WO2014112606A1 - ロックアップクラッチの制御装置および制御方法 - Google Patents

ロックアップクラッチの制御装置および制御方法 Download PDF

Info

Publication number
WO2014112606A1
WO2014112606A1 PCT/JP2014/050856 JP2014050856W WO2014112606A1 WO 2014112606 A1 WO2014112606 A1 WO 2014112606A1 JP 2014050856 W JP2014050856 W JP 2014050856W WO 2014112606 A1 WO2014112606 A1 WO 2014112606A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
term gain
input shaft
lockup clutch
integral term
Prior art date
Application number
PCT/JP2014/050856
Other languages
English (en)
French (fr)
Inventor
圭一朗 草部
小林 靖彦
仁 伊澤
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112014000266.6T priority Critical patent/DE112014000266T5/de
Priority to US14/654,327 priority patent/US9845870B2/en
Priority to CN201480003630.2A priority patent/CN104870867B/zh
Priority to JP2014557520A priority patent/JP6137199B2/ja
Publication of WO2014112606A1 publication Critical patent/WO2014112606A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0078Linear control, e.g. PID, state feedback or Kalman
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting

Definitions

  • the present invention relates to a control device and a control method for a lock-up clutch capable of connecting a prime mover of a vehicle and an input shaft of a transmission and releasing the connection therebetween.
  • a first feedback compensator that has a frequency characteristic in which the gain is set smaller than the gain in the high frequency region and outputs the first slip rotation command value by inputting the deviation
  • a second feedback compensator that has a frequency characteristic in which the gain of the deviation in the low frequency region is set larger than the gain in the high frequency region, and outputs the second slip rotation command value by inputting the deviation.
  • PID controller is known (for example, see Patent Document 1).
  • the control device determines the magnitude of the response delay of the clutch hydraulic pressure at the start of the vehicle, that is, the control amount that determines the torque capacity of the lockup clutch. Switching from feedback control by the first feedback compensator to feedback control by the second feedback compensator is performed. When switching the feedback compensator, the weighting of the first slip rotation command value and the second slip rotation command value with respect to the slip rotation command value is gradually changed.
  • the control amount for determining the torque capacity of the lockup clutch includes the differential pressure between the apply pressure and the release pressure acting on the lockup clutch, and the lockup clutch torque estimated from the engine torque and the engine speed. A capacity or the like is used.
  • Patent Document 1 also uses a map that predefines a region for switching between feedback control by the first feedback compensator and feedback control by the second feedback compensator using the engine torque and the engine speed as arguments. Are listed.
  • slip control as described above is performed not only in a rotational range where the engine speed is relatively low, such as when starting the vehicle, but also in a wider rotational range, the power transmission efficiency via the lock-up clutch and the engine (prime engine) Can improve fuel efficiency.
  • the characteristics of the lock-up clutch as the object to be controlled change continuously according to the state of the vehicle and the engine. For this reason, in the control device described in Patent Document 1, the feedback control by the first feedback compensator and the feedback control by the second feedback compensator are switched according to the state of the vehicle or the engine, or the state of the vehicle or the like.
  • the main object of the present invention is to enable slip control to be executed stably and responsively in a wider execution range.
  • a control device for a lock-up clutch includes: A hydraulic impulsive command value to a lock-up clutch constituting a starting device together with a pump impeller coupled to a vehicle prime mover and a turbine runner coupled to an input shaft of a transmission is the difference in actual rotational speed between the prime mover and the input shaft.
  • Input rotation speed acquisition means for acquiring the rotation speed of the input shaft;
  • Feedback term setting means for setting a feedback term of the hydraulic pressure command value including at least a proportional term and an integral term by using at least a difference between the target slip speed and the actual rotational speed difference, a proportional term gain and an integral term gain.
  • This lock-up clutch control device controls a lock-up clutch that constitutes a starting device together with a pump impeller connected to a prime mover of a vehicle and a turbine runner connected to an input shaft of a transmission.
  • the control device sets a feedback term of a hydraulic pressure command value including at least a proportional term and an integral term by using at least the difference between the target slip speed and the actual rotational speed difference, the proportional term gain, and the integral term gain.
  • a feedback term setting means is provided, and slip control is executed to match the actual rotational speed difference between the prime mover and the input shaft of the transmission with the target slip speed using a hydraulic pressure command value including the feedback term.
  • the present inventors have intensively studied to enable slip control to be executed stably and responsively in a wider execution range by using such a control device, and fluid transmission such as a fluid coupling and a torque converter including a pump impeller and a turbine runner.
  • a reaction force corresponding to the rotational speed of the input shaft acts on the power from the prime mover from the input shaft side of the transmission, that is, the turbine runner side. Focused on that.
  • the inventors have found that the actual rotational speed difference is a certain amount according to the fluctuation of the reaction force acting on the power from the prime mover from the input shaft side, i.e.
  • the “vehicle state” may include the state of the prime mover.
  • control device may set at least the integral term gain to a larger value as the rotational speed of the input shaft is higher. That is, the reaction force acting on the power from the prime mover from the input shaft (turbine runner) side is approximately proportional to the square value of the rotation angular velocity of the input shaft, and the reaction force increases as the rotation speed of the input shaft increases. Therefore, the amount of change in the torque capacity of the lockup clutch required to change the actual rotational speed difference by a certain amount by the slip control becomes large. Therefore, in order to change the actual rotational speed difference by a certain amount by the slip control, it is necessary to increase the change amount of the hydraulic pressure command value as the rotational speed of the input shaft when the slip control is executed is higher.
  • the lockup clutch is It is possible to improve the stability of slip control by suppressing the combination, and to improve the response to the hydraulic pressure command value of the lockup clutch when the rotational speed of the input shaft is relatively high.
  • control device further includes hydraulic oil temperature acquisition means for acquiring the temperature of hydraulic oil for operating the lockup clutch, and further changes at least the integral term gain according to the temperature of the hydraulic oil.
  • hydraulic oil temperature acquisition means for acquiring the temperature of hydraulic oil for operating the lockup clutch, and further changes at least the integral term gain according to the temperature of the hydraulic oil.
  • the hydraulic pressure command is set so that a desired actual rotational speed difference can be obtained by setting at least the integral term gain to a value corresponding to the hydraulic oil temperature. Since the value can be set more appropriately, the slip control can be executed stably and responsively in various situations.
  • control device may set at least the integral term gain to a larger value as the temperature of the hydraulic oil is higher. That is, the higher the temperature of the hydraulic oil, the lower the coefficient of friction of the friction material due to a decrease in the viscosity of the hydraulic oil, so the frictional force of the lockup clutch when the hydraulic pressure command value changes by a certain amount That is, the amount of change in torque capacity is reduced, and accordingly, the amount of change in the actual rotational speed difference when the hydraulic pressure command value is changed by a certain amount is also reduced. Therefore, in order to change the actual rotational speed difference by a certain amount by the slip control, it is necessary to increase the change amount of the hydraulic pressure command value as the temperature of the hydraulic oil when the slip control is executed is higher.
  • control device may further change at least the integral term gain according to the actual rotational speed difference.
  • the inventors have also paid attention to the actual rotational speed difference between the prime mover and the input shaft of the transmission when slip control is executed. Then, the inventors have found that the amount of change in the hydraulic pressure command value required to change the actual rotational speed difference by a certain amount varies depending on the actual rotational speed difference itself, and at least the integration in the feedback term.
  • the control device for the lockup clutch is configured to further change the term gain according to the actual rotational speed difference.
  • the integral term gain is set to a value according to the actual rotational speed difference, thereby obtaining a desired value. Since the hydraulic pressure command value can be set more appropriately so that the actual rotational speed difference can be obtained, the slip control can be executed stably and responsively under various circumstances.
  • control device may set at least the integral term gain to a larger value as the actual rotational speed difference is smaller. That is, the smaller the actual rotational speed difference between the prime mover and the input shaft of the transmission is, the smaller the friction coefficient of the friction material becomes, so that the friction force of the lockup clutch when the hydraulic pressure command value changes by a certain amount, that is, the torque capacity
  • the amount of change becomes smaller, and accordingly, the amount of change in the actual rotational speed difference when the hydraulic pressure command value changes by a certain amount also becomes smaller. Therefore, in order to change the actual rotational speed difference by a certain amount by the slip control, it is necessary to increase the change amount of the hydraulic pressure command value as the actual rotational speed difference when the slip control is executed is smaller.
  • the integral term gain is set to a larger value as the actual rotational speed difference is smaller (a smaller value as the actual rotational speed difference is smaller), the response delay of the lockup clutch is reduced when the actual rotational speed difference is relatively small.
  • the actual rotational speed difference is relatively large, it is possible to suppress the sudden engagement of the lockup clutch and improve the stability of the slip control.
  • control device may change each of the integral term gain and the proportional term gain in accordance with the rotational speed of the input shaft.
  • the hydraulic pressure command value can be set more appropriately so as to obtain a desired actual rotational speed difference, and the actual rotational speed difference between the prime mover and the input shaft can be quickly converged to the target slip speed.
  • the control device includes a rotation speed of the input shaft, a temperature of the hydraulic oil, a proportional term gain setting map that defines a relationship between the actual rotation speed difference and the proportional term gain, and the input shaft.
  • An integral term gain setting map that defines a relationship between the rotational speed, the temperature of the hydraulic oil, and the difference between the actual rotational speed and the integral term gain, and from the proportional term gain setting map,
  • the proportional term gain corresponding to the rotational speed of the input shaft, the temperature of the hydraulic oil, and the actual rotational speed difference is derived, and from the integral term gain setting map, the rotational speed of the input shaft, the hydraulic fluid
  • the integral term gain corresponding to the temperature and the actual rotational speed difference may be derived.
  • the proportional term gain and integral term gain can be individually set to more appropriate values according to the rotational speed of the input shaft, the temperature of the hydraulic oil, and the actual rotational speed difference. Therefore, the hydraulic pressure command value can be set extremely appropriately so that
  • the pump impeller and the turbine runner may constitute a torque converter together with a stator that rectifies the flow of hydraulic oil from the turbine runner to the pump impeller. That is, when the slip control is executed, the reaction force acting from the input shaft (turbine runner) side on the power from the prime mover is when the lockup clutch is combined with the torque converter including the pump impeller, turbine runner and stator. Especially large. Therefore, the present invention is extremely suitable for a lockup clutch that constitutes a vehicle starting device together with a torque converter including a pump impeller, a turbine runner, and a stator.
  • the control method of the lock-up clutch according to the present invention includes: A hydraulic impulsive command value to a lock-up clutch constituting a starting device together with a pump impeller coupled to a vehicle prime mover and a turbine runner coupled to an input shaft of a transmission is the difference in actual rotational speed between the prime mover and the input shaft.
  • a lockup clutch control method which is set to coincide with a target slip speed according to the state of the vehicle, and controls the lockup clutch based on the hydraulic pressure command value, (A) obtaining a rotation speed of the input shaft; (B) changing at least the integral term gain in the feedback term of the hydraulic pressure command value according to the rotational speed of the input shaft acquired in step (a); (C) Using at least the difference between the target slip speed and the actual rotational speed difference, the proportional term gain and the integral term gain, a feedback term of the hydraulic pressure command value including at least a proportional term and an integral term is set. And steps to Is included.
  • the slip control can be stably and responsively executed in a wider execution range (rotation speed range).
  • step (b) at least the integral term gain may be set to a larger value as the rotational speed of the input shaft is higher.
  • FIG. 1 is a schematic configuration diagram of a power transmission device 20 including a lock-up clutch 28.
  • FIG. It is a control block diagram which shows the setting procedure of the hydraulic pressure command value Up by the lockup control module 211 of the speed change ECU 21 as a control device for the lockup clutch.
  • FIG. 6 is an explanatory diagram illustrating the relationship between the input rotation speed Nin of the automatic transmission 30 and the proportional term gain Kp and integral term gain Ki. It is explanatory drawing which illustrates the relationship between the oil temperature Toil, the proportional term gain Kp, and the integral term gain Ki.
  • FIG. 6 is an explanatory diagram illustrating the relationship between an actual slip speed u between the engine 12 and the input shaft 31 of the automatic transmission 30, and a proportional term gain Kp and an integral term gain Ki.
  • FIG. 5 is a flowchart showing an example of a slip control routine executed by a lockup control module 211. It is explanatory drawing which illustrates the gain setting map for proportional terms, and the gain setting map for integral terms.
  • FIG. 1 is a schematic configuration diagram of an automobile 10 which is a vehicle including a lockup clutch control device according to the present invention.
  • An automobile 10 shown in the figure includes an engine (internal combustion engine) 12 as a prime mover that outputs power by explosion combustion of a mixture of hydrocarbon fuel such as gasoline and light oil and air, and an engine electronic for controlling the engine 12.
  • the power transmission device 20 includes a transmission case 22, a starting device 23, a stepped automatic transmission 30, a hydraulic control device 50, a shift electronic control unit (hereinafter referred to as a “shift ECU”) 21 that controls these, and the like. Have.
  • the engine ECU 14 is configured as a microcomputer centering on a CPU (not shown). In addition to the CPU, a ROM that stores various programs, a RAM that temporarily stores data, an input / output port, and a communication port (all not shown). Etc.). As shown in FIG. 1, the engine ECU 14 includes an accelerator opening Acc from an accelerator pedal position sensor 92 that detects a depression amount (operation amount) of an accelerator pedal 91, a vehicle speed V from a vehicle speed sensor 99, a crankshaft 15 (see FIG. 1). 2), signals from various sensors such as a crankshaft position sensor (not shown) and the like, signals from the brake ECU 16 and the shift ECU 21, and the like are input to the engine ECU 14 based on these signals.
  • an accelerator opening Acc from an accelerator pedal position sensor 92 that detects a depression amount (operation amount) of an accelerator pedal 91, a vehicle speed V from a vehicle speed sensor 99, a crankshaft 15 (see FIG. 1). 2
  • signals from various sensors such as
  • the throttle valve 13, a fuel injection valve (not shown), a spark plug and the like are controlled. Further, the engine ECU 14 calculates the rotational speed (rotational speed) Ne of the engine 12 based on the rotational position of the crankshaft 15 detected by the crankshaft position sensor. Further, the engine ECU 14 outputs from the engine 12 based on, for example, the rotational speed Ne, the intake air amount of the engine 12 detected by an air flow meter (not shown), the throttle opening THR of the throttle valve 13, a predetermined map or a calculation formula. An engine torque Te that is an estimated value of the torque that is being calculated is calculated.
  • the brake ECU 16 is also configured as a microcomputer centering on a CPU (not shown). In addition to the CPU, a ROM for storing various programs, a RAM for temporarily storing data, an input / output port and a communication port (none of which are shown). ) Etc. As shown in FIG. 1, the brake ECU 16 has a master cylinder pressure detected by the master cylinder pressure sensor 94 when the brake pedal 93 is depressed, a vehicle speed V from the vehicle speed sensor 99, signals from various sensors (not shown), and the like. Signals from the engine ECU 14 and the shift ECU 21 are input, and the brake ECU 16 controls a brake actuator (hydraulic actuator) (not shown) and the like based on these signals.
  • a brake actuator hydraulic actuator
  • the shift ECU 21 that controls the power transmission device 20 is also configured as a microcomputer centered on a CPU (not shown). In addition to the CPU, a ROM that stores various programs, a RAM that temporarily stores data, an input / output port, and communication Port (none shown) etc. are provided. As shown in FIG. 1, the shift ECU 21 includes a shift lever for selecting a desired shift range from among an accelerator opening Acc from an accelerator pedal position sensor 92, a vehicle speed V from a vehicle speed sensor 99, and a plurality of shift ranges.
  • Starting device based on the signal 23 and the automatic transmission 30, i.e. for controlling the hydraulic control unit 50.
  • the starting device 23 included in the power transmission device 20 includes a pump impeller 24 as an input side fluid transmission element connected to the crankshaft 15 of the engine 12 via a front cover 18 as an input member.
  • the turbine runner 25 serving as an output-side fluid transmission element fixed to the input shaft 31 of the automatic transmission 30 via the turbine hub, the pump impeller 24, and the turbine runner 25 are disposed inside the turbine runner 25 to the pump impeller 24.
  • a stator 26 that rectifies the flow of the hydraulic oil, a one-way clutch 26c that restricts the rotation direction of the stator 26 to one direction, a damper mechanism 27 coupled to the turbine hub, a lock-up clutch 28 as a hydraulic start clutch, and the like.
  • the pump impeller 24, the turbine runner 25, and the stator 26 constitute a torque converter.
  • the function of the stator 26 functions as a torque amplifier, and the rotational speeds of the two.
  • the difference is small, it functions as a fluid coupling.
  • the stator 26 and the one-way clutch 26c may be omitted, and the pump impeller 24 and the turbine runner 25 may function as a fluid coupling.
  • the damper mechanism 27 includes, for example, an input element coupled to the lockup clutch 28, an intermediate element coupled to the input element via the plurality of first elastic bodies, and an intermediate element coupled to the plurality of second elastic bodies. And an output element fixed to the turbine hub. The damper mechanism 27 attenuates vibration between the front cover 18 and the turbine hub (input shaft 31) when the lock-up clutch 28 is engaged.
  • the lock-up clutch 28 mechanically connects (via a damper mechanism 27) the pump impeller 24 and the turbine runner 25, that is, the engine 12 (front cover 18) and the input shaft 31 of the automatic transmission 30 fixed to the turbine hub.
  • the lockup to be connected and the release of the lockup are selectively executed.
  • the lock-up clutch 28 is configured as a hydraulic multi-plate friction clutch, and includes a lock-up piston 280 supported by the front cover 18 so as to be movable in the axial direction, a plurality of friction engagement plates 281, And an annular flange member (oil chamber defining member) 285.
  • the plurality of friction engagement plates 281 are fitted to a mating plate fitted to a clutch hub fixed to the front cover 18, and a clutch drum having a friction material and connected to an input element of the damper mechanism 27.
  • the flange member 285 is fixed to the front cover 18 so as to be positioned closer to the damper mechanism 27 than the lockup piston 280, and defines an engagement side oil chamber 28a together with the lockup piston 280.
  • the lock-up clutch 28 is engaged by moving the lock-up piston 280 toward the front cover 18 so as to increase the hydraulic pressure in the engagement-side oil chamber 28a and press the plurality of friction engagement plates.
  • the lockup clutch 28 may be configured as a hydraulic single-plate friction clutch including a lockup piston to which a friction material is attached.
  • the automatic transmission 30 is capable of transmitting the power transmitted to the input shaft 31 to an output shaft (not shown) while changing the gear stage to a plurality of stages, and includes a plurality of planetary gear mechanisms and from the input shaft 31 to the output shaft. Including a plurality of clutches, brakes, one-way clutches, and the like for changing the power transmission path.
  • the output shaft of the automatic transmission 30 is connected to the drive wheels DW via a gear mechanism and a differential mechanism (not shown). Further, the plurality of clutches and brakes are engaged / disengaged by the hydraulic pressure from the hydraulic control device 50.
  • the automatic transmission 30 may be configured as a so-called continuously variable transmission.
  • the hydraulic control device 50 regulates hydraulic oil from an oil pump (not shown) driven by power from the engine 12 to generate the line pressure PL in order to generate hydraulic pressure to the starting device 23 and the automatic transmission 30.
  • a primary regulator valve for example, a secondary regulator valve that regulates the drain pressure of the primary regulator valve to generate the secondary pressure Psec, a modulator valve that regulates the line pressure PL to generate a constant modulator pressure Pmod, for example, the accelerator pressure Pmod
  • a linear solenoid valve that adjusts the pressure according to the opening degree Acc or the opening degree THR of the throttle valve 13 to generate a signal pressure to the primary regulator valve.
  • the hydraulic oil is supplied to the plurality of automatic transmissions 30 according to the operation position of the shift lever 95.
  • For clutch and brake Feeding possible to manual valve including each manual hydraulic oil from the valve (line pressure PL) can be output to the corresponding clutch or brake by regulating a plurality of linear solenoid valves, etc. (all not shown).
  • the hydraulic control device 50 adjusts, for example, the modulator pressure Pmod according to the applied current value to generate a lockup solenoid pressure Pslu, and a lockup solenoid valve SLU and a lockup solenoid valve SLU.
  • the lockup solenoid valve Pslu operates as a signal pressure
  • the secondary pressure Psec is adjusted to generate the lockup pressure Plup to the lockup clutch 28, and the lockup from the lockup solenoid valve SLU.
  • a lock-up relay valve that operates using the solenoid pressure Pslu as a signal pressure and permits / regulates the supply of the lock-up pressure Plup from the lock-up control valve 51 to the engagement-side oil chamber 28a of the lock-up clutch 28. And a 52.
  • the lockup solenoid valve SLU sets the lockup solenoid pressure Pslu to a value of 0 when the applied current value is relatively small (does not generate the lockup solenoid pressure Pslu), and the applied current value. After that, the lock-up solenoid pressure Pslu is set higher as the current value increases. Further, when the lockup solenoid pressure Pslu is generated by the lockup solenoid valve SLU, the lockup control valve 51 reduces the secondary pressure Psec, which is the original pressure, as the lockup solenoid pressure Pslu is lower, thereby reducing the lockup pressure Plup.
  • the lockup solenoid pressure Pslu When the lockup solenoid pressure Pslu is set lower than the predetermined lockup engagement pressure P1, the secondary pressure Psec is output as it is as the lockup pressure Plup. Further, the lockup relay valve 52 supplies the circulating pressure Pcir adjusted to a pressure lower than the secondary pressure Psec to the fluid transmission chamber 23a of the starting device 23 when the lockup solenoid pressure Pslu is not supplied from the lockup solenoid valve SLU. In addition, when the lockup solenoid pressure Pslu is supplied from the lockup solenoid valve SLU, the circulation pressure Pcir is supplied to the fluid transmission chamber 23a and the engagement side oil chamber 28a of the lockup clutch 28 is supplied from the lockup control valve 51. The lockup pressure Plup is supplied.
  • the shift ECU 21 includes a shift control module 210 and a lockup control module 211 in cooperation with hardware such as a CPU, ROM, and RAM, and software such as a control program installed in the ROM. Is constructed as a functional block.
  • the shift control module 210 obtains a target shift stage corresponding to the accelerator opening Acc (or the throttle opening 13 of the throttle valve 13) and the vehicle speed V from a predetermined shift diagram (not shown), and from the current shift stage to the target shift stage.
  • the engagement pressure command value to the linear solenoid valve corresponding to the clutch or brake engaged with the change to the gear and the clutch or brake released with the change from the current gear to the target gear Set the release pressure command value to the linear solenoid valve.
  • the shift control module 210 sets a holding pressure command value to the linear solenoid valve corresponding to the engaged clutch or brake during the change from the current shift speed to the target shift speed or after the formation of the target shift speed. .
  • the lockup control module 211 sets a hydraulic pressure command value Up for the lockup solenoid valve SLU described above.
  • the lock-up control module 211 sets a hydraulic pressure command value Up so that lock-up is executed by the lock-up clutch 28 when a predetermined lock-up condition is satisfied, and a lock-up solenoid from an auxiliary battery (not shown) is set.
  • a drive circuit (not shown) is controlled so that a current corresponding to the hydraulic pressure command value Up is applied to the solenoid portion of the valve SLU.
  • the lockup control module 211 is configured so that the front cover 18 (engine 12) as an input member and the input shaft 31 of the automatic transmission 30 are engaged by half-engagement of the lockup clutch 28.
  • the slip control is executed so that the rotational speed difference ⁇ N (slip speed) matches the target slip speed u * corresponding to at least one of the states of the automobile 10 and the engine 12 (vehicle state).
  • ⁇ N slip speed
  • the slip control is executed so as to cause the lockup clutch 28 to slip during acceleration or deceleration of the automobile 10 or during a shift, etc., so that the occurrence of vibration due to torque fluctuation accompanying the lockup is improved. While suppressing, it is possible to improve the power transmission efficiency and the fuel consumption of the engine 12 as compared with the case where lockup is not performed.
  • FIG. 3 is a control block diagram showing a procedure for setting the hydraulic pressure command value Up by the lockup control module 211 of the transmission ECU 21.
  • the lockup control module 211 sets the feedforward term FF of the hydraulic pressure command value Up based on, for example, the engine torque Te, the input rotational speed Nin, and the target slip speed u *.
  • the lockup control module 211 also detects the target slip speed u * and the actual slip speed that is the actual rotational speed difference (actual rotational speed difference) between the engine 12 (front cover 18) and the input shaft 31 of the automatic transmission 30.
  • the feedback term FB of the hydraulic pressure command value Up including the proportional term FBp and the integral term FBi is obtained.
  • the feedback term FB of the hydraulic pressure command value UP may further include a differential term in addition to the proportional term FBp and the integral term FBi.
  • the lockup control module 211 sets the hydraulic pressure command value Up by adding the feedforward term FF and the feedback term FB.
  • the transmission ECU 21 uses the hydraulic command value Up including the feedback term FB set by relatively simple PI control (or PID control) and the engine 12 to Slip control is executed to match the actual slip speed u with the input shaft 31 of the automatic transmission 30 to the target slip speed u *.
  • PI control or PID control
  • the present inventors have intensively studied to enable slip control to be executed stably and responsively in a wider execution range and various vehicle conditions by the above-described speed change ECU 21 (lockup control module 211).
  • the input rotational speed Nin from the input shaft 31 (turbine runner 25) side or the rotational speed Ne of the engine 12 is determined.
  • the reaction torque acting That is, when the slip control is executed in the starting device 23 including the lockup clutch 28 and the torque converter having the pump impeller 24, the turbine runner 25, and the stator 26, the speed ratio between the pump impeller 24 and the turbine runner 25 is determined.
  • Tc C T ⁇ ⁇ i from the input shaft 31, that is, the turbine runner 25 side of the torque converter, when the capacity coefficient of the torque converter corresponding to is set to “C T ” and the rotational angular velocity of the input shaft 31 is set to “ ⁇ i ”.
  • a reaction torque of 2 acts on the pump impeller 24 as a reaction force against the torque from the engine 12.
  • reaction force torque Tc acting on the torque from the engine 12 from the input shaft 31 side is approximately proportional to the square value of the rotational angular velocity ⁇ i of the input shaft 31 or the engine 12 as described above.
  • the lockup control module 211 of the speed change ECU 21 is configured to change the proportional term gain Kp and the integral term gain Ki in the feedback term FB according to the input rotational speed Nin. It was. Specifically, as shown in FIG. 4, the lockup control module 211 is configured to set each of the proportional term gain Kp and the integral term gain Ki to a larger value as the input rotational speed Nin is higher. The As a result, when the input rotational speed Nin is relatively low, sudden engagement of the lockup clutch 28 is suppressed to improve the stability of the slip control, and when the input rotational speed Nin is relatively high, the lock is increased. It is possible to improve the responsiveness of the up clutch 28 to the hydraulic pressure command value Up.
  • the present inventors have also paid attention to the oil temperature Toil of the hydraulic oil that operates the lock-up clutch 28 when the slip control is performed. Then, the present inventors have found that the amount of change in the hydraulic pressure command value Up required to change the actual slip speed u by a certain amount varies according to the variation in the oil temperature Toil. That is, the higher the oil temperature Toil of the hydraulic oil, the smaller the friction coefficient (dynamic friction coefficient) of the friction material of the lockup clutch 28 due to the lower viscosity of the hydraulic oil.
  • oil pressure command value Up frictional force or the amount of change in the torque capacity T LU of the lock-up clutch 28 is reduced when the change by a predetermined amount, the hydraulic pressure command value with it
  • the amount of change in the actual slip speed u when Up changes by a certain amount is also reduced. Therefore, in order to change the actual slip speed u by a certain amount by the slip control, it is necessary to increase the change amount of the hydraulic pressure command value Up as the oil temperature Toil when the slip control is executed is higher.
  • the lockup control module 211 of the transmission ECU 21 is changed so that the proportional term gain Kp and the integral term gain Ki in the feedback term FB are further changed according to the oil temperature Toil of the hydraulic oil. It was decided to compose. Specifically, as shown in FIG. 5, the lockup control module 211 is configured to set each of the proportional term gain Kp and the integral term gain Ki to a larger value as the oil temperature Toil is higher. .
  • the lockup control module 211 is configured to set each of the proportional term gain Kp and the integral term gain Ki to a larger value as the oil temperature Toil is higher. .
  • slippage is suppressed by suppressing the sudden engagement of the lockup clutch 28 due to the increase in the friction coefficient (dynamic friction coefficient) in the lockup clutch 28 due to the increase in the viscosity of the hydraulic oil.
  • the present inventors pay attention to the actual slip speed (actual rotational speed difference) u between the engine 12 and the input shaft 31 of the automatic transmission 30 when the slip control is executed in the course of the above-described research. did.
  • the inventors have found that the amount of change in the hydraulic command value Up required to change the actual slip speed u by a certain amount varies depending on the actual slip speed u itself. That is, the smaller the actual slip speed u between the engine 12 and the input shaft 31 of the automatic transmission 30 is, the smaller the friction coefficient (dynamic friction coefficient) of the friction material of the lockup clutch 28 is.
  • the amount of change in the actual slip speed u when it changes by a certain amount also becomes small. Therefore, in order to change the actual slip speed u by a certain amount by the slip control, it is necessary to increase the change amount of the hydraulic pressure command value Up as the actual slip speed u when the slip control is executed is smaller.
  • the proportional ECU gain Kp and the integral term gain Ki in the feedback term FB are further changed according to the actual slip speed u between the engine 12 and the input shaft 31.
  • the lockup control module 211 is configured. Specifically, as shown in FIG. 6, the lockup control module 211 is configured to set each of the proportional term gain Kp and the integral term gain Ki to a larger value as the actual slip speed u is smaller. The As a result, when the actual slip speed u is relatively low, the response delay of the lockup clutch 28 due to a decrease in the friction coefficient (dynamic friction coefficient) in the lockup clutch 28 is improved and the actual slip speed u is relatively low. If it is larger, it is possible to suppress the sudden engagement of the lockup clutch 28 and improve the stability of the slip control.
  • FIG. 7 is a flowchart showing an example of a slip control routine executed by the lockup control module 211.
  • the slip control routine shown in the figure is repeatedly executed at predetermined intervals by the lockup control module 211 when slipping occurs in the lockup clutch 28 in accordance with the establishment of the slip control execution condition.
  • the lockup control module 211 (CPU) detects the accelerator opening Acc from the accelerator pedal position sensor 92, the engine torque Te from the engine ECU 14, the rotational speed Ne of the engine 12, and the rotational speed sensor.
  • Input processing of data necessary for control is executed (step S100).
  • the lockup control module 211 sets a target slip speed u * corresponding to the accelerator opening Acc and the engine speed Ne (vehicle state) input in step S100 (step S110). ).
  • the relationship between the accelerator opening Acc and the engine speed Ne and the target slip speed u * is determined in advance and stored in the ROM of the speed change ECU 21 as a target slip speed setting map (not shown).
  • the target slip speed u * corresponding to the given accelerator opening Acc and the rotational speed Ne is derived and set from the target slip speed setting map.
  • the target slip speed u * may be set based on the opening degree THR and the rotational speed Ne of the throttle valve 13, and is set based on other parameters in addition to the accelerator opening degree Acc and the rotational speed Ne. Alternatively, it may be set based on parameters other than the accelerator opening Acc and the rotational speed Ne.
  • the lockup control module 211 sets the feedforward term FF of the hydraulic pressure command value Up based on, for example, the engine torque Te, the input rotational speed Nin, and the target slip speed u *. (Step S120).
  • the relationship between the engine torque Te, the input rotational speed Nin, the target slip speed u *, and the value of the feedforward term FF is determined in advance and stored in the ROM of the transmission ECU 21 as a feedforward term setting map (not shown). ing.
  • the value of the feedforward term FF corresponding to the applied engine torque Te, the input rotation speed Nin, and the target slip speed u * is derived from the feedforward term setting map.
  • the feedforward term FF may be set based on other parameters in addition to the engine torque Te, the input rotational speed Nin, and the target slip speed u *, and the engine torque Te, the input rotational speed Nin, and the target slip speed. It may be set based on parameters other than u *. Further, the lockup control module 211 calculates the actual slip speed u by subtracting the input rotational speed Nin from the rotational speed Ne of the engine 12 input in step S100 (step S130).
  • the lockup control module 211 determines the proportional term gain Kp in the feedback term FB and the integral term based on the input rotational speed Nin and the oil temperature Toil inputted in step S100 and the actual slip speed u calculated in step S130.
  • a gain Ki is set (step S140).
  • the relationship between the input rotation speed Nin, the oil temperature Toil, the actual slip speed u, and the proportional term gain Kp is determined in advance and stored in the ROM of the transmission ECU 21 as a proportional term gain setting map. Further, the relationship among the input rotational speed Nin, the oil temperature Toil, the actual slip speed u, and the integral term gain Ki is determined in advance and stored in the ROM of the transmission ECU 21 as an integral term gain setting map.
  • step S140 values corresponding to the given input rotational speed Nin, oil temperature Toil, and actual slip speed u are derived from the proportional term gain setting map and set as the proportional term gain Kp.
  • values corresponding to the rotational speed Nin, the oil temperature Toil, and the actual slip speed u are derived from the integral term gain setting map and set as the integral term gain Kp.
  • FIG. 8 illustrates the proportional term gain setting map and integral term gain setting map.
  • the proportional term gain setting map shows the relationship between the input rotation speed Nin and the proportional term gain Kp shown in FIG. 4, the relationship between the oil temperature Toil and the proportional term gain Kp shown in FIG. 5, and the relationship shown in FIG.
  • T1 60 to 80 °
  • T2 100 to 120 °
  • the proportional term gain setting map indicates that the proportional term gain Kp is larger (smaller) as the input rotational speed Nin is higher (lower) and the proportional temperature gain is higher (lower) as the oil temperature Toil is higher.
  • the gain Kp is made larger (smaller) and the proportional term gain Kp is made larger (smaller) as the actual slip speed u is smaller (higher).
  • the integral term gain setting map shows the relationship between the input rotational speed Nin and the integral term gain Ki shown in FIG. 4, the relationship between the oil temperature Toil and the integral term gain Ki shown in FIG. 5, and FIG.
  • the integral term gain setting map shows the relationship between the input rotational speed Nin and the integral term gain Ki shown in FIG. 4, the relationship between the oil temperature Toil and the integral term gain Ki shown in FIG. 5, and FIG.
  • the integral term gain setting map indicates that the integral term gain Ki is larger (smaller) as the input rotational speed Nin is higher (lower), and the integral term gain Ki is higher (lower) as the oil temperature Toil is higher.
  • the gain Ki is made larger (smaller) as the gain Ki is larger (smaller) and the actual slip speed u is smaller (higher).
  • the proportional term gain setting map and the integral term gain setting map as shown in FIG. 8 are used, and the oil temperature Toil and the actual slip speed u input in step S100 are the temperatures T1 in FIG. , T2, and the actual slip speeds u1 to u3, in step S140, the proportional term gain is obtained by linearly interpolating a plurality of values derived from the proportional term gain setting map and the integral term gain setting map. Kp and integral term gain Ki are set. It goes without saying that the proportional term gain setting map and the integral term gain setting map can be created at intervals smaller than the intervals of the oil temperature Toil and the actual slip speed u shown in FIG.
  • a value obtained by multiplying the gain Kp is set as the proportional term FBp of the feedback term FB, and an integrated value obtained by multiplying the difference (u * ⁇ u) by the integral term gain Ki is set as the integral term FBp of the feedback term FB. (Step S150).
  • the lockup control module 211 sets the value obtained by adding the proportional term FBp and the integral term Fbi set in step S140 to the feedforward term FF set in step S120, that is, the feedback term FB, as the hydraulic pressure command value Up. (Step S160). Then, the lockup control module 211 controls a drive circuit (not shown) that sets a current to the solenoid portion of the lockup solenoid valve SLU based on the hydraulic pressure command value Up (step S170). Thereafter, when the next execution timing of this routine arrives, the lockup control module 211 executes the processing after step S100 again.
  • the speed change ECU 21 (lockup control module 211), which is the control device of the lockup clutch 28 that constitutes the starting device 23 together with the torque converter including the pump impeller 24, the turbine runner 25, and the stator 26, is at least the target slip.
  • Hydraulic pressure including at least a proportional term FBp and an integral term FBi using a difference (u * ⁇ u) between the speed u * and the actual slip speed (actual rotational speed difference) u, a proportional term gain Kp, and an integral term gain Ki
  • the feedback term FB of the command value Up is set (step S150 in FIG. 7), and the actual rotational speed difference between the engine 12 and the input shaft 31 of the automatic transmission 30 is determined using the hydraulic command value Up including the feedback term FB.
  • step S160, S170 of FIG. 7 the shift ECU 21 acquires the input rotational speed (rotational speed of the input shaft 31) Nin of the automatic transmission 30 when executing the slip control (step S100 in FIG. 7), and the proportional term gain Kp and the integral term gain Ki.
  • the proportional term gain Kp and the integral term gain Ki are set based on the input rotational speed Nin, thereby changing the proportional term gain Kp and the integral term gain Ki according to the fluctuation of the input rotational speed Nin (step S140 in FIG. 7).
  • the proportional term gain Kp and the integral term gain Ki are individually set to values corresponding to the input rotation speed Nin.
  • the hydraulic pressure command value Up can be set more appropriately so that a desired actual slip speed u can be obtained. Therefore, in the starting device 23 including the lock-up clutch 28, it becomes possible to execute the slip control stably and responsively in a wider execution region, that is, in a wider rotational speed region.
  • each of the proportional term gain Kp and the integral term gain Ki is set to a larger value as the input rotational speed Nin of the automatic transmission 30 is higher (lower value is smaller).
  • 7 step S140, FIG. 4, FIG. 8 As a result, when the input rotational speed Nin is relatively low, sudden engagement of the lockup clutch 28 is suppressed to improve the stability of the slip control, and when the input rotational speed Nin is relatively high, the lock is increased. It is possible to improve the responsiveness of the up clutch 28 to the hydraulic pressure command value Up.
  • the lockup clutch 28 When the lockup clutch 28 is combined with a torque converter including the pump impeller 24, the turbine runner 25, and the stator 26, the input shaft 31 (turbine runner 25) with respect to the torque from the engine 12 when slip control is executed.
  • the reaction torque Tc acting from the side becomes particularly large. Accordingly, as described above, the proportional term gain K and the integral term gain Ki are input in the slip control of the lockup clutch 28 constituting the starting device 23 together with the torque converter including the pump impeller 24, the turbine runner 25, and the stator 26. Changing according to the rotational speed Nin is extremely useful in executing slip control stably and with high responsiveness in a wider execution range and various vehicle conditions.
  • the reaction force torque Tc acting on the torque from the engine 12 from the input shaft 31 (turbine runner 25 side) can be expressed using the rotational speed Ne of the engine 12.
  • the proportional term gain Kp is correlated with the rotational speed Ne of the engine 12 having a correlation with the input rotational speed Nin.
  • the proportional term gain K and the integral term gain Ki may be changed.
  • the shift ECU 21 acquires the oil temperature Toil of the hydraulic oil that activates the lock-up clutch 28 when executing the slip control (step S100 in FIG. 7), and inputs and rotates the proportional term gain Kp and the integral term gain Ki.
  • the proportional term gain Kp and the integral term gain Ki are changed according to the fluctuation of the oil temperature Toil by setting not only the number Nin but also the oil temperature Toil (step S140 in FIG. 7).
  • the proportional term gain Kp and the integral term gain Ki are individually set to values corresponding to the oil temperature Toil, so that a desired actual value can be obtained. Since the hydraulic pressure command value Up can be set more appropriately so that the slip speed u can be obtained, the slip control can be stably and responsively executed under various situations.
  • each of the proportional term gain Kp and the integral term gain Ki is set to a larger value as the oil temperature Toil of the hydraulic oil is higher (step S140 in FIG. 7, FIG. 5, FIG. 8). ).
  • the oil temperature Toil is relatively low, the sudden engagement of the lockup clutch 28 is suppressed to further improve the slip control stability, and when the oil temperature Toil is relatively high, the lockup is performed.
  • the response of the clutch 28 to the hydraulic pressure command value Up can be further improved.
  • the shift ECU 21 calculates the actual slip speed u when executing the slip control (step S130 in FIG. 7), and not only the proportional term gain Kp and the integral term gain Ki but not only the input rotational speed Nin and the oil temperature Toil. Further, by setting based on the actual slip speed u, the proportional term gain Kp and the integral term gain Ki are changed according to the fluctuation of the actual slip speed u (step S140 in FIG. 7). Thus, when the actual slip speed u between the engine 12 and the input shaft 31 of the automatic transmission 30 changes with the execution of the slip control, the proportional term gain Kp and the integral term gain Ki are individually slipped. By setting the value in accordance with the speed u, the hydraulic pressure command value Up can be set more appropriately so that the desired actual slip speed u can be obtained. Therefore, the slip control is stable and responsive in various situations. It becomes possible to execute.
  • each of the proportional term gain Kp and the integral term gain Ki is set to a larger value as the actual slip speed u is smaller (step S140 in FIG. 7, FIG. 6, FIG. 8).
  • the speed change ECU 21 has an input rotational speed Nin, an oil temperature Toil, a proportional term gain setting map that defines the relationship between the actual slip speed u and the proportional term gain Kp, an input rotational speed Nin, an oil temperature Toil, and An integral term gain setting map that defines the relationship between the actual slip speed u and the integral term gain Ki;
  • the speed change ECU 21 derives the proportional term gain Kp corresponding to the input rotational speed Nin, the oil temperature Toil, and the actual slip speed u from the proportional term gain setting map, and the input rotational speed from the integral term gain setting map.
  • An integral term gain Ki corresponding to Nin, oil temperature Toil, and actual slip speed u is derived (step S140 in FIG. 7).
  • the proportional term gain Kp and the integral term gain Ki can be individually set to more appropriate values according to the input rotational speed Nin, the oil temperature Toil, and the actual slip speed u. Therefore, the hydraulic pressure command value Up can be set extremely appropriately.
  • the reaction force torque Tc acting on the torque from the engine 12 from the input shaft 31 (turbine runner 25 side) can be expressed using the rotational speed Ne of the engine 12.
  • a proportional term gain setting map is created so as to define the relationship between the rotational speed Ne of the engine 12, the oil temperature Toil, and the actual slip speed u and the proportional term gain Kp, and the rotational speed Ne, the oil temperature Toil.
  • the integral term gain setting map may be created so as to define the relationship between the actual slip speed u and the integral term gain Ki.
  • the proportional term gain Kp and the integral term gain Ki of the feedback term FB of the hydraulic pressure command value Up are individually set according to the input rotational speed Nin, the oil temperature Toil, and the actual slip speed u. Then, the hydraulic pressure command value can be set more appropriately so that a desired actual rotational speed difference can be obtained, and the actual slip speed u can be quickly converged to the target slip speed u *. Further, the proportional term gain Kp and the integral term gain Ki are set using, for example, a three-dimensional map in which the input rotation speed Nin, the oil temperature Toil, and the actual slip speed u are taken on the X axis, the Y axis, and the Z axis. May be.
  • the lock-up clutch 28 constitutes the starter 23 together with the pump impeller 24 connected to the engine 12 and the turbine runner 25 connected to the input shaft 31 of the automatic transmission 30, and the engine 12 (front The cover 18) and the input shaft 31 are connected and the connection between the two is released, but the application target of the present invention is not limited to this. That is, the present invention may be a hydraulic start clutch that is combined only with a damper mechanism or a hydraulic start clutch that is used alone (not combined with a fluid transmission device such as a torque converter or a fluid coupling). Therefore, the pump impeller 24, the turbine runner 25, the stator 26, and the damper mechanism 27 may be omitted from the above-described starting device 23.
  • the present invention can be used in the manufacturing industry of a lock-up clutch and a starter having the same.

Abstract

 ロックアップクラッチを制御する変速ECUは、目標スリップ速度u*と実スリップ速度uとの差分(u*-u)、比例項用ゲインKpおよび積分項用ゲインKiを用いて、比例項FBpおよび積分項FBiを含む油圧指令値Upのフィードバック項FBを設定すると共に(S150)、当該フィードバック項FBを含む油圧指令値Upを用いてエンジンと自動変速機の入力軸との実回転速度差である実スリップ速度uを目標スリップ速度u*に一致させるスリップ制御を実行するものであり(S160,S170)、スリップ制御の実行に際して自動変速機30の入力回転数Ninを取得すると共に(S100)、少なくとも積分項用ゲインKiを入力回転数Ninに応じて変更する(S140)。

Description

ロックアップクラッチの制御装置および制御方法
 本発明は、車両の原動機と変速機の入力軸とを連結すると共に両者の連結を解除することができるロックアップクラッチの制御装置および制御方法に関する。
 従来、原動機と変速機の入力軸との実スリップ速度(実回転速度差)を目標スリップ速度に一致させるスリップ制御を行う制御装置として、目標スリップ回転と実スリップ回転との偏差の低周波数領域のゲインを高周波数領域のゲインよりも小さく設定した周波数特性を有すると共に当該偏差を入力して第1のスリップ回転指令値を出力する第1のフィードバック補償器(比例微分(PD)制御器)と、上記偏差の低周波数領域のゲインを高周波数領域のゲインよりも大きく設定した周波数特性を有すると共に当該偏差を入力して第2のスリップ回転指令値を出力する第2のフィードバック補償器(比例積分微分(PID)制御器)とを備えるものが知られている(例えば、特許文献1参照)。
 この制御装置は、車両発進時におけるスリップ制御の過渡応答特性を改善するために、車両発進時にクラッチ油圧の応答遅れの大きさ、すなわちロックアップクラッチのトルク容量を決定する制御量に応じて、第1のフィードバック補償器によるフィードバック制御から第2のフィードバック補償器によるフィードバック制御への切り替えを行う。そして、フィードバック補償器の切り替えに際しては、スリップ回転指令値に対する第1のスリップ回転指令値と第2のスリップ回転指令値の重み付けが徐々に変化させられる。なお、上記ロックアップクラッチのトルク容量を決定する制御量としては、ロックアップクラッチに作用するアプライ圧とレリーズ圧との差圧や、エンジントルクとエンジン回転数とから推定されるロックアップクラッチのトルク容量等が用いられる。また、特許文献1には、エンジントルクとエンジン回転数とを引数として第1のフィードバック補償器によるフィードバック制御と第2のフィードバック補償器によるフィードバック制御とを切り替える領域を予め規定したマップを用いることも記載されている。
特開2010-270822号公報
 上述のようなスリップ制御を車両発進時のようなエンジン回転数が比較的低い回転域のみならず、より広い回転域で実行すれば、ロックアップクラッチを介した動力の伝達効率やエンジン(原動機)の燃費を向上させることができる。しかしながら、制御対象としてのロックアップクラッチの特性は、車両やエンジンの状態等に応じて連続的に変化するものである。このため、特許文献1に記載の制御装置において、車両やエンジンの状態等に応じて第1のフィードバック補償器によるフィードバック制御と第2のフィードバック補償器によるフィードバック制御とを切り替えたり、車両等の状態等に応じて第1のスリップ回転指令値と第2のスリップ回転指令値の重み付けを徐々に変化させたりしたとしても、第1および第2のフィードバック補償器自体の特性(ゲイン)は不変であり、しかも車両等の状態等に応じて重み付けを適正に変化させることは容易ではないことから、スリップ制御を安定に実行しつつ当該スリップ制御の応答性を向上させることは困難である。
 そこで、本発明は、スリップ制御をより広い実行領域で安定かつ応答性よく実行可能とすることを主目的とする。
 本発明によるロックアップクラッチの制御装置は、
 車両の原動機に連結されるポンプインペラおよび変速機の入力軸に連結されるタービンランナと共に発進装置を構成するロックアップクラッチへの油圧指令値を前記原動機と前記入力軸との実回転速度差が前記車両の状態に応じた目標スリップ速度に一致するように設定し、該油圧指令値に基づいて前記ロックアップクラッチを制御するロックアップクラッチの制御装置において、
 前記入力軸の回転速度を取得する入力回転速度取得手段と、
 少なくとも前記目標スリップ速度と前記実回転速度差との差分、比例項用ゲインおよび積分項用ゲインを用いて、少なくとも比例項および積分項を含む前記油圧指令値のフィードバック項を設定するフィードバック項設定手段と、
 を備え、
 少なくとも前記積分項用ゲインを前記入力軸の回転速度に応じて変更することを特徴とする。
 このロックアップクラッチの制御装置は、車両の原動機に連結されるポンプインペラおよび変速機の入力軸に連結されるタービンランナと共に発進装置を構成するロックアップクラッチを制御するものである。そして、この制御装置は、少なくとも目標スリップ速度と実回転速度差との差分、比例項用ゲインおよび積分項用ゲインを用いて、少なくとも比例項および積分項を含む油圧指令値のフィードバック項を設定するフィードバック項設定手段を備え、当該フィードバック項を含む油圧指令値を用いて原動機と変速機の入力軸との実回転速度差を目標スリップ速度に一致させるスリップ制御を実行するものである。
 本発明者らは、このような制御装置によってスリップ制御をより広い実行領域で安定かつ応答性よく実行可能とすべく鋭意研究を行い、ポンプインペラおよびタービンランナを含む流体継手やトルクコンバータといった流体伝動装置と組み合わされるロックアップクラッチのスリップ制御が実行される際には、原動機からの動力に対して変速機の入力軸側すなわちタービンランナ側から当該入力軸の回転速度に応じた反力が作用することに着目した。そして、本発明者らは、研究の結果、原動機からの動力に対して入力軸側から作用する反力の変動、すなわち入力軸の回転速度の変動に応じて、実回転速度差を一定量だけ変化させるのに要する油圧指令値の変化量が変動することを見出し、少なくともフィードバック項における積分項用ゲインを入力軸の回転速度に応じて変更するようにロックアップクラッチの制御装置を構成することとした。これにより、スリップ制御の実行に際して変速機の入力軸の回転速度が変動しても、少なくとも積分項用ゲインを入力軸の回転速度に応じた値にすることで、所望の実回転速度差が得られるように油圧指令値をより適正に設定することができる。従って、この制御装置によれば、スリップ制御をより広い実行領域(回転数域)で安定かつ応答性よく実行することが可能となる。なお、「車両の状態」には、原動機の状態が含まれてもよい。
 また、前記制御装置は、少なくとも前記積分項用ゲインを前記入力軸の回転速度が高いほど大きい値に設定するものであってもよい。すなわち、原動機からの動力に対して入力軸(タービンランナ)側から作用する反力は、入力軸の回転角速度の二乗値に概ね比例し、入力軸の回転速度が高いほど、当該反力が大きくなることから、スリップ制御により実回転速度差を一定量だけ変化させるために要求されるロックアップクラッチのトルク容量の変化量が大きくなる。従って、スリップ制御により実回転速度差を一定量だけ変化させるためには、当該スリップ制御が実行される際の入力軸の回転速度が高いほど、油圧指令値の変化量を大きくする必要がある。これにより、少なくとも積分項用ゲインを入力軸の回転速度が高いほど大きい値に(低いほど小さい値に)設定すれば、入力軸の回転速度が比較的低い場合には、ロックアップクラッチの急係合を抑制してスリップ制御の安定性を向上させると共に、入力軸の回転速度が比較的高い場合には、ロックアップクラッチの油圧指令値に対する応答性を向上させることが可能となる。
 更に、前記制御装置は、前記ロックアップクラッチを作動させる作動油の温度を取得する作動油温度取得手段を更に備え、少なくとも前記積分項用ゲインを更に前記作動油の温度に応じて変更するものであってもよい。本発明者らは、上述の研究の過程で、スリップ制御の実行に際してロックアップクラッチを作動させる作動油の温度にも着目した。そして、本発明者らは、実回転速度差を一定量だけ変化させるのに要する油圧指令値の変化量は、作動油の温度の変動にも応じて変動することを見出し、少なくともフィードバック項における積分項用ゲインを更に作動油の温度に応じて変更するようにロックアップクラッチの制御装置を構成することとした。これにより、スリップ制御の実行に際して作動油の温度が変化しても、少なくとも積分項用ゲインを作動油の温度に応じた値にすることで、所望の実回転速度差が得られるように油圧指令値をより適正に設定することができるので、スリップ制御を様々な状況下で安定かつ応答性よく実行することが可能となる。
 また、前記制御装置は、少なくとも前記積分項用ゲインを前記作動油の温度が高いほど大きい値に設定するものであってもよい。すなわち、作動油の温度が高いほど、当該作動油の粘度が低下することに起因して摩擦材の摩擦係数が小さくなるので、油圧指令値が一定量だけ変化したときのロックアップクラッチの摩擦力すなわちトルク容量の変化量が小さくなり、それに伴って油圧指令値が一定量だけ変化したときの実回転速度差の変化量も小さくなる。従って、スリップ制御により実回転速度差を一定量だけ変化させるためには、当該スリップ制御が実行される際の作動油の温度が高いほど、油圧指令値の変化量を大きくする必要がある。これにより、少なくとも積分項用ゲインを作動油の温度が高いほど大きい値に(低いほど小さい値に)設定すれば、作動油の温度が比較的低い場合には、ロックアップクラッチの急係合を抑制してスリップ制御の安定性を向上させると共に、作動油の温度が比較的高い場合には、ロックアップクラッチの油圧指令値に対する応答性を向上させることが可能となる。
 更に、前記制御装置は、少なくとも前記積分項用ゲインを更に前記実回転速度差に応じて変更するものであってもよい。本発明者らは、上述の研究の過程で、スリップ制御が実行される際の原動機と変速機の入力軸との実回転速度差にも着目した。そして、本発明者らは、実回転速度差を一定量だけ変化させるのに要する油圧指令値の変化量は、当該実回転速度差自体にも応じて変動することを見出し、少なくともフィードバック項における積分項用ゲインを更に当該実回転速度差に応じて変更するようにロックアップクラッチの制御装置を構成することとした。これにより、スリップ制御の実行に伴って原動機と変速機の入力軸との実回転速度差が変化する際に、少なくとも積分項用ゲインを実回転速度差に応じた値にすることで、所望の実回転速度差が得られるように油圧指令値をより適正に設定することができるので、スリップ制御を様々な状況下で安定かつ応答性よく実行することが可能となる。
 また、前記制御装置は、少なくとも前記積分項用ゲインを前記実回転速度差が小さいほど大きい値に設定するものであってもよい。すなわち、原動機と変速機の入力軸との実回転速度差が小さいほど摩擦材の摩擦係数が小さくなることで、油圧指令値が一定量だけ変化したときのロックアップクラッチの摩擦力すなわちトルク容量の変化量が小さくなり、それに伴って油圧指令値が一定量だけ変化したときの実回転速度差の変化量も小さくなる。従って、スリップ制御により実回転速度差を一定量だけ変化させるためには、当該スリップ制御が実行される際の実回転速度差が小さいほど、油圧指令値の変化量を大きくする必要がある。これにより、少なくとも積分項用ゲインを当該実回転速度差が小さいほど大きい値に(高いほど小さい値に)設定すれば、実回転速度差が比較的小さい場合には、ロックアップクラッチの応答遅れを改善すると共に、実回転速度差が比較的大きい場合には、ロックアップクラッチの急係合を抑制してスリップ制御の安定性を向上させることが可能となる。
 更に、前記制御装置は、前記積分項用ゲインと前記比例項用ゲインとのそれぞれを前記入力軸の回転速度に応じて変更するものであってもよい。このように、比例項用ゲインと積分項用ゲインとを個別に入力軸の回転速度に応じた値にすることで、スリップ制御の実行に際して変速機の入力軸の回転速度が変動しても、所望の実回転速度差が得られるように油圧指令値をより適正に設定し、原動機と入力軸との実回転速度差を目標スリップ速度に速やかに収束させることができる。
 また、前記制御装置は、前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差と前記比例項用ゲインとの関係を規定する比例項用ゲイン設定マップと、前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差と前記積分項用ゲインとの関係を規定する積分項用ゲイン設定マップとを有してもよく、前記比例項用ゲイン設定マップから前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差に対応した前記比例項用ゲインを導出すると共に、前記積分項用ゲイン設定マップから前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差に対応した前記積分項用ゲインを導出するものであってもよい。これにより、比例項用ゲインと積分項用ゲインとを個別に入力軸の回転速度、作動油の温度および実回転速度差に応じたより適正な値にすることができるので、所望の実回転速度差が得られるように油圧指令値を極めて適正に設定することが可能となる。
 更に、前記ポンプインペラおよび前記タービンランナは、該タービンランナからポンプインペラへの作動油の流れを整流するステータと共にトルクコンバータを構成してもよい。すなわち、スリップ制御が実行される際に原動機からの動力に対して入力軸(タービンランナ)側から作用する反力は、ロックアップクラッチがポンプインペラ、タービンランナおよびステータを含むトルクコンバータと組み合わされる場合に特に大きくなる。従って、本発明は、ポンプインペラ、タービンランナおよびステータを含むトルクコンバータと共に車両の発進装置を構成するロックアップクラッチに極めて好適である。
 本発明によるロックアップクラッチの制御方法は、
 車両の原動機に連結されるポンプインペラおよび変速機の入力軸に連結されるタービンランナと共に発進装置を構成するロックアップクラッチへの油圧指令値を前記原動機と前記入力軸との実回転速度差が前記車両の状態に応じた目標スリップ速度に一致するように設定し、該油圧指令値に基づいて前記ロックアップクラッチを制御するロックアップクラッチの制御方法において、
(a)前記入力軸の回転速度を取得するステップと、
(b)少なくとも前記油圧指令値のフィードバック項における積分項用ゲインをステップ(a)にて取得した前記入力軸の回転速度に応じて変更するステップと、
(c)少なくとも前記目標スリップ速度と前記実回転速度差との差分、前記比例項用ゲインおよび前記積分項用ゲインを用いて、少なくとも比例項および積分項を含む前記油圧指令値のフィードバック項を設定するステップと、
 を含むものである。
 この方法によれば、スリップ制御の実行に際して変速機の入力軸の回転速度が変動しても、少なくとも積分項用ゲインを入力軸の回転速度に応じた値にすることで、所望の実回転速度差が得られるように油圧指令値をより適正に設定することができる。従って、この方法によれば、スリップ制御をより広い実行領域(回転数域)で安定かつ応答性よく実行することが可能となる。
 また、ステップ(b)は、少なくとも前記積分項用ゲインを前記入力軸の回転速度が高いほど大きい値に設定するものであってもよい。
本発明によるロックアップクラッチの制御装置を含む車両である自動車10の概略構成図である。 ロックアップクラッチ28を含む動力伝達装置20の概略構成図である。 ロックアップクラッチの制御装置としての変速ECU21のロックアップ制御モジュール211による油圧指令値Upの設定手順を示す制御ブロック図である。 自動変速機30の入力回転数Ninと、比例項用ゲインKpおよび積分項用ゲインKiとの関係を例示する説明図である。 油温Toilと、比例項用ゲインKpおよび積分項用ゲインKiとの関係を例示する説明図である。 エンジン12と自動変速機30の入力軸31との実スリップ速度uと、比例項用ゲインKpおよび積分項用ゲインKiとの関係を例示する説明図である。 ロックアップ制御モジュール211により実行されるスリップ制御ルーチンの一例を示すフローチャートである。 比例項用ゲイン設定マップおよび積分項用ゲイン設定マップを例示する説明図である。
 次に、図面を参照しながら、本発明を実施するための形態について説明する。
 図1は、本発明によるロックアップクラッチの制御装置を含む車両である自動車10の概略構成図である。同図に示す自動車10は、ガソリンや軽油といった炭化水素系の燃料と空気との混合気の爆発燃焼により動力を出力する原動機としてのエンジン(内燃機関)12や、エンジン12を制御するエンジン用電子制御ユニット(以下、「エンジンECU」という)14、図示しない電子制御式油圧ブレーキユニットを制御するブレーキ用電子制御ユニット(以下、「ブレーキECU」という)16、エンジン12に接続されると共にエンジン12からの動力を左右の駆動輪DWに伝達する動力伝達装置20等を含む。動力伝達装置20は、トランスミッションケース22や、発進装置23、有段式の自動変速機30、油圧制御装置50、これらを制御する変速用電子制御ユニット(以下、「変速ECU」という)21等を有する。
 エンジンECU14は、図示しないCPUを中心とするマイクロコンピュータとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート(何れも図示せず)等を有する。図1に示すように、エンジンECU14には、アクセルペダル91の踏み込み量(操作量)を検出するアクセルペダルポジションセンサ92からのアクセル開度Accや車速センサ99からの車速V、クランクシャフト15(図2参照)の回転位置を検出する図示しないクランクシャフトポジションセンサといった各種センサ等からの信号、ブレーキECU16や変速ECU21からの信号等が入力され、エンジンECU14は、これらの信号に基づいて電子制御式のスロットルバルブ13や図示しない燃料噴射弁および点火プラグ等を制御する。また、エンジンECU14は、クランクシャフトポジションセンサにより検出されるクランクシャフト15の回転位置に基づいてエンジン12の回転数(回転速度)Neを算出する。更に、エンジンECU14は、例えば回転数Neや図示しないエアフローメータにより検出されるエンジン12の吸入空気量あるいはスロットルバルブ13のスロットル開度THR、予め定められたマップあるいは計算式に基づいてエンジン12から出力されているトルクの推定値であるエンジントルクTeを算出する。
 ブレーキECU16も図示しないCPUを中心とするマイクロコンピュータとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート(何れも図示せず)等を有する。図1に示すように、ブレーキECU16には、ブレーキペダル93が踏み込まれたときにマスタシリンダ圧センサ94により検出されるマスタシリンダ圧や車速センサ99からの車速V、図示しない各種センサ等からの信号、エンジンECU14や変速ECU21からの信号等が入力され、ブレーキECU16は、これらの信号に基づいて図示しないブレーキアクチュエータ(油圧アクチュエータ)等を制御する。
 動力伝達装置20を制御する変速ECU21も図示しないCPUを中心とするマイクロコンピュータとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート(何れも図示せず)等を備える。図1に示すように、変速ECU21には、アクセルペダルポジションセンサ92からのアクセル開度Accや車速センサ99からの車速V、複数のシフトレンジの中から所望のシフトレンジを選択するためのシフトレバー95の操作位置を検出するシフトレンジセンサ96からのシフトレンジSR、油圧制御装置50の作動油の油温Toilを検出する油温センサ55、自動変速機30の入力回転数(タービンランナ25または自動変速機30の入力軸31の回転数(回転速度))Ninを検出する回転数センサ33(図2参照)といった各種センサ等からの信号、エンジン12の回転数(回転速度)NeやエンジントルクTe等を示すエンジンECU14からの信号、ブレーキECU16からの信号等が入力され、変速ECU21は、これらの信号に基づいて発進装置23や自動変速機30、すなわち油圧制御装置50を制御する。
 動力伝達装置20に含まれる発進装置23は、図2に示すように、入力部材としてのフロントカバー18を介してエンジン12のクランクシャフト15に連結される入力側流体伝動要素としてのポンプインペラ24や、タービンハブを介して自動変速機30の入力軸31に固定される出力側流体伝動要素としてのタービンランナ25、ポンプインペラ24およびタービンランナ25の内側に配置されてタービンランナ25からポンプインペラ24への作動油の流れを整流するステータ26、ステータ26の回転方向を一方向に制限するワンウェイクラッチ26c、タービンハブに連結されたダンパ機構27、油圧式発進クラッチとしてのロックアップクラッチ28等を含む。
 ポンプインペラ24、タービンランナ25およびステータ26は、トルクコンバータを構成し、ポンプインペラ24とタービンランナ25との回転速度差が大きいときにはステータ26の作用によりトルク増幅機として機能すると共に、両者の回転速度差が小さくなると流体継手として機能する。ただし、発進装置23において、ステータ26やワンウェイクラッチ26cを省略し、ポンプインペラ24およびタービンランナ25を流体継手として機能させてもよい。また、ダンパ機構27は、例えば、ロックアップクラッチ28に連結される入力要素や、複数の第1弾性体を介して入力要素に連結される中間要素、複数の第2弾性体を介して中間要素に連結されると共にタービンハブに固定される出力要素等を含む。ダンパ機構27は、ロックアップクラッチ28の係合時にフロントカバー18とタービンハブ(入力軸31)との間で振動を減衰する。
 ロックアップクラッチ28は、ポンプインペラ24とタービンランナ25、すなわちエンジン12(フロントカバー18)とタービンハブに固定された自動変速機30の入力軸31とを機械的に(ダンパ機構27を介して)連結するロックアップおよび当該ロックアップの解除を選択的に実行するものである。本実施形態において、ロックアップクラッチ28は、油圧式の多板摩擦クラッチとして構成され、フロントカバー18により軸方向に移動自在に支持されるロックアップピストン280と、複数の摩擦係合プレート281と、環状のフランジ部材(油室画成部材)285とを有する。
 複数の摩擦係合プレート281には、フロントカバー18に固定されたクラッチハブに嵌合される相手板と、摩擦材を有すると共にダンパ機構27の入力要素に連結されるクラッチドラムに嵌合される摩擦板とが含まれる。フランジ部材285は、ロックアップピストン280よりもダンパ機構27側に位置するようにフロントカバー18に対して固定され、ロックアップピストン280と共に係合側油室28aを画成する。そして、ロックアップクラッチ28は、係合側油室28a内の油圧を高めて複数の摩擦係合プレートを圧着させるようにロックアップピストン280をフロントカバー18に向けて移動させることで係合する。なお、ロックアップクラッチ28は、摩擦材が貼着されたロックアップピストンを含む油圧式の単板摩擦クラッチとして構成されてもよい。
 自動変速機30は、変速段を複数段階に変更しながら入力軸31に伝達された動力を図示しない出力軸に伝達可能なものであり、複数の遊星歯車機構や、入力軸31から出力軸までの動力伝達経路を変更するための複数のクラッチ、ブレーキ、ワンウェイクラッチ等を含む。そして、自動変速機30の出力軸は、図示しないギヤ機構および差動機構を介して駆動輪DWに連結される。また、複数のクラッチやブレーキは、油圧制御装置50からの油圧により係脱される。なお、自動変速機30は、いわゆる無段変速機として構成されてもよい。
 油圧制御装置50は、発進装置23や自動変速機30への油圧を生成するために、エンジン12からの動力により駆動される図示しないオイルポンプからの作動油を調圧してライン圧PLを生成するプライマリレギュレータバルブや、例えばプライマリレギュレータバルブのドレン圧を調圧してセカンダリ圧Psecを生成するセカンダリレギュレータバルブ、ライン圧PLを調圧して一定のモジュレータ圧Pmodを生成するモジュレータバルブ、例えばモジュレータ圧Pmodをアクセル開度Accあるいはスロットルバルブ13の開度THRに応じて調圧してプライマリレギュレータバルブへの信号圧を生成するリニアソレノイドバルブ、シフトレバー95の操作位置に応じて作動油を自動変速機30の複数のクラッチやブレーキに供給可能とするマニュアルバルブ、それぞれマニュアルバルブからの作動油(ライン圧PL)を調圧して対応するクラッチやブレーキに出力可能な複数のリニアソレノイドバルブ等を含む(何れも図示省略)。
 また、油圧制御装置50は、印加される電流値に応じて例えばモジュレータ圧Pmodを調圧してロックアップソレノイド圧Psluを生成するロックアップソレノイドバルブ(リニアソレノイドバルブ)SLUと、ロックアップソレノイドバルブSLUからのロックアップソレノイド圧Psluを信号圧として作動し、上記セカンダリ圧Psecを調圧してロックアップクラッチ28へのロックアップ圧Plupを生成するロックアップコントロールバルブ51と、ロックアップソレノイドバルブSLUからのロックアップソレノイド圧Psluを信号圧として作動し、ロックアップコントロールバルブ51からロックアップクラッチ28の係合側油室28aへのロックアップ圧Plupの供給を許容・規制するロックアップリレーバルブ52とを含む。
 本実施形態において、ロックアップソレノイドバルブSLUは、印加される電流値が比較的小さいときにはロックアップソレノイド圧Psluを値0に設定し(ロックアップソレノイド圧Psluを生成せず)、印加される電流値がある程度大きくなると、それ以後、電流値が大きいほどロックアップソレノイド圧Psluを高く設定する。また、ロックアップコントロールバルブ51は、ロックアップソレノイドバルブSLUによりロックアップソレノイド圧Psluが生成されるときにロックアップソレノイド圧Psluが低いほど元圧であるセカンダリ圧Psecを減圧してロックアップ圧Plupを低く設定し、ロックアップソレノイド圧Psluが予め定められたロックアップ係合圧P1以上になるとセカンダリ圧Psecをそのままロックアップ圧Plupとして出力する。更に、ロックアップリレーバルブ52は、ロックアップソレノイドバルブSLUからロックアップソレノイド圧Psluが供給されないときに発進装置23の流体伝動室23aに上記セカンダリ圧Psecよりも低く調圧された循環圧Pcirを供給し、かつロックアップソレノイドバルブSLUからロックアップソレノイド圧Psluが供給されるときに流体伝動室23aに循環圧Pcirを供給すると共にロックアップクラッチ28の係合側油室28aにロックアップコントロールバルブ51からのロックアップ圧Plupを供給するように構成されている。
 これにより、ロックアップソレノイドバルブSLUによりロックアップソレノイド圧Psluが生成されないときには、ロックアップリレーバルブ52から流体伝動室23a内に作動油(潤滑圧Pcir)が供給されると共にロックアップピストン280とフロントカバー18との間に形成される油路に当該作動油が流入するのに対し、係合側油室28a内に作動油(ロックアップ圧Plup)が供給されないことから、ロックアップクラッチ28はロックアップを実行することなく解放される。一方、ロックアップソレノイドバルブSLUにより生成されたロックアップソレノイド圧Psluがロックアップコントロールバルブ51およびロックアップリレーバルブ52に供給されるときには、ロックアップリレーバルブ52から流体伝動室23a内に作動油すなわち潤滑圧Pcirが供給されると共に、ロックアップコントロールバルブ51により生成されたロックアップ圧Plupがロックアップリレーバルブ52からロックアップクラッチ28の係合側油室28aに供給される。従って、ロックアップ圧Plupが潤滑圧Pcirよりも高くなると、ロックアップピストン280がフロントカバー18に向けて移動し、ロックアップソレノイド圧Psluがロックアップ係合圧P1以上になってロックアップ圧Plupがセカンダリ圧Psecに一致すると、ロックアップクラッチ28が完全係合してロックアップが完了することになる。
 上述の油圧制御装置50に含まれる複数のリニアソレノイドバルブや、ロックアップソレノイドバルブSLU、図示しない他のソレノイドバルブ(オンオフソレノイドバルブ)等は、変速ECU21により制御される。そして、変速ECU21には、図2に示すように、CPUやROM,RAMといったハードウエアと、ROMにインストールされた制御プログラムといったソフトウェアとの協働により、変速制御モジュール210や、ロックアップ制御モジュール211が機能ブロックとして構築される。
 変速制御モジュール210は、予め定められた図示しない変速線図からアクセル開度Acc(あるいはスロットルバルブ13の開度THR)および車速Vに対応した目標変速段を取得すると共に、現変速段から目標変速段への変更に伴って係合されるクラッチやブレーキに対応したリニアソレノイドバルブへの係合圧指令値と、現変速段から目標変速段への変更に伴って解放されるクラッチやブレーキに対応したリニアソレノイドバルブへの解放圧指令値を設定する。また、変速制御モジュール210は、現変速段から目標変速段への変更中や目標変速段の形成後に、係合されているクラッチやブレーキに対応したリニアソレノイドバルブへの保持圧指令値を設定する。
 ロックアップ制御モジュール211は、上述のロックアップソレノイドバルブSLUに対する油圧指令値Upを設定するものである。ロックアップ制御モジュール211は、予め定められたロックアップ条件が成立した際に、ロックアップクラッチ28によりロックアップが実行されるように油圧指令値Upを設定し、図示しない補機バッテリからロックアップソレノイドバルブSLUのソレノイド部に当該油圧指令値Upに応じた電流が印加されるように図示しない駆動回路を制御する。また、ロックアップ制御モジュール211は、予め定められたスリップ制御実行条件が成立すると、ロックアップクラッチ28の半係合により入力部材としてのフロントカバー18(エンジン12)と自動変速機30の入力軸31との回転速度差ΔN(スリップ速度)を自動車10およびエンジン12の少なくとも何れかの状態(車両状態)に応じた目標スリップ速度u*に一致させるスリップ制御を実行する。このようなスリップ制御をロックアップクラッチ28のロックアップ(発進時)に際して実行することで、ロックアップクラッチ28のトルク容量を徐々に増加させて、ロックアップに伴うトルク変動に起因した振動の発生を良好に抑制することができる。また、自動車10の加速中や減速時、更には変速中等にロックアップクラッチ28にスリップを生じさせるようにスリップ制御を実行することで、ロックアップに伴うトルク変動に起因した振動の発生を良好に抑制しつつ、ロックアップしない場合に比べて動力の伝達効率やエンジン12の燃費を向上させることができる。
 次に、上記自動車10におけるロックアップクラッチ28のスリップ制御について説明する。
 図3は、変速ECU21のロックアップ制御モジュール211による油圧指令値Upの設定手順を示す制御ブロック図である。同図に示すように、スリップ制御の実行に際して、ロックアップ制御モジュール211は、例えばエンジントルクTeや入力回転数Nin、目標スリップ速度u*に基づいて油圧指令値Upのフィードフォワード項FFを設定する。また、ロックアップ制御モジュール211は、目標スリップ速度u*と、エンジン12(フロントカバー18)と自動変速機30の入力軸31との実際の回転速度差(実回転速度差)である実スリップ速度u(=Ne-Nin)との差分(u*-u)、比例項用ゲインKpおよび積分項用ゲインKiを用いて、比例項FBpおよび積分項FBiを含む油圧指令値Upのフィードバック項FBを設定する。なお、油圧指令値UPのフィードバック項FBは、比例項FBpおよび積分項FBiに加えて、更に微分項を含むものとされてもよい。そして、ロックアップ制御モジュール211は、フィードフォワード項FFとフィードバック項FBとを加算することにより油圧指令値Upを設定する。このように、本実施形態において、変速ECU21(ロックアップ制御モジュール211)は、比較的単純なPI制御(あるいはPID制御)により設定されるフィードバック項FBを含む油圧指令値Upを用いてエンジン12と自動変速機30の入力軸31との実スリップ速度uを目標スリップ速度u*に一致させるスリップ制御を実行する。これにより、スリップ制御の実行に伴う演算負荷を大幅に低減することが可能となる。
 ここで、本発明者らは、上述のような変速ECU21(ロックアップ制御モジュール211)によってスリップ制御をより広い実行領域や様々な車両状態下で安定かつ応答性よく実行可能とすべく鋭意研究を行い、スリップ制御が実行される際にエンジン12からフロントカバー18に伝達されるトルク(動力)に対して入力軸31(タービンランナ25)側から入力回転数Ninやエンジン12の回転数Neに応じた反力トルクが作用することに着目した。すなわち、ロックアップクラッチ28と、ポンプインペラ24、タービンランナ25およびステータ26を有するトルクコンバータとを含む発進装置23においてスリップ制御が実行される際には、ポンプインペラ24とタービンランナ25との速度比に応じたトルクコンバータの容量係数を“CT”とし、入力軸31の回転角速度を“ωi”としたときに、入力軸31すなわちトルクコンバータのタービンランナ25側からTc=CT・ωi 2という反力トルクがエンジン12からのトルクに対する反力としてポンプインペラ24に作用する。また、上記容量係数CTに応じた係数を“CE”とし、エンジン12(クランクシャフト15)の回転角速度を“ωe”としたときには、かかる反力トルクTcをTc=CE・ωe 2と表すことができる。
 同様に、油圧式発進クラッチとしてのロックアップクラッチと、ポンプインペラおよびタービンランナを有する(ステータを有さない)流体継手とを含む発進装置においてスリップ制御が実行される際にも、当該流体継手のタービンランナ側すなわち変速機の入力軸側から当該入力軸やエンジンの回転角速度の二乗値に概ね比例した値のトルク(反力トルク)がエンジンからのトルクに対する反力としてポンプインペラに作用する。なお、ロックアップクラッチがダンパ機構のみと組み合わされたり、単独で用いられたりする場合(トルクコンバータ等の流体伝動装置と組み合わされない場合)においても、スリップ制御の実行に際して、変速機の入力軸側から当該入力軸やエンジンの回転角速度の二乗値に概ね比例した値のトルク(反力トルク)がエンジンからのトルクに対する反力として当該エンジン(クランクシャフト)に接続された入力部材に作用する。
 そして、本発明者らは、研究の結果、エンジン12からのトルクに対して入力軸31側から作用する反力トルクTcの変動、すなわち入力回転数Ninやエンジン12の回転数Neの変動に応じて、実スリップ速度uを一定量だけ変化させるのに要する油圧指令値Upの変化量が変動することを見出した。すなわち、スリップ制御により実スリップ速度uが一定に保たれている際、ロックアップクラッチのトルク容量TLUとエンジン12のトルクTeと反力トルクTcとの間には、Te=-TLU-Tcという関係が成立する。また、エンジン12からのトルクに対して入力軸31側から作用する反力トルクTcは、上述のように入力軸31やエンジン12の回転角速度ωiの二乗値に概ね比例し、入力軸31やエンジン12の回転速度が高いほど大きくなる。従って、入力軸31やエンジン12の回転速度が高いほど、スリップ制御により実スリップ速度uを一定量だけ変化させるために要求されるロックアップクラッチ28のトルク容量TLUの変化量が大きくなる。このため、スリップ制御により実スリップ速度uを一定量だけ変化させるためには、当該スリップ制御が実行される際の入力回転数Ninが高いほど、油圧指令値Upの変化量を大きくする必要がある。
 これを踏まえて、本実施形態では、フィードバック項FBにおける比例項用ゲインKpと積分項用ゲインKiとを入力回転数Ninに応じて変更するように変速ECU21のロックアップ制御モジュール211を構成することとした。具体的には、ロックアップ制御モジュール211は、図4に示すように、比例項用ゲインKpと積分項用ゲインKiとのそれぞれを入力回転数Ninが高いほど大きい値に設定するように構成される。これにより、入力回転数Ninが比較的低い場合には、ロックアップクラッチ28の急係合を抑制してスリップ制御の安定性を向上させると共に、入力回転数Ninが比較的高い場合には、ロックアップクラッチ28の油圧指令値Upに対する応答性を向上させることが可能となる。
 また、本発明者らは、上述の研究の過程で、スリップ制御の実行に際してロックアップクラッチ28を作動させる作動油の油温Toilにも着目した。そして、本発明者らは、実スリップ速度uを一定量だけ変化させるのに要する油圧指令値Upの変化量は、油温Toilの変動にも応じて変動することを見出した。すなわち、作動油の油温Toilが高いほど、当該作動油の粘度が低下することに起因してロックアップクラッチ28の摩擦材の摩擦係数(動摩擦係数)が小さくなる。このため、作動油の油温Toilが高いほど、油圧指令値Upが一定量だけ変化したときのロックアップクラッチ28の摩擦力すなわちトルク容量TLUの変化量が小さくなり、それに伴って油圧指令値Upが一定量だけ変化したときの実スリップ速度uの変化量も小さくなる。従って、スリップ制御により実スリップ速度uを一定量だけ変化させるためには、当該スリップ制御が実行される際の油温Toilが高いほど、油圧指令値Upの変化量を大きくする必要がある。
 これを踏まえて、本実施形態では、フィードバック項FBにおける比例項用ゲインKpと積分項用ゲインKiとを更に作動油の油温Toilに応じて変更するように変速ECU21のロックアップ制御モジュール211を構成することとした。具体的には、ロックアップ制御モジュール211は、図5に示すように、比例項用ゲインKpと積分項用ゲインKiとのそれぞれを油温Toilが高いほど大きい値に設定するように構成される。これにより、油温Toilが比較的低い場合には、作動油の粘度の増加によるロックアップクラッチ28における摩擦係数(動摩擦係数)の増加に起因したロックアップクラッチ28の急係合を抑制してスリップ制御の安定性を向上させると共に、油温Toilが比較的高い場合には、ロックアップクラッチ28の油圧指令値Upに対する応答性を向上させることが可能となる。
 更に、本発明者らは、上述の研究の過程で、スリップ制御が実行される際のエンジン12と自動変速機30の入力軸31との実スリップ速度(実回転速度差)u自体にも着目した。そして、本発明者らは、実スリップ速度uを一定量だけ変化させるのに要する油圧指令値Upの変化量は、当該実スリップ速度u自体にも応じて変動することを見出した。すなわち、エンジン12と自動変速機30の入力軸31との実スリップ速度uが小さいほど、ロックアップクラッチ28の摩擦材の摩擦係数(動摩擦係数)が小さくなる。このため、実スリップ速度uが小さいほど、油圧指令値Upが一定量だけ変化したときのロックアップクラッチ28の摩擦力すなわちトルク容量TLUの変化量が小さくなり、それに伴って油圧指令値Upが一定量だけ変化したときの実スリップ速度uの変化量も小さくなる。従って、スリップ制御により実スリップ速度uを一定量だけ変化させるためには、当該スリップ制御が実行される際の実スリップ速度uが小さいほど、油圧指令値Upの変化量を大きくする必要がある。
 これを踏まえて、本実施形態では、フィードバック項FBにおける比例項用ゲインKpと積分項用ゲインKiとを更にエンジン12と入力軸31との実スリップ速度uに応じて変更するように変速ECU21のロックアップ制御モジュール211を構成することとした。具体的には、ロックアップ制御モジュール211は、図6に示すように、比例項用ゲインKpと積分項用ゲインKiとのそれぞれを実スリップ速度uが小さいほど大きい値に設定するように構成される。これにより、実スリップ速度uが比較的小さい場合には、ロックアップクラッチ28における摩擦係数(動摩擦係数)の低下に起因したロックアップクラッチ28の応答遅れを改善すると共に、実スリップ速度uが比較的大きい場合には、ロックアップクラッチ28の急係合を抑制してスリップ制御の安定性を向上させることが可能となる。
 図7は、ロックアップ制御モジュール211により実行されるスリップ制御ルーチンの一例を示すフローチャートである。
 同図に示すスリップ制御ルーチンは、スリップ制御実行条件の成立に伴ってロックアップクラッチ28にスリップを生じさせる際に、ロックアップ制御モジュール211により所定時間おきに繰り返し実行されるものである。図7のスリップ制御ルーチンの開始に際して、ロックアップ制御モジュール211(CPU)は、アクセルペダルポジションセンサ92からのアクセル開度Acc、エンジンECU14からのエンジントルクTeやエンジン12の回転数Ne、回転数センサ33からの入力回転数Nin、油温センサ55からの油温Toil(ロックアップクラッチ28への作動油の温度)といった制御に必要なデータの入力処理を実行する(ステップS100)。
 ステップS100の入力処理の後、ロックアップ制御モジュール211は、ステップS100にて入力したアクセル開度Accおよびエンジン12の回転数Ne(車両状態)に対応した目標スリップ速度u*を設定する(ステップS110)。本実施形態では、例えばアクセル開度Accおよびエンジン12の回転数Neと目標スリップ速度u*との関係が予め定められて図示しない目標スリップ速度設定マップとして変速ECU21のROMに記憶されている。そして、ステップS110では、与えられたアクセル開度Accおよび回転数Neに対応する目標スリップ速度u*が当該目標スリップ速度設定マップから導出・設定される。なお、目標スリップ速度u*は、スロットルバルブ13の開度THRと回転数Neとに基づいて設定されてもよく、アクセル開度Accおよび回転数Neに加えて更に他のパラメータに基づいて設定されてもよく、アクセル開度Accおよび回転数Ne以外のパラメータに基づいて設定されてもよい。
 ステップS110にて目標スリップ速度u*を設定した後、ロックアップ制御モジュール211は、例えばエンジントルクTeや入力回転数Nin、目標スリップ速度u*に基づいて油圧指令値Upのフィードフォワード項FFを設定する(ステップS120)。本実施形態では、例えばエンジントルクTe、入力回転数Ninおよび目標スリップ速度u*とフィードフォワード項FFの値との関係が予め定められて図示しないフィードフォワード項設定マップとして変速ECU21のROMに記憶されている。そして、ステップS120では、与えられたエンジントルクTe、入力回転数Ninおよび目標スリップ速度u*に対応するフィードフォワード項FFの値が当該フィードフォワード項設定マップから導出される。なお、フィードフォワード項FFは、エンジントルクTe、入力回転数Ninおよび目標スリップ速度u*に加えて更に他のパラメータに基づいて設定されてもよく、エンジントルクTe、入力回転数Ninおよび目標スリップ速度u*以外のパラメータに基づいて設定されてもよい。更に、ロックアップ制御モジュール211は、ステップS100にて入力したエンジン12の回転数Neから入力回転数Ninを減じることにより実スリップ速度uを算出する(ステップS130)。
 次いで、ロックアップ制御モジュール211は、ステップS100に入力した入力回転数Ninおよび油温ToilならびにステップS130にて算出した実スリップ速度uに基づいて、フィードバック項FBにおける比例項用ゲインKpと積分項用ゲインKiとを設定する(ステップS140)。本実施形態では、入力回転数Nin、油温Toilおよび実スリップ速度uと比例項用ゲインKpとの関係が予め定められて比例項用ゲイン設定マップとして変速ECU21のROMに記憶されており、同様に、入力回転数Nin、油温Toilおよび実スリップ速度uと積分項用ゲインKiとの関係が予め定められて積分項用ゲイン設定マップとして変速ECU21のROMに記憶されている。そして、ステップS140では、与えられた入力回転数Nin、油温Toilおよび実スリップ速度uに対応する値が比例項用ゲイン設定マップから導出されて比例項用ゲインKpとして設定され、与えられた入力回転数Nin、油温Toilおよび実スリップ速度uに対応する値が積分項用ゲイン設定マップから導出されて積分項用ゲインKpとして設定される。
 図8に比例項用ゲイン設定マップおよび積分項用ゲイン設定マップを例示する。比例項用ゲイン設定マップは、図4に示した入力回転数Ninと比例項用ゲインKpとの関係、図5に示した油温Toilと比例項用ゲインKpとの関係、ならびに図6に示した実スリップ速度uと比例項用ゲインKpとの関係に基づいて、例えば、複数の油温Toil(図8の例では、温度T1およびT2(T2>T1)であり、例えばT1=60~80°、T2=100~120°)ごとに、かつ複数の実スリップ速度u(図8の例では、実スリップ速度u1,u2およびu3(u1<u2<u3)であり、例えばu1=10~30rpm、u2=40~60rpm、u3=80~100rpm)ごとに入力回転数Ninと比例項用ゲインKpとの関係を規定することにより作成される。すなわち、本実施形態において、比例項用ゲイン設定マップは、入力回転数Ninが高いほど(低いほど)比例項用ゲインKpを大きく(小さく)、油温Toilが高いほど(低いほど)比例項用ゲインKpを大きく(小さく)、かつ実スリップ速度uが小さいほど(高いほど)比例項用ゲインKpを大きく(小さく)するように作成される。
 また、積分項用ゲイン設定マップは、図4に示した入力回転数Ninと積分項用ゲインKiとの関係、図5に示した油温Toilと積分項用ゲインKiとの関係、ならびに図6に示した実スリップ速度uと積分項用ゲインKiとの関係に基づいて、例えば、複数の油温Toil(図8の例では、温度T1およびT2)ごとに、かつ複数の実スリップ速度u(図8の例では、実スリップ速度u1,u2およびu3)ごとに入力回転数Ninと積分項用ゲインKiとの関係を規定することにより作成される。すなわち、本実施形態において、積分項用ゲイン設定マップは、入力回転数Ninが高いほど(低いほど)積分項用ゲインKiを大きく(小さく)、油温Toilが高いほど(低いほど)積分項用ゲインKiを大きく(小さく)、かつ実スリップ速度uが小さいほど(高いほど)積分項用ゲインKiを大きく(小さく)するように作成される。
 なお、図8に示すような比例項用ゲイン設定マップや積分項用ゲイン設定マップが用いられる場合であって、ステップS100にて入力された油温Toilや実スリップ速度uが図8における温度T1,T2や実スリップ速度u1~u3に一致していない場合、ステップS140では、比例項用ゲイン設定マップや積分項用ゲイン設定マップから導出される複数の値を線形補間することにより比例項用ゲインKpや積分項用ゲインKiが設定される。なお、比例項用ゲイン設定マップや積分項用ゲイン設定マップが図8に示した油温Toilや実スリップ速度uの間隔よりも細かい間隔で作成され得ることはいうまでもない。
 ステップS140にて比例項用ゲインKpと積分項用ゲインKiとを設定した後、目標スリップ速度u*と実スリップ速度u(=Ne-Nin)との差分(u*-u)に比例項用ゲインKpを乗じた値をフィードバック項FBの比例項FBpに設定すると共に、差分(u*-u)に積分項用ゲインKiを乗じた値の積算値をフィードバック項FBの積分項FBpに設定する(ステップS150)。更に、ロックアップ制御モジュール211は、ステップS120にて設定したフィードフォワード項FFにステップS140にて設定した比例項FBpおよび積分項Fbi、すなわちフィードバック項FBを加算した値を油圧指令値Upに設定する(ステップS160)。そして、ロックアップ制御モジュール211は、当該油圧指令値Upに基づいてロックアップソレノイドバルブSLUのソレノイド部への電流を設定する図示しない駆動回路を制御する(ステップS170)。その後、ロックアップ制御モジュール211は、本ルーチンの次の実行タイミングが到来すると、再度ステップS100以降の処理を実行する。
 以上説明したように、ポンプインペラ24、タービンランナ25およびステータ26を含むトルクコンバータと共に発進装置23を構成するロックアップクラッチ28の制御装置である変速ECU21(ロックアップ制御モジュール211)は、少なくとも目標スリップ速度u*と実スリップ速度(実回転速度差)uとの差分(u*-u)、比例項用ゲインKpおよび積分項用ゲインKiを用いて、少なくとも比例項FBpおよび積分項FBiを含む油圧指令値Upのフィードバック項FBを設定すると共に(図7のステップS150)、当該フィードバック項FBを含む油圧指令値Upを用いてエンジン12と自動変速機30の入力軸31との実回転速度差である実スリップ速度uを目標スリップ速度u*に一致させるスリップ制御を実行するものである(図7のステップS160,S170)。そして、変速ECU21は、スリップ制御の実行に際して自動変速機30の入力回転数(入力軸31の回転速度)Ninを取得し(図7のステップS100)、比例項用ゲインKpと積分項用ゲインKiとを入力回転数Ninに基づいて設定することで当該入力回転数Ninの変動に応じて比例項用ゲインKpと積分項用ゲインKiとを変更する(図7のステップS140)。これにより、スリップ制御の実行に際して自動変速機30の入力回転数Ninが変動しても、比例項用ゲインKpと積分項用ゲインKiとを個別に入力回転数Ninに応じた値にすることで、所望の実スリップ速度uが得られるように油圧指令値Upをより適正に設定することができる。従って、ロックアップクラッチ28を含む発進装置23では、スリップ制御をより広い実行領域、すなわちより広い回転数域で安定かつ応答性よく実行することが可能となる。
 また、上記実施形態において、比例項用ゲインKpと積分項用ゲインKiとのそれぞれは、自動変速機30の入力回転数Ninが高いほど大きい値に(低いほど小さい値に)設定される(図7のステップS140、図4、図8)。これにより、入力回転数Ninが比較的低い場合には、ロックアップクラッチ28の急係合を抑制してスリップ制御の安定性を向上させると共に、入力回転数Ninが比較的高い場合には、ロックアップクラッチ28の油圧指令値Upに対する応答性を向上させることが可能となる。
 そして、ロックアップクラッチ28がポンプインペラ24、タービンランナ25およびステータ26を含むトルクコンバータと組み合わされる場合、スリップ制御が実行される際にエンジン12からのトルクに対して入力軸31(タービンランナ25)側から作用する反力トルクTcが特に大きくなる。従って、ポンプインペラ24、タービンランナ25およびステータ26を含むトルクコンバータと共に発進装置23を構成するロックアップクラッチ28のスリップ制御に際して、上述のように比例項用ゲインKと積分項用ゲインKiとを入力回転数Ninに応じて変更することは、スリップ制御をより広い実行領域や様々な車両状態下で安定かつ応答性よく実行する上で極めて有用である。ただし、上述のように、エンジン12からのトルクに対して入力軸31(タービンランナ25側)から作用する反力トルクTcは、エンジン12の回転数Neを用いて表すことができるものであることから、上記実施形態のように、比例項用ゲインKpと積分項用ゲインKiとを入力回転数Ninに応じて変更する代わりに、入力回転数Ninと相関を有するエンジン12の回転数Neに応じて比例項用ゲインKと積分項用ゲインKiとを変更してもよいことはいうまでもない。
 更に、変速ECU21は、スリップ制御の実行に際してロックアップクラッチ28を作動させる作動油の油温Toilを取得し(図7のステップS100)、比例項用ゲインKpと積分項用ゲインKiとを入力回転数Ninのみならず更に油温Toilに基づいて設定することで当該油温Toilの変動に応じて比例項用ゲインKpと積分項用ゲインKiとを変更する(図7のステップS140)。これにより、スリップ制御の実行に際して作動油の油温Toilが変化しても、比例項用ゲインKpと積分項用ゲインKiとを個別に油温Toilに応じた値にすることで、所望の実スリップ速度uが得られるように油圧指令値Upをより適正に設定することができるので、スリップ制御を様々な状況下で安定かつ応答性よく実行することが可能となる。
 また、上記実施形態において、比例項用ゲインKpと積分項用ゲインKiとのそれぞれは、作動油の油温Toilが高いほど大きい値に設定される(図7のステップS140、図5、図8)。これにより、油温Toilが比較的低い場合には、ロックアップクラッチ28の急係合を抑制してスリップ制御の安定性をより向上させると共に、油温Toilが比較的高い場合には、ロックアップクラッチ28の油圧指令値Upに対する応答性をより向上させることが可能となる。
 更に、変速ECU21は、スリップ制御の実行に際して実スリップ速度uを算出し(図7のステップS130)、比例項用ゲインKpと積分項用ゲインKiとを入力回転数Ninや油温Toilのみならず更に実スリップ速度uに基づいて設定することで当該実スリップ速度uの変動に応じて比例項用ゲインKpと積分項用ゲインKiとを変更する(図7のステップS140)。これにより、スリップ制御の実行に伴ってエンジン12と自動変速機30の入力軸31との実スリップ速度uが変化する際に、比例項用ゲインKpと積分項用ゲインKiとを個別に実スリップ速度uに応じた値にすることで、所望の実スリップ速度uが得られるように油圧指令値Upをより適正に設定することができるので、スリップ制御を様々な状況下で安定かつ応答性よく実行することが可能となる。
 また、上記実施形態において、比例項用ゲインKpと積分項用ゲインKiとのそれぞれは、実スリップ速度uが小さいほど大きい値に設定される(図7のステップS140、図6、図8)。これにより、実スリップ速度uが比較的小さい場合には、ロックアップクラッチ28の応答遅れをより改善すると共に、実スリップ速度uが比較的大きい場合には、ロックアップクラッチ28の急係合を抑制してスリップ制御の安定性をより向上させることが可能となる。
 更に、変速ECU21は、入力回転数Nin、油温Toil、および実スリップ速度uと比例項用ゲインKpとの関係を規定する比例項用ゲイン設定マップと、入力回転数Nin、油温Toil、および実スリップ速度uと積分項用ゲインKiとの関係を規定する積分項用ゲイン設定マップとを有する。そして、変速ECU21は、比例項用ゲイン設定マップから入力回転数Nin、油温Toil、および実スリップ速度uに対応した比例項用ゲインKpを導出すると共に、積分項用ゲイン設定マップから入力回転数Nin、油温Toil、および実スリップ速度uに対応した積分項用ゲインKiを導出する(図7のステップS140)。これにより、比例項用ゲインKpと積分項用ゲインKiとを個別に入力回転数Nin、油温Toilおよび実スリップ速度uに応じたより適正な値にすることができるので、所望の実スリップ速度uが得られるように油圧指令値Upを極めて適正に設定することが可能となる。ただし、上述のように、エンジン12からのトルクに対して入力軸31(タービンランナ25側)から作用する反力トルクTcは、エンジン12の回転数Neを用いて表すことができるものであることから、エンジン12の回転数Ne、油温Toil、および実スリップ速度uと比例項用ゲインKpとの関係を規定するように比例項用ゲイン設定マップを作成すると共に、回転数Ne、油温Toil、および実スリップ速度uと積分項用ゲインKiとの関係を規定するように積分項用ゲイン設定マップを作成してもよいことはいうまでもない。
 また、上記実施形態のように、油圧指令値Upのフィードバック項FBの比例項用ゲインKpと積分項用ゲインKiとを入力回転数Nin、油温Toilおよび実スリップ速度uに応じて個別に設定すれば、所望の実回転速度差が得られるように油圧指令値をより適正に設定し、実スリップ速度uを目標スリップ速度u*に速やかに収束させることができる。更に、比例項用ゲインKpや積分項用ゲインKiは、例えば、入力回転数Nin、油温Toilおよび実スリップ速度uをX軸、Y軸およびZ軸にとった3次元マップを用いて設定されてもよい。ただし、比例項用ゲインKpと積分項用ゲインKiとを入力回転数Nin等に応じて個別に設定する代わりに、積分項用ゲインKiのみを入力回転数Nin、油温Toilおよび実スリップ速度uの少なくとも何れかに応じて設定してもよい。
 なお、上記実施形態において、ロックアップクラッチ28は、エンジン12に連結されるポンプインペラ24および自動変速機30の入力軸31に連結されるタービンランナ25と共に発進装置23を構成し、エンジン12(フロントカバー18)と入力軸31とを連結すると共に両者の連結を解除するものであるが、本発明の適用対象は、これに限られるものではない。すなわち、本発明は、ダンパ機構のみと組み合わされる油圧式発進クラッチや、単独で用いられる油圧式発進クラッチ(トルクコンバータや流体継手といった流体伝動装置と組み合わされないもの)であってもよい。従って、上述の発進装置23からは、ポンプインペラ24、タービンランナ25、およびステータ26、更にはダンパ機構27が省略されてもよい。
 また、上記実施形態における主要な要素と発明の概要の欄に記載された発明の主要な要素との対応関係は、実施形態が発明の概要の欄に記載された発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。すなわち、実施形態はあくまで発明の概要の欄に記載された発明の具体的な一例に過ぎず、発明の概要の欄に記載された発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
 以上、本発明の実施の形態について説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
 本発明は、ロックアップクラッチやそれを備えた発進装置の製造産業等において利用可能である。

Claims (11)

  1.  車両の原動機に連結されるポンプインペラおよび変速機の入力軸に連結されるタービンランナと共に発進装置を構成するロックアップクラッチへの油圧指令値を前記原動機と前記入力軸との実回転速度差が前記車両の状態に応じた目標スリップ速度に一致するように設定し、該油圧指令値に基づいて前記ロックアップクラッチを制御するロックアップクラッチの制御装置において、
     前記入力軸の回転速度を取得する入力回転速度取得手段と、
     少なくとも前記目標スリップ速度と前記実回転速度差との差分、比例項用ゲインおよび積分項用ゲインを用いて、少なくとも比例項および積分項を含む前記油圧指令値のフィードバック項を設定するフィードバック項設定手段と、
     を備え、
     少なくとも前記積分項用ゲインを前記入力軸の回転速度に応じて変更することを特徴とするロックアップクラッチの制御装置。
  2.  請求項1に記載のロックアップクラッチの制御装置において、
     少なくとも前記積分項用ゲインを前記入力軸の回転速度が高いほど大きい値に設定することを特徴とするロックアップクラッチの制御装置。
  3.  請求項1または2に記載のロックアップクラッチの制御装置において、
     前記ロックアップクラッチを作動させる作動油の温度を取得する作動油温度取得手段を更に備え、
     少なくとも前記積分項用ゲインを更に前記作動油の温度に応じて変更することを特徴とするロックアップクラッチの制御装置。
  4.  請求項3に記載のロックアップクラッチの制御装置において、
     少なくとも前記積分項用ゲインを前記作動油の温度が高いほど大きい値に設定することを特徴とするロックアップクラッチの制御装置。
  5.  請求項1から4の何れか一項に記載のロックアップクラッチの制御装置において、
     少なくとも前記積分項用ゲインを更に前記実回転速度差に応じて変更することを特徴とするロックアップクラッチの制御装置。
  6.  請求項5に記載のロックアップクラッチの制御装置において、
     少なくとも前記積分項用ゲインを前記実回転速度差が小さいほど大きい値に設定することを特徴とするロックアップクラッチの制御装置。
  7.  請求項1から6の何れか一項に記載のロックアップクラッチの制御装置において、
     前記積分項用ゲインと前記比例項用ゲインとのそれぞれを前記入力軸の回転速度に応じて変更することを特徴とするロックアップクラッチの制御装置。
  8.  請求項7に記載のロックアップクラッチの制御装置において、
     前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差と前記比例項用ゲインとの関係を規定する比例項用ゲイン設定マップと、前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差と前記積分項用ゲインとの関係を規定する積分項用ゲイン設定マップとを有し、前記比例項用ゲイン設定マップから前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差に対応した前記比例項用ゲインを導出すると共に、前記積分項用ゲイン設定マップから前記入力軸の回転速度、前記作動油の温度、および前記実回転速度差に対応した前記積分項用ゲインを導出することを特徴とするロックアップクラッチの制御装置。
  9.  請求項1から8の何れか一項に記載のロックアップクラッチの制御装置において、
     前記ポンプインペラおよび前記タービンランナは、該タービンランナからポンプインペラへの作動油の流れを整流するステータと共にトルクコンバータを構成することを特徴とするロックアップクラッチの制御装置。
  10.  車両の原動機に連結されるポンプインペラおよび変速機の入力軸に連結されるタービンランナと共に発進装置を構成するロックアップクラッチへの油圧指令値を前記原動機と前記入力軸との実回転速度差が前記車両の状態に応じた目標スリップ速度に一致するように設定し、該油圧指令値に基づいて前記ロックアップクラッチを制御するロックアップクラッチの制御方法において、
    (a)前記入力軸の回転速度を取得するステップと、
    (b)少なくとも前記油圧指令値のフィードバック項における積分項用ゲインをステップ(a)にて取得した前記入力軸の回転速度に応じて変更するステップと、
    (c)少なくとも前記目標スリップ速度と前記実回転速度差との差分、前記比例項用ゲインおよび前記積分項用ゲインを用いて、少なくとも比例項および積分項を含む前記油圧指令値のフィードバック項を設定するステップと、
     を含むロックアップクラッチの制御方法。
  11.  請求項10に記載のロックアップクラッチの制御方法において、
     ステップ(b)は、少なくとも前記積分項用ゲインを前記入力軸の回転速度が高いほど大きい値に設定することを特徴とするロックアップクラッチの制御方法。
PCT/JP2014/050856 2013-01-18 2014-01-17 ロックアップクラッチの制御装置および制御方法 WO2014112606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014000266.6T DE112014000266T5 (de) 2013-01-18 2014-01-17 Überbrückungskupplungs-Steuereinrichtung und -Steuerverfahren
US14/654,327 US9845870B2 (en) 2013-01-18 2014-01-17 Lock-up clutch control device and control method
CN201480003630.2A CN104870867B (zh) 2013-01-18 2014-01-17 锁止离合器的控制装置以及控制方法
JP2014557520A JP6137199B2 (ja) 2013-01-18 2014-01-17 ロックアップクラッチの制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-007881 2013-01-18
JP2013007881 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014112606A1 true WO2014112606A1 (ja) 2014-07-24

Family

ID=51209695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050856 WO2014112606A1 (ja) 2013-01-18 2014-01-17 ロックアップクラッチの制御装置および制御方法

Country Status (5)

Country Link
US (1) US9845870B2 (ja)
JP (1) JP6137199B2 (ja)
CN (1) CN104870867B (ja)
DE (1) DE112014000266T5 (ja)
WO (1) WO2014112606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274028B2 (en) 2017-09-25 2019-04-30 Hyundai Motor Company Method for controlling clutch for vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161512B2 (en) 2016-08-24 2018-12-25 GM Global Technology Operations LLC System and method for torque converter clutch pressure circuit filling and capacity detection
CN106246762B (zh) * 2016-10-08 2019-01-29 盛瑞传动股份有限公司 一种急松油门工况下的液力变矩器闭锁离合器控制方法
KR101940793B1 (ko) * 2018-06-01 2019-01-21 콘티넨탈 오토모티브 시스템 주식회사 듀얼 클러치 변속기의 슬립 제어 방법
US10994734B2 (en) * 2019-06-07 2021-05-04 Ford Global Technologies, Llc Methods and system for controlling launch of a vehicle having an automatic transmission
CN114607507B (zh) * 2022-03-11 2023-06-02 中国第一汽车股份有限公司 一种发动机的转速检测方法、装置、计算机设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180156A (ja) * 1983-03-29 1984-10-13 Nissan Motor Co Ltd ロツクアツプトルクコンバ−タのスリツプ制御装置
JPS601458A (ja) * 1983-06-16 1985-01-07 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS6049160A (ja) * 1983-08-24 1985-03-18 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS60143267A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS60143265A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのロツクアツプ制御装置
JPS60143268A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725951A (en) 1983-12-29 1988-02-16 Nissan Motor Co., Ltd. Control system for lock-up clutch in torque converter
US4724939A (en) * 1986-07-17 1988-02-16 General Motors Corporation Closed loop clutch slip control system with turbine roughness control
JP2985102B2 (ja) * 1990-11-29 1999-11-29 トヨタ自動車株式会社 自動変速機のロックアップクラッチのスリップ制御方法及び装置
JP4295962B2 (ja) * 2002-07-29 2009-07-15 アイシン精機株式会社 自動変速機の変速制御装置
JP3890478B2 (ja) * 2003-12-05 2007-03-07 日産自動車株式会社 トルクコンバータのスリップ制御装置
JP4687096B2 (ja) * 2004-02-10 2011-05-25 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
JP4092504B2 (ja) * 2004-06-09 2008-05-28 日産自動車株式会社 トルクコンバータのスリップ制御装置
JP5266843B2 (ja) * 2008-03-31 2013-08-21 アイシン・エィ・ダブリュ株式会社 クラッチの制御装置
JP5233841B2 (ja) 2009-05-21 2013-07-10 日産自動車株式会社 トルクコンバータのスリップ制御装置
JP5177578B2 (ja) * 2010-03-31 2013-04-03 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180156A (ja) * 1983-03-29 1984-10-13 Nissan Motor Co Ltd ロツクアツプトルクコンバ−タのスリツプ制御装置
JPS601458A (ja) * 1983-06-16 1985-01-07 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS6049160A (ja) * 1983-08-24 1985-03-18 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS60143267A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS60143265A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのロツクアツプ制御装置
JPS60143268A (ja) * 1983-12-29 1985-07-29 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274028B2 (en) 2017-09-25 2019-04-30 Hyundai Motor Company Method for controlling clutch for vehicle

Also Published As

Publication number Publication date
DE112014000266T5 (de) 2015-10-15
CN104870867A (zh) 2015-08-26
US9845870B2 (en) 2017-12-19
JPWO2014112606A1 (ja) 2017-01-19
JP6137199B2 (ja) 2017-05-31
US20150330505A1 (en) 2015-11-19
CN104870867B (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6137199B2 (ja) ロックアップクラッチの制御装置および制御方法
US8979706B2 (en) Control device and control method for lockup clutch
JP5464134B2 (ja) ロックアップ装置およびその制御方法
EP1564055A2 (en) Launch control of a hybrid vehicle
JP5556712B2 (ja) 油圧制御装置
JP5233841B2 (ja) トルクコンバータのスリップ制御装置
JP2016183713A (ja) ロックアップクラッチの制御装置
US8521381B2 (en) Power transfer device and control method thereof, and lock-up clutch device
WO2014112603A1 (ja) ロックアップクラッチの制御装置および制御方法
JP6015503B2 (ja) 発進クラッチの制御装置および制御方法
WO2012117880A1 (ja) ロックアップクラッチの制御装置
WO2014112604A1 (ja) ロックアップクラッチの制御装置および制御方法
US20150354639A1 (en) Hydraulic Control Device
JP2014088939A (ja) 発進クラッチの制御装置および制御方法
JP5994663B2 (ja) 車両の制御装置
JP5625753B2 (ja) 車両の制御装置
JP6588294B2 (ja) トルクコンバータの制御装置
JP5880458B2 (ja) 無段変速機の制御装置
JP2014088937A (ja) 発進クラッチの制御装置および制御方法
JP6579053B2 (ja) 車両用動力伝達装置の制御装置
JP5533556B2 (ja) 車両の制御装置
JP2006307925A (ja) ベルト式無段変速機のダウンシフト制御装置
JP2017032074A (ja) ベルト式無段変速機の制御装置
JP2015083860A (ja) 車両の制御装置
JP2014105778A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557520

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654327

Country of ref document: US

Ref document number: 1120140002666

Country of ref document: DE

Ref document number: 112014000266

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14741049

Country of ref document: EP

Kind code of ref document: A1