improve adhesion and high-pressure breakdown strength of the metal substrate.
  • the thermal conductivity of the highly thermally conductive insulating layer in the present invention ranges from 50 500 W/mK, and preferably, the thermal conductivity of the highly thermally conductive insulating layer ranges from 100 500 W/mK.
  • the thickness of the highly thermally conductive insulating layer is preferably 20 to 500 ⁇ m, and more preferably, the thickness is in the range of 20 to 200 ⁇ m.
  • the high thermal conductive insulating layer may be made of a ceramic material or a non-metallic single crystal material, and the ceramic material may be selected from, but not limited to, zinc oxide, cerium oxide, aluminum oxide, titanium dioxide, silicon dioxide, silicon nitride, sapphire, nitriding.
  • the ceramic material described in the present invention may be welded to the metal substrate according to the present invention by cutting the fired ceramic plate, and the welding method may be, for example, a brazing method such as soldering or brazing. Or active brazing, etc.
  • the ceramic material described in the present invention can also be produced by an in-situ formation method, for example, by a vacuum coating method such as a usual physical vapor deposition method or a chemical vapor deposition method.
  • a vacuum coating method such as a usual physical vapor deposition method or a chemical vapor deposition method.
  • physical vapor deposition for example, an evaporation, sputtering or ion plating deposition method.
  • vacuum evaporation deposition has the advantages of simple and convenient, easy operation, fast film formation and high efficiency, and is the most widely used technology in film preparation.
  • the principle is to provide sufficient heat to the material to be evaporated, such as the ceramic material of the present invention, in a vacuum environment to obtain the vapor pressure necessary for evaporation.
  • the evaporating particles condense on the metal substrate, which allows vacuum evaporation of the film to be deposited.
  • vapor deposition for example, resistance heating evaporation, flash evaporation, electron beam evaporation, laser evaporation, arc evaporation, or radio frequency heating evaporation can be selected.
  • Sputtering refers to ion bombardment with sufficiently high energy
  • the surface of the target is emitted to emit atoms.
  • the incident particles usually ions
  • the incident particles actually collide with the target to perform a series of energy exchange processes, and 95% of the incident particle energy is used to excite the target.
  • the lattice is thermally vibrated, and only about 5% of the energy is transferred to the sputtered atoms.
  • sputter deposition for example, by sputtering a ceramic target by medium-high frequency magnetron sputtering and depositing on the surface of the metal substrate, the film obtained by sputtering is well bonded to the substrate, and the film has high purity and compactness.
  • the film thickness is controllable, and a film having a uniform thickness can be obtained.
  • the sputter deposition for example, glow direct current sputtering, magnetron sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, or the like can be selected.
  • the ceramic material can also be deposited by an ion plating method. Ion plating refers to the partial ionization of a gas or a vaporized substance by a gas discharge under a vacuum condition to generate an ion bombardment effect, and finally deposits an evaporant or a reactant on a substrate.
  • the chemical vapor deposition method for example, a general chemical vapor deposition method or a plasma enhanced chemical vapor deposition method can be employed.
  • the thermal conductivity of the resin insulating layer is 0.5 W/mK or more, more preferably, the thermal conductivity is 1.0 W/mK or more, for example, 0.5 30 W/, depending on the type of other electronic components.
  • the thickness of the resin insulating layer is preferably from 20 to 500 ⁇ m, and more preferably, the thickness thereof is from 20 to 200 ⁇ . Since the thickness is less than 20 ⁇ m, electrical insulation becomes insufficient, and if it is larger than 500 ⁇ m, heat dissipation may be impaired, and heat dissipation performance is remarkably lowered.
  • the resin insulating layer is a cured resin containing a thermosetting resin and a curing agent.
  • the resin insulating layer is a cured resin containing a thermosetting resin, a curing agent, and an inorganic filler.
  • a catalyst, a silane coupling agent, a titanate coupling agent, a stabilizer, a curing accelerator, or the like may be used as needed.
  • the thermosetting resin for example, an epoxy resin, a silicone resin, a phenol resin, an imide resin, or the like can be selected. It is preferred to use an epoxy resin from the viewpoint of thermal conductivity.
  • epoxy resin a bifunctional epoxy resin which can be obtained at a relatively low cost, for example, bisphenol quinone diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, isophthalic acid is preferably used.
  • an acid anhydride or a phenol having excellent mechanical properties and electrical properties is preferably used, and in order to secure the mechanical properties and dielectric properties of the insulating layer, it is preferred to add an addition polymerization type curing agent.
  • an acid anhydride or a phenol which can be obtained at relatively low cost it is preferred to use an acid anhydride or a phenol which can be obtained at relatively low cost, and the acid anhydride includes phthalic anhydride, tetrahydromethyl phthalic anhydride, and hexahydrogen.
  • Phthalic anhydride, trimellitic anhydride, methyl norbornene dianhydride, etc., and phenols include novolac phenolic resins, o-cresol novolac phenolic resins, bisphenol A-type novolac phenolic resins, and the like.
  • a catalyst may be added.
  • imidazoles such as 2-methylimidazole, 2- ⁇ -alkylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-methyl-4-methylimidazole, and the like are preferable.
  • 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2,3-dihydro-1H-pyrrole [1, 2-a] benzimidazole, 2-phenyl-4, 5-dimethylolimidazole, etc. may be arbitrarily changed in an amount to obtain a desired curing speed.
  • an inorganic filler having electrical insulating properties and good thermal conductivity is preferable, and for example, silica, alumina, aluminum nitride, silicon nitride, boron nitride or the like can be used.
  • the content of the inorganic filler in the insulating layer is preferably from 5 to 15% by weight.
  • the particle size of the inorganic filler preferably comprises an average particle size of 0.6 ⁇ ! ⁇ 2.4 ⁇ and 5 ⁇ ! ⁇ 20 ⁇ of two particle sizes. By mixing coarse particles having a large average particle diameter and fine particles having a small average particle diameter, more filling can be achieved than when the respective fine particles are used alone, and good thermal conductivity can be obtained. Further, the particle shape may be pulverized, spherical, or scaly.
  • the circuit board of the present invention further includes a metal pattern circuit, and the metal pattern circuit may be formed on the resin insulating layer or the high thermal conductive insulating layer as needed, and the metal pattern circuit may be used
  • the curable resin composition slurry on which the insulating layer is formed is patterned on a metal substrate by a method such as screen printing, and after heating, a semi-cured state is formed, and then a metal foil is attached, and then heated to form a substantially completely cured state. Or a method of processing an insulating layer into a sheet shape in a semi-cured state, a method of integrating it with a metal foil for forming a metal pattern circuit by a hot press device, or the like.
  • a resist layer may be applied to a predetermined portion of the metal foil to be solidified, and then a conventional etching agent such as copper chloride, a mixture of hydrogen peroxide and sulfuric acid may be used by wet etching. Corrosion; Further, a dry etching method such as a dry etching process using a sputtering gas can be utilized.
  • a conventional etching agent such as copper chloride, a mixture of hydrogen peroxide and sulfuric acid
  • Corrosion Further, a dry etching method such as a dry etching process using a sputtering gas can be utilized.
  • the patterned multi-insulation material A semiconductor component and other electronic components are disposed on the circuit substrate, and include a metal substrate 10 having a resin insulating layer 20 and a highly thermally conductive insulating layer 25 formed thereon, and the high thermal conductive insulating layer 25 is disposed on the substrate a metal pattern circuit 30 and a semiconductor component 40, wherein the resin insulating layer 20 is provided with a metal pattern circuit 30 and other electronic components 50, and the semiconductor component 40 and the The other electronic components 50 can be electrically connected by the metal connector 60.
  • the metal connector is a lead, bump and/or bridge using silver, gold or copper.
  • soldering, brazing, a highly thermally conductive adhesive or the like may be used for electrical connection, and preferably soldering.
  • the semiconductor chip may be, for example, an IGBT bipolar chip, a CPU chip, a wireless communication chip, a management chip or other semiconductor chip in an inverter circuit.
  • the metal substrate is selected to be an aluminum plate substrate, for example, 99.99 wt. / pure aluminum, and an anodized aluminum film is formed on the aluminum plate substrate;
  • the thickness of the aluminum plate substrate is 2 to 20 mm, and the thickness of the anodized aluminum film is 10 to 20 ⁇ ;
  • the insulation of the anodized aluminum film The endurance time is more than 1000 hours, and the insulation endurance time refers to a time when a direct current voltage of 100 V is applied to the anodized aluminum film under a condition of 50 V and 85% RH, and the resistance value is lowered to 10 ⁇ ⁇ or less.
  • the preparation method of the anodized film is as follows: First, the aluminum plate is cleaned and descaled, and then anodized in an aqueous solution of citric acid containing: 20 to 35 g/L of citric acid, 3 to 5 g. /L DL-cysteine, 0.5 ⁇ : L0g/L hydrogen peroxide, 3 ⁇ 5g/L aluminum citrate; at a liquid temperature of 10 ⁇ 20°C, current density is 0.5 ⁇ lA/dm 2 , electrolytic treatment 20 ⁇ 30 min.
  • the supply of aluminum ions can be made sufficient in the anodizing treatment, thereby obtaining a dense
  • the anodic aluminum oxide film can satisfy the requirement that the insulation endurance time is more than 1000 hours without the sealing treatment under the conditions of a film thickness of ⁇ or more.
  • the preparation method of the anodized film described in this embodiment is as follows: First, the aluminum plate is cleaned and descaled, and then anodized in an aqueous citric acid solution containing: 20 g/L of citric acid, 3 g/ DL-cysteine of L, 1.0 g/L of hydrogen peroxide, 3 g/L of aluminum citrate; at a liquid temperature of 10 ° C, a current density of 1 A/dm 2 , and electrolytic treatment for 20 min.
  • the obtained dense anodized aluminum film has an insulation durability time of more than 1000 hours.
  • the preparation method of the anodized film described in this embodiment is as follows: First, the aluminum plate is cleaned and descaled, and then anodized in an aqueous solution of citric acid containing: 30 g/L of citric acid, 4 g/ DL-cysteine of L, 1.0 g/L of hydrogen peroxide, 5 g/L of aluminum citrate; at a liquid temperature of 20 ° C, a current density of 1 A/dm 2 , and an electrolytic treatment for 20 min.
  • the obtained dense anodized aluminum film has an insulation durability time of more than 1000 hours.
  • the preparation method of the anodized film described in this embodiment is as follows: First, the aluminum plate is cleaned and descaled, and then anodized in an aqueous citric acid solution containing: 35 g/L of citric acid, 5 g/ DL-cysteine of L, 1.0 g/L of hydrogen peroxide, 5 g/L of aluminum citrate; at a liquid temperature of 10 ° C, a current density of 1 A/dm 2 , and electrolytic treatment for 30 min.
  • the obtained dense anodized aluminum film has an insulation durability time of more than 1500 hours.
  • the aluminum plate is pickled and descaled, and then anodized in an oxalic acid solution containing 35 g/L of oxalic acid and 5 g/L of aluminum oxalate; the liquid temperature is 20 ° C, and the current density is 1 A/ Dm 2 , electrolytic treatment for 30 min; then blocking treatment in aqueous boric acid solution containing 0.5 mol/L boric acid and 0.2 mol/L sodium tetraborate; sealing condition is liquid temperature 20 ° C, current The density is 1A/dm 2 , the electrolysis treatment time is 5 minutes, and the insulation endurance time is 300 to 500 hours. Comparative example 2
  • the aluminum plate is pickled and descaled, and then anodized in a sulfuric acid solution containing 35 g/L of oxalic acid and 5 g/L of aluminum sulfate; at a liquid temperature of 20 ° C, a current density of 1 A/ Dm 2 , electrolytic treatment for 30 min; then blocking treatment in aqueous boric acid solution containing 0.5 mol/L boric acid and 0.2 mol/L sodium tetraborate; sealing condition is liquid temperature 20 ° C, current The density is 1A/dm 2 , the electrolysis treatment time is 5 minutes, and the insulation endurance time is 250 to 400 hours.
  • the high thermal conductive insulating layer has a thermal conductivity in the range of 50 500 W/mK.
  • the high thermal conductive insulating layer has a thickness in the range of 20 500 ⁇ , for example, 50 ⁇ .
  • the highly thermally conductive insulating layer may be made of a ceramic material or a non-metallic single crystal material.
  • the ceramic material it may be selected from, but not limited to, zinc oxide, cerium oxide, aluminum oxide, titanium oxide, silicon dioxide, silicon nitride, sapphire, aluminum nitride, silicon carbide, silicon oxynitride or aluminum oxynitride.
  • the ceramic material described in the present invention may be welded to the metal substrate according to the present invention by cutting the fired ceramic plate, and the welding method may be, for example, a brazing method such as soldering or brazing.
  • the active brazing composition may be, for example, 2.25 wt / Ti, 2.00 wt / Al, 3.00 wt / Si and the balance of Cu; for example, 1.25 wt ° / Ti, 32.250 wt ° / Cu and the balance of Ag; for example, 1.25 wt ° / Ti, 12.50 wt ° / In, 27.25 wt ° / Cu and the balance of Ag can be selected.
  • the high thermal conductive insulating layer can also be prepared by evaporation, sputtering or reactive ion plating and chemical vapor deposition.
  • the applicant is Suzhou Jingpin Optoelectronics Technology Co., Ltd.
  • the publication number is CN103354221A, CN103353065A, CN103354219A, CN103354222A, CN103354698A, CN103354220A, Preparation methods described in CN103354269A, CN103354697A, CN103354699A, CN103354254A, CN103327736A, CN103327735A, CN103325921A, CN103338588A, or the publication numbers CN203340413U, CN203339213U, CN203339139U, CN203340409U, CN203340407U, CN203340408U, CN203339224U, CN203336288U
  • the thermal conductivity of the resin insulating layer may be selected to be 0.5 30 W/mK, and the thickness of the resin insulating layer is preferably in the range of 20 to 500 ⁇ .
  • the resin insulating layer is formed of a curable resin composition containing a thermosetting resin, a curing agent, and an inorganic filler. Further, in the curable resin composition for forming an insulating layer, other components may be used as needed. .
  • the forming conditions can be cured, for example, at 160 to 180 ° C for 30 to 180 seconds.
  • the curable resin composition contains 55 to 60% by weight of bisphenol F diglycidyl ether, 12.5 to 15.0% by weight of vinyltriethoxysilane, and 8.0 to 10.0% by weight of benzoic acid- 2-hydroxyethyl ester, 3.2 to 5.0 wt% trimethylsilyl imidazole, 2.5 to 3.0 wt% phthalic anhydride, 0.5 to 1.0 wt/2,6-di-tert-butyl-p-cresol, and 3 ⁇ 8 wt% of alumina fine particles having an average particle diameter of 2.0 ⁇ m and 3 to 8 wt% of alumina fine particles having an average particle diameter of 5.0 ⁇ m.
  • the curable resin composition of the present embodiment contains 55 wt% of bisphenol F diglycidyl ether, 15.0 wt% of vinyl triethoxysilane, 10.0 wt / of benzoic acid-2-hydroxyethyl ester, 5.0 wt. % trimethylsilyl imidazole, 2.5 wt% phthalic anhydride, 1.0 wt ° / 2, 6-di-tert-butyl-p-cresol, and 5.5 wt% alumina particles having an average particle diameter of 2.0 ⁇ m and 6.0 wt% of alumina fine particles having an average particle diameter of 5.0 ⁇ m.
  • the thermal conductivity was measured to be 20 25 .
  • the curable resin composition of the present embodiment contains 60% by weight of bisphenol F diglycidyl ether, 12.5 wt/vinyltriethoxysilane, 8 wt/benzoic acid-2-hydroxyethyl ester, 3.2 wt% Trimethylsilyl imidazole, 3.0 wt% phthalic anhydride, 1.0 wt/2,6-di-tert-butyl-p-cresol, and 6.3 wt% alumina particles having an average particle diameter of 2.0 ⁇ m and 6.0 wt % of alumina particles having an average particle diameter of 5.0 ⁇ m.
  • the thermal conductivity is 22 to 26
  • the curable resin composition of the present embodiment contains 58 wt% of bisphenol F diglycidyl ether, 15 wt/vinyl triethoxysilane, 10 wt/benzoic acid-2-hydroxyethyl ester, and 5 wt% of trimethyl Silyimidazole, 3.0 wt% phthalic anhydride, 1.0 wt/2,6-di-tert-butyl-p-cresol, and 4 wt% alumina particles having an average particle diameter of 2.0 ⁇ m and 4 wt/average particle diameter It is an alumina fine particle of 5.0 ⁇ m.
  • the thermal conductivity was measured to be 18 to 22 W/mK.
  • the curable resin composition of the present embodiment contains 78% by weight of bisphenol F diglycidyl ether, 5% by weight of 2-methylimidazole, 3.0% by weight of phthalic anhydride, 1.0 wt/ 2, 6-two. Tert-butyl-p-cresol, 6.5 wt% of alumina fine particles having an average particle diameter of 2.0 ⁇ m and 6.5 wt% of alumina fine particles having an average particle diameter of 5.0 ⁇ m.
  • the thermal conductivity is 15 to 20 W/mK.
  • the resin insulating layer described in the present invention should have excellent heat discoloration resistance in addition to the required thermal conductivity.
  • the curable resin composition was 170. C, 8 N/mm 2 and a curing time of 120 seconds were processed into a 50 mm diameter disc having a thickness of 3 mm as a sample, and then placed at 150 ° C for 24 hours, and the heat discoloration property was observed by naked eyes. It was found that the sample described in Example 4-6 showed no discoloration, and the sample described in Example 7 was slightly discolored or discolored.
  • a metal pattern circuit is formed on the resin insulating layer or on the resin insulating layer and the high thermal conductive insulating layer as needed.
  • a conductive copper film may be formed on the edge layer by bonding or pressing a copper foil, or a copper film may be formed by sputtering or electroless plating (requiring activation in advance).
  • the thickness of the copper film is, for example, 2 to 5 ⁇ m thick, and then the photoresist is coated on the copper film, and then photolithography is performed on the photolithography machine using a metal photolithography mask, and then developed to form a metal pattern circuit, or
  • the pattern of the conductive metal layer is directly formed by screen printing; after baking and curing, the aluminum layer is etched by a wet etching process, and the metal pattern circuit is obtained after etching.
  • the circuit substrate of the present invention has improved heat dissipation performance and reliability, and can be applied to various substrates including semiconductor chips, for example, can improve heat dissipation of CPUs in computer circuits, and improve semiconductors such as IGBT bipolar in inverter circuits.
  • the heat dissipation of the chip improves the heat dissipation of the wireless module in the wireless communication circuit, and improves the heat dissipation of the management chip in the power management circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

提供一种图案化多绝缘材质电路基板。所述电路基板包括金属基板,所述金属基板(10)上形成有树脂绝缘层(20)和高导热绝缘层(25),并且所述高导热绝缘层(25)用作半导体器件(40)的基座,所述树脂绝缘层(20)用作其他电子元器件(50)的基座。该电路基板可提供散热性得到显著改善以及高可靠性,可以应用于各种含半导体芯片的基体,例如可以提高计算机电路中CPU等的散热。提高逆变器电路中IGBT等半导体芯片的散热,提高无线通讯电路中无线模块等的散热,提高电源管理中管理芯片的散热。

Description

图案化多绝缘材质电路基板
技术领域
本发明属于电子元件印刷线路板的技术领域, 更具体的说, 本发明涉及一种具有优异散 热性能的图案化多绝缘材质电路基板。
背景技术
随着集成电路的发展, 电子封装变得更轻、 更薄、 更小、 功能更强, 逐步满足人类对便 捷、 舒适、 强大功能的追求, 同时也对电子封装提出了更高的要求。 电子元件功耗的增加必 然会导致电路发热量的提高, 从而使工作温度不断上升。 一般来说, 在半导体器件中, 温度 每升高 18°C, 失效的可能性就增加 2〜3倍。 因此散热成为制约电子元件向高功率化发展的瓶 颈问题。
当前, 散热问题无疑已成为摆在电子设计者们面前的最大挑战之一。 一方面随着印刷线 路板向着高密度、 高精度、 小型多层 SMT方向的不断发展,元器件的安装空间大幅减少; 而另 一方面对功率元器件的功率要求却又越来越高。 小空间大功率不可避免地产生更多的热量聚 集, 造成元器件电气性能下降甚至毁损。早先的解决办法是采用冷却硬件或陶瓷功能块散热, 前者本身需要大量空间, 而后者更由于陶瓷的热膨胀系数较大, 而不能形成大的陶瓷绝缘层, 而如果陶瓷绝缘层大于一定尺寸时在反复多次的冷热循环中焊点处由于应力易形成裂纹或脱 落而导致连接失效甚至容易引起短路而失效。 另外, 随着电子元器件的引脚越来越多的参与 散热, 要求导电层也要具有良好的散热能力。 因此, 随着封装密度及对可靠性要求的提高, 应考虑选用导热性能更好的基材和导热层。
目前的电子器件普遍使用 FR4印刷线路板, 对于电子器件来说, 影响其可靠性指标的一个 重要因素就是元器件的工作温度。 根据相关文献记载, 电子设备的失效率有 55%是由温度超 过电子元件的规定值引起的。 温度对各种类型元器件的性能影响是不同的, 在常见的元器件 中, 温度对于半导体器件的影响最大。 电子设备中大量应用的半导体器件如集成运放、 TTL 逻辑芯片、 各种电源稳压芯片等, 其基本组成单元都是 P-N结, 对温度变化非常敏感, 一般温 度每升高 10°C, 反向漏电流将增加一倍。 这种随温度的变化, 将直接导致产品正常工作点发 生漂移, 最大允许功耗下降。 温度对阻容元件的性能参数也有一定的影响。 温度升高时, 会 造成电阻内热噪声加剧, 阻值偏离标称值, 允许耗散功率下降等。 对电容器的影响是使电容 量和介质损耗角等参数发生变化, 从而导致电路中的阻容时间常数等参数改变, 影响整个电 子设备的可靠性。 为了减少温度对元器件的性能影响, 必须要使用散热良好而且可靠性高的 线路板。
发明内容
为了解决上述技术问题, 本发明的目的在于提供一种图案化多绝缘材质电路基板。 采用 本发明所述的图案化多绝缘材质电路基板不仅成本相对较低而还具有高导热率、 抗击穿并且 性能可靠的优点。
本发明所述的图案化多绝缘材质电路基板, 包括金属基板, 其特征在于: 所述金属基板 上形成有树脂绝缘层和高导热绝缘层, 并且所述高导热绝缘层用作半导体元器件的基座, 所 述树脂绝缘层用作其他电子元器件的基座, 并且所述半导体元器件与所述其他电子元器件通 过金属连接体电性连接。
其中, 所述金属基板上具有多个树脂绝缘层和多个高导热绝缘层; 并且所述树脂绝缘层 之间相邻设置或者间隔设置; 所述高导热绝缘层之间相邻或者间隔设置; 所述树脂绝缘层与 所述高导热绝缘层之间相邻设置或者间隔设置。
其中, 所述金属连接体为采用银、 金或铜的引线、 隆起物和 /或桥接物。
其中, 所述金属基板由选自铝、 铜、 镍、 铁、 金、 银、 钛、 钼、 硅、 镁、 铅、 锡、 铟、 镓或者它们的合金材料制成。 作为优选地, 所述金属基板由铜或铜合金, 铝或铝合金, 以及 单晶硅或多晶硅等制成。
其中, 所述金属基体经过表面处理工序, 所述的表面处理工序包含粗化处理、 酸洗、 碱 洗、 酸蚀刻或者碱蚀刻工序中的任意一种或几种。
其中, 所述金属基体表面形成有金属或非金属过渡层。
其中, 所述金属基体表面经过表面处理在其表面上形成有阳极氧化膜或绝缘漆膜。 其中, 所述高导热绝缘层由陶瓷材料或非金属单晶材料制成。
其中, 所述陶瓷材料选自氧化物、 氮化物、 碳化物或者它们的复合物的一种或几种。 其中, 所述陶瓷材料通过烧结或真空镀膜方法形成, 所述的真空镀膜方法选自蒸镀、 溅 镀、 离子镀、 反应溅射以及化学气相沉积等工艺。
其中, 所述高导热绝缘层的导热系数的范围为 50 500 W/mK, 优选为 100 500 W/mK。 其中, 所述高导热绝缘层的厚度为 20~500 μηι, 优选为 20~200 μηι。
其中, 所述半导体元器件或其他电子元器件通过波峰焊接、 回流焊接、 共晶焊接或使用 导电粘合剂与金属导线或金属连接柱连接。
其中, 所述半导体元器件的功率为 0.5W以上, 优选为 3W以上, 更优选为 5W以上。
其中, 所述树脂绝缘层为含有热固性树脂和固化剂的树脂固化物。
其中, 所述树脂绝缘层为含有热固性树脂、 固化剂和无机填料的树脂固化物。
其中, 所述热固性树脂选自环氧树脂、 有机硅树脂、 酚醛树脂或酰亚胺树脂中的一种。 其中, 所述无机填料选自二氧化硅、 氧化铝、 氮化铝、 氮化硅或氮化硼中的一种或几种。 其中, 所述树脂绝缘层的热导率为 0.5 W/mK以上, 优选导热率为 1.0 W/mK以上, 例如
1.0~30 W/mK。
其中, 所述树脂绝缘层的厚度为 20~1000 μηι, 优选厚度范围为 20~500 μηι。
与现有技术相比, 本发明的技术方案具有以下有益效果:
本发明通过设置不同导热系数以及不同材质的陶瓷绝缘板以及树脂绝缘板, 可提供散热 性得到显著改善以及高可靠性的电子元器件封装用绝缘金属基板, 由于半导体器件的性能对 温度敏感, 因此对于半导体器件使用导热和散热性能优异的陶瓷基座, 而对于其它电子元器 件使用普通的树脂绝缘材料, 这样避免了陶瓷板的大型化可能导致的脆性失效, 提高了电路 基板的可靠性; 此外本发明还通过对金属基板的处理, 能够在金属基板的表面形成耐高压击 穿的绝缘层, 例如特殊处理的阳极氧化层或漆膜层, 能够进一步提高封装密度以及封装的可 靠性。 本发明所述的电路基板可以用于各种含半导体芯片的基体, 例如可以提高计算机电路 中 CPU等的散热, 提高逆变器电路中 IGBT bipolar等半导体芯片的散热, 提高无线通讯电路中 无线模块等的散热, 提高电源管理电路中管理芯片的散热。
附图说明
图 1为本发明所述的带有半导体元器件以及其他电子元器件的图案化多绝缘材质电路基 板的结构示意图。 具体实施方式
本发明所述的图案化多绝缘材质电路基板, 包括金属基板, 所述金属基板上形成有树脂 绝缘层和高导热绝缘层, 并且所述高导热绝缘层用作半导体元器件的基座, 所述树脂绝缘层 用作其他电子元器件的基座, 并且所述半导体元器件与所述其他电子元器件通过金属连接体 电性连接。 所述金属连接体为采用银、 金或铜的引线、 隆起物和 /或桥接物。 具体来说, 例如 可以采用软钎焊、 硬钎焊、 高导热性粘结剂等来进行电连接, 优选为软钎焊。 在本发明中所 述半导体芯片例如可以为逆变器电路中 IGBT bipolar芯片、 CPU芯片、 无线通讯芯片、 管理芯 片或其它半导体芯片。 在本发明中, 所述半导体元器件的功率为 0.5W以上, 优选为 3W以上, 更优选为 5W以上, 当然如果不考虑经济因素, 本发明所述的电路基板也可以应用于功率为 0.5W以下的半导体元器件。 在本发明中所述的半导体元件还可以是大功率 LED芯片, 例如单 颗 LED芯片的功率为 1W以上, 优选地为 3W以上的芯片。 而所述的 LED是指发光二级管, 其 是指具有向二极管供电的接触区域的发光半导体元件。 不同形式的半导体发光二极管可以由 一种或多种 ΠΙ族元素和一种或者多种 V族元素的 PN结 (III-V半导体)形成。 可用于 LED的 III-V 半导体材料的例子包括: 氮化物, 如氮化镓或者氮化铟镓; 以及磷化物如磷化铟镓。 也可以 使用其它类型的 m-v材料, 还可以使用其它族的无机材料。
其中, 所述金属基板上具有多个树脂绝缘层和多个高导热绝缘层; 并且所述树脂绝缘层 之间相邻设置或者间隔设置; 所述高导热绝缘层之间相邻或者间隔设置; 所述树脂绝缘层与 所述高导热绝缘层之间相邻设置或者间隔设置。
在本发明中, 所述金属基板可以由选自铝、 铜、 镍、 铁、 金、 银、 钛、 钼、 硅、 镁、 铅、 锡、 铟、 镓或者它们的合金材料制成。 作为优选地, 所述金属基板由铜或铜合金, 铝或铝合 金, 以及单晶硅或多晶硅等制成。 在本发明中, 金属基板的厚度可以依据实际需要加以选择, 例如可以从 0.1毫米至数十毫米。 在本发明中所述基板优选使用铜或铜合金。 具体来说优选为 杂质少、 99质量%以上的纯度的铝。 例如, 优选 99.99wt%的铜、 99.0%铜等。 或者, 基于不同 的目的, 也可添加其它合金元素。 例如可以添加适量锰的铜锰合金, 以改善其耐蚀性能。 除 了锰以外, 还可选择其它固溶极限高的添加元素。
作为优选地, 所述金属基体经过表面处理工序, 所述的表面处理工序可包含粗化处理、 酸洗、 碱洗、 酸蚀刻或者碱蚀刻等各种工序。 作为用于形成粗化表面的代表性方法, 可以举 出对金属基板依次实施机械性粗面化处理、 碱蚀刻处理、 采用酸的清洗处理和使用了电解液 的电化学粗面化处理等方法; 对金属基板实施多次机械性粗面化处理、 碱蚀刻处理、 采用酸 的除垢处理和使用了不同的电解液的电化学粗面化处理的方法; 但本发明并不限于这些。 作 为酸可以为无机酸和 /或有机酸, 所述的无机酸例如可以为硫酸、 盐酸、 硝酸、 磷酸等; 所述 的有机酸例如可以为羧酸或磺酸, 例如甲酸、 乙酸、 酒石酸、 草酸、 苹果酸、 抗坏血酸以及 苯甲酸等。 作为常用的碱例如可以为碱金属的氢氧化物, 例如氢氧化钠或氢氧化钾, 另外也 可以使用四甲基氢氧化铵、 三甲基 (羟乙基) 氢氧化铵等有机碱。 为了减少酸洗或碱蚀刻处 理过程中金属基体材料的蚀刻量, 在所述的碱溶液或酸溶液中可以含有耐蚀剂, 此外还可以 含有表面活性剂以及螯合剂等其它组分。 此外, 所述的表面处理, 还可以是在所述的金属基 体表面形成阳极氧化膜或电绝缘的漆膜层, 从而改善粘结性以及所述金属基体的耐高压击穿 强度。
在本发明中, 作为本发明中的所述高导热绝缘层的导热系数的范围为 50 500 W/mK, 作 为优选地, 所述高导热绝缘层的导热系数的范围为 100 500 W/mK。所述高导热绝缘层的厚度 优选为 20~500 μηι, 更优选地, 其厚度范围为 20~200 μηι。 所述高导热绝缘层可以由陶瓷材料 或非金属单晶材料制成, 作为陶瓷材料可以选择但不限于氧化锌、 氧化铍、 氧化铝、 二氧化 钛、 二氧化硅、 氮化硅、 蓝宝石、 氮化铝、 碳化硅、 氮氧化硅或氮氧化铝。 在本发明中所述 的陶瓷材料可以通过切割烧制的陶瓷板并焊接在本发明所述的金属基板上, 所述的焊接方法 例如可以是钎焊的方法, 例如软钎焊、 硬钎焊或活性钎焊等。 在本发明中所述的陶瓷材料还 可以通过原位形成方法制备得到, 例如通过真空镀膜方法, 例如常用的物理气相沉积方法或 化学气相沉积方法制备得到。 作为物理气相沉积的例子例如蒸镀、 溅射或离子镀沉积方法。 其中, 真空蒸发沉积具有简单便利、 操作容易、 成膜速度快以及效率高等优点, 是薄膜制备 中最为广泛使用的技术。 其原理是在真空环境下, 给待蒸发材料, 例如本发明中的陶瓷材料 提供足够的热量以获得蒸发所必需的蒸气压。在适当的温度下, 蒸发粒子在金属基体上凝结, 这样既可实现真空蒸发薄膜沉积。 作为蒸镀的例子例如可以选择电阻加热蒸镀、 闪烁蒸镀、 电子束蒸发、 激光蒸发、 电弧蒸发或者射频加热蒸发等。 溅射是指具有足够高能量的离子轰 击靶材表面使其中的原子发射出来, 溅射过程实际上入射粒子 (通常为离子)通过与靶材碰撞, 进行一系列能量交换的过程, 而入射粒子能量的 95%用于激励靶中的晶格热振动, 只有 5%左 右的能量是传递给溅射原子。 作为溅射沉积的例子例如通过, 通过中高频磁控溅射陶瓷靶材 并沉积在所述金属基板表面上, 溅射所获得的薄膜与基体结合良好, 而且薄膜纯度较高、 致 密性较好, 而且膜厚可控, 能够获得厚度均匀的薄膜。 作为溅射沉积的例子例如可以选择辉 光直流溅射、 磁控溅射、 射频溅射、 离子束溅射、 反应溅射等。 另外, 所述陶瓷材料还可以 通过离子镀方法沉积得到。 离子镀是指在真空条件下, 利用气体放电使气体或被蒸发物部分 离子化, 产生离子轰击效应, 最终将蒸发物或反应物沉积在基片上。 作为化学气相沉积方法 例如可以采用一般化学气相沉积方法或者等离子体增强化学气相沉积方法。
在本发明中, 根据其它电子元器件的类型, 所述树脂绝缘层的热导率为 0.5 W/mK以上, 更优选地, 其导热率为 1.0 W/mK以上, 例如可以为 0.5 30 W/mK的范围。 如此可以将其它电 子元器件或者金属导线所产生的热量扩散掉而不产生积累。 所述树脂绝缘层的厚度优选为 20-500 μηι, 更优选地, 其厚度范围为 20~200 μηι。 因为厚度如果小于 20 μηι, 则电绝缘性变 得不充分, 如果大于 500μηι, 则散热性可能会受损, 散热性能将显著降低。 而所述树脂绝缘 层为含有热固性树脂和固化剂的树脂固化物。 作为优选地, 所述树脂绝缘层为含有热固性树 脂、 固化剂和无机填料的树脂固化物。 此外, 在用于形成绝缘层的固化性树脂组合物中, 还 可以根据需要还可以使用催化剂、 硅烷类偶联剂、 钛酸脂类偶联剂、 稳定剂以及固化促进剂 等。 作为热固性树脂, 例如可以选择环氧树脂、 有机硅树脂、 酚醛树脂和酰亚胺树脂等。 从 导热性的角度考虑优选使用环氧树脂。 而作为环氧树脂, 优选使用可较为廉价地获得的双官 能性环氧树脂, 如, 双酚 Α二缩水甘油醚、 双酚 F二缩水甘油醚、 双酚 S二缩水甘油醚、 间苯 二酚二缩水甘油醚、 六氢双酚 A二缩水甘油醚、 聚丙二醇二缩水甘油醚、 新戊二醇二缩水甘 油醚、 邻苯二甲酸二缩水甘油酯、 二聚酸二缩水甘油酯等。
作为固化剂, 优选使用具有优异的机械性质和电性质的酸酐类或苯酚类, 并且为了确保 绝缘层的机械性质和介电性质, 优选加入加聚型固化剂。 作为加聚型固化剂, 优选使用可较 为廉价地获得的酸酐类或苯酚类, 酸酐类包括邻苯二甲酸酐、 四氢甲基邻苯二甲酸酐、 六氢 邻苯二甲酸酐、 偏苯三酸酐、 甲基降冰片烯二酸酐等, 苯酚类包括线型酚醛树脂、 邻甲酚线 型酚醛树脂、 双酚 A型线型酚醛树脂等。
此外, 为了促进所述热固性和加聚型固化剂的固化反应, 可以加入催化剂。 作为催化剂, 优选咪唑类, 如 2-甲基咪唑、 2- ^—烷基咪唑、 2-十七烷基咪唑、 1, 2-二甲基咪唑、 2-甲基 -4- 甲基咪唑、 2-苯基咪唑、 2-苯基 -4-甲基咪唑、 1-苄基 -2-甲基咪唑、 1-苄基 -2-苯基咪唑、 2, 3- 二氢 -1H-吡咯并 [1, 2-a]苯并咪唑、 2-苯基 -4, 5-二羟甲基咪唑等, 可以任意改变其添加量以 获得所希望的固化速度。
作为无机填料, 优选具有电绝缘性且热传导性良好的无机填料, 例如可以使用二氧化硅、 氧化铝、 氮化铝、 氮化硅、 氮化硼等。 为保持适当的流动性, 绝缘层中的无机填料的含量较 好为 5~15wt%。 无机填料的粒度较好是包含平均粒径为 0.6μη!〜 2.4μηι以及 5μη!〜 20μηι的两种 粒度。 通过将平均粒径较大的粗粒子和平均粒径较小的微粒子混合, 与单独使用各微粒时相 比, 可实现更多的填充, 能够获得良好的热传导性。 此外, 粒子形状可以是粉碎的、 球形的、 或鳞片状的。
在本发明所述的电路基板上还含有金属图案电路, 所述的金属图案电路根据需要可形成 在所述树脂绝缘层或所述高导热绝缘层上, 所述的金属图案电路可以通过将用于形成绝缘层 的固化性树脂组合物浆料在金属基板上利用丝网印刷等方法进行图案印刷, 加热后形成半固 化状态后, 粘贴金属箔, 之后, 进行加热, 形成基本上完全固化的状态的方法; 或者使用预 先将绝缘层加工成半固化状态的片状, 利用热压装置使其与用于形成金属图案电路的金属箔 一体化的方法等。 作为金属图案电路的形成方法, 例如可使用预先在金属箔上的规定部位涂 布抗蚀剂层使其固化后, 利用湿蚀刻利用常规的氯化铜、 过氧化氢与硫酸的混合物等腐蚀剂 的腐蚀; 此外还可以利用干蚀刻方法, 例如利用溅射气体进行的干蚀刻工艺。
如附图 1所示, 为本发明所述的大功率 LED光引擎的一个典型的例子(但本发明的保护范 围以核准的权利要求限定的范围为准) , 所述的图案化多绝缘材质电路基板上设置有半导体 元器件和其他电子元器件, 其包括金属基板 10, 所述金属基板 10上形成有树脂绝缘层 20和高 导热绝缘层 25, 并且所述高导热绝缘层 25上设置有金属图案电路 30和半导体元器件 40, 所述 树脂绝缘层 20上设置有金属图案电路 30和其他电子元器件 50, 并且所述半导体元器件 40与所 述其他电子元器件 50可以通过金属连接体 60电性连接。 所述金属连接体为采用银、 金或铜的 引线、 隆起物和 /或桥接物。 具体来说, 例如可以采用软钎焊、 硬钎焊、 高导热性粘结剂等来 进行电连接, 优选为软钎焊。 在本发明中所述半导体芯片例如可以为逆变器电路中 IGBT bipolar芯片、 CPU芯片、 无线通讯芯片、 管理芯片或其它半导体芯片。
金属基板以及阳极氧化铝膜
在本实施例中所述金属基板选择为铝板基底, 例如 99.99wt。/ 纯铝, 并且在所述铝板基 底上形成有阳极氧化铝膜; 所述铝板基底的厚度为 2~20 mm , 阳极氧化铝膜的厚度为 10~20 μ ; 所述阳极氧化铝膜的绝缘耐久时间大于 1000小时, 所述的绝缘耐久时间是指在 50 V、 85%RH的条件下在阳极氧化铝膜上施加 100V的直流电压, 而将电阻值下降至 10ό Ω以下的时 间。
所述的阳极氧化膜的制备方法如下: 首先对铝板进行清洗和除垢, 然后在柠檬酸水溶液 中进行阳极氧化处理, 所述柠檬酸水溶液含有: 20〜35g/L的柠檬酸, 3~5g/L的 DL-半胱氨酸, 0.5〜: L0g/L的过氧化氢, 3~5g/L的柠檬酸铝; 在液温为 10〜20°C、 电流密度为 0.5〜lA/dm2、 电解处理 20〜30 min。 采用上述阳极氧化方法, 由于采用柠檬酸作为处理溶液, 并在其中添 加了适量的过氧化氢和 DL-半光氨酸, 在阳极氧化处理时能够使得铝离子的供应充足, 从而能 够得到致密的阳极氧化铝膜, 在膜厚为 ΙΟμΓΤΊ及以上的条件下, 即使不经过封孔处理即可满足 绝缘耐久时间大于 1000小时的要求。
实施例 1
本实施例所述的阳极氧化膜的制备方法如下: 首先对铝板进行清洗和除垢, 然后在柠檬 酸水溶液中进行阳极氧化处理, 所述柠檬酸水溶液含有: 20g/L的柠檬酸, 3g/L的 DL-半胱氨酸, 1.0g/L的过氧化氢, 3g/L的柠檬酸铝; 在液温为 10°C、 电流密度为 lA/dm2、 电解处理 20 min。 得到的致密阳极氧化铝膜绝缘耐久时间大于 1000小时。
实施例 2
本实施例所述的阳极氧化膜的制备方法如下: 首先对铝板进行清洗和除垢, 然后在柠檬 酸水溶液中进行阳极氧化处理, 所述柠檬酸水溶液含有: 30g/L的柠檬酸, 4g/L的 DL-半胱氨酸, 1.0g/L的过氧化氢, 5g/L的柠檬酸铝; 在液温为 20°C、 电流密度为 lA/dm2、 电解处理 20 min。 得到的致密阳极氧化铝膜绝缘耐久时间大于 1000小时。 实施例 3
本实施例所述的阳极氧化膜的制备方法如下: 首先对铝板进行清洗和除垢, 然后在柠檬 酸水溶液中进行阳极氧化处理, 所述柠檬酸水溶液含有: 35g/L的柠檬酸, 5g/L的 DL-半胱氨酸, 1.0g/L的过氧化氢, 5g/L的柠檬酸铝; 在液温为 10°C、 电流密度为 lA/dm2、 电解处理 30 min。 得到的致密阳极氧化铝膜绝缘耐久时间大于 1500小时。
对比例 1
对铝板进行酸洗除垢, 然后在草酸溶液中进行阳极氧化处理, 所述草酸溶液中含有 35g/L 的草酸, 5g/L的草酸铝; 在液温为 20°C、 电流密度为 lA/dm2、 电解处理 30 min; 然后在硼酸 水溶液中进行封闭处理, 所述硼酸水溶液中含有 0.5mol/L的硼酸和 0.2mol/L的四硼酸钠; 封孔 条件为液温 20°C、 电流密度 lA/dm2、 电解处理时间 5分钟, 其绝缘耐久时间为 300~500小时。 对比例 2
对铝板进行酸洗除垢, 然后在硫酸溶液中进行阳极氧化处理, 所述硫酸溶液中含有 35g/L 的草酸, 5g/L的硫酸铝; 在液温为 20°C、 电流密度为 lA/dm2、 电解处理 30 min; 然后在硼酸 水溶液中进行封闭处理, 所述硼酸水溶液中含有 0.5mol/L的硼酸和 0.2mol/L的四硼酸钠; 封孔 条件为液温 20°C、 电流密度 lA/dm2、 电解处理时间 5分钟, 其绝缘耐久时间为 250~400小时。 高导热绝缘层
在本发明中, 所述高导热绝缘层的导热系数的范围为 50 500 W/mK。 所述高导热绝缘层 厚度范围为 20 500 μηι, 例如为 50μηι。 所述高导热绝缘层可以由陶瓷材料或非金属单晶材料 制成。 作为陶瓷材料可以选择但不限于氧化锌、 氧化铍、 氧化铝、 二氧化钛、 二氧化硅、 氮 化硅、 蓝宝石、 氮化铝、 碳化硅、 氮氧化硅或氮氧化铝。 在本发明中所述的陶瓷材料可以通 过切割烧制的陶瓷板并焊接在本发明所述的金属基板上, 所述的焊接方法例如可以是钎焊的 方法, 例如软钎焊、 硬钎焊或活性钎焊等, 优选使用活性钎焊, 所述活性钎焊的成分例如可 以选择 2.25wt°/ Ti、 2.00wt°/ Al、 3.00wt°/ Si和余量的 Cu; 例如可以选择 1.25wt°/ Ti、 32.250wt°/ Cu和余量的 Ag; 例如可以选择 1.25wt°/ Ti、 12.50wt°/ In、 27.25wt°/ Cu和余 量的 Ag。 此外, 所述的高导热绝缘层还可以采用蒸镀、 溅射镀或反应离子镀以及化学气相沉 积的方法制备得到,例如采用申请人为苏州晶品光电科技有限公司,公开号为 CN103354221A、 CN103353065A、 CN103354219A、 CN103354222A CN103354698A、 CN103354220A、 CN103354269A、 CN103354697A、 CN103354699A、 CN103354254A、 CN103327736A、 CN103327735A、 CN103325921A、 CN103338588A, 或者公告号为 CN203340413U、 CN203339213U CN203339139U、 CN203340409U、 CN203340407U、 CN203340408U、 CN203339224U CN203336288U、 CN203339140U和 CN203339145U中记载的制备方法, 并且 上述文献记载在此, 作为参考。
树脂绝缘层
在本发明中, 所述树脂绝缘层的导热率可选择为 0.5 30 W/mK, 并且所述树脂绝缘层的 厚度范围优选为 20~500 μηι。
所述树脂绝缘层由含有热固性树脂、 固化剂和无机填料的固化性树脂组合物形成, 此外, 在用于形成绝缘层的固化性树脂组合物中, 还可以根据需要还可以使用其它组分等。 形成条 件例如可以在 160~ 180 °C的条件下固化 30~ 180秒。作为优选地,所述的固化性树脂组合物含有 55~60wt%的双酚 F二缩水甘油醚、 12.5~15.0wt%的乙烯基三乙氧基硅烷、 8.0~10.0wt%的苯烯 酸 -2-羟基乙酯、 3.2~5.0wt%的三甲基硅咪唑、 2.5~3.0wt%的邻苯二甲酸酐、 0.5~1.0wt°/ 2, 6-二叔丁基对甲酚, 和 3~8wt%的平均粒径为 2.0μηι的氧化铝微粒以及 3~8wt%的平均粒径为 5.0μηι的氧化铝微粒。
实施例 4
本实施例所述的固化性树脂组合物含有 55wt%的双酚 F二缩水甘油醚、 15.0wt%的乙烯基 三乙氧基硅烷、 10.0wt/ 苯烯酸 -2-羟基乙酯、 5.0wt%的三甲基硅咪唑、 2.5wt%的邻苯二甲 酸酐、 1.0wt°/ 2, 6-二叔丁基对甲酚,和 5.5wt%的平均粒径为 2.0μηι的氧化铝微粒以及 6.0wt% 的平均粒径为 5.0μηι的氧化铝微粒。制备的树脂绝缘层厚度为 50μηι时, 测得其热导率为 20 25 实施例 5
本实施例所述的固化性树脂组合物含有 60wt%的双酚 F二缩水甘油醚、 12.5wt/ 乙烯基 三乙氧基硅烷、 8wt/ 苯烯酸 -2-羟基乙酯、 3.2wt%的三甲基硅咪唑、 3.0wt%的邻苯二甲酸 酐、 1.0wt°/ 2, 6-二叔丁基对甲酚, 和 6.3wt%的平均粒径为 2.0μηι的氧化铝微粒以及 6.0wt% 的平均粒径为 5.0μηι的氧化铝微粒。制备的树脂绝缘层厚度为 50μηι时, 测得其热导率为 22~26 实施例 6
本实施例所述的固化性树脂组合物含有 58wt%的双酚 F二缩水甘油醚、 15wt/ 乙烯基三 乙氧基硅烷、 10wt/ 苯烯酸 -2-羟基乙酯、 5wt%的三甲基硅咪唑、 3.0wt%的邻苯二甲酸酐、 1.0wt°/ 2, 6-二叔丁基对甲酚,和 4wt%的平均粒径为 2.0μηι的氧化铝微粒以及 4wt/ 平均粒 径为 5.0μηι的氧化铝微粒。 制备的树脂绝缘层厚度为 50μηι时, 测得其热导率为 18~22W/mK。 实施例 7
本实施例所述的固化性树脂组合物含有 78wt%的双酚 F二缩水甘油醚、 5wt%的 2-甲基咪 唑、 3.0wt%的邻苯二甲酸酐、 1.0wt/ 2, 6-二叔丁基对甲酚, 禾口 6.5wt%的平均粒径为 2.0μηι 的氧化铝微粒以及 6.5wt%的平均粒径为 5.0μηι的氧化铝微粒。 制备的树脂绝缘层厚度为 50μηι 时, 测得其热导率为 15~20W/mK。
在本发明中所述的树脂绝缘层除了需要满足所需的导热率外, 还应具有优异的耐热变色 性。 为了检测上述固化性树脂组合物的耐热变色性能, 将所述的固化性树脂组合物, 在 170 。C、 8N/mm2以及固化时间为 120秒的条件下加工成直径为 50 mmX厚度为 3mm的圆盘作为样 品, 然后在 150°C的条件下放置 24小时, 利用肉眼观察其耐热变色性, 发现实施例 4-6所述的 样品没有发现变色现象, 而实施例 7所述的样品稍有变色或发生了变色。
金属图案电路
根据实际需要, 在所述的树脂绝缘层,或者在所述的树脂绝缘层以及所述高导热绝缘层上 均形成有金属图案电路。 在所述缘层上可以通过粘结或按压铜箔形成导电铜膜, 或者可以通 过溅射、 化学镀 (需要事先进行活化) 形成铜膜。 所述铜膜的厚度例如为 2〜5μηι厚, 然后在 带所述铜膜上涂上光刻胶, 再在光刻机上利用金属光刻掩模版进行光刻, 再经显影形成金属 图案电路, 或者, 采用丝网印刷的方法直接形成导电金属层的图形; 经烘烤固化后, 再用湿 法蚀刻工艺对所述铝层进行蚀刻, 蚀刻后即可得到所述的金属图案电路。
工业实用性
本发明所述的电路基板, 具有改进的散热性能和可靠性, 可以应用于各种含半导体芯片 的基体, 例如可以提高计算机电路中 CPU等的散热, 提高逆变器电路中 IGBT bipolar等半导体 芯片的散热, 提高无线通讯电路中无线模块等的散热, 提高电源管理电路中管理芯片的散热。 对于本领域的普通技术人员而言, 具体实施例只是结合附图对本发明进行了示例性描述, 显然本发明具体实现并不受上述方式的限制, 只要采用了本发明的方法构思和技术方案进行 的各种非实质性的改进, 或未经改进将本发明的构思和技术方案直接应用于其它场合的, 均 在本发明的保护范围之内。

Claims

权 利 要 求 书
1 . 一种图案化多绝缘材质电路基板, 包括金属基板, 其特征在于: 所述金属基板上形成 有树脂绝缘层和高导热绝缘层, 并且所述高导热绝缘层用作半导体元器件的基座, 所述树脂 绝缘层用作其他电子元器件的基座, 并且所述半导体元器件与所述其他电子元器件通过金属 连接体电性连接。
2. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属基板上具 有多个树脂绝缘层和多个高导热绝缘层; 并且所述树脂绝缘层之间相邻设置或者间隔设置; 所述高导热绝缘层之间相邻或者间隔设置; 所述树脂绝缘层与所述高导热绝缘层之间相邻设 置或者间隔设置。
3. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属连接体为 采用银、 金或铜的引线、 隆起物和 /或桥接物。
4. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属基板由选 自铝、 铜、 镍、 铁、 金、 银、 钛、 钼、 硅、 镁、 铅、 锡、 铟、 镓或者它们的合金材料制成。
5. 根据权利要求 4所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属基板由铜 或铜合金, 铝或铝合金, 单晶硅或多晶硅制成。
6. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属基体经过 表面处理工序, 所述的表面处理工序包含粗化处理、 酸洗、 碱洗、 酸蚀刻或者碱蚀刻工序中 的任意一种或几种。
7. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述金属基体表面 形成有金属或非金属过渡层。
8. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述高导热绝缘层 由陶瓷材料或非金属单晶材料制成。
9. 根据权利要求 8所述的图案化多绝缘材质电路基板, 其特征在于: 所述陶瓷材料选自 氧化物、 氮化物、 碳化物或者它们的复合物的一种或几种。
10. 根据权利要求 9所述的图案化多绝缘材质电路基板, 其特征在于: 所述高导热绝缘层 的导热系数的范围为 50 500 W/mK。
11. 根据权利要求 10所述的图案化多绝缘材质电路基板, 其特征在于: 所述高导热绝缘 层的厚度为 20~500 μηι。
12. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述半导体元器件 或其他电子元器件通过波峰焊接、 回流焊接、 共晶焊接或使用导电粘合剂与金属导线或金属 连接柱连接。
13. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述树脂绝缘层的 热导率为 0.5 W/mK -30 W/mK。
14. 根据权利要求 14所述的图案化多绝缘材质电路基板, 其特征在于: 所述树脂绝缘层 的厚度为 20~500 μηι。
15. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述树脂绝缘层为 含有热固性树脂、 固化剂和无机填料的树脂固化物。
16. 根据权利要求 16所述的图案化多绝缘材质电路基板, 其特征在于: 所述无机填料选 自二氧化硅、 氧化铝、 氮化铝、 氮化硅或氮化硼中的一种或几种。
17. 根据权利要求 1所述的图案化多绝缘材质电路基板, 其特征在于: 所述半导体芯片为 逆变器电路中 IGBT bipolar芯片、 CPU芯片、 无线通讯芯片、 管理芯片或其它半导体芯片。
PCT/CN2014/077369 2014-03-14 2014-05-13 图案化多绝缘材质电路基板 WO2015135249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410094878.6 2014-03-14
CN201410094878.6A CN103917043B (zh) 2014-03-14 2014-03-14 图案化多绝缘材质电路基板

Publications (1)

Publication Number Publication Date
WO2015135249A1 true WO2015135249A1 (zh) 2015-09-17

Family

ID=51042339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077369 WO2015135249A1 (zh) 2014-03-14 2014-05-13 图案化多绝缘材质电路基板

Country Status (2)

Country Link
CN (1) CN103917043B (zh)
WO (1) WO2015135249A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670998B (zh) * 2017-06-01 2019-09-01 璦司柏電子股份有限公司 內建縱向散熱陶瓷塊印刷電路板及具該電路板的電路組件
US11224118B2 (en) 2019-12-17 2022-01-11 Saft America Bussing and printed circuit board integration with power electronics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344574A (zh) * 2015-12-15 2016-02-24 苏州天孚光通信股份有限公司 一种光通讯收发模块涂覆绝缘工艺
CN108735890A (zh) * 2018-05-25 2018-11-02 张琴 准气密性声表面波元件封装结构及制作方法
TWI672711B (zh) 2019-01-10 2019-09-21 健策精密工業股份有限公司 絕緣金屬基板及其製造方法
TWI831247B (zh) * 2022-06-16 2024-02-01 先豐通訊股份有限公司 功率模組及其製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001501A (zh) * 2006-01-09 2007-07-18 晶元光电股份有限公司 混合式复合材料基板
CN101076224A (zh) * 2006-05-16 2007-11-21 南京汉德森科技股份有限公司 铝基印刷电路板及其制作方法
CN101355846A (zh) * 2007-07-24 2009-01-28 千如电机工业股份有限公司 基材传热与散热结构
CN103327735A (zh) * 2013-06-04 2013-09-25 苏州晶品光电科技有限公司 高导热绝缘金属基印刷电路板
CN103338588A (zh) * 2013-06-04 2013-10-02 苏州晶品光电科技有限公司 高导热绝缘金属基印刷电路板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114454A (ja) * 1990-09-04 1992-04-15 Sumitomo Electric Ind Ltd 配線基板
JPH04180689A (ja) * 1990-11-15 1992-06-26 Matsushita Electric Works Ltd パワーデバイス実装板
EP2101550B1 (de) * 2008-03-14 2011-07-13 Asetronics AG Isoliertes Metallsubstrat mit einem metallenen Implantat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001501A (zh) * 2006-01-09 2007-07-18 晶元光电股份有限公司 混合式复合材料基板
CN101076224A (zh) * 2006-05-16 2007-11-21 南京汉德森科技股份有限公司 铝基印刷电路板及其制作方法
CN101355846A (zh) * 2007-07-24 2009-01-28 千如电机工业股份有限公司 基材传热与散热结构
CN103327735A (zh) * 2013-06-04 2013-09-25 苏州晶品光电科技有限公司 高导热绝缘金属基印刷电路板
CN103338588A (zh) * 2013-06-04 2013-10-02 苏州晶品光电科技有限公司 高导热绝缘金属基印刷电路板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670998B (zh) * 2017-06-01 2019-09-01 璦司柏電子股份有限公司 內建縱向散熱陶瓷塊印刷電路板及具該電路板的電路組件
US11224118B2 (en) 2019-12-17 2022-01-11 Saft America Bussing and printed circuit board integration with power electronics

Also Published As

Publication number Publication date
CN103917043B (zh) 2017-02-22
CN103917043A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2015135249A1 (zh) 图案化多绝缘材质电路基板
CN100588308C (zh) 高热导率陶瓷基印刷电路板及其制作方法
CN103079339B (zh) 一种金属陶瓷复合基板及其制造方法
KR100934476B1 (ko) 회로 기판 및 그 제조 방법
JP5372653B2 (ja) 発光素子搭載用基板および発光装置
JP2011040715A (ja) Led実装基板およびその製造方法
CN103912807B (zh) 大功率led光引擎
JP2011091184A (ja) 半導体搭載用回路基板及びその製造方法
KR20110075451A (ko) 일체형 전력 반도체 모듈 기판의 제조방법
JP5175320B2 (ja) 放熱基板及びその製造方法
JP2012004527A (ja) 放熱基板及びその製造方法
CN103855125B (zh) 高导热图案化电路基板
TWI391039B (zh) Circuit board with metal heat sink and manufacturing method thereof
WO2015135248A1 (zh) 大功率led光源模块
KR101125752B1 (ko) 인쇄 회로 기판 및 그 제조 방법
JP2013038094A (ja) 銅箔付き熱伝導性絶縁基板
TW201542078A (zh) 陶瓷基板散熱結構的製造方法
CN103855295B (zh) 高导热led照明组件
US20110232950A1 (en) Substrate and method for manufacturing the same
JP4737885B2 (ja) モジュール用基板
CN203194017U (zh) 一种金属陶瓷复合基板
KR101116516B1 (ko) 열적 특성이 개선된 전력 반도체 모듈용 메탈라이징 세라믹 기판 및 그 제조방법
CN103906346A (zh) 高散热与高导热特性的半导体器件电路基板
CN103872217B (zh) 大功率led光源封装体
US20100052154A1 (en) Surface smoothened ultrahigh conductivity composite lid for improved marking permanency of semiconductor packaged devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885140

Country of ref document: EP

Kind code of ref document: A1