WO2014112532A1 - 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね - Google Patents

疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね Download PDF

Info

Publication number
WO2014112532A1
WO2014112532A1 PCT/JP2014/050594 JP2014050594W WO2014112532A1 WO 2014112532 A1 WO2014112532 A1 WO 2014112532A1 JP 2014050594 W JP2014050594 W JP 2014050594W WO 2014112532 A1 WO2014112532 A1 WO 2014112532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
less
mno
cao
inclusions
Prior art date
Application number
PCT/JP2014/050594
Other languages
English (en)
French (fr)
Inventor
杉村 朋子
酒井 宏明
康将 吉田
啓文 田井
裕己 太田
斧田 博之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51209621&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014112532(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to BR112015016716A priority Critical patent/BR112015016716A2/pt
Priority to US14/761,125 priority patent/US20150369322A1/en
Priority to KR1020157017995A priority patent/KR101711776B1/ko
Priority to EP14740895.9A priority patent/EP2947168B1/en
Priority to CN201480004560.2A priority patent/CN104919071B/zh
Priority to MX2015009129A priority patent/MX2015009129A/es
Publication of WO2014112532A1 publication Critical patent/WO2014112532A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs

Definitions

  • the present invention relates to a Si-killed steel wire excellent in fatigue characteristics and a spring obtained from the Si-killed steel wire.
  • the Si-killed steel wire of the present invention is a processed product that requires high fatigue characteristics, for example, springs such as valve springs, clutch springs, brake springs and suspension springs used in automobile engines and suspensions; steel cords, etc. It is useful as a material for steel wires and the like, and is particularly useful as a spring steel.
  • Si killed steel Since Al 2 O 3 inclusions are detrimental to fatigue properties, a technique for improving fatigue properties using so-called “Si killed steel” that is deoxidized using Si has been proposed.
  • Non-Patent Document 1 discloses that in the valve spring steel, the inclusion composition is controlled to be an amorphous stable composition such as CaO—Al 2 O 3 —SiO 2 or MnO—Al 2 O 3 —SiO 2. It is described that deformation during hot working is promoted and does not serve as a starting point for fatigue fracture and improves fatigue characteristics.
  • Patent Document 1 At least one of Ca, Mg, and La + Ce is added within a range of 20 ppm or less, and the average composition of nonmetallic inclusions is changed to Al 2 O 3 —SiO 2 —MnO based on MgO or CaO.
  • a technique containing at least one of the above is described.
  • Patent Document 2 and Patent Document 3 include high cleanliness steels in which the average composition of nonmetallic inclusions having a ratio (l / d) of length (l) to width (d) of 5 or less is appropriately controlled. It is disclosed. Among these, Patent Document 2 discloses that the inclusion composition containing at least one of CaO and MgO in a predetermined amount of SiO 2 and MnO reduces harmful inclusions and reduces the melting point of the inclusions to reduce the melting point. A technique for reducing (elongating and elongating) the cross-sectional area of inclusions at the time of extension is disclosed.
  • Patent Document 3 CaO, MgO, Al 2 O 3 is used as an inclusion composition coexisting with a certain range of SiO 2 to lower the melting point of the inclusion and reduce the cross-sectional area of the inclusion during hot rolling.
  • a technique for breaking them during cold working is disclosed.
  • Patent Documents 4 to 7 are proposed by the applicant of the present application.
  • the oxide is controlled to have a low melting point composition, and further, the occurrence of fatigue fracture starting from precipitates of carbides, nitrides, and carbonitrides, which has been hardly regarded as a problem so far.
  • size of these deposits for the purpose of suppressing this is described.
  • Patent Document 5 hardly deformed during rolling hard, the SiO 2 obtained remaining in the final product may cause a breakage, by controlling the theoretically composition that does not generate the SiO 2, irrespective of the rolling conditions A technique that can significantly suppress the generation of SiO 2 is described.
  • Patent Document 6 is a study of the form of inclusions after undergoing hot rolling, and the presence of many fine crystals in the inclusions promotes the division of inclusions during rolling, A technique for reducing the size of inclusions more than conventional during hot rolling is described.
  • Patent Document 7 discloses an oxide inclusion that actively contains at least one of LiO 2 and K 2 O in an appropriate amount in addition to SiO 2 , Al 2 O 3 , CaO, and MgO inclusions. Describes a technique in which high ductility is ensured and fatigue characteristics and wire drawing workability are dramatically improved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Si-killed steel wire rod and a spring having further excellent fatigue characteristics.
  • the Si-killed steel wire rod of the present invention that has solved the above problems is C: 1.2% or less (not including 0%, “%” means mass% unless otherwise specified), : 0.2 to 3%, Mn: 0.1 to 2%, the balance: iron and inevitable impurities, Si killed steel containing CaO—Al 2 O 3 —SiO 2 inclusions in which 80% or more of oxide inclusions present in the steel wire satisfy the following compositions (1A) and (1B) In (1A) CaO + Al 2 O 3 + SiO 2 + MgO + MnO ⁇ 85% (1B) When normalized with CaO + Al 2 O 3 + SiO 2 + MgO + MnO as 100%, MgO + MnO ⁇ 15%, CaO> MnO The average composition of the CaO—Al 2 O 3 —SiO 2 inclusions satisfies the following (2): (2) When normalized with CaO + Al 2 O 3 + SiO 2 + MgO + MnO as 100%, CaO: 10 to 60%
  • the above-mentioned components in steel can further contain Cr: 3% or less (excluding 0%).
  • the above-mentioned components in steel can further contain Ni: 0.5% or less (excluding 0%).
  • the above-mentioned components in steel can further contain V: 0.5% or less (excluding 0%).
  • the above-mentioned components in steel can further contain Ti: 0.1% or less (excluding 0%).
  • the above steel components are further Zr: 0.1% or less (not including 0%), Cu: 0.7% or less (not including 0%), Nb: 0.5% or less (including 0%) No), Mo: 0.5% or less (not including 0%), Co: 0.5% or less (not including 0%), W: 0.5% or less (not including 0%), B: 0.005% or less (not including 0%), alkali metal: 0.002% or less (not including 0%), REM: 0.01% or less (not including 0%), Ba: 0.01%
  • One or more selected from the group consisting of the following (not including 0%) and Sr: 0.01% or less (not including 0%) can also be included.
  • the present invention also includes a spring obtained from the Si killed steel wire described above.
  • a feature of the present invention is that it is formed at the beginning of the deoxidation step in a Si-killed steel wire in which most oxide inclusions are controlled to have an appropriate composition of CaO—Al 2 O 3 —SiO 2 system.
  • the MnO—SiO 2 inclusions are also controlled so as to become MnO—Al 2 O 3 —SiO 2 inclusions having a composition suitable for improving fatigue characteristics.
  • MnO—SiO 2 or MnO—Al 2 O 3 —SiO 2 inclusions, which are deoxidation products, are replaced with conventional CaO—Al 2 O 3 —SiO 2 inclusions.
  • MnO—SiO 2 and MnO—Al 2 O 3 —SiO 2 inclusions which are deoxidation products, are replaced with CaO—Al 2 O 3 —SiO 2 , CaO—MgO—Al.
  • Control to an appropriate composition such as 2 O 3 —SiO 2 ; further control the inclusions more strictly or control to a more appropriate composition and form; and more appropriate characteristics
  • the present inventors have proposed a number of techniques for improving fatigue characteristics, but in the present invention, deoxidation generation before controlling to CaO—Al 2 O 3 —SiO 2 , which has not been noted in the past. Attention was paid to the composition control of the products (MnO—SiO 2 system and MnO—Al 2 O 3 —SiO 2 system).
  • Fatigue fracture occurs starting from the weakest part of the steel material, so the fatigue properties are significantly reduced if there are rare inclusions even in the rare cases. Therefore, in the case where MnO—Al 2 O 3 —SiO 2 inclusions that cannot be completely controlled in the CaO—Al 2 O 3 —SiO 2 system remain, if they have a harmful composition, they may become a starting point of destruction. is there.
  • the present invention has been completed in view of such circumstances, and MnO—SiO 2 inclusions or MnO—Al 2 O 3 —SiO 2 inclusions produced as deoxidation products are converted into CaO. Not only by controlling to -Al 2 O 3 -SiO 2 inclusions, but also by controlling the composition to be easily drawn and refined in advance during hot working, the possibility of inclusions that become the starting point of fracture remaining in the steel It has technical significance when it is further reduced and fatigue characteristics are further improved.
  • the present invention controls the deoxidation product (MnO—SiO 2 inclusions, MnO—Al 2 O 3 —SiO 2 inclusions) to CaO—Al 2 O 3 —SiO 2 inclusions to reduce fatigue.
  • this technology was developed assuming that inclusions of MnO—SiO 2 or MnO—Al 2 O 3 —SiO 2 remain. Therefore, the present invention can be applied to all modes in which the above inclusions may remain, but does not apply to a mode in which the above inclusions do not remain and the steel material does not contain any of the above inclusions. .
  • MnO—Al 2 O 3 —SiO 2 inclusions when MnO—Al 2 O 3 —SiO 2 inclusions remain, the number thereof is much smaller than that of CaO—Al 2 O 3 —SiO 2 inclusions, which is generally CaO—Al 2 O 3 —SiO. It is 3% or less of 2 system inclusions.
  • the time from the introduction of alloy components such as Mn and Si to the start of slag refining using CaO-containing slag (MnO—Al 2 O having a composition that is easy to stretch and refine) And a method of sufficiently ensuring the retention time until the 3- SiO 2 inclusion is changed.
  • CaO-containing slag CaO—Al 2 O 3 —SiO 2 inclusions having a composition useful for improving fatigue characteristics are obtained, and CaO—Al 2 O 3 —SiO 2 inclusions are obtained.
  • the oxide inclusion means an inclusion in which the concentrations of S and N contained in the inclusion are each 2% or less. Moreover, each content of the oxide which comprises each said inclusion [it explains in full detail (1B), (2), (3A), (3B)], or the sum total of 2 types or 3 types of oxides In calculating the amount [(1B), (3A) described in detail below], in any case, it means a numerical value when normalized with CaO + Al 2 O 3 + SiO 2 + MgO + MnO as 100%.
  • the above five oxides (CaO, Al 2 O 3 , It means the ratio to the total oxide mass including SiO 2 , MgO, MnO) and other oxide species such as TiO 2 unavoidably present.
  • the “steel wire rod” includes not only a steel wire rod after hot rolling but also a steel wire subjected to wire drawing (cold drawing) thereafter. That is, steel wires that have been drawn after hot rolling and that satisfy the above requirements of the present invention are also included in the steel wire of the present invention.
  • the CaO—Al 2 O 3 —SiO 2 inclusions satisfying (1A) and (1B) are present in the steel wire in an amount of 80% or more, and the CaO—Al
  • the average composition of 2 O 3 —SiO 2 inclusions satisfies the requirement (2) and the average composition of MnO—Al 2 O 3 —SiO 2 inclusions satisfying (3A) satisfies (3B) It is.
  • the Si killed steel wire of the present invention is premised on that CaO—Al 2 O 3 —SiO 2 inclusions are appropriately controlled so as to be suitable for improving fatigue characteristics.
  • the present invention is characterized in that the average composition of MnO—Al 2 O 3 —SiO 2 inclusions satisfying (3A) satisfies the requirement (3B) under the premise. is there.
  • CaO—Al 2 O 3 —SiO 2 inclusions In the present invention, when oxide inclusions present in the steel wire are measured by the method described later and the number of all oxide inclusions in the measurement region is measured, the number is 80% or more (number ratio). CaO—Al 2 O 3 —SiO 2 inclusions satisfying the following (1A) and (1B), and the average composition of the CaO—Al 2 O 3 —SiO 2 inclusions is the following (2): It is assumed that you are satisfied.
  • CaO + Al 2 O 3 + SiO 2 + MgO + MnO includes other oxide species such as TiO 2 unavoidably present in addition to the above five oxides (CaO, etc.) present in inclusions It means the content ratio relative to the total oxide mass.
  • the content ratio of [MgO + MnO] is set to 15% or less when normalized as [CaO + Al 2 O 3 + SiO 2 + MgO + MnO] being 100%.
  • the reason why “CaO> MnO” is defined in the above (1B) is to clearly distinguish it from MnO—Al 2 O 3 —SiO 2 inclusions described later.
  • the CaO—Al 2 O 3 —SiO 2 inclusions defined in (1A) and (1B) above are 80% of the total number of oxides present in the measurement region of the steel wire (number ratio). It occupies the above.
  • the average composition of the CaO—Al 2 O 3 —SiO 2 inclusions that satisfy the above requirements satisfies the following requirement (2).
  • a CaO—Al 2 O 3 —SiO 2 inclusion having a composition suitable for improving fatigue characteristics is obtained.
  • the “average composition” here is not the composition of individual inclusions, but the average of the entire CaO—Al 2 O 3 —SiO 2 inclusions (inclusions satisfying the above (1A) and (1B)). Value.
  • [CaO + Al 2 O 3 + SiO 2 + MgO + MnO] is normalized as 100%, CaO: 10 to 60%, Al 2 O 3 to 40%, SiO 2 : 30% or more, less than 85%
  • CaO is an essential component for making oxide inclusions soft enough to be refined in the hot rolling process of steel wires. If the CaO content in the CaO—Al 2 O 3 —SiO 2 inclusion is insufficient, it becomes a high SiO 2 or SiO 2 ⁇ Al 2 O 3 hard inclusion and is difficult to be refined in the hot rolling process, and fatigue characteristics And a major cause of deterioration of wire drawing workability. Therefore, the CaO content in the CaO—Al 2 O 3 —SiO 2 inclusion is at least 10% or more, preferably 20% or more, more preferably 25% or more.
  • the upper limit of the CaO content is set to 60% or less. Preferably it is 55% or less, More preferably, it is 50% or less.
  • Al 2 O 3 is a useful component for making the oxide inclusions have a lower melting point and a softer one.
  • the content of Al 2 O 3 in the CaO—Al 2 O 3 —SiO 2 inclusion is set to 3% or more. Preferably it is 5% or more, More preferably, it is 15% or more. However, if there is too much Al 2 O 3 content in the CaO—Al 2 O 3 —SiO 2 inclusions, it becomes hard and difficult to refine the alumina inclusions, and also becomes difficult to refine in the hot rolling process and breaks down.
  • the upper limit is made 40% or less. Preferably it is 35% or less, More preferably, it is 30% or less.
  • SiO 2 30% or more and less than 85% SiO 2 is an essential component for generating soft oxide inclusions having a low melting point together with the above-described CaO and Al 2 O 3 .
  • the SiO 2 content in the CaO—Al 2 O 3 —SiO 2 inclusion is less than 30%, the inclusion becomes a hard inclusion mainly composed of CaO and Al 2 O 3 , and serves as a starting point of destruction.
  • the lower limit is 30% or more. Preferably it is 35% or more, more preferably 40% or more.
  • the SiO 2 content in the CaO—Al 2 O 3 —SiO 2 inclusion is set to less than 85%. Preferably it is 70% or less, More preferably, it is 65% or less.
  • MnO—Al 2 O 3 —SiO 2 inclusions are inclusions (inclusions generated at the beginning of the deoxidation step) that are generated when the molten steel is deoxidized with Mn, Si, and the like.
  • the main focus was on controlling these to CaO—Al 2 O 3 —SiO 2 system, so most of the previous studies on the composition of MnO—Al 2 O 3 —SiO 2 inclusions were made. It wasn't.
  • the average composition of the MnO—Al 2 O 3 —SiO 2 inclusions is appropriately adjusted before the control to the CaO—Al 2 O 3 —SiO 2 system by appropriate molten steel treatment.
  • the existence probability of inclusions that are difficult to stretch during hot rolling is lowered, and the fatigue characteristics are remarkably improved (see Examples described later).
  • MnO-Al 2 O 3 -SiO 2 inclusions herein, but is defined by the following (3A), in the present invention, the MnO-Al 2 O 3 -SiO 2 system
  • the average composition of inclusions satisfies the following requirement (3B).
  • “MnO> CaO” in (3A) is defined in order to distinguish it from the CaO—Al 2 O 3 —SiO 2 inclusions described above.
  • the composition of the MnO—Al 2 O 3 —SiO 2 inclusion specified in (3B) above is a composition that provides the stretchability at the time of hot working, and is controlled by this composition. It is stretched to a size that does not cause fatigue failure during hot working. If it is out of the above range, it is not sufficiently stretched in hot working and remains coarse, which may become a starting point of fracture and deteriorate fatigue characteristics.
  • the MnO—Al 2 O 3 —SiO 2 inclusion may further contain CaO, MgO, or the like.
  • SiO 2 is an essential component for making inclusions amorphous. Further, by appropriately including MnO and Al 2 O 3 , the composition is easily stretched during hot working. In order to exert such effects, the SiO 2 content is 20% or more and 75% or less, the MnO content is 10% or more and 70% or less, and the Al 2 O 3 content is 3% or more and 50% or less. And When the composition range is out of the range, the concentration of any of the components increases, and the possibility of becoming a starting point of fracture increases due to difficulty in stretching during hot working. Regarding the SiO 2 content, the preferred lower limit is 30% or more, more preferably 35% or more, and the preferred upper limit is 70% or less, more preferably 65% or less.
  • the content of Al 2 O 3, preferable lower limit is 5% or more, more preferably 10% or more, the upper limit thereof is preferably 30% or less.
  • a MnO content, a preferable minimum is 20% or more, and a preferable upper limit is 60% or less.
  • the content of oxides other than the above (MgO, CaO) constituting the MnO—Al 2 O 3 —SiO 2 inclusions is not limited. That is, as long as the above requirements are satisfied, the contents of MgO and CaO constituting the MnO—Al 2 O 3 —SiO 2 inclusions are not particularly limited, but for MgO, it is preferably approximately 10% or less. .
  • the present invention has been made assuming a Si-killed steel wire useful as a material such as a spring, and can contain elements normally contained in the Si-killed steel wire. Each element will be described below. .
  • C 1.2% or less (excluding 0%) C is an element necessary for ensuring a predetermined strength.
  • the C content is preferably 0.2% or more. More preferably, it is 0.4% or more.
  • the upper limit is made 1.2% or less.
  • the upper limit with preferable C amount is 0.8% or less.
  • Si 0.2-3% Si is an important element that contributes to increasing the strength of steel wires and improving fatigue properties. Furthermore, it is an element that increases softening resistance and is useful for improving sag resistance. Furthermore, it is an essential element for controlling the composition of MnO—SiO 2 inclusions to MnO—Al 2 O 3 —SiO 2 inclusions suitable for improving fatigue characteristics.
  • the Si content is set to 0.2% or more.
  • a preferable Si content is 1.2% or more, and more preferably 1.8% or more.
  • the Si content is excessive, pure SiO 2 may be generated during solidification, and surface decarburization and surface flaws may increase to deteriorate fatigue characteristics. % Or less. Preferably it is 2.5% or less, More preferably, it is 2.3% or less.
  • Mn 0.1-2%
  • Mn is an element that enhances hardenability and contributes to strength improvement.
  • the lower limit of the Mn content is set to 0.1% or more. Preferably it is 0.4% or more, More preferably, it is 0.45% or more. However, if the amount of Mn becomes excessive, the toughness and ductility deteriorate, so the upper limit is made 2% or less. Preferably it is 1.3% or less, More preferably, it is 1% or less.
  • the contents of Si and Mn preferably satisfy the relationship of Mn 2 /Si ⁇ 0.1, thereby controlling the MnO—Al 2 O 3 —SiO 2 inclusions to a desired composition. Becomes easier.
  • the present invention contains the above components as basic components, the balance being iron and inevitable impurities.
  • inevitable impurities include P and S.
  • P is an element which reduces toughness and ductility, and when the amount of P increases, there is a possibility that wire breakage may occur in the wire drawing step and the subsequent twisting step. Therefore, the upper limit is 0.03% or less (more preferably Is preferably 0.02% or less.
  • S like P, is an element that deteriorates toughness and ductility, and combines with Mn to form MnS, which is the starting point of wire breakage during wire drawing, so the upper limit is 0.03% or less ( More preferably 0.02% or less).
  • the elements constituting the inclusions defined in the present invention (CaO—Al 2 O 3 —SiO 2 and MnO—Al 2 O 3 —SiO 2 inclusions), which are not described above
  • the content of (Al, Ca, Mg) is determined according to the amount of inclusions (strictly, the amount of oxygen). These elements are controlled by general slag refining or alloy injection, and the specific content of each element (the content of the entire steel wire including oxide inclusions) is oxygen as described above. Although it varies greatly depending on the amount, that is, the content of inclusions, generally, Al is 0.0001 to 0.003%, Ca is 0.0001 to 0.002%, and Mg is 0.001% or less (including 0%). ) Is preferably controlled within the range.
  • Cr 3% or less (excluding 0%) Cr is an element that improves the matrix strength of the steel material by solid solution strengthening. Further, Cr, as well as Mn, works effectively to improve hardenability. However, if Cr is excessive, the steel material tends to become brittle and the sensitivity of inclusions increases, so the fatigue characteristics deteriorate. Therefore, it is preferable to set the upper limit of the Cr amount to 3%. More preferably, Cr is contained in an amount of 0.1% or more, more preferably 0.5% or more, and even more preferably 0.9% or more. The upper limit of the Cr content is more preferably 2% or less, further preferably 1.8% or less, and still more preferably 1.5% or less.
  • Ni 0.5% or less (excluding 0%)
  • Ni is an element effective for suppressing ferrite decarburization that occurs during hot rolling during wire manufacturing or heat treatment during spring manufacturing, and may be included in the wire as necessary.
  • Ni also has the effect of increasing the toughness of the spring after quenching and tempering.
  • the lower limit of the preferable amount of Ni is 0.05% or more, more preferably 0.1% or more, and further preferably 0.25% or more.
  • the preferable upper limit of the Ni amount is 0.5% or less (more preferably 0.4% or less, and still more preferably 0.3% or less).
  • V 0.5% or less (excluding 0%) V combines with carbon, nitrogen, etc. to form fine carbides, nitrides, etc., and not only enhances hydrogen embrittlement resistance and fatigue properties, but also exhibits a grain refinement effect, toughness, yield strength, It is an element that contributes to improvement in sag resistance, and may be contained in the wire as necessary.
  • the lower limit of the preferable V amount is 0.07% or more, more preferably 0.10% or more. However, if the amount of V becomes excessive, the amount of carbide not dissolved in austenite during quenching heating increases, and it becomes difficult to obtain sufficient strength and hardness, and also causes the coarsening of nitrides, resulting in fatigue breakage. Is likely to occur. Moreover, when the amount of V becomes excessive, the amount of retained austenite increases and the hardness of the obtained spring decreases. Therefore, the preferable upper limit of the V amount is 0.5% or less (more preferably 0.4% or less).
  • Ti 0.1% or less (excluding 0%) Ti is an element that refines the prior austenite crystal grains after quenching and tempering and improves air durability and hydrogen embrittlement resistance. However, when the amount of Ti is excessive, coarse nitrides are likely to precipitate, which adversely affects fatigue characteristics. Therefore, the preferable upper limit of the Ti amount is set to 0.1% or less. A more preferable Ti amount is 0.01% or less, and further preferably 0.005% or less.
  • At least one or more elements can be added. These elements may be added alone or in combination of two or more. The recommended contents of these elements are as follows.
  • Zr 0.1% or less (not including 0%), Cu: 0.7% or less (not including 0%), Nb: 0.5% or less (not including 0%), Mo: 0.5 %: Not including 0%, Co: not exceeding 0.5% (not including 0%), W: not exceeding 0.5% (not including 0%), B: not exceeding 0.005%, alkali metal : 0.002% or less (not including 0%), REM: 0.01% or less (not including 0%), Ba: 0.01% or less (not including 0%), Sr: 0.01% The following (not including 0%).
  • Zr is an element effective in improving toughness because a microstructure is obtained by the formation of carbonitride.
  • the upper limit of the Zr amount is preferably 0.1% or less (more preferably 0.0005% or less).
  • Cu like Ni, is an element effective for suppressing ferrite decarburization that occurs during hot rolling during wire manufacturing or heat treatment during spring manufacturing, and may be included in the wire as necessary. . In addition to this effect, Cu has the effect of increasing the corrosion resistance. However, when the amount of Cu becomes excessive, hot rolling cracks may occur. Therefore, the preferable upper limit of the amount of Cu is set to 0.7% or less (more preferably 0.6% or less, still more preferably 0.5% or less).
  • Nb like V, combines with carbon, nitrogen, etc. to form fine carbides, nitrides, etc., and not only enhances hydrogen embrittlement resistance and fatigue properties, but also exhibits a grain refinement effect, It is an element that contributes to the improvement of toughness, proof stress, and sag resistance, and may be contained in the wire as necessary.
  • a preferable Nb amount is 0.01% or more (more preferably 0.02% or more). However, if the amount of Nb becomes excessive, the amount of carbide not dissolved in austenite during quenching heating increases, and it becomes difficult to obtain sufficient strength and hardness, leading to coarsening of nitrides and fatigue breakage. Is likely to occur. Therefore, the preferable upper limit of the Nb amount is 0.5% or less (more preferably 0.4% or less, still more preferably 0.3% or less).
  • Mo is an element that improves softening resistance and contributes to improvement of sag resistance, and may be included in the wire as necessary.
  • a preferable Mo amount is 0.01% or more (more preferably 0.05% or more).
  • the upper limit is preferably set to 0.5% or less (more preferably 0.4% or less).
  • Co is an element that ensures ductility and contributes to improvement of fatigue properties.
  • a preferable amount of Co is 0.001% or more (more preferably 0.003% or more). However, even if Co is added excessively, the above effect is saturated, so the upper limit of the amount of Co is preferably 0.5% or less (more preferably 0.1% or less).
  • W is an element that effectively acts to improve the corrosion resistance of the steel wire.
  • a preferable amount of W is 0.01% or more (more preferably 0.03% or more). However, since the above effect is saturated even if W is added excessively, the upper limit of the W amount is preferably set to 0.5% or less.
  • B is an element effective for preventing grain boundary segregation of P, purifying the grain boundary, and improving hydrogen embrittlement resistance and toughness, and may be contained in the wire as necessary.
  • a preferable amount of B is 0.0003% or more (more preferably 0.0005% or more).
  • B compound such as Fe 23 (CB) 6 is formed and free B is reduced, so that the effect of preventing grain boundary segregation of P is saturated.
  • this B compound is often coarse, it becomes a starting point of fatigue breakage and deteriorates fatigue characteristics. Therefore, when B is contained, the upper limit is preferably 0.005% or less (more preferably 0.004% or less).
  • Alkali metal components, REM (rare earth element), Ba, and Sr are effective elements for controlling the composition of inclusions defined in the present invention, but if added in a large amount, adversely affect the composition control of the inclusions. Therefore, it is preferable to control the content appropriately.
  • the alkali metal component means Li, Na, or K and may be contained alone or in combination of two or more.
  • the preferable content of the alkali metal component is 0.00001 to 0.002% (more preferably 0.00003 to 0.0008%).
  • the above content is a single amount when the alkali metal component is contained alone, and is a total amount when two or more types are used in combination.
  • REM rare earth element
  • Sc scandium
  • Y yttrium
  • lanthanoid elements 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table. These can be used alone or in combination of two or more.
  • Preferred rare earth elements are Ce, La, and Y.
  • the addition form of REM is not particularly limited, and may be added in the form of a misch metal mainly containing Ce and La (for example, Ce: about 70%, La: about 20-30%), or Ce, La alone may be added.
  • a preferable content of REM is 0.001 to 0.01%. The above content is a single amount when REM is included alone, and is a total amount when two or more types are used in combination.
  • the preferable ranges of Ba and Sr are both 0.0003 to 0.01%.
  • the Si killed steel wire of the present invention will be described.
  • the desired MnO—Al 2 O 3 —SiO 2 inclusions may be used by the MnO—SiO 2 inclusions.
  • a method for securing the time until the change is effective.
  • the conventional refining using the CaO-containing slag is not started immediately after the alloy components such as Mn and Si are charged into the molten steel as in the prior art. It was decided to ensure sufficient time. Thereby, the harmful initial deoxidation product generated when an alloy component such as Si or Mn is added can be promoted to change into a composition that is relatively easily stretched during hot working.
  • the above holding time varies depending on the size of the ladle to be used and the stirring conditions, but the effect is recognized in about 90 minutes under the conditions as in Examples described later.
  • a CaO—Al 2 O 3 —SiO 2 inclusion having a composition useful for improving fatigue characteristics is obtained.
  • the composition of the CaO—Al 2 O 3 —SiO 2 inclusion varies depending on the slag basicity [CaO / SiO 2 (mass ratio), etc.] at this time, but the CaO—Al 2 O 3 — satisfying the above requirements.
  • the preferred basicity for obtaining the SiO 2 inclusion is generally 0.5 to 1.5.
  • Example 5 After adding various alloy components shown in Table 1 to 500 kg of molten steel simulating molten steel discharged from a converter, molten steel treatment (slag refining) was performed by adding CaO-containing slag. Carried out. At this time, the composition of the deoxidation product (MnO—SiO 2 type, MnO—Al 2 O 3 —SiO 2 type inclusion) changes the time until the start of slag refining after all the alloy components are added. (See Table 2). Further, the composition of the CaO—Al 2 O 3 —SiO 2 inclusion was changed by controlling the slag basicity as shown in Table 2 (see Table 2).
  • the obtained molten steel is cast into a steel ingot, forged at 1200 ° C., formed into a shape of 150 mm ⁇ 150 mm, hot-rolled at a temperature of about 900 ° C., and hot with a diameter of 8.0 mm. A rolled wire was obtained.
  • Component analysis in wire The following components were measured by the following method.
  • C Combustion infrared absorption method Si, Mn, Ni, Cr, V, Ti: ICP emission spectroscopic analysis (ICPV-1017 manufactured by Shimadzu Corporation) Al, Mg, Zr, REM, Mo, Co, Nb, Cu, W, Ba, Li: ICP mass spectrometry (ICP mass spectrometer of model SPQ8000 manufactured by Seiko Instruments Inc.)
  • Ca Flameless atomic absorption spectrometry
  • O Inert gas melting method
  • the L cross section is polished, and all oxide inclusions (about 300 per cross section) present in the polished cross section are subjected to composition analysis by EPMA (Electron Probe Microanalyzer).
  • EPMA Electro Probe Microanalyzer
  • the composition of each inclusion is confirmed, and the CaO—Al 2 O 3 —SiO 2 inclusion satisfying the conditions (1A) and (1B) above and the condition (3A) above
  • the average value of MnO—Al 2 O 3 —SiO 2 inclusions satisfying the above conditions was determined.
  • oxide inclusions having an S concentration and an N concentration of 2% or less in the inclusions were used.
  • the measurement conditions of EPMA at this time are as follows.
  • EPMA device JXA-8621MX (manufactured by JEOL Ltd.)
  • Analyzer EDS: TN-5500 (Tracor Northern) Acceleration voltage: 20 kV Scanning current: 5nA
  • Measurement method Quantitative analysis by energy dispersion analysis (measures the entire particle)
  • the wire thus obtained was subjected to a strain relief annealing treatment (400 ° C.) ⁇ shot peening ⁇ low temperature annealing (400 ° C. ⁇ 20 min), and then using a Nakamura rotary bending tester, nominal stress: 880 MPa
  • the fatigue strength test was performed at a rotational speed of 4000 to 5000 rpm and a number of suspensions of 2 ⁇ 10 7 times.
  • inclusion breakage number those that were broken due to inclusions (inclusion breakage number) were determined for the breakage rate (breakage rate) by the following formula.
  • Breakage rate (%) [Inclusion breakage number / (inclusion breakage number + number of cancellations after reaching a predetermined number of times)] ⁇ 100
  • Table 1 shows the chemical composition (steel type) of each wire used in this example, and Table 2 shows the inclusion composition and fatigue test (breakage rate) results of each wire.
  • Table 1 shows the chemical composition (steel type) of each wire used in this example, and Table 2 shows the inclusion composition and fatigue test (breakage rate) results of each wire.
  • the amounts of Al, Ca, and Mg were Al: 0.0001 to 0.002%, Ca: 0.002% or less, and Mg: 0.0005% or less.
  • CaO—Al 2 O 3 —SiO 2 inclusions satisfy the requirements (1A) and (1B) defined in the present invention
  • MnO—Al 2 O 3 —SiO 2 The system inclusion satisfies the requirement (3A) defined in the present invention.
  • the inventive Si-killed steel wire is a processed product that requires high fatigue characteristics, for example, springs such as valve springs, clutch springs, brake springs and suspension springs used in automobile engines and suspensions; steels such as steel cords It is useful as a material for wires and the like, and particularly useful as spring steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明のSiキルド鋼線材は、所定の化学成分を含み、個数にして80%以上が所定のCaO-Al-SiO系介在物を含むSiキルド鋼において、下記(3A)を満足するMnO-Al-SiO系介在物の平均組成が下記(3B)を満足する。 (3A)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO+Al+SiO≧80%、MnO>CaO (3B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO:10~70%、Al:3~50%、SiO:20~75%

Description

疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
 本発明は、疲労特性に優れたSiキルド鋼線材および当該Siキルド鋼線材から得られたばねに関するものである。本発明のSiキルド鋼線材は、高い疲労特性が要求される加工品、例えば、自動車のエンジンやサスペンションなどに用いられる弁ばね、クラッチばね、ブレーキばね、懸架ばねなどのばね類;スチールコードなどの鋼線類などの素材として有用であり、特にばね用鋼として極めて有用である。
 自動車などの軽量化や高出力化の要望が高まるにつれ、弁ばねや懸架ばねなどのばね類には高い疲労特性が益々要求されており、その素材となるばね用鋼においても、疲労特性の更なる向上が求められている。とりわけ、弁ばね用鋼では疲労特性向上の要請は非常に強いものである。
 高い疲労強度が要求されるばね用鋼では、鋼線材に存在して破壊起点となる非金属介在物を極力低減することが必要であり、当該非金属介在物の組成を適切に制御することにより、非金属介在物に起因する断線や疲労折損の発生を低減する技術が種々提案されている。
 Al系介在物は疲労特性に有害であるため、Siを用いて脱酸する所謂「Siキルド鋼」を用いて疲労特性を高める技術が提案されている。
 例えば非特許文献1には、弁ばね用鋼では、介在物の組成をCaO-Al3-SiO 系やMnO-Al-SiO系の非晶質安定組成に制御することで熱間加工時の変形が促進され、疲労破壊の起点とはならず疲労特性が向上することが記載されている。
 また、特許文献1には、Ca、Mg、La+Ceの少なくとも一種を20ppm以下の範囲で添加し、また非金属介在物の平均組成について、Al-SiO-MnO系に、MgOまたはCaOの少なくとも一種を含有させた技術が記載されている。
 また、特許文献2および特許文献3には、長さ(l)と幅(d)の比(l/d)が5以下の非金属介在物の平均組成を適切に制御した高清浄度鋼が開示されている。このうち特許文献2には、所定量のSiOおよびMnOにCaOおよびMgOの少なくとも一種を含む介在物組成とすることによって有害な介在物を低減すると共に、介在物を低融点化することで熱延時の介在物断面積を低減(細長く伸ばす)する技術が開示されている。また、特許文献3には、CaO、MgO、Alを、一定範囲のSiOと共存させた介在物組成とすることによって介在物を低融点化し、熱延時の介在物断面積を低減すると共に、更に冷間加工時にそれらを破壊する技術が開示されている。
 一方、特許文献4~7は、本願出願人によって提案されたものである。このうち特許文献4には、酸化物を低融点組成に制御し、更に、これまで殆ど問題とされていなかった炭化物系、窒化物系および炭窒化物の析出物を起点とする疲労破壊の発生を抑えることを目的として、これら析出物の大きさを特定した技術が記載されている。特許文献5には、硬質で圧延時に変形しにくく、最終製品中に残存して折損の原因となり得るSiOについて、理論的にSiOの生成しない組成に制御することで、圧延条件によらずSiOの生成を格段に抑制できる技術が記載されている。特許文献6は、熱間圧延を受けた後の介在物の形態について検討したものであり、上記介在物中に微細な結晶を多数存在させることで、圧延時の介在物の分断が促進され、熱延時に従来以上に介在物を小型化させる技術が記載されている。また、特許文献7には、SiO、Al、CaO、MgO系介在物に、更に適量のLiO、KOの1種以上を積極的に含む酸化物系介在物とすることによって高い延性を確保し、疲労特性や伸線加工性が飛躍的に改善された技術が記載されている。
日本国特公平7-6037号公報 日本国特公平6-74484号公報 日本国特公平6-74485号公報 日本国特許2898472号公報 日本国特許4134204号公報 日本国特許4347786号公報 日本国特許4423050号公報
三村毅、182・183回西山記念講座「介在物制御と高清浄度鋼製造技術」、日本鉄鋼協会編、東京、2004年、p125
 前述したように、弁ばねなどのばね類や、スチールコードなどに代表される極細鋼線などの分野では、疲労特性向上に対する要求特性は益々高くなっており、Siキルド鋼線材においても、更なる疲労特性の改善が求められている。 
 本発明は上記事情に鑑みてなされたものであり、その目的は、疲労特性に一層優れたSiキルド鋼線材およびばねを提供することにある。
 上記課題を解決し得た本発明のSiキルド鋼線材は、C:1.2%以下(0%を含まない、「%」は特に断らない限り、質量%を意味する。以下同じ)、Si:0.2~3%、Mn:0.1~2%を含有し、残部:鉄および不可避不純物であり、
 鋼線材中に存在する酸化物系介在物について、個数にして80%以上が、下記(1A)及び(1B)の組成を満足するCaO-Al-SiO2系介在物を含むSiキルド鋼において、
  (1A)CaO+Al+SiO+MgO+MnO≧85%
  (1B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MgO+MnO≦15%、CaO>MnO 
 前記CaO-Al-SiO系介在物の平均組成が下記(2)を満足し、
  (2)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、CaO:10~60%、Al:3~40%、SiO:30%以上、85%未満
 且つ、 
 下記(3A)を満足するMnO-Al-SiO系介在物の平均組成が下記(3B)を満足するところに要旨を有するものである。
  (3A)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO+Al+SiO≧80%、MnO>CaO
  (3B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO:10~70%、Al:3~50%、SiO:20~75% 
 上記鋼中成分は、更に、Cr:3%以下(0%を含まない)を含有することもできる。
 上記鋼中成分は、更に、Ni:0.5%以下(0%を含まない)を含有することもできる。
 上記鋼中成分は、更に、V:0.5%以下(0%を含まない)を含有することもできる。
 上記鋼中成分は、更に、Ti:0.1%以下(0%を含まない)を含有することもできる。
 上記鋼中成分は、更に、Zr:0.1%以下(0%を含まない)、Cu:0.7%以下(0%を含まない)、Nb:0.5%以下(0%を含まない)、Mo:0.5%以下(0%を含まない)、Co:0.5%以下(0%を含まない)、W:0.5%以下(0%を含まない)、B:0.005%以下(0%を含まない)、アルカリ金属:0.002%以下(0%を含まない)、REM:0.01%以下(0%を含まない)、Ba:0.01%以下(0%を含まない)、Sr:0.01%以下(0%を含まない)よりなる群から選択される1種以上を含有することもできる。
 本発明には、上記のいずれかに記載のSiキルド鋼線材から得られたばねも包含される。
 本発明では、溶鋼中に稀に残留するMnO-SiO系、MnO-Al-SiO系の介在物が破壊起点となり得るとの知見に基づき、これらの介在物を、予め比較的無害な組成に制御しているため、より高い疲労特性を得ることができた。
 本発明の特徴部分は、大部分の酸化物系介在物がCaO-Al-SiO系の適切な組成に制御されているSiキルド鋼線材において、脱酸工程の初期に生成する、MnO-SiO2系介在物についても、疲労特性向上に適した組成のMnO-Al-SiO系介在物となるように制御したところにある。本発明によれば、脱酸生成物であるMnO-SiO系またはMnO-Al-SiO系の介在物を、従来のようなCaO-Al-SiO系介在物に制御するのみならず、その前の段階で、熱間加工時に延伸され易い組成のMnO-Al-SiO系介在物に制御しているため、CaO-Al-SiOに制御できない介在物が残留した場合にも、疲労特性の低下が抑制される。その結果、一層優れたSiキルド鋼線材が得られる(後記する実施例を参照)。
 以下、本発明に到達した経緯を説明する。
 前述した特許文献を含め従来では、脱酸生成物であるMnO-SiO系およびMnO-Al-SiO系の介在物をCaO-Al-SiO、CaO-MgO-Al-SiOなどの適切な組成に制御すること;更には、上記の介在物をより厳格に制御する、或いは、より適切な組成、形態に制御すること;更には、より適切な特性を持つ成分を添加することなどにより、上記介在物の延伸を促進し、疲労特性に優れたばね用鋼を提供する方法が提案されてきた。
 これまでにも本発明者らは、数多くの疲労特性改善技術を提案してきたが、本発明では、これまで留意されなかった、CaO-Al-SiOに制御する前の脱酸生成物(MnO-SiO系およびMnO-Al-SiO系)の組成制御に着目した。
 疲労破壊は、鋼材のなかで最も弱い部分を起点として発生するため、極く稀にでも有害な介在物が存在すると疲労特性は著しく低下する。よって、CaO-Al-SiO系に制御し切れないMnO-Al-SiO系介在物が残留した場合に、それらが有害な組成であると、破壊起点となる場合がある。
 本発明は、このような事情に鑑み検討して完成されたものであり、脱酸生成物として生成するMnO-SiO系介在物あるいはMnO-Al-SiO系介在物を、CaO-Al-SiO系介在物に制御するだけではなく、予め熱間加工時に延伸し微細化し易い組成に制御することで、破壊起点となる介在物が鋼中に残留する可能性をさらに低減し、疲労特性の更なる向上を図ったところに技術的意義を有するものである。
 すなわち、本発明は、脱酸生成物(MnO-SiO系介在物、MnO-Al-SiO系介在物)をCaO-Al-SiO系介在物に制御して疲労特性を改善する技術において、MnO-SiO系またはMnO-Al-SiO系の介在物が残留する場合を想定して開発された技術である。よって、本発明は、上記の介在物が残留する可能性がある全ての態様に適用され得るが、上記の介在物が残留せず鋼材中に上記の介在物を全く含まない態様には適用されない。また、MnO-Al-SiO系介在物が残留する場合、その個数はCaO-Al-SiO系介在物よりも遥かに少なく、おおむね、CaO-Al-SiO系介在物の3%以下である。
 本発明のようにCaO-Al-SiO系介在物のみならずMnO-Al-SiO系介在物の平均組成をも適切に制御された鋼線材を得るためには、例えば、熱間加工時に延伸され難い有害なMnO-SiO系介在物などがすべて、熱間加工時に延伸し微細化し易い組成のMnO-Al-SiO系の介在物に変化するまでの時間を確保する方法が有効である。具体的には例えば、後記する実施例に示すように、Mn、Siなどの合金成分投入後、CaO含有スラグを用いたスラグ精錬開始までの時間(延伸し微細化し易い組成のMnO-Al-SiO系介在物に変化するまでの保持時間)を充分確保する方法が挙げられる。その後、CaO含有スラグを用いたスラグ精錬を行なうことにより、疲労特性向上に有用な組成のCaO-Al-SiO系介在物が得られ、CaO-Al-SiO系に制御されずに残留する介在物が存在した場合にも、残留する介在物は熱延時に延伸しやすく比較的有害度の低いものとなり、疲労特性に一層優れたSiキルド鋼線材が得られる。
 以下、本発明のSiキルド鋼線材を構成する各介在物について詳しく説明する。
 本明細書において、酸化物系介在物とは、当該介在物中に含まれるSおよびNの濃度がそれぞれ2%以下である介在物を意味する。また、上記の各介在物を構成する酸化物の各含有量[以下に詳述する(1B)、(2)、(3A)、(3B)]、または2種若しくは3種の酸化物の合計量[以下に詳述する(1B)、(3A)]の算出に当たっては、いずれの場合も、CaO+Al+SiO+MgO+MnOを100%として規格化した場合の数値を意味する。
 これに対し、CaO-Al-SiO系介在物を定義する(1A)の含有率の算出に当たっては、介在物中に存在する上記5種の酸化物(CaO、Al、SiO、MgO、MnO)の他、不可避的に存在するTiOなどの他の酸化物種も含めた全酸化物質量に対する比率を意味する。
 また、本明細書において、「鋼線材」とは、熱間圧延後の鋼線材だけでなく、その後に伸線(冷間引き抜き)を施した鋼線をも含む趣旨である。すなわち、熱間圧延後、伸線を施した鋼線であって、本発明の上記要件を満足するものも本発明の鋼線材に包含される。
 まず、本発明を特徴付ける酸化物系介在物について説明する。
 本発明のSiキルド鋼線材は、鋼線材中に、(1A)及び(1B)を満足するCaO-Al-SiO系介在物が個数にして80%以上存在し、当該CaO-Al-SiO系介在物の平均組成が(2)の要件を満たすと共に、(3A)を満足するMnO-Al-SiO系介在物の平均組成が(3B)を満たすものである。
 詳細には、本発明のSiキルド鋼線材は、疲労特性向上に適するように、まずCaO-Al-SiO系介在物が適切に制御されていることを前提にしている。そして本発明では、その前提の下、(3A)を満足するMnO-Al-SiO系介在物の平均組成が(3B)の要件を満足するように構成されているところに特徴がある。
[CaO-Al-SiO系介在物について]
 本発明では、鋼線材に存在する酸化物系介在物を後記する方法で測定し、測定領域中の全酸化物系介在物の個数を測定したとき、個数にして80%以上(個数割合)が、下記(1A)及び(1B)を満足するCaO-Al-SiO系介在物であって、当該CaO-Al-SiO系介在物の平均組成が下記(2)を満足することを前提としている。
  (1A)CaO+Al+SiO+MgO+MnO≧85%
  (1B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MgO+MnO≦15%、CaO>MnO
  (2)[CaO+Al+SiO+MgO+MnO]を100%として規格化した場合、CaO:10~60%、Al:3~40%、SiO:30%以上、85%未満 
 このような組成とすることによって疲労特性が向上することは既に知られているが、以下、各要件について説明する。
 まず、上記(1A)について説明する。上記(1A)の左辺:CaO+Al+SiO+MgO+MnOは、介在物中に存在する上記5種の酸化物(CaOなど)の他、不可避的に存在するTiOなどの他の酸化物種も含めた全酸化物質量に対する含有率を意味する。
 更に上記(1B)では、[CaO+Al+SiO2+MgO+MnO]を100%として規格化した場合における、[MgO+MnO]の含有率を15%以下とする。なお、上記(1B)において「CaO>MnO」を規定したのは、後記するMnO-Al-SiO2系介在物と明確に区別するためである。
 上記(1A)および(1B)で定義されるCaO-Al-SiO系介在物は、鋼線材の測定領域中に存在する全酸化物のうち、個数にして(個数割合)80%以上を占めるものである。
 更に、上記の要件を満足するCaO-Al-SiO系介在物の平均組成は下記(2)の要件を満足する。これにより、疲労特性向上に適した組成のCaO-Al-SiO系介在物となる。なお、ここでいう「平均組成」とは個々の介在物の組成ではなく、CaO-Al-SiO系介在物(前記(1A)および(1B)を満足する介在物)全体の平均値である。
  (2)[CaO+Al+SiO+MgO+MnO]を100%として規格化した場合、CaO:10~60%、Al~40%、SiO:30%以上、85%未満 
(2-1)CaO:10~60%
 CaOは、酸化物系介在物を鋼線材の熱延工程で微細化し易い軟質のものにするうえで必須の成分である。CaO-Al-SiO系介在物中のCaO含量が不足すると、高SiO系やSiO・Al系の硬質介在物となって熱延工程で微細化し難く、疲労特性や伸線加工性を劣化させる大きな原因になる。従って、CaO-Al-SiO系介在物中のCaO含量は少なくとも10%以上であり、好ましくは20%以上、より好ましくは25%以上である。しかし、CaO-Al-SiO系介在物中のCaO含量が多くなり過ぎると、該介在物の熱間変形能が低下すると共に、硬質の高CaO系介在物が生成して破壊の起点になる恐れが生じてくるので、CaO含量の上限を60%以下とする。好ましくは55%以下、より好ましくは50%以下である。
(2-2)Al:3~40%
 Alは、酸化物系介在物を、より低融点で且つ軟質のものにするのに有用な成分である。上記作用を有効に発揮させるため、CaO-Al-SiO系介在物中のAl含量を3%以上とする。好ましくは5%以上、より好ましくは15%以上である。しかし、CaO-Al-SiO系介在物中のAl含量が多過ぎると、硬質で微細化し難いアルミナ系介在物となり、やはり熱延工程で微細化し難いものになって破壊や折損の起点となるので、その上限を40%以下とする。好ましくは35%以下、より好ましくは30%以下である。
(2-3)SiO:30%以上、85%未満
 SiOは、上述したCaOおよびAlと共に、低融点で軟質の酸化物系介在物を生成させる上で必須の成分である。CaO-Al-SiO系介在物中のSiO含量が30%未満では、当該介在物がCaOやAlを主体とする硬質の介在物となり、破壊の起点となるため、その下限を30%以上とする。好ましくは35%以上、より好ましくは40%以上である。しかし、CaO-Al-SiO系介在物中のSiO含量が多過ぎると、酸化物系介在物がSiOを主体とする高融点で且つ硬質の介在物になり、断線や破壊の起点になる可能性が高まる。このような傾向は、SiO含量が85%以上になると極めて顕著に表われるので、CaO-Al-SiO系介在物中のSiO含量は85%未満とする。好ましくは70%以下、より好ましくは65%以下である。
[MnO-Al-SiO系介在物について]
 次に、本発明を特徴付けるMnO-Al-SiO系介在物について説明する。前述したように、MnO-Al-SiO系介在物は、溶鋼をMn、Siなどで脱酸する際に生成する介在物(脱酸工程の初期に生成する介在物)であり、従来は、これらをCaO-Al-SiO2系に制御することに主眼が置かれていたため、それ以前のMnO-Al-SiO2系介在物の組成に関する検討は、殆どなされていなかった。結局のところ、CaO-Al-SiO2系に制御すればよいと考えられていたためである。これに対し、本発明では、適切な溶鋼処理によって、CaO-Al-SiO2系に制御する前の段階で、MnO-Al-SiO系介在物の平均組成も適切に制御しているため、その結果、熱間圧延中に延伸しにくい介在物の存在確率がより低くなり、疲労特性が格段に向上するようになった(後記する実施例を参照)。
 詳細には、本明細書におけるMnO-Al-SiO系介在物は、下記(3A)で定義されるものであるが、本発明では、当該MnO-Al-SiO系介在物の平均組成が、下記(3B)の要件を満足するものである。ここで、(3A)中の「MnO>CaO」は、前述したCaO-Al-SiO2系介在物と区別するため、規定したものである。
  (3A)CaO+Al+SiO2+MgO+MnOを100%として規格化した場合、MnO+Al+SiO2≧80%、MnO>CaO
  (3B)MnO-Al-SiO2系介在物の平均組成は、CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO:10~70%、Al:3~50%、SiO:20~75%
 上記(3B)において規定されているMnO-Al-SiO系介在物の組成は、熱間加工時の延伸性が得られる組成を規定したものであり、この組成に制御することにより、熱間加工時に疲労破壊とならない大きさまで延伸される。上記範囲を外れた場合、熱間加工において十分に延伸されず粗大なまま残留し、破壊起点となって疲労特性を低下させる恐れがある。なお、MnO-Al-SiO系介在物には、更にCaO、MgOなどが含まれていても構わない。
 具体的には、SiOは、介在物を非晶質にするために必須の成分である。さらに、MnOおよびAlを適切に含ませることによって、熱間加工時に延伸されやすい組成となる。このような効果を発揮させるため、SiO含有量は20%以上、75%以下、MnOの含有量は10%以上、70%以下、Alの含有量は3%以上、50%以下とする。これらの組成範囲を外れると、いずれかの成分濃度が高くなり、熱間加工時に延伸されにくくなって破壊の起点になる恐れが高まる。SiO含有量について、好ましい下限は30%以上、より好ましくは35%以上であり、好ましい上限は70%以下、より好ましくは65%以下である。また、Al含有量について、好ましい下限は5%以上、より好ましくは10%以上であり、好ましい上限は30%以下である。また、MnO含有量について、好ましい下限は20%以上、好ましい上限は60%以下である。
 なお、本発明では、上記要件を満足する限り、MnO-Al-SiO系介在物を構成する上記以外の酸化物(MgO、CaO)の含有量は何ら、限定するものではない。
すなわち、上記要件を満足する限り、MnO-Al-SiO系介在物を構成するMgO、CaOの含有率は特に限定されないが、MgOについては、おおむね、10%以下であることが好ましい。
 以上、本発明の鋼線材に存在する酸化物系介在物について説明した。
 次に、本発明の鋼中成分について説明する。
 本発明は、ばねなどの素材として有用なSiキルド鋼線材を想定してなされたものであり、当該Siキルド鋼線材に通常含まれる元素を含有することができるが、以下、各元素について説明する。
C:1.2%以下(0%を含まない) 
 Cは、所定の強度を確保するために必要な元素であり、このような特性を有効に発揮させるためには、Cの含有量は0.2%以上とすることが好ましい。より好ましくは0.4%以上である。但し、C含有量が過剰になると鋼材が脆化し、実用的でなくなるので、その上限を1.2%以下とする。C量の好ましい上限は0.8%以下である。
Si:0.2~3%
 Siは、鋼線材の高強度化、および疲労特性の向上に寄与する重要な元素である。更に、軟化抵抗を高め、耐へたり性の向上にも有用な元素である。さらに、MnO-SiO系介在物組成を、疲労特性向上に適したMnO-Al-SiO系介在物に制御するためにも必須の元素である。このような作用を有効に発揮させるため、Si含有量を0.2%以上とする。好ましいSi含有量は、1.2%以上であり、より好ましくは1.8%以上である。しかしながら、Si含有量が過剰になると、凝固中に純粋なSiOが生成する恐れがあり、表面脱炭や表面疵が増加して疲労特性が低下する場合があるため、Si量の上限を3%以下とする。好ましくは2.5%以下であり、より好ましくは2.3%以下である。
Mn:0.1~2%
 Mnは、脱酸剤として作用するほか、焼入れ性を高めて強度向上にも寄与する元素である。このような作用を有効に発揮させるため、Mn含有量の下限を0.1%以上とする。好ましくは0.4%以上であり、より好ましくは0.45%以上である。但し、Mn量が過剰になると、靭性や延性が悪くなるため、その上限を2%以下とする。好ましくは1.3%以下であり、より好ましくは1%以下である。
 更に、SiおよびMnの含有量は、Mn/Si≧0.1の関係を満足することが好ましく、これにより、MnO-Al-SiO系介在物を所望の組成に制御することが容易になる。
 本発明は、上記成分を基本成分として含み、残部は鉄および不可避的不純物である。不可避的不純物としては、例えばP、Sなどが挙げられる。このうちPは、靭性や延性を低下させる元素であり、P量が多くなると、伸線工程やその後の撚り工程で断線が発生する恐れがあるため、その上限を0.03%以下(より好ましくは0.02%以下)とすることが好ましい。また、Sも、上記Pと同様、靭性や延性を劣化させる元素であり、Mnと結合してMnSを生成し、伸線時における断線の起点となるため、その上限を0.03%以下(より好ましくは0.02%以下)とすることが好ましい。
 なお、本発明で規定する介在物(CaO-Al-SiO系およびMnO-Al-SiO系の介在物)を構成する元素であって、上記に記載していない元素(Al、Ca、Mg)の含有量は、上記介在物の量(厳密には酸素の量)に応じて決定されるものである。これらの元素は、一般的なスラグ精錬や合金投入により制御するものであり、具体的な各元素の含有量(酸化物系介在物を含む鋼線全体の含有量)は、上述したように酸素量、すなわち介在物の含有量によっても大きく異なるが、おおむね、Alは0.0001~0.003%、Caは0.0001~0.002%、Mgは0.001%以下(0%を含む)の範囲内に制御されていることが好ましい。
 本発明では、更に以下の元素を選択成分として含有することができる。
Cr:3%以下(0%を含まない)
 Crは、固溶強化により鋼材のマトリックス強度を向上させる元素である。さらにCrは、Mnと同様に、焼入性向上にも有効に作用する。しかしCrが過剰であると鋼材が脆化しやすくなって介在物の感受性が増大するため、疲労特性が劣化する。そこでCr量の上限を3%とすることが好ましい。Crは0.1%以上含有させることがより好ましく、更に好ましくは0.5%以上、更により好ましくは0.9%以上である。またCr量の、より好ましい上限は2%以下、更に好ましくは1.8%以下、更により好ましくは1.5%以下である。
Ni:0.5%以下(0%を含まない)
 Niは、線材製造時の熱間圧延やばね製造時の熱処理の際に生ずるフェライト脱炭を抑制するのに有効な元素であり、必要に応じて線材中に含有させても良い。またNiは、焼入・焼戻し後のばねの靱性を高める作用を有する。好ましいNi量の下限は、0.05%以上、より好ましくは0.1%以上、更に好ましくは0.25%以上である。一方、Ni量が過剰になると、焼入・焼戻し処理で残留オーステナイト量が増大し、引張強さが低下する。そこでNi量の好ましい上限を0.5%以下(より好ましくは0.4%以下、更に好ましくは0.3%以下)とする。
V:0.5%以下(0%を含まない) 
 Vは、炭素や窒素等と結合して微細な炭化物や窒化物等を形成し、耐水素脆性や疲労特性を高めるだけでなく、さらには結晶粒微細化効果を発揮して、靱性、耐力、耐へたり性の向上にも寄与する元素であり、必要に応じて線材中に含有させても良い。好ましいV量の下限は、0.07%以上、より好ましくは0.10%以上である。しかし、V量が過剰になると、焼入加熱時にオーステナイト中に固溶されない炭化物量が増大し、充分な強度や硬さが得られ難くなるだけでなく、窒化物の粗大化を招き、疲労折損が生じ易くなる。またV量が過剰になると、残留オーステナイト量が増加し、得られるばねの硬さが低下する。そこで、V量の好ましい上限を0.5%以下(より好ましくは0.4%以下)とする。
Ti:0.1%以下(0%を含まない)
 Tiは、焼入・焼戻し後の旧オーステナイト結晶粒を微細化し、大気耐久性および耐水素脆性を向上させる元素である。しかしTi量が過剰になると、粗大な窒化物が析出しやすくなり、疲労特性に悪影響を及ぼす。そこでTi量の好ましい上限を、0.1%以下とする。より好ましいTi量は0.01%以下であり、更に好ましくは0.005%以下である。
 上記の選択成分(Cr、Ni、V、Ti)のほか、更にZr、Cu、Nb、Mo、Co、W、B、アルカリ金属、REM(希土類元素)、Ba、およびSrよりなる群から選択される少なくとも一種以上の元素を添加することもできる。これらの元素は、単独で添加しても良いし、2種以上を併用しても良い。これら元素の推奨される含有量は以下の通りである。Zr:0.1%以下(0%を含まない)、Cu:0.7%以下(0%を含まない)、Nb:0.5%以下(0%を含まない)、Mo:0.5%以下(0%を含まない)、Co:0.5%以下(0%を含まない)、W:0.5%以下(0%を含まない)、B:0.005%以下、アルカリ金属:0.002%以下(0%を含まない)、REM:0.01%以下(0%を含まない)、Ba:0.01%以下(0%を含まない)、Sr:0.01%以下(0%を含まない)。
 これらのうち、Zrは、炭窒化物の形成により微細組織が得られ、靭性向上に有効な元素である。しかしながら、Zrの過剰添加は炭窒化物が粗大化し、靭性を劣化させる。そこでZr量の上限を好ましくは0.1%以下(より好ましくは0.0005%以下)とする。
 Cuは、Niと同様、線材製造時の熱間圧延やばね製造時の熱処理の際に生ずるフェライト脱炭を抑制するのに有効な元素であり、必要に応じて線材中に含有させても良い。この作用に加えて、Cuは耐食性を高める作用を有する。しかしCu量が過剰になると、熱間圧延割れが生ずる恐れがある。そこでCu量の好ましい上限を0.7%以下(より好ましくは0.6%以下、更に好ましくは0.5%以下)とする。
 Nbは、Vと同様、炭素や窒素等と結合して微細な炭化物や窒化物等を形成し、耐水素脆性や疲労特性を高めるだけでなく、さらには結晶粒微細化効果を発揮して、靱性、耐力、耐へたり性の向上にも寄与する元素であり、必要に応じて線材中に含有させても良い。好ましいNb量は、0.01%以上(より好ましくは0.02%以上)である。しかし、Nb量が過剰になると、焼入加熱時にオーステナイト中に固溶されない炭化物量が増大し、充分な強度や硬さが得られ難くなるだけでなく、窒化物の粗大化を招き、疲労折損が生じ易くなる。そこでNb量の好ましい上限を0.5%以下(より好ましくは0.4%以下更に好ましく0.3%以下)とする。
 Moは、焼入性向上に有効であることに加えて、軟化抵抗を向上させて耐へたり性の向上に寄与する元素であり、必要に応じて線材中に含有させても良い。好ましいMo量は、0.01%以上(より好ましくは0.05%以上)である。しかし、Mo量が過剰になると、熱間圧延時に過冷組織が発生し易くなり、また延性も劣化する。そこでMoを含有させる場合、その上限を好ましくは0.5%以下(より好ましくは0.4%以下)とする。
 Coは、延靱性を確保して疲労特性の向上に寄与する元素である。好ましいCo量は、0.001%以上(より好ましくは0.003%以上)である。しかし、Coを過剰に添加しても上記効果が飽和するので、Co量の上限を好ましくは0.5%以下(より好ましくは0.1%以下)とする。
 Wは、鋼線の耐食性を向上させるのに有効に作用する元素である。好ましいW量は、0.01%以上(より好ましくは0.03%以上)である。しかし、Wを過剰に添加しても上記効果が飽和するので、W量の上限を好ましくは0.5%以下とする。
 Bは、Pの粒界偏析を防止して粒界を清浄化し、耐水素脆性や靱延性を向上させるのに有効な元素であり、必要に応じて線材中に含有させても良い。好ましいB量は、0.0003%以上(より好ましくは0.0005%以上)である。しかし、B量が過剰になると、Fe23(CB)等のB化合物を形成してフリーBが減少するため、Pの粒界偏析の防止効果が飽和する。更に、このB化合物は粗大な場合が多いため、疲労折損の起点となって疲労特性を低下させる。そこでBを含有させる場合、その上限を好ましくは0.005%以下(より好ましくは0.004%以下)とする。
 アルカリ金属成分、REM(希土類元素)、Ba、およびSrは、本発明で規定する介在物の組成制御に有効な元素であるが、多量に添加すると、逆に上記介在物の組成制御に悪影響を及ぼすため、その含有量を適切に制御することが好ましい。
 ここでアルカリ金属成分はLi、Na、Kを意味し、単独で含有しても良いし、2種以上を併用しても良い。アルカリ金属成分の好ましい含有量は、0.00001~0.002%(より好ましくは0.00003~0.0008%)である。上記含有量は、アルカリ金属成分を単独で含むときは単独の量であり、2種以上を併用するときは合計量である。
 REM(希土類元素)とは、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群であり、これらを単独で、または2種以上を併用することができる。好ましい希土類元素はCe、La、Yである。REMの添加形態は特に限定されず、CeおよびLaを主として含むミッシュメタル(例えばCe:約70%程度、La:約20~30%程度)の形態で添加しても良いし、或いは、Ce、Laなどの単体で添加して良い。REMの好ましい含有量は、0.001~0.01%である。上記含有量は、REMを単独で含むときは単独の量であり、2種以上を併用するときは合計量である。
 BaおよびSrの好ましい範囲は、いずれも、0.0003~0.01%である。
 以上、本発明の鋼中成分について説明した。
 次に、本発明のSiキルド鋼線材を製造するための方法の一例について説明する。上述したように、MnO-Al-SiO系介在物の組成制御のためには、MnO-SiO系介在物などが所望とするMnO-Al-SiO系介在物に変化するまでの時間を確保する方法が有効である。このための手段として、例えば、後記する実施例に示すようにMn、Siなどの合金成分投入後、CaO-Al-SiO系への制御を開始するまでの時間(MnO-Al-SiO系介在物に変化するまでの待ち時間)を充分確保する方法が挙げられる。
 従来は、例えばCaO-Al-SiO系介在物の制御をCaOを含むスラグによる精錬で行う場合、溶鋼中にSi、Mnなどの合金成分を投入した後、速やかに(例えば、後記する実施例のような条件では、おおむね10分程度に)スラグを用いた精錬を開始していた。しかし、この方法では、スラグ精錬によりCaO-Al-SiO系に制御されない介在物が残存した場合に、MnO-Al-SiO系介在物が熱間加工時に延伸しにくい組成のまま残留する可能性がある。
 そこで本発明では、従来のようにMn、Siなどの合金成分を溶鋼中に投入後、速やかにCaO含有スラグを用いた精錬を開始するのではなく、合金成分投入後、当該精錬を開始するまでの時間を充分に確保することとした。これにより、SiやMnなどの合金成分を添加したときに生成する有害な初期脱酸生成物を、比較的熱間加工時に延伸され易い組成への変化を促進することができる。
 上記の保持時間は、使用する取鍋のサイズや撹拌条件などによっても相違するが、後記する実施例のような条件下では約90分間で効果が認められる。
 その後、CaO含有スラグを用いた精錬を行なうと、疲労特性向上に有用な組成のCaO-Al-SiO系介在物が得られる。CaO-Al-SiO系介在物の組成は、このときのスラグ塩基度[CaO/SiO(質量比)など]によって変化するが、上記要件を満足するCaO-Al-SiO系介在物を得るための好ましい塩基度は、おおむね、0.5~1.5である。
 以下、実施例を挙げて本発明をより具体的に説明する。
 実施例
 転炉から出鋼される溶鋼を模擬して溶製した500kgの溶鋼中に、表1に示す種々の合金成分を添加した後、CaO含有スラグを添加して溶鋼処理(スラグ精錬)を実施した。このとき、脱酸生成物(MnO-SiO系、MnO-Al-SiO系の介在物)の組成は、全ての合金成分を添加した後、スラグ精錬開始までの時間を変化させることによって変化させた(表2を参照)。また、CaO-Al-SiO系介在物の組成は、表2に示すようにスラグ塩基度を制御することによって変化させた(表2を参照)。
 次いで、得られた溶鋼を鋳造して鋼塊とした後、1200℃で鍛造し、150mm×150mmの形状とした後、約900℃の温度で熱間圧延し、直径:8.0mmの熱間圧延線材を得た。
 このようにして得られた各線材について、以下の条件で成分を分析すると共に、酸化物系介在物の組成、および疲労特性(折損率)を以下の方法で測定し、評価した。
(1)線材中の成分分析 
 以下の成分については、下記方法で測定した。 
C:燃焼赤外線吸収法 
 Si、Mn、Ni、Cr、V、Ti:ICP発光分光分析法(島津製作所製のICPV-1017)
 Al、Mg、Zr、REM、Mo、Co、Nb、Cu、W、Ba、Li:ICP質量分析法(セイコーインスツルメント社製の型式SPQ8000のICP質量分析装置)
 Ca:フレームレス原子吸光分析法
  O:不活性ガス融解法
(2)酸化物系介在物の組成 
 各線材の縦断面(=L断面;軸心を含む断面であり、観察面積は約50000mm)に存在する短径1.5μm以上の介在物の組成を、以下の方法で測定した。 
 まず、各線材について、上記のL断面を研磨し、該研磨断面に存在する全ての酸化物系介在物(1断面あたり、約300個)について、EPMA(Electron Probe Microanalyzer)で組成分析を行い、酸化物に換算し、個々の介在物の組成を確認するとともに、前記(1A)及び(1B)の条件を満足するCaO-Al-SiO系介在物と、前記(3A)の条件を満たすMnO-Al-SiO系介在物の平均値を求めた。なお、前記の通り、介在物中のS濃度およびN濃度がそれぞれ、2%以下のものを酸化物系介在物とした。このときの、EPMAの測定条件は下記の通りである。
EPMA装置:JXA-8621MX(日本電子株式会社製) 
分析装置(EDS):TN-5500(Tracor Northern社製) 
加速電圧:20kV 
走査電流:5nA 
測定方法:エネルギー分散分析で定量分析(粒子全域を測定)
(3)疲労強度試験(折損率)
 各線材(直径:8.0mm)について、皮削り(直径:7.4mm)→パテンティング→冷間線引き加工(直径:4mm)→オイルテンパー[油焼入れと鉛浴(約450℃)焼戻しの連続工程]にて直径4.0mm×650mmのワイヤを作製した。 
 このようにして得られたワイヤについて、歪取焼鈍相当処理(400℃)→ショットピーニング→低温焼鈍(400℃×20min)を行った後、中村式回転曲げ試験機を用いて、公称応力:880MPa、回転数:4000~5000rpm、中止回数:2×107回で疲労強度試験を行った。破断したワイヤのうち介在物が起因して折損したもの(介在物折損数)について、下記式により折損率(破断率)を求めた。
 折損率(%)
    =[介在物折損数/(介在物折損数+所定回数に達して中止した数)]×100 
 なお、介在物が原因で折損したものは、破断面に介在物が残っているため、介在物に因らずに折損したもの(表面から折れたものなど)とは、例えば顕微鏡観察や破面形状などから、容易に判別することができる。 
 表1に、本実施例で用いた各線材の化学成分組成(鋼種)を、表2に、各線材の介在物組成および疲労試験(折損率)の結果を、夫々示す。なお、表1中、Al、Ca、Mgの量は、Al:0.0001~0.002%、Ca:0.002%以下、Mg:0.0005%以下であった。また、表2において、CaO-Al-SiO系介在物は、本発明で規定する(1A)および(1B)の要件を満足するものであり、MnO-Al-SiO系介在物は、本発明で規定する(3A)の要件を満足するものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの表より、所定のCaO-Al-SiO系介在物およびMnO-Al-SiO系介在物を含む本発明例(表2のNo.1~13)は、MnO-Al-SiO系介在物の組成が本発明者の要件を満足しない比較例(No.14~22)に比べ、疲労特性が向上することが判明した。上記比較例では、いずれも、合金成分投入後、スラグ精錬開始までの時間が充分でなく、本発明例に比べて短かったため、MnO-Al-SiO系介在物が所望の組成とならなかったと考えられる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年1月15日出願の日本特許出願(特願2013-004500)に基づくものであり、その内容はここに参照として取り込まれる。
 発明のSiキルド鋼線材は、高い疲労特性が要求される加工品、例えば、自動車のエンジンやサスペンションなどに用いられる弁ばね、クラッチばね、ブレーキばね、懸架ばねなどのばね類;スチールコードなどの鋼線類などの素材として有用であり、特にばね用鋼として極めて有用である。

Claims (3)

  1.  C:1.2%以下(0%を含まない、「%」は特に断らない限り、質量%を意味する。以下同じ)、
     Si:0.2~3%、 
     Mn:0.1~2%
    を含有し、
     残部:鉄および不可避不純物であり、 
     鋼線材中に存在する酸化物系介在物について、個数にして80%以上が、下記(1A)及び(1B)の組成を満足するCaO-Al-SiO2系介在物を含むSiキルド鋼において、 
      (1A)CaO+Al+SiO+MgO+MnO≧85%
      (1B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MgO+MnO≦15%、CaO>MnO
     前記CaO-Al-SiO系介在物の平均組成が下記(2)を満足し、
      (2)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、CaO:10~60%、Al:3~40%、SiO:30%以上、85%未満、
     且つ、
     下記(3A)を満足するMnO-Al-SiO系介在物の平均組成が下記(3B)を満足することを特徴とする疲労特性に優れたSiキルド鋼線材。
      (3A)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO+Al+SiO≧80%、MnO>CaO
      (3B)CaO+Al+SiO+MgO+MnOを100%として規格化した場合、MnO:10~70%、Al:3~50%、SiO:20~75%
  2.  鋼中成分について、更に、下記元素の1種以上を含有する請求項1に記載のSiキルド鋼線材。
     Cr:3%以下(0%を含まない)
     Ni:0.5%以下(0%を含まない)
     V:0.5%以下(0%を含まない)
     Ti:0.1%以下(0%を含まない)
     Zr:0.1%以下(0%を含まない)
     Cu:0.7%以下(0%を含まない)
     Nb:0.5%以下(0%を含まない)
     Mo:0.5%以下(0%を含まない)
     Co:0.5%以下(0%を含まない)
     W:0.5%以下(0%を含まない)
     B:0.005%以下(0%を含まない)
     アルカリ金属:0.002%以下(0%を含まない)
     REM:0.01%以下(0%を含まない)
     Ba:0.01%以下(0%を含まない)
     Sr:0.01%以下(0%を含まない)
  3.  請求項1または2に記載のSiキルド鋼線材から得られたばね。
PCT/JP2014/050594 2013-01-15 2014-01-15 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね WO2014112532A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112015016716A BR112015016716A2 (pt) 2013-01-15 2014-01-15 fio-máquina de aço acalmado com si com excelentes propriedades de fadiga, e mola que usa a mesma
US14/761,125 US20150369322A1 (en) 2013-01-15 2014-01-15 Si-killed steel wire rod having excellent fatigue properties, and spring using same
KR1020157017995A KR101711776B1 (ko) 2013-01-15 2014-01-15 피로 특성이 우수한 Si 킬드 강선재 및 그것을 이용한 스프링
EP14740895.9A EP2947168B1 (en) 2013-01-15 2014-01-15 Si-killed steel wire rod having excellent fatigue properties, and spring using same
CN201480004560.2A CN104919071B (zh) 2013-01-15 2014-01-15 疲劳特性优异的Si镇静钢线材、以及使用其的弹簧
MX2015009129A MX2015009129A (es) 2013-01-15 2014-01-15 Alambron de acero calmado con silice que tiene propiedades de fatiga excelentes, y resorte que usa el mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004500A JP5937973B2 (ja) 2013-01-15 2013-01-15 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
JP2013-004500 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112532A1 true WO2014112532A1 (ja) 2014-07-24

Family

ID=51209621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050594 WO2014112532A1 (ja) 2013-01-15 2014-01-15 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね

Country Status (8)

Country Link
US (1) US20150369322A1 (ja)
EP (1) EP2947168B1 (ja)
JP (1) JP5937973B2 (ja)
KR (1) KR101711776B1 (ja)
CN (1) CN104919071B (ja)
BR (1) BR112015016716A2 (ja)
MX (1) MX2015009129A (ja)
WO (1) WO2014112532A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105525208A (zh) * 2016-01-13 2016-04-27 铜陵百荣新型材料铸件有限公司 一种高淬透性弹簧钢的热处理工艺
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163735A (ja) * 2014-01-29 2015-09-10 株式会社神戸製鋼所 疲労特性に優れたばね用鋼線材、およびばね
JP6462376B2 (ja) * 2015-01-23 2019-01-30 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材および軸受部品
KR101745192B1 (ko) * 2015-12-04 2017-06-09 현대자동차주식회사 초고강도 스프링강
CN105568163A (zh) * 2015-12-31 2016-05-11 安徽红桥金属制造有限公司 一种发动机用压缩弹簧及其生产工艺
KR101776490B1 (ko) 2016-04-15 2017-09-08 현대자동차주식회사 내식성이 우수한 고강도 스프링강
KR101776491B1 (ko) * 2016-04-15 2017-09-20 현대자동차주식회사 내식성이 우수한 고강도 스프링강
CN105838966A (zh) * 2016-05-18 2016-08-10 安徽合矿机械股份有限公司 一种汽车齿轮用耐疲劳材料
CN105908070A (zh) * 2016-05-18 2016-08-31 安徽合矿机械股份有限公司 一种抗脆性破裂性好的汽车用弹簧材料
CN106086651A (zh) * 2016-08-03 2016-11-09 苏州市虎丘区浒墅关弹簧厂 一种弹簧用高韧性合金材料
CN111155024B (zh) * 2020-01-19 2021-05-07 江苏省沙钢钢铁研究院有限公司 一种帘线钢超低熔点塑性夹杂物控制方法
CN111549291A (zh) * 2020-06-22 2020-08-18 马拉兹(江苏)电梯导轨有限公司 一种电梯导轨用镇静钢及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234748A (ja) * 1988-07-22 1990-02-05 Kobe Steel Ltd 耐疲労性に優れた珪素キルド鋼
JPH0674484B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式曾社 高清浄度鋼
JPH0674485B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式會社 高清浄度鋼
JPH076037B2 (ja) 1986-12-01 1995-01-25 新日本製鐵株式会社 疲労強度の優れたばね鋼
JPH10130714A (ja) * 1996-10-31 1998-05-19 Nkk Corp 伸線性及び清浄度に優れた線材用鋼の製造方法
JP2898472B2 (ja) 1992-05-26 1999-06-02 株式会社 神戸製鋼所 疲労特性の優れたばね用鋼及びばね用鋼線並びにばね
WO2000077271A1 (fr) * 1999-06-16 2000-12-21 Nippon Steel Corporation Tige de fil d'acier a teneur elevee en carbone presentant une excellente capacite d'etirage et de resistance a la fatigue apres etirage du fil
JP2008163424A (ja) * 2006-12-28 2008-07-17 Kobe Steel Ltd 疲労特性に優れたSiキルド鋼線材およびばね
JP4134204B2 (ja) 2006-06-09 2008-08-20 株式会社神戸製鋼所 高清浄度ばね用鋼
JP4347786B2 (ja) 2004-11-24 2009-10-21 株式会社神戸製鋼所 高清浄度ばね用鋼
JP2009275262A (ja) * 2008-05-15 2009-11-26 Kobe Steel Ltd 疲労特性に優れた高清浄度ばね用鋼および高清浄度ばね
JP2010024539A (ja) * 2007-11-19 2010-02-04 Kobe Steel Ltd 疲労特性に優れたばね鋼およびばね
JP4423050B2 (ja) 2003-06-18 2010-03-03 株式会社神戸製鋼所 疲労強度および冷間加工性に優れた高清浄度鋼

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834748B2 (ja) * 1988-11-25 1998-12-14 松下電工株式会社 センサ
JP2934748B2 (ja) * 1990-04-09 1999-08-16 セイコーインスツルメンツ株式会社 熱記録方法
JPH04134204A (ja) 1990-09-26 1992-05-08 Sumitomo Electric Ind Ltd 歪センサ用光ファイバケーブル
JPH04347786A (ja) 1991-05-24 1992-12-02 Mitsubishi Plastics Ind Ltd Icメモリ内蔵記憶媒体
JPH0674485A (ja) 1991-09-30 1994-03-15 Toyotomi Co Ltd 冷風除湿機のドレン水処理構造
JP2713046B2 (ja) 1992-08-27 1998-02-16 ダイキン工業株式会社 埋込型空気調和機の据付枠構造
CN100471973C (zh) * 2005-09-05 2009-03-25 株式会社神户制钢所 具有优异可拉拔性和疲劳性能的钢线材及其制造方法
EP2028285B1 (en) * 2006-06-09 2016-03-23 Kabushiki Kaisha Kobe Seiko Sho High cleanliness spring steel and high cleanliness spring excellent in fatigue characteristics
KR101168480B1 (ko) * 2006-12-28 2012-07-26 가부시키가이샤 고베 세이코쇼 Si 킬드강 선재 및 스프링
WO2008082153A1 (en) * 2006-12-28 2008-07-10 Posco Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
WO2008081673A1 (ja) * 2006-12-28 2008-07-10 Kabushiki Kaisha Kobe Seiko Sho 疲労特性に優れたSiキルド鋼線材およびばね
JP4177403B2 (ja) * 2006-12-28 2008-11-05 株式会社神戸製鋼所 疲労特性に優れたSiキルド鋼線材およびばね
JP4163239B1 (ja) * 2007-05-25 2008-10-08 株式会社神戸製鋼所 疲労特性に優れた高清浄度ばね用鋼および高清浄度ばね
CN101440455A (zh) * 2007-11-19 2009-05-27 株式会社神户制钢所 疲劳特性优良的弹簧钢及弹簧

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674484B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式曾社 高清浄度鋼
JPH0674485B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式會社 高清浄度鋼
JPH076037B2 (ja) 1986-12-01 1995-01-25 新日本製鐵株式会社 疲労強度の優れたばね鋼
JPH0234748A (ja) * 1988-07-22 1990-02-05 Kobe Steel Ltd 耐疲労性に優れた珪素キルド鋼
JP2898472B2 (ja) 1992-05-26 1999-06-02 株式会社 神戸製鋼所 疲労特性の優れたばね用鋼及びばね用鋼線並びにばね
JPH10130714A (ja) * 1996-10-31 1998-05-19 Nkk Corp 伸線性及び清浄度に優れた線材用鋼の製造方法
WO2000077271A1 (fr) * 1999-06-16 2000-12-21 Nippon Steel Corporation Tige de fil d'acier a teneur elevee en carbone presentant une excellente capacite d'etirage et de resistance a la fatigue apres etirage du fil
JP4423050B2 (ja) 2003-06-18 2010-03-03 株式会社神戸製鋼所 疲労強度および冷間加工性に優れた高清浄度鋼
JP4347786B2 (ja) 2004-11-24 2009-10-21 株式会社神戸製鋼所 高清浄度ばね用鋼
JP4134204B2 (ja) 2006-06-09 2008-08-20 株式会社神戸製鋼所 高清浄度ばね用鋼
JP2008163424A (ja) * 2006-12-28 2008-07-17 Kobe Steel Ltd 疲労特性に優れたSiキルド鋼線材およびばね
JP2010024539A (ja) * 2007-11-19 2010-02-04 Kobe Steel Ltd 疲労特性に優れたばね鋼およびばね
JP2009275262A (ja) * 2008-05-15 2009-11-26 Kobe Steel Ltd 疲労特性に優れた高清浄度ばね用鋼および高清浄度ばね

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947168A4
TSUYOSHI MIMURA: "182 and 183rd Nishiyama Memorial Technical Lecture", 2004, article "Inclusion Control and High Cleanliness Steel Production Technology", pages: 125

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring
CN105525208A (zh) * 2016-01-13 2016-04-27 铜陵百荣新型材料铸件有限公司 一种高淬透性弹簧钢的热处理工艺

Also Published As

Publication number Publication date
BR112015016716A2 (pt) 2017-07-11
CN104919071A (zh) 2015-09-16
KR20150093210A (ko) 2015-08-17
MX2015009129A (es) 2015-10-12
EP2947168A4 (en) 2016-08-10
JP2014136810A (ja) 2014-07-28
EP2947168A1 (en) 2015-11-25
KR101711776B1 (ko) 2017-03-02
US20150369322A1 (en) 2015-12-24
EP2947168B1 (en) 2018-03-07
JP5937973B2 (ja) 2016-06-22
CN104919071B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5937973B2 (ja) 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
US10350676B2 (en) Spring steel with excellent fatigue resistance and method of manufacturing the same
JP5324311B2 (ja) 高強度ばね用中空シームレスパイプ
WO2011142356A1 (ja) 高強度鋼板及びその製造方法
JP4478072B2 (ja) 高強度ばね用鋼
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP5047871B2 (ja) 伸線加工性と耐疲労特性に優れた鋼線材
KR101815410B1 (ko) 피로 특성이 우수한 스프링용 강선재 및 스프링
JP6794012B2 (ja) 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼
JP2013108171A (ja) 耐疲労特性に優れたばね鋼及びその製造方法
JP5316495B2 (ja) 軸受鋼鋼材
JP2009256771A (ja) 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法
JP5342827B2 (ja) 疲労特性に優れたばね鋼およびばね
JP4315825B2 (ja) 疲労特性に優れた高清浄ばね用鋼線
JP2004300481A (ja) 耐へたり性及び耐割れ性に優れたばね用鋼線
JP2001032044A (ja) 高強度ボルト用鋼及び高強度ボルトの製造方法
JP2000178685A (ja) 疲労特性及び伸線加工性に優れた鋼線材とその製造方法
JP5058892B2 (ja) 伸びフランジ性に優れたdp鋼板およびその製造方法
JP4515347B2 (ja) ばね用鋼線材およびばね用鋼線の耐疲労性の判定方法
JP4134223B2 (ja) 疲労特性に優れたSiキルド鋼線材およびばね
JP4134224B2 (ja) 疲労特性に優れたSiキルド鋼線材およびばね
JPH11199982A (ja) 高清浄度圧延鋼材
JP4134225B2 (ja) 疲労特性に優れたSiキルド鋼線材およびばね
JP2003342688A (ja) 耐疲労特性に優れたばね鋼
JPH07316732A (ja) 冷間鍛造性、被削性並びに焼入れ焼戻し後の機械的性質および疲労強度特性に優れた機械構造用鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157017995

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014740895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009129

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016716

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015016716

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150713