WO2014112644A1 - 繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機 - Google Patents

繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機 Download PDF

Info

Publication number
WO2014112644A1
WO2014112644A1 PCT/JP2014/051138 JP2014051138W WO2014112644A1 WO 2014112644 A1 WO2014112644 A1 WO 2014112644A1 JP 2014051138 W JP2014051138 W JP 2014051138W WO 2014112644 A1 WO2014112644 A1 WO 2014112644A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
reinforcing fiber
fiber material
thermoplastic resin
melt
Prior art date
Application number
PCT/JP2014/051138
Other languages
English (en)
French (fr)
Inventor
秋夫 大野
西田 正三
伊東 宏
拓也 二山
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to US14/762,070 priority Critical patent/US10442143B2/en
Priority to EP14741094.8A priority patent/EP2946903B1/en
Priority to CN201480005526.7A priority patent/CN105121115A/zh
Priority to KR1020157022663A priority patent/KR101684821B1/ko
Publication of WO2014112644A1 publication Critical patent/WO2014112644A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/467Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements during mould closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon

Definitions

  • the present invention relates to a method for producing a fiber reinforced resin base material or resin molded body in which a reinforced fiber material is impregnated with a thermoplastic resin under pressure, and a plasticizing dispenser used in the production method.
  • Fiber reinforced resin with fiber reinforced resin has light weight and high strength, and is used in various sporting goods, building materials, aircraft, etc. Its application to general automobile parts where mass productivity is important has not progressed. However, the development of automobile weight reduction technology has become an important issue due to changes in the social situation where environmental impact reduction is required, and its application to general automobile parts that are expected to use a large amount of fiber reinforced resin is drawing attention. .
  • thermoplastic resins have high viscosities, so it is not easy to impregnate reinforcing fiber materials and it is difficult to uniformly impregnate, or there are problems such as bubbles remaining.
  • Patent Document 1 a reduced-pressure seal part, a temperature-controllable connection part, and a die in which molten resin is stored are connected in series, and a strip-shaped reinforcing fiber bundle made of a plurality of continuous reinforcing fibers is introduced into the end of the seal part.
  • a method for manufacturing a sheet-like prepreg in which a molten resin in a connecting portion and a die is inserted from the mouth and taken from the end of the die. According to this manufacturing method, the resin is uniformly and satisfactorily impregnated and the impregnation time is short.
  • Patent Document 2 a sheet-like reinforcing fiber base material and a thermoplastic resin are introduced between a pair of rolls, and the thermoplastic resin melted in the reinforcing fiber base material is impregnated while rotating the pair of rolls.
  • a fiber reinforced resin sheet is manufactured, and a metal main roll and a metal pressing roll are used as the pair of rolls, and the pressing roll is pressed against the main roll.
  • the fiber reinforced resin sheet that impregnates the thermoplastic resin into the reinforcing fiber base while deforming the peripheral surface of the press roll so that the peripheral surface of the press roll follows the shape of the peripheral surface of the main roll.
  • Manufacturing methods have been proposed. According to this manufacturing method, surface pressure, not linear pressure, can be applied to the thermoplastic resin to be impregnated, so that uniform and satisfactory impregnation can be performed without uneven pressure.
  • thermoplastic resin layer made of a thermoplastic resin is disposed on one surface of a reinforcing fiber sheet composed of reinforcing fibers made of long fibers, and the thermoplastic resin is placed on the other surface of the reinforcing fiber sheet.
  • a method for producing a fiber-reinforced thermoplastic resin has been proposed, which includes an impregnation step of impregnating the thermoplastic fiber into the reinforcing fiber sheet and the mesh sheet.
  • thermoplastic resin layer is thickened to reduce the voids, and the excess thermoplastic resin can be transferred to the mesh sheet, so that the fiber content is high and the strength is excellent, and the thermoplastic resin is contained. It is said that the fiber meandering due to the large amount can be suppressed, and furthermore, there can be obtained a fiber reinforced thermoplastic resin having few voids and good impregnation properties.
  • thermoplastic resin Since the viscosity of the thermoplastic resin is temperature dependent, temperature control is important for impregnating the reinforcing fiber material with the thermoplastic resin. However, temperature control alone is not sufficient and vacuum or pressurization is used to promote impregnation. In general, in consideration of the scale and workability of the equipment, there is a method using pressurization described in Patent Document 2 or 3 rather than a method using vacuum as in the manufacturing method proposed in Patent Document 1. Excellent.
  • Patent Document 1 The method described in Patent Document 1 is limited to the production of resin base materials such as strands and prepregs in which reinforcing fibers are continuous in one direction, and there is a problem that the production of a resin molded body must be performed separately.
  • the manufacturing method proposed in Patent Document 2 can apply a surface pressure to the impregnated thermoplastic resin instead of a linear pressure, but applies a surface pressure using elastic deformation of the peripheral surface of the press roll. It is not easy to apply a uniform surface pressure to a sufficient range.
  • the manufacturing method described in Patent Document 3 can perform uniform pressurization in a sufficient range because pressurization is performed by a heat press and a double belt.
  • the manufacturing method described in Patent Document 3 has a problem in equipment or workability because the thermoplastic resin layer supplied in a solid state must first be uniformly melted, and a reticulated sheet is indispensable.
  • the body shape may be limited.
  • the present invention is capable of effectively impregnating a reinforcing fiber material with a thermoplastic resin, and is a fiber-reinforced resin substrate or resin molding that is highly productive and economical. It aims at providing the manufacturing method of a body, and the plasticizing discharge machine used for this manufacturing method.
  • a method for producing a resin base material or resin molded body according to the present invention is a method for producing a fiber reinforced resin base material or resin molded body obtained by impregnating a reinforcing fiber material with a thermoplastic resin, The reinforcing fiber material is placed on a thermoplastic resin melt, the reinforcing fiber material is pressurized, the molten thermoplastic resin is impregnated in the reinforcing fiber material, and then the molten thermoplastic resin is impregnated. Cool and solidify the reinforced fiber material.
  • the thermoplastic resin melt may be a coating film, and when pressurizing the reinforcing fiber material placed on the thermoplastic resin melt, the resin pressure is applied to the side of the reinforcing fiber material. It is good to pressurize so that it may act.
  • the reinforcing fiber material can be formed by laminating the same or different materials, and the material can be formed from carbon fiber.
  • the resin base material or the resin molded body includes a receiving member that holds the melt, a pressurizing unit that pressurizes the reinforcing fiber material via a pressurizer provided with unevenness or grooves for air venting, and the melt It can be suitably manufactured by a plasticizing discharge machine having a T die that forms a body.
  • the pressurizing means may include a vacuum means communicating with the concavo-convex portion or groove portion for venting the pressurized body. Moreover, it is good to have a heating means for heating the reinforcing fiber material.
  • the method for producing a fiber-reinforced resin base material or resin molded body comprises placing a reinforcing fiber material on a melt obtained from a thermoplastic resin containing reinforcing fibers, and the reinforcing fiber material.
  • a layer having a high fiber content is obtained by impregnating the reinforcing fiber material with the molten thermoplastic resin by pressurizing and then cooling and solidifying the reinforcing fiber material impregnated with the molten thermoplastic resin. It is possible to manufacture a resin base material or a resin molded body formed by laminating layers.
  • the present invention it is possible to effectively impregnate a reinforcing fiber material with a thermoplastic resin, and a fiber-reinforced resin base material with high productivity and economy, a method for manufacturing a resin molded body, and this manufacturing method It is possible to provide a plasticizing dispenser used for the above.
  • FIG. 1 is an explanatory view of a method for producing a resin substrate or a resin molded body according to the present invention.
  • FIG. 2 is an explanatory view of an example of impregnation by applying a resin pressure to the side surface of the reinforcing fiber material.
  • FIG. 3 is an explanatory view of another example in which the side surface of the reinforcing fiber material is impregnated by applying resin pressure, FIG. 3 (a) shows a state before the upper mold is moved, and FIG. 3 (b) The upper die is in contact with the lower die.
  • FIG. 4 is an explanatory view of a means for exhausting air discharged from the reinforcing fiber material by a vacuum means.
  • FIG. 1 is an explanatory view of a method for producing a resin substrate or a resin molded body according to the present invention.
  • FIG. 2 is an explanatory view of an example of impregnation by applying a resin pressure to the side surface of the reinforcing fiber material.
  • FIG. 5 is a schematic view of a mold having a vacuum means that can impregnate the side surfaces of the reinforcing fiber material by applying a resin pressure.
  • FIG. 6A and FIG. 6B are explanatory diagrams of a method for producing a resin base material or a resin molded body in which layers having a high fiber content are laminated.
  • FIG. 1 is an explanatory view of a method for producing a resin substrate or a resin molded body according to the present invention.
  • the method for producing a resin base material or resin molded body according to the present invention is a method for producing a fiber reinforced resin base material or resin molded body obtained by impregnating a reinforcing fiber material with a thermoplastic resin.
  • a reinforcing fiber material 1 is placed on the melt 2 in which the thermoplastic resin is melted, and is pressed from the upper surface of the reinforcing fiber material 1 by the upper mold 4.
  • the reinforcing fiber material 1 is impregnated.
  • the impregnated reinforcing fiber material 1 is cooled and solidified to produce a resin base material or resin molded body impregnated with a thermoplastic resin and fiber reinforced.
  • the reinforcing fiber material 1 may be a reinforcing fiber bundle, a reinforcing fiber fabric, or the like, and the form is not particularly limited. Further, the reinforcing fiber material 1 can be formed by laminating the same or different materials.
  • the material of the reinforcing fiber material 1 can include various fibers such as carbon fiber, ceramic fiber, and glass fiber, and is not particularly limited. However, the present invention is preferably used for the reinforcing fiber material 1 made of carbon fiber or the like having a high thermal conductivity that makes it difficult to impregnate when the molten thermoplastic resin comes into contact with it. Can do.
  • Carbon fibers are generally processed into strands (strands, reinforcing fiber bundles) of 1000 (1k) or more, for example, 1k to 24k, single fibers having an outer diameter of 4 to 10 ⁇ m.
  • the reinforcing fiber bundle is arranged into warp and weft and processed into a reinforcing fiber fabric, or cut into a predetermined length and processed into chopped fibers or the like.
  • such a reinforcing fiber bundle of carbon fibers, a reinforcing fiber fabric or chopped fiber, or a mat-like fiber obtained by opening and laminating fibers can be used as the reinforcing fiber material 1.
  • thermoplastic resin is not particularly limited.
  • various resins such as polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polystyrene resin, and polycarbonate resin, or various grades of thermoplastic resins can be used.
  • the melt 2 of the thermoplastic resin can be formed by a coating film in which the molten thermoplastic resin is applied to the lower mold 3 as shown in FIG.
  • the melt 2 can be formed by applying a molten thermoplastic resin to a melt bath 5 provided in the lower mold 3 as shown in FIG.
  • the melt 2 having a thickness of 0.05 mm to 20 mm can be suitably formed.
  • the melt 2 may have a thickness of 20 mm to 100 mm.
  • the reinforcing fiber material 1 is placed on such a melt 2. Since the melt 2 is viscous, the reinforcing fiber material 1 is generally placed on a predetermined position of the melt 2. Next, the reinforcing fiber material 1 is pressurized by the upper mold 4. The pressurization of the reinforcing fiber material 1 is preferably performed until the reinforcing fiber material 1 completely impregnates the melt 2.
  • the applied pressure can be 0.1 to 15 MPa.
  • the applied pressure is generally 1 to 10 MPa, and is a necessary pressure in consideration of the elastic modulus of the reinforcing fiber material 1.
  • the range of pressurization, the direction of pressurization, or the pattern of pressurization (pressurization speed, time, applied pressure and temperature) for the reinforcing fiber material 1 varies depending on the target reinforcing fiber material 1 and the thermoplastic resin. be able to.
  • the pressurization can be performed at a reduced pressure or a reduced pressure at a stage during the impregnation of the melt 2 into the reinforcing fiber material 1 or at a cooling / solidification stage after the impregnation.
  • the molten resin forming the melt 2 is impregnated upward from the bottom portion of the reinforcing fiber material 1, and remains in the reinforcing fiber material 1 as the impregnation progresses.
  • the air is replaced with molten resin and discharged to the outside. There is little movement of the melt 2 in the horizontal direction.
  • the resin pressure can be applied to the side surface of the reinforcing fiber material 1, and the impregnation of the molten resin into the reinforcing fiber material 1 and the discharge of air are promoted.
  • the resin pressure can be applied to the side surface of the reinforcing fiber material 1 also by the method shown in FIGS. 3 (a) and 3 (b). That is, in this example, a side frame 7 is provided on the upper mold 4, and the side frame 7 moves up and down together with the upper mold 4 during normal operation (FIG. 3A), and the lower surface of the side frame 7 is the lower mold. After coming into contact with the mold 3, the molten bath 5 is formed by the side frame 7 and the lower mold 3 (FIG. 3B). Therefore, the molten thermoplastic resin is applied to the lower mold 3 to form the melt 2, and the upper mold 4 is lowered to press the reinforcing fiber material 1 to press the resin pressure on the side of the reinforcing fiber material 1. The thermoplastic resin can be impregnated while acting. Unlike the mold shown in FIGS. 3A and 3B, a mold structure having a side frame 7 on the lower mold side may be used.
  • the pressurization of the reinforcing fiber material 1 is preferably performed through a pressurizing body having an unevenness or groove for venting air. Thereby, the air remaining in the reinforcing fiber material 1 can be efficiently discharged.
  • the reinforcing fiber material 1 can be pressurized through a convex portion 8 provided on the upper mold 4.
  • the convex portion 8 forms a pressurizing body.
  • the pressurizing body may be formed from the upper die 4 provided with a recess or a groove, or may be separate from the upper die 4 instead of being integrated.
  • a wire mesh can be used as a pressurizing body.
  • the pressurizing body may be provided with a vacuum means communicating with the air vent irregularities or grooves.
  • a vacuum means communicating with the air vent irregularities or grooves.
  • vacuum means 9 communicating with the space between the convex portions 8 is provided.
  • the air can be efficiently exhausted from the reinforcing fiber material 1 and the impregnation can be performed while the resin pressure is applied to the side surface of the reinforcing fiber material 1.
  • a melting bath 5 is formed by the lower mold 3 and the slide mold 15 supported by the spring 16, and a vacuum space is formed by the upper mold 4, the lower mold 3, the slide mold 15 and the packing 17. It is like that. While the vacuum means 9 is evacuated, the upper mold 4 is lowered and the reinforcing fiber material 1 is pressurized to impregnate the melt 2 to produce a dense and high-quality resin base material or resin molded body. be able to.
  • the melt 2 is formed by applying a molten thermoplastic resin
  • a plasticizer having a T die can suitably control the capacity of the resin to be supplied or the thickness of the resin to be supplied to the upper surface of the lower mold 3, and the required melt 2 can be formed easily and quickly.
  • the plasticizing / discharging machine may be any means capable of plasticizing and discharging the resin. For example, an extruder, an injection machine, a plunger machine, or the like can be used.
  • the temperature of the reinforcing fiber material 1 placed on the melt 2 formed by the T-die should be -100 ° C or higher and + 100 ° C or lower of the discharge temperature of the molten resin discharged from the T-die discharge port. Good. By maintaining the reinforced fiber material 1 at a temperature in this range, it is difficult to impregnate the reinforced fiber material 1 due to a decrease in the temperature of the melt 2 even if the reinforced fiber material 1 has a high thermal conductivity such as carbon fiber. Can be blocked. Since the viscosity of the thermoplastic resin changes logarithmically with respect to temperature, the temperature management of the reinforcing fiber material 1 is important.
  • the temperature of the reinforcing fiber material 1 is preferably set to be equal to or higher than the heat distortion temperature of the thermoplastic resin. Thereby, an increase in the viscosity of the thermoplastic resin in contact with the reinforcing fiber material 1 can be suppressed, and a decrease in the impregnation performance of the thermoplastic resin can be suppressed.
  • the heating means is preferably one by far infrared heating, one by induction heating, or one by laser heating. Thereby, the reinforcing fiber material 1 can be efficiently heated.
  • the mold has a large heat capacity, and it is necessary to cool the reinforcing fiber material 1 impregnated with resin. Therefore, in order to efficiently perform cooling, it is preferable to separately provide a heating means for heating the reinforcing fiber material 1.
  • the heating of the reinforcing fiber material 1 can be performed before the reinforcing fiber material 1 is placed on the melt 2 or until the pressurization is started after the mold is closed. Further, the heating range of the reinforcing fiber material 1, the attachment position of the heating means, and the like can be determined as appropriate.
  • the reinforcing fiber material 1 impregnated with the melt 2 made of the above-mentioned thermoplastic resin is cooled and solidified. And the fiber reinforced resin base material or resin molding is manufactured.
  • a resin molding can be manufactured.
  • a resin molded body means what was shape
  • the resin base material is a material that is molded and processed using this as a raw material.
  • a resin base material or a resin molded body having a high fiber content can be produced according to the following method. That is, this method uses a melt in which reinforcing fibers are contained in advance. 6 (a) and 6 (b), a reinforcing fiber material 1 is placed on a melt 21 made of a thermoplastic resin containing reinforcing fibers, and the reinforcing fiber material 1 is pressurized. Then, after impregnating the reinforcing fiber material 1 with the molten resin contained in the melt 21, the impregnated reinforcing fiber material 1 is cooled and solidified.
  • the fiber to be contained in the melt 21 is, for example, a short fiber having a length of 0.5 mm to 30 mm in the case of carbon fiber.
  • the melt 21 containing such carbon fibers can be supplied with a carbon fiber volume content (Vf) of up to about 40% by a plasticizing discharger. Since the carbon fiber contained in the melt 21 is impregnated into the reinforcing fiber material 1 together with the thermoplastic resin during pressing, according to the present invention, a fiber reinforced resin in which layers having a high fiber content are laminated. A base material or a resin molding can be manufactured.
  • the melt does not necessarily have to be applied to the upper surface of the lower mold.
  • coated to predetermined receiving members, such as a resin-made or metal board, may be sufficient.
  • the receiving member may be one that forms a part of the product integrally with the molded resin base material or resin molded body.
  • Example 1 Using a mold shown in FIG. 6 (a) and a plasticizing dispenser having a T die, a resin base material molding test was conducted.
  • the reinforcing fiber material was a laminate of 10 mats 10 cm long x 15 cm wide x 0.2 cm thick.
  • the mat used was a carbon fiber cut to 15 mm length, spread and dispersed, and then laminated.
  • a polyamide resin was used as the thermoplastic resin. After the upper and lower mold temperatures were heated to 280 ° C, a resin containing 20 vol% of carbon fibers with a fiber length of 8 mm was melted at 280 ° C and applied to the heated lower mold, and then the press Molding was performed by applying pressure under the conditions of 6 MPa and pressurizing time of 3 min.
  • Example 2 Using a mold shown in FIG. 3 and a plasticizing dispenser having a T die, a resin base material molding test was conducted.
  • the reinforcing fiber material was a laminate of 15 mats 10 cm long x 15 cm wide x 0.2 cm thick.
  • the mat used was a carbon fiber cut to 15 mm length, spread and dispersed, and then laminated.
  • a polyamide resin was used as the thermoplastic resin. After the upper and lower mold temperatures were heated to 280 ° C, the above resin was melted at 280 ° C and applied onto the heated lower mold, and then the pressurizing pressure was 6 MPa and the pressurizing time was 3 min. Was molded.
  • Example 3 Using a mold shown in FIG. 6 (a) and a plasticizing dispenser having a T die, a resin base material molding test was conducted.
  • the reinforcing fiber material was a laminate of 10 mats 10 cm long x 15 cm wide x 0.2 cm thick.
  • the mat used was a carbon fiber cut to 15 mm length, spread and dispersed, and then laminated.
  • a polyamide resin was used as the thermoplastic resin.
  • a resin containing 20 vol% of carbon fibers with a fiber length of 8 mm was melted at 280 ° C and applied to the heated lower mold, and then the press Molding was performed by applying pressure under the conditions of 6 MPa and pressurizing time of 3 min.
  • a good resin molded body in which the carbon fiber volume content in the mat portion was 50% on average and the carbon fiber content in the coated portion was 30% on average and the carbon fiber was impregnated with the resin was obtained.
  • Table 1 summarizes the characteristics of the resin moldings obtained by the molding tests of Examples 1 to 3 described above.
  • the bending test conformed to JIS K7074.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 本発明は、強化繊維素材への熱可塑性樹脂の含浸を効果的に行うことができ、生産性・経済性の高い繊維強化された樹脂基材、樹脂成形体の製造方法及びこの製造方法に使用する押出機を提供する。本発明の製造方法は、強化繊維素材に熱可塑性樹脂を含浸させて得られる繊維強化された樹脂基材又は樹脂成形体を製造する方法であって、前記熱可塑性樹脂の溶融体上に前記強化繊維素材を載置してこれを加圧し、前記溶融樹脂を前記強化繊維素材に含浸させた後、前記溶融樹脂を含浸させた強化繊維素材を冷却・固化する。

Description

繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機
 本発明は、加圧のもとで強化繊維素材に熱可塑性樹脂を含浸させる繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機に関する。
 樹脂が繊維強化された繊維強化樹脂は、軽量で高強度を有し、各種スポーツ用品、建築資材、航空機などに使用され、特殊自動車部品などにもその用途を拡大しているが、経済性、量産性が重視される一般自動車部品などへのその適用は進んでいない。しかし、環境負荷軽減が求められる社会情勢の変化に伴い自動車軽量化技術の開発が重要な課題になっており、繊維強化樹脂の大量使用が期待される一般自動車部品への適用が注目されている。
 繊維強化樹脂の中でも大量生産、取扱の容易さや生産性の高さ、用途の拡大性などを考慮すると、強化繊維束や強化繊維織物等の強化繊維素材に熱可塑性樹脂を含浸させた繊維強化樹脂が注目される。しかしながら、熱可塑性樹脂は、粘度が高いために強化繊維素材に含浸させるのが容易でなく均一的な含浸が困難、あるいは気泡が残留するなどの問題があり、かかる問題を解決するための各種提案がなされている。
 例えば、特許文献1に、減圧されたシール部、温度制御可能な連結部及び溶融樹脂が貯留されたダイが一連に連結され、複数の連続強化繊維からなる帯状強化繊維束がシール部端の導入口から連結部及びダイ内の溶融樹脂を挿通されてダイ端から引き取られるようになったシート状プリプレグの製造方法が提案されている。この製造方法によると、樹脂が均一かつ良好に含浸され、含浸時間が短いとされる。
 特許文献2に、シート状の強化繊維基材と、熱可塑性樹脂とを、一対のロール間に導入し、該一対のロールを回転させながら前記強化繊維基材に溶融した前記熱可塑性樹脂が含浸されることにより、繊維強化樹脂シートを製造する方法であって、前記一対のロールとして、金属製の主ロールと金属製の押さえロールとを用い、前記主ロールに対して前記押さえロールを押圧することにより、前記押さえロールの周面が前記主ロールの周面形状に倣うように前記押さえロールの周面を変形させながら、前記熱可塑性樹脂を前記強化繊維基材に含浸させる繊維強化樹脂シートの製造方法が提案されている。この製造方法によると、含浸させる熱可塑性樹脂に線圧ではなく面圧を作用させることができるので、加圧むらがなく均一で良好な含浸を行うことができるとされる。
 特許文献3に、長繊維からなる強化繊維で構成される強化繊維シートの一方の面に、熱可塑性樹脂からなる熱可塑性樹脂層を配置し、前記強化繊維シートの他方の面に、前記熱可塑性樹脂が溶融する温度で溶融しない材料からなる網状シートを配置し、積層物を得る配置工程と、前記熱可塑性樹脂は溶融し、前記網状シートは溶融しない温度で、前記積層物を加熱するとともに加圧して、前記熱可塑性樹脂を前記強化繊維シートと前記網状シートとに含浸する含浸工程を有する、繊維強化熱可塑性樹脂の製造方法が提案されている。この製造方法によると、熱可塑性樹脂層を厚くして空隙を少なくするとともに、余分な熱可塑性樹脂を網状シートに移行させることができるので、繊維含有率が高く強度が優れ、含有する熱可塑性樹脂量が多いことに起因する繊維蛇行が抑制され、しかも、ボイドなどの空隙が少なく含浸性も良好な繊維強化熱可塑性樹脂を得ることができるとされる。
日本国特開2012-16857号公報 日本国特開2012-110935号公報 日本国特開2011-224866号公報
 熱可塑性樹脂の粘度は温度依存性があるので強化繊維素材への熱可塑性樹脂の含浸は温度管理が重要である。しかしながら、温度制御だけでは不十分であり、含浸を促進させるために真空や加圧が利用される。一般に、設備の規模や作業性等を考慮すれば特許文献1に提案されている製造方法のように真空を利用する方法よりも、特許文献2又は3に記載された加圧を利用する方法が優れる。
 特許文献1に記載の方法は、強化繊維が一方向に連続するストランドやプリプレグ等の樹脂基材の製造に限定され、樹脂成形体の製造は別途行わなければならないという問題がある。特許文献2に提案された製造方法は、含浸させる熱可塑性樹脂に線圧ではなく面圧を作用させることができるが、押さえロールの周面の弾性変形を利用して面圧を作用させるものであり、充分な範囲に均一な面圧を作用させることは容易でない。一方、特許文献3に記載の製造方法は、加熱加圧プレスやダブルベルトにより加圧を行うので充分な範囲に均一な加圧が可能である。しかしながら、特許文献3に記載の製造方法は、固体状で供給される熱可塑性樹脂層を先ず均一に溶融しなければならず設備又は作業性において問題があり、また網状シートを必須とするので成形体の形状が制限される恐れがある。
 本発明は、このような従来の問題点に鑑み、強化繊維素材への熱可塑性樹脂の含浸を効果的に行うことができ、生産性・経済性の高い繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機を提供することを目的とする。
 本発明に係る樹脂基材又は樹脂成形体を製造する方法は、強化繊維素材に熱可塑性樹脂を含浸させて得られる繊維強化された樹脂基材又は樹脂成形体を製造する方法であって、前記熱可塑性樹脂の溶融体上に前記強化繊維素材を載置して前記強化繊維素材を加圧し、溶融した前記熱可塑性樹脂を前記強化繊維素材に含浸させた後、溶融した前記熱可塑性樹脂を含浸させた強化繊維素材を冷却・固化する。
 上記発明において、熱可塑性樹脂の溶融体は塗膜であってもよく、熱可塑性樹脂の溶融体上に載置された強化繊維素材を加圧する際には、その強化繊維素材の側面に樹脂圧が作用するように加圧するのがよい。
 また、強化繊維素材を加圧する際は、空気抜き用の凹凸又は溝を設けた加圧体を介して行うのがよい。
 強化繊維素材は、同種又は異種の素材を積層して形成されるものとすることができ、その材質は炭素繊維から形成されるものとすることができる。
 上記の樹脂基材又は樹脂成形体は、上記の溶融体を保持する受部材と、空気抜き用の凹凸又は溝を設けた加圧体を介して強化繊維素材を加圧する加圧手段と、前記溶融体を形成するTダイと、を有する可塑化吐出機により好適に製造することができる。
 上記可塑化吐出機において、加圧手段は、加圧体の空気抜き用の凹凸部又は溝部に連通する真空手段を有するのがよい。また、強化繊維素材を加熱する加熱手段を有するのがよい。
 また、本発明に係る繊維強化された樹脂基材又は樹脂成形体を製造する方法は、強化繊維を含有した熱可塑性樹脂から得られる溶融体上に強化繊維素材を載置し、前記強化繊維素材を加圧して溶融した前記熱可塑性樹脂を前記強化繊維素材に含浸させた後、溶融した前記熱可塑性樹脂を含浸させた強化繊維素材を冷却・固化することによって実施され、繊維含有率の高い層が積層されて形成される樹脂基材又は樹脂成形体を製造することができる。
 本発明によれば、強化繊維素材への熱可塑性樹脂の含浸を効果的に行うことができ、生産性・経済性の高い繊維強化された樹脂基材、樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機を提供することができる。
図1は、本発明に係る樹脂基材又は樹脂成形体を製造する方法の説明図である。 図2は、強化繊維素材の側面に樹脂圧を作用させて含浸させる例の説明図である。 図3は、強化繊維素材の側面に樹脂圧を作用させて含浸させる他の例の説明図であり、図3(a)は上金型の移動前の状態を示し、図3(b)は上金型が下金型と当接した状態を示す。 図4は、強化繊維素材から排出される空気を真空手段により排気する手段の説明図である。 図5は、強化繊維素材の側面に樹脂圧を作用させて含浸させることができる真空手段を有する金型の模式図である。 図6(a)および図6(b)は、繊維含有率の高い層が積層された樹脂基材又は樹脂成形体を製造する方法の説明図である。
 以下、本発明を実施するための形態について図面を基に説明する。図1は、本発明に係る樹脂基材又は樹脂成形体を製造する方法の説明図である。本発明に係る樹脂基材又は樹脂成形体を製造する方法は、強化繊維素材に熱可塑性樹脂を含浸させてなる繊維強化された樹脂基材又は樹脂成形体を製造する方法である。例えば、図1に示すように、先ず強化繊維素材1を熱可塑性樹脂が溶融した溶融体2の上に載置して強化繊維素材1の上面から上金型4により加圧し、溶融体2を強化繊維素材1に含浸させる。次に、その含浸させた強化繊維素材1を冷却・固化することによって、熱可塑性樹脂が含浸し繊維強化された樹脂基材又は樹脂成形体を製造する。
 強化繊維素材1は、強化繊維束、強化繊維織物などを使用することができ、特にその形態を問わない。また、強化繊維素材1は、同種又は異種の素材を積層してなるものとすることができる。強化繊維素材1の材質は、炭素繊維、セラミック繊維、ガラス繊維等の各種繊維を含み得、特に限定しない。しかしながら、本発明は、溶融された熱可塑性樹脂が接触するとその熱が急速に奪われて含浸を困難にするような高熱伝導率を有する炭素繊維などからなる強化繊維素材1に好適に使用することができる。
 炭素繊維は、一般に外径が4~10μmの単繊維が1000本(1k)以上、例えば1k~24kに束ねられて糸状にしたもの(ストランド、強化繊維束)に加工される。そして、強化繊維束は、縦糸及び横糸に配されて強化繊維織物に加工され、あるいは所定の長さに切断されてチョップドファイバーなどに加工される。本発明は、このような炭素繊維の強化繊維束、強化繊維織物あるいはチョップドファイバー、または繊維を開繊して積層させたマット状の繊維を強化繊維素材1として使用することができる。
 本発明において、熱可塑性樹脂は特に限定されない。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂など各種の樹脂、あるいは各種グレードの熱可塑性樹脂を使用することができる。
 熱可塑性樹脂の溶融体2は、図1に示すように、溶融した熱可塑性樹脂を下金型3に塗付した塗膜により形成することができる。また、溶融体2は、図2に示すように、下金型3に設けた溶融浴5に溶融熱可塑性樹脂を塗布して形成することができる。塗膜により溶融体2を形成する場合は、0.05mm~20mmの厚さの溶融体2を好適に形成することができる。なお、溶融体2は、厚さが20mm~100mmのものであってもよい。
 本発明は、先ず、このような溶融体2の上に強化繊維素材1を載置する。溶融体2は粘性があるから、強化繊維素材1は概して溶融体2の所定位置に載せられた状態になる。次に、上金型4により強化繊維素材1を加圧する。強化繊維素材1の加圧は、強化繊維素材1が溶融体2を完全に含浸するまで行うのがよい。加圧力は、0.1~15Mpaとすることができる。加圧力は、一般には、1~10MPaであり、強化繊維素材1の弾性率を考慮して必要な圧力とされる。また、強化繊維素材1に対する加圧の範囲、加圧の方向、あるいは加圧するパターン(加圧速度、時間、加圧力と温度)は、対象となる強化繊維素材1や熱可塑性樹脂に応じて変えることができる。なお、加圧は、溶融体2を強化繊維素材1に含浸させる途中の段階又は含浸させた後の冷却・固化の段階で、減圧又は除圧することができる。
 強化繊維素材1の加圧において、溶融体2を形成している溶融樹脂は強化繊維素材1の底面部から上方に向けて含浸されていき、含浸の進行とともに強化繊維素材1の中に残留している空気が溶融樹脂と置換されて外部に排出される。溶融体2の水平方向への移動は少ない。このような加圧により、溶融体2は強化繊維素材1の中に均一に含浸され、強化繊維素材1の中に含まれる空気を効率的に排除することができる。
 溶融樹脂の強化繊維素材1への含浸と空気の排出を促進させるには、図2に示すような溶融浴5に形成された溶融体2を用いるのがよい。強化繊維素材1の加圧中に、強化繊維素材1の側面に樹脂圧を作用させることができ、溶融樹脂の強化繊維素材1への含浸と空気の排出が促進される。
 また、図3(a)および図3(b)に示す方法によっても強化繊維素材1の側面に樹脂圧を作用させることができる。すなわち、本例においては、上金型4にサイド枠7が設けられ、サイド枠7は、通常時には上金型4とともに上下動し(図3(a))、サイド枠7の下面が下金型3に当接した後はサイド枠7と下金型3により溶融浴5が形成されるようになっている(図3(b))。従って、下金型3に溶融熱可塑性樹脂を塗付して溶融体2を形成し、上金型4を下降して強化繊維素材1を加圧することにより、強化繊維素材1の側面に樹脂圧を作用させつつ熱可塑性樹脂を含浸させることができる。なお、図3(a)および図3(b)で示した金型とは異なり、下金型側にサイド枠7がある形態の金型構造であってもよい。
 強化繊維素材1の加圧は、空気抜き用の凹凸又は溝を有する加圧体を介して行うのがよい。これにより、強化繊維素材1に残留する空気を効率的に排出することができる。例えば、図4に示すように、上金型4に設けた凸部8を介して強化繊維素材1を加圧することができる。本例の場合、凸部8が加圧体を形成している。加圧体は、上金型4に凹部又は溝等を設けたものから形成してもよく、上金型4と一体でなく別個のものであってもよい。また、金網を加圧体として使用することができる。
 加圧体には、その空気抜き用の凹凸又は溝に連通する真空手段を設けることができる。例えば、図4に示す例においては、凸部8の間の空間に連通する真空手段9が設けられている。この真空手段9により、強化繊維素材1から排出される空気を効率的に排気することができる。
 図5に示す真空手段9を有する金型によれば、強化繊維素材1から空気を効率的に排気するとともに強化繊維素材1の側面に樹脂圧を作用させつつ含浸を行うことができる。図5において、下金型3とバネ16に支持されたスライド型15とにより溶融浴5が形成され、上金型4、下金型3、スライド型15及びパッキン17により真空空間が形成されるようになっている。真空手段9により真空引きを行いつつ、上金型4を下降し強化繊維素材1を加圧して溶融体2の含浸を行うことにより、緻密で高品質の樹脂基材又は樹脂成形体を製造することができる。
 溶融体2を溶融熱可塑性樹脂の塗付により形成する場合は、Tダイを有する可塑化吐出機により行うのがよい。Tダイは、供給する樹脂の容量、あるいは、下金型3の上面に供給する樹脂の厚さを好適に制御することができ、所要の溶融体2を容易にかつ迅速に形成することができる。可塑化吐出機は、樹脂を可塑化して吐出することができる手段であればよく、例えば押出機や射出機、プランジャー機などを使用することができる。
 Tダイにより形成された溶融体2の上に載置される強化繊維素材1の温度は、Tダイ吐出口から吐出される溶融樹脂の吐出温度の-100℃以上+100℃以下にするのがよい。強化繊維素材1をこの範囲の温度に維持することにより、強化繊維素材1が炭素繊維のように熱伝導率が高いものであっても溶融体2の温度低下により含浸が困難になるということを阻止することができる。熱可塑性樹脂の粘度は、温度に関して対数的に変化するので強化繊維素材1の温度管理は重要である。例えば、強化繊維素材1の温度は熱可塑性樹脂の熱変形温度以上にするのがよい。これにより、強化繊維素材1に接した熱可塑性樹脂の粘度上昇が抑えられ熱可塑性樹脂の含浸性能の低下を抑えることができる。
 強化繊維素材1の温度を適正に保持するため、強化繊維素材1を加熱する手段を設けるのがよい。加熱手段は、遠赤外線加熱によるもの、誘導加熱によるもの、あるいはレーザ加熱によるものなどが好ましい。これにより、強化繊維素材1を効率的に加熱することができる。上下金型に設けた加熱手段により強化繊維素材1を所定温度に加熱することも可能であるが、金型は熱容量が大きく、また、樹脂が含浸された強化繊維素材1の冷却を行う必要があるので、冷却を効率的に行うためには強化繊維素材1を加熱する加熱手段を別個に設けるのがよい。なお、強化繊維素材1の加熱は、強化繊維素材1が溶融体2の上に載置される前、または載置された後金型を閉じて加圧を開始するまでとすることができる。また、強化繊維素材1の加熱範囲、加熱手段の取付け位置等は適宜に決めることができる。
 上述の熱可塑性樹脂からなる溶融体2を含浸させた強化繊維素材1は、冷却され、固化する。そして、繊維強化された樹脂基材又は樹脂成形体が製造される。
 以上、本発明によれば、強化繊維素材への熱可塑性樹脂の含浸及び強化繊維素材中に残留する空気の排出を効果的に行うことができ、均質で高強度の繊維強化された樹脂基材又は樹脂成形体を製造することができる。なお、樹脂成形体とは、上記の方法又は以下に説明する方法により成形され、そのまま成形体として利用されるものをいう。樹脂基材とは、これを素材としてされに成型・加工されるものをいう。
 本発明は、上記の実施例に限定されない。本発明は、以下の方法によれば、繊維含有率の高い樹脂基材又は樹脂成形体を製造することができる。すなわち、この方法は、溶融体に予め強化繊維が含有されたものを使用する。図6(a)および図6(b)に示すように、強化繊維を含有させた熱可塑性樹脂からなる溶融体21の上に強化繊維素材1を載置し、その強化繊維素材1を加圧して溶融体21が有する溶融樹脂を強化繊維素材1に含浸させた後、前記含浸させた強化繊維素材1を冷却・固化する。
 溶融体21に含有させる繊維は、例えば炭素繊維の場合は、長さ0.5mm~30mmの短繊維を使用する。このような炭素繊維を含有する溶融体21は、可塑化吐出機によって炭素繊維の体積含有率(Vf)が40%程度までのものを供給することができる。溶融体21に含有される炭素繊維は、加圧中に熱可塑性樹脂と共に強化繊維素材1に含浸されるので、本発明によれば繊維含有率の高い層が積層されてなる繊維強化された樹脂基材又は樹脂成形体を製造することができる。本発明において、繊維含有率の高い層の繊維含有率は、炭素繊維の場合、Vf=30%~60%にすることができる。
 また、本発明において、図6(a)に示す下金型3を用いる場合は、平板状の樹脂基材又は樹脂成形体を製造することができる。図6(b)に示す下金型31を用いる場合は、リブ付きの形状のものなど複雑な形状の樹脂基材又は樹脂成形体を製造することができる。
 また、本発明において溶融体は、必ずしも下金型の上面に塗布された形態のものでなくてもよい。例えば、樹脂製又は金属製の板など所定の受部材に塗布された形態のものであってもよい。そして、その受部材は、成形された樹脂基材又は樹脂成形体と一体となって製品の一部を構成するようなものであってもよい。
(実施例1)
 図6(a)に示す金型と、Tダイを有する可塑化吐出機を使用して樹脂基材の成形試験を行った。強化繊維素材は、縦10cm×横15cm×厚さ0.2cmのマット10枚を積層させたものであった。マットは、炭素繊維を15mm長に切断し、開繊分散させた後に積層させたものを使用した。熱可塑性樹脂は、ポリアミド樹脂を使用した。上下金型温度を280℃に加熱した後に、繊維長8mmの炭素繊維20vol%を含むペレットを溶融させた樹脂を280℃で溶融させ上記樹脂を加熱した下金型上に塗布した後、プレスの加圧力を6MPa、プレスの加圧時間を3minの条件で加圧して成形を行った。上記成形試験により、樹脂成形体の厚みが1.6mmで、炭素繊維体積含有率38%、曲げ強さ480MPa、曲げ弾性率29GPaの炭素繊維に樹脂が含浸した良好な樹脂成形体が得られた。
(実施例2)
 図3に示す金型と、Tダイを有する可塑化吐出機を使用して樹脂基材の成形試験を行った。強化繊維素材は、縦10cm×横15cm×厚さ0.2cmのマット15枚を積層させたものであった。マットは、炭素繊維を15mm長に切断し、開繊分散させた後に積層させたものを使用した。熱可塑性樹脂は、ポリアミド樹脂を使用した。上下金型温度を280℃に加熱した後に、280℃で溶融させ上記樹脂を加熱した下金型上に塗布した後、プレスの加圧力を6MPa、プレスの加圧時間を3minの条件で加圧して成形を行った。上記成形試験により、樹脂成形体の厚みが1.6mmで、炭素繊維体積含有率48%、曲げ強さ540MPa、曲げ弾性率33GPaの炭素繊維に樹脂が含浸した良好な樹脂成形体が得られた。
(実施例3)
 図6(a)に示す金型と、Tダイを有する可塑化吐出機を使用して樹脂基材の成形試験を行った。強化繊維素材は、縦10cm×横15cm×厚さ0.2cmのマット10枚を積層させたものであった。マットは、炭素繊維を15mm長に切断し、開繊分散させた後に積層させたものを使用した。熱可塑性樹脂は、ポリアミド樹脂を使用した。上下金型温度を280℃に加熱した後に、繊維長8mmの炭素繊維20vol%を含むペレットを溶融させた樹脂を280℃で溶融させ上記樹脂を加熱した下金型上に塗布した後、プレスの加圧力を6MPa、プレスの加圧時間を3minの条件で加圧して成形を行った。上記成形試験により、マット部の炭素繊維体積含有率は平均で50%、塗布部の炭素繊維含有率は、平均30%で炭素繊維に樹脂が含浸した良好な樹脂成形体が得られた。
 上記、実施例1~3の成形試験により得られた樹脂成形体の特性を表1にまとめた。曲げ試験はJIS K7074に準拠した。
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年1月21日出願の日本特許出願(特願2013-008834)に基づくものであり、その内容はここに参照として取り込まれる。
 1  強化繊維素材
 2  溶融体
 3  下金型
 4  上金型
 5  溶融浴
 7  サイド枠
 8  凸部
 9  真空手段
 15  スライド型
 16  バネ
 17  パッキン
 21  溶融体
 31  下金型

Claims (10)

  1.  強化繊維素材に熱可塑性樹脂を含浸させて得られる繊維強化された樹脂基材又は樹脂成形体を製造する方法であって、
     前記熱可塑性樹脂の溶融体上に前記強化繊維素材を載置して前記強化繊維素材を加圧し、溶融した前記熱可塑性樹脂を前記強化繊維素材に含浸させた後、溶融した前記熱可塑性樹脂を含浸させた強化繊維素材を冷却・固化する樹脂基材又は樹脂成形体を製造する方法。
  2.  前記熱可塑性樹脂の溶融体は、塗膜である、請求項1に記載の樹脂基材又は樹脂成形体を製造する方法。
  3.  前記熱可塑性樹脂の溶融体上に載置された強化繊維素材を加圧する際に、前記強化繊維素材の側面に樹脂圧が作用するように加圧する、請求項1又は請求項2に記載の樹脂基材又は樹脂成形体を製造する方法。
  4.  前記強化繊維素材の加圧は、空気抜き用の凹凸又は溝を設けた加圧体を介して行う、請求項1~請求項3のいずれか一項に記載の樹脂基材又は樹脂成形体を製造する方法。
  5.  強化繊維素材は、同種又は異種の素材を積層して形成されるものである、請求項1~請求項4のいずれか一項に記載の樹脂基材又は樹脂成形体を製造する方法。
  6.  強化繊維素材は、炭素繊維から形成されるものである、請求項1~請求項5のいずれか一項に記載の樹脂基材又は樹脂成形体を製造する方法。
  7.  熱可塑性樹脂の溶融体を保持する受部材と、空気抜き用の凹凸又は溝を設けた加圧体を介して強化繊維素材を加圧する加圧手段と、前記溶融体を形成するTダイと、を有する可塑化吐出機。
  8.  前記加圧手段は、前記加圧体の空気抜き用の凹凸部又は溝部に連通する真空手段を有する、請求項7に記載の可塑化吐出機。
  9.  前記強化繊維素材を加熱する加熱手段を有する、請求項7又は請求項8に記載の可塑化吐出機。
  10.  強化繊維を含有した熱可塑性樹脂から得られる溶融体上に強化繊維素材を載置し、前記強化繊維素材を加圧して溶融した前記熱可塑性樹脂を前記強化繊維素材に含浸させた後、溶融した前記熱可塑性樹脂を含浸させた強化繊維素材を冷却・固化し、繊維含有率の高い層が積層されて形成される繊維強化された樹脂基材又は樹脂成形体を製造する方法。
PCT/JP2014/051138 2013-01-21 2014-01-21 繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機 WO2014112644A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/762,070 US10442143B2 (en) 2013-01-21 2014-01-21 Manufacturing method for fibre-reinforced resin substrate or resin molded article
EP14741094.8A EP2946903B1 (en) 2013-01-21 2014-01-21 Manufacturing method for fibre-reinforced resin substrate or resin molded article
CN201480005526.7A CN105121115A (zh) 2013-01-21 2014-01-21 纤维强化的树脂基材或树脂成形体的制造方法以及该制造方法中使用的塑化吐出机
KR1020157022663A KR101684821B1 (ko) 2013-01-21 2014-01-21 섬유 강화된 수지 기재 또는 수지 성형체의 제조 방법 및 이 제조 방법에 사용하는 가소화 토출기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008834A JP5761867B2 (ja) 2013-01-21 2013-01-21 繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機
JP2013-008834 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112644A1 true WO2014112644A1 (ja) 2014-07-24

Family

ID=51209729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051138 WO2014112644A1 (ja) 2013-01-21 2014-01-21 繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機

Country Status (6)

Country Link
US (1) US10442143B2 (ja)
EP (1) EP2946903B1 (ja)
JP (1) JP5761867B2 (ja)
KR (1) KR101684821B1 (ja)
CN (2) CN109228408B (ja)
WO (1) WO2014112644A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107249882A (zh) * 2015-02-27 2017-10-13 东丽株式会社 树脂供给材料、增强纤维的使用方法、预成型体、及纤维增强树脂的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819896B2 (ja) * 2013-09-06 2015-11-24 株式会社日本製鋼所 繊維強化部材の製造方法
JP6339661B2 (ja) * 2014-03-11 2018-06-13 帝人株式会社 マーキングされた複合材料およびその製造方法
KR102361297B1 (ko) * 2016-05-20 2022-02-10 주식회사 성우하이텍 복합소재 성형체 및 이의 성형방법
JP7458775B2 (ja) * 2019-12-24 2024-04-01 デクセリアルズ株式会社 熱伝導性成形体の製造方法
TW202202309A (zh) 2020-05-06 2022-01-16 義大利商沙克米機械合作伊莫拉公司 用於藉由壓縮模製技術製造物件之設備及方法
CN115257012B (zh) * 2022-08-15 2023-10-27 博材智能科技(东台)有限公司 一种碳纤维复合材料的热压成型装置
CN115891206B (zh) * 2022-12-23 2024-06-11 中国科学院福建物质结构研究所 一种碳纤维复合材料加工设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338049A (ja) * 1992-06-04 1993-12-21 Showa Denko Kk 繊維強化気泡入り樹脂構造体の製造方法
JPH06328482A (ja) * 1993-05-25 1994-11-29 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂成形体の製造方法
JPH06339997A (ja) * 1993-05-31 1994-12-13 Yokohama Rubber Co Ltd:The 三次元織物を使用した繊維強化プラスチックパネルの製造方法
JPH09136330A (ja) * 1995-11-14 1997-05-27 Yamakawa Ind Co Ltd 複合成形品、その製造方法および製造装置
JP2010184497A (ja) * 2010-03-29 2010-08-26 Toray Ind Inc 耐衝撃性繊維強化プラスチック及び多層構造体
JP2011143609A (ja) * 2010-01-14 2011-07-28 Toray Ind Inc インサート部品を有する繊維強化樹脂部材の製造方法
JP2011224866A (ja) 2010-04-20 2011-11-10 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂の製造方法、該製造方法により得られた繊維強化熱可塑性樹脂およびこれを用いた成形品
JP2012016857A (ja) 2010-07-07 2012-01-26 Toray Ind Inc シート状プリプレグの製造方法および装置
JP2012110935A (ja) 2010-11-25 2012-06-14 Toyota Motor Corp 繊維強化樹脂シートの製造装置及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120632A (en) * 1972-01-12 1978-10-17 Klepper-Werke Kommanditgesellschaft Molds for production of plastics material boats
US4385955A (en) * 1981-09-08 1983-05-31 Detroit Gasket Method of forming contoured fiberglass sheet
JPS62103603A (ja) * 1985-07-23 1987-05-14 Asahi Glass Co Ltd フアイバ−アレイプレ−ト
JP2917372B2 (ja) * 1990-03-09 1999-07-12 住友化学工業株式会社 繊維強化熱可塑性樹脂成形品の製造方法
JPH07285B2 (ja) * 1990-03-23 1995-01-11 株式会社日阪製作所 多孔質素材の真空加圧含浸方法およびそれに用いる装置
FR2713979B1 (fr) 1993-12-21 1996-03-15 Aerospatiale Procédé et dispositif de fabrication de pièces stratifiées injectées basse pression, notamment à emboutis profonds.
JPH07195312A (ja) * 1993-12-29 1995-08-01 Nippon Seikei Kk 合成樹脂液含浸木材の圧締加工方法
JP2862790B2 (ja) * 1994-04-07 1999-03-03 池田物産株式会社 車両用成形天井基材の型構造
JPH0857882A (ja) * 1994-08-23 1996-03-05 Toa Boshoku Kk 成形複合材及びその製造方法
JP3308466B2 (ja) * 1997-05-15 2002-07-29 株式会社林技術研究所 自動車内装材
US6132669A (en) * 1997-08-14 2000-10-17 The Elizabeth And Sandor Valyi Foundation, Inc. Process for preparing a molded article
DE19955171A1 (de) * 1999-11-16 2001-05-17 Ver Foerderung Inst Kunststoff Verfahren und Vorrichtung zur Abführung gasförmiger und flüssiger Substanzen bei der Herstellung von Formteilen aus Reaktionsharzen und reaktiven Schaumsystemen
JP4324649B2 (ja) 2001-11-28 2009-09-02 福井県 繊維強化熱可塑性樹脂シート及びそれを用いた構造材並びに繊維強化熱可塑性樹脂シートの製造方法
JP2005319683A (ja) * 2004-05-10 2005-11-17 Murata Mach Ltd Frp圧力容器用樹脂含浸装置
JP4439361B2 (ja) * 2004-09-14 2010-03-24 三菱エンジニアリングプラスチックス株式会社 長繊維強化熱可塑性樹脂製外装成形体
US20060220273A1 (en) * 2005-03-29 2006-10-05 Armstrong Bradford D Process for compression moulding liquid resins with structural reinforcements
CA2678142C (en) * 2007-03-29 2011-12-13 Toho Tenax Co., Ltd. Fiber-reinforced prepreg and composite materials made from the same
GB2465159B (en) * 2008-11-05 2013-04-17 Aston Martin Lagonda Ltd Manufacture of a structural composites component
US8815368B2 (en) * 2010-02-15 2014-08-26 Mark Neitzke Composite sheet having a core having end walls and a mat with fibers
DE112011105014B4 (de) * 2011-03-08 2014-11-20 Toyota Jidosha Kabushiki Kaisha Verfahren zum Herstellen eines faserverstärkten Kunstharzteils
CN102615839A (zh) * 2012-03-27 2012-08-01 华东理工大学 连续纤维增强热塑性预浸带编织物及其板材的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338049A (ja) * 1992-06-04 1993-12-21 Showa Denko Kk 繊維強化気泡入り樹脂構造体の製造方法
JPH06328482A (ja) * 1993-05-25 1994-11-29 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂成形体の製造方法
JPH06339997A (ja) * 1993-05-31 1994-12-13 Yokohama Rubber Co Ltd:The 三次元織物を使用した繊維強化プラスチックパネルの製造方法
JPH09136330A (ja) * 1995-11-14 1997-05-27 Yamakawa Ind Co Ltd 複合成形品、その製造方法および製造装置
JP2011143609A (ja) * 2010-01-14 2011-07-28 Toray Ind Inc インサート部品を有する繊維強化樹脂部材の製造方法
JP2010184497A (ja) * 2010-03-29 2010-08-26 Toray Ind Inc 耐衝撃性繊維強化プラスチック及び多層構造体
JP2011224866A (ja) 2010-04-20 2011-11-10 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂の製造方法、該製造方法により得られた繊維強化熱可塑性樹脂およびこれを用いた成形品
JP2012016857A (ja) 2010-07-07 2012-01-26 Toray Ind Inc シート状プリプレグの製造方法および装置
JP2012110935A (ja) 2010-11-25 2012-06-14 Toyota Motor Corp 繊維強化樹脂シートの製造装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2946903A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107249882A (zh) * 2015-02-27 2017-10-13 东丽株式会社 树脂供给材料、增强纤维的使用方法、预成型体、及纤维增强树脂的制造方法
CN107249882B (zh) * 2015-02-27 2020-06-23 东丽株式会社 树脂供给材料、增强纤维的使用方法、预成型体、及纤维增强树脂的制造方法

Also Published As

Publication number Publication date
EP2946903A1 (en) 2015-11-25
JP2014138993A (ja) 2014-07-31
KR20150110699A (ko) 2015-10-02
EP2946903B1 (en) 2021-03-31
US20160001510A1 (en) 2016-01-07
KR101684821B1 (ko) 2016-12-08
JP5761867B2 (ja) 2015-08-12
CN109228408B (zh) 2021-04-16
CN105121115A (zh) 2015-12-02
US10442143B2 (en) 2019-10-15
EP2946903A4 (en) 2016-10-12
CN109228408A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
JP5761867B2 (ja) 繊維強化された樹脂基材又は樹脂成形体の製造方法及びこの製造方法に使用する可塑化吐出機
JP6721042B2 (ja) プリプレグシート、その製造方法、表皮材付き単位層、繊維強化複合材料成形品の製造方法、及び繊維強化複合材料成形品
CN104812556B (zh) 用于形成成形的预成型物的方法
JP5459005B2 (ja) プレス成形方法およびその成形体
US10099432B2 (en) Manufacturing method for fiber-reinforced resin sheet and manufacturing device therefor
JP5767415B1 (ja) 加飾成形品の製造方法および加飾成形品
JPWO2013008720A1 (ja) 熱可塑性樹脂プリプレグ、それを用いた予備成形体および複合成形体、ならびにそれらの製造方法
JP2013202890A (ja) 成形材料とその製造方法
JP2014004797A (ja) 成形用複合材及びその製造方法
JP2012213946A (ja) 成形品の製造方法および成形品
CN103958142A (zh) 预成形件的制造方法和纤维强化塑料成形体的制造方法
KR101961103B1 (ko) 탄소섬유 원단과 금속 그물 구조물을 밀착가공한 탄소섬유 원단 프리프레그 및 그 제조방법
JP6230083B1 (ja) 繊維強化樹脂成形品の製造方法及び脱型方法
EP3960796A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP6656702B1 (ja) 繊維強化樹脂成形品の製造方法
CN202498800U (zh) 连续纤维增强聚丙烯发泡板材
JP5598931B2 (ja) 繊維強化された樹脂基材、樹脂成形体の製造方法及びその実施のための樹脂加工機
CN102848560A (zh) Pp发泡板、成型方法、聚丙烯发泡板材及成型方法
JP7220448B2 (ja) 繊維強化複合材の製造方法
JPH09234751A (ja) 繊維強化熱可塑性樹脂シートの製造方法
JP6874876B2 (ja) シートモールディングコンパウンド
JP7139296B2 (ja) 繊維強化樹脂複合成形体とその製造方法
JP2018127574A (ja) シートモールディングコンパウンドの製造方法
JP2018027625A (ja) 繊維強化樹脂を成形する成形加工方法
JP2017113956A (ja) 繊維強化熱可塑性樹脂の成形方法、及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014741094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762070

Country of ref document: US