WO2014104710A1 - 비수성 전해액 및 이를 포함하는 리튬 이차 전지 - Google Patents

비수성 전해액 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2014104710A1
WO2014104710A1 PCT/KR2013/012101 KR2013012101W WO2014104710A1 WO 2014104710 A1 WO2014104710 A1 WO 2014104710A1 KR 2013012101 W KR2013012101 W KR 2013012101W WO 2014104710 A1 WO2014104710 A1 WO 2014104710A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
aqueous electrolyte
lithium
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2013/012101
Other languages
English (en)
French (fr)
Inventor
임영민
이철행
안경호
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13834349.6A priority Critical patent/EP2922136B1/en
Priority to CN201380003281.XA priority patent/CN104011927B/zh
Priority to JP2014554678A priority patent/JP5948660B2/ja
Priority to US14/197,423 priority patent/US9620819B2/en
Publication of WO2014104710A1 publication Critical patent/WO2014104710A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte containing propylene carbonate (PC) and lithium bis (fluorosulfonyl) imide (LiFSI) and a lithium secondary battery comprising the same.
  • PC propylene carbonate
  • LiFSI lithium bis (fluorosulfonyl) imide
  • lithium secondary batteries having high energy density and voltage among these secondary batteries are commercially used and widely used.
  • Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
  • the active material is applied to a current collector with a suitable thickness and length, or the active material itself is coated in a film shape to be wound or laminated with a separator, which is an insulator, to form an electrode group, and then placed in a can or a similar container, and then injected with an electrolyte solution.
  • a secondary battery is manufactured.
  • lithium secondary battery In such a lithium secondary battery, charging and discharging progress while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode. At this time, since lithium is highly reactive, it may react with the carbon electrode to generate Li 2 CO 3 , LiO, or LiOH to form a film on the surface of the negative electrode.
  • a coating is called a solid electrolyte interface (SEI) coating, and the SEI coating formed at the initial stage of charging may prevent a reaction between lithium ions and a carbon negative electrode or other material during charging and discharging.
  • SEI solid electrolyte interface
  • only lithium ions can be passed through the role of an ion tunnel. The ion tunnel serves to prevent the organic solvents of a large molecular weight electrolyte which solvates lithium ions and move together and are co-intercalated with the carbon anode to decay the structure of the carbon anode.
  • a solid SEI film must be formed on the negative electrode of the lithium secondary battery. Once formed, the SEI film prevents the reaction between lithium ions and the negative electrode or other materials during repeated charge and discharge cycles by using a battery, and serves as an ion tunnel that passes only lithium ions between the electrolyte and the negative electrode. It will play a role.
  • EC ethylene carbonate
  • EC has a high melting point, which limits its use temperature, and can cause a significant decrease in battery performance at low temperatures.
  • the problem to be solved by the present invention is not only to improve the low-temperature output characteristics, but also to improve the high-temperature cycle characteristics, high-temperature storage output characteristics, capacity characteristics and swelling characteristics, non-aqueous electrolyte for lithium secondary batteries and lithium secondary comprising the same It is to provide a battery.
  • the present invention i) a non-aqueous organic solvent containing propylene carbonate (PC); And ii) lithium bis (fluorosulfonyl) imide (LiFSI).
  • the present invention is a positive electrode comprising a positive electrode active material; A negative electrode including a negative electrode active material; A separator interposed between the positive electrode and the negative electrode; And it provides a lithium secondary battery comprising the non-aqueous electrolyte.
  • a solid SEI film is formed at the negative electrode during initial charging of a lithium secondary battery including the same to improve low temperature output characteristics, as well as high temperature cycle characteristics, high temperature storage output characteristics, capacity characteristics, and swelling Properties can be improved.
  • Example 1 is a graph showing the results of measuring low-temperature output characteristics according to SOC (charge depth) of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 1.
  • SOC charge depth
  • FIG. 2 is a graph showing results of measuring capacity characteristics according to cycle number of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 2.
  • FIG. 2 is a graph showing results of measuring capacity characteristics according to cycle number of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 2.
  • FIG. 3 is a graph illustrating results of measuring output characteristics at SOC 50% according to storage periods after high temperature storage of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 3.
  • FIG. 3 is a graph illustrating results of measuring output characteristics at SOC 50% according to storage periods after high temperature storage of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 3.
  • FIG. 4 is a graph showing results of measuring capacity characteristics according to storage periods after high temperature storage of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 4.
  • FIG. 4 is a graph showing results of measuring capacity characteristics according to storage periods after high temperature storage of Example 1 and the lithium secondary batteries of Comparative Examples 1 to 3 according to Experimental Example 4.
  • FIG. 5 is a graph illustrating results of measuring swelling characteristics of the lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 after storage at high temperatures according to Experimental Example 5.
  • FIG. 5 is a graph illustrating results of measuring swelling characteristics of the lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 after storage at high temperatures according to Experimental Example 5.
  • FIG. 6 is a graph showing the results of measuring low-temperature output characteristics according to SOC (charge depth) of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 according to Experimental Example 6.
  • SOC charge depth
  • FIG. 7 is a graph showing results of measuring capacity characteristics according to cycle numbers of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4, according to Experimental Example 7.
  • FIG. 7 is a graph showing results of measuring capacity characteristics according to cycle numbers of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4, according to Experimental Example 7.
  • FIG. 8 is a graph illustrating results of measuring capacity characteristics according to storage periods after high temperature storage of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 according to Experimental Example 8.
  • FIG. 8 is a graph illustrating results of measuring capacity characteristics according to storage periods after high temperature storage of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 according to Experimental Example 8.
  • the non-aqueous electrolyte according to an embodiment of the present invention may include a non-aqueous organic solvent including propylene carbonate (PC) and lithium bis (fluorosulfonyl) imide (LiFSI). have.
  • PC propylene carbonate
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the capacity of the battery may be improved by suppressing decomposition of the surface of the cathode, which may occur during a high temperature cycle operation of 55 ° C. or higher, and preventing oxidation of the electrolyte, thereby suppressing swelling.
  • EC ethylene carbonate
  • electrolytes for lithium ion batteries.
  • EC has a high melting point, which limits its use temperature, resulting in significant battery performance degradation at low temperatures.
  • an electrolyte containing propylene carbonate has an advantage that it can play an excellent role as an electrolyte having a wider temperature range than the electrolyte of ethylene carbonate.
  • propylene carbonate is used as a solvent with a lithium salt such as LiPF 6
  • a lithium salt such as LiPF 6
  • propylene carbonate is a process of forming an SEI film in a lithium ion battery using a carbon electrode, and lithium ion solvated by propylene carbonate in a carbon layer.
  • Huge amounts of irreversible reactions can occur in the intervening process. This may cause a problem that the performance of the battery, such as high temperature cycle characteristics are degraded.
  • the problem of low temperature characteristics caused by the use of ethylene carbonate was solved by using a low melting point propylene carbonate, and the above problems when using a lithium salt such as propylene carbonate and LiPF 6 together with lithium bisfluorosulfonyl It can solve by combining these using an imide.
  • the lithium bisfluorosulfonylimide has a concentration in the non-aqueous electrolyte solution is preferably 0.1 mole / l to 2 mole / l, more preferably 0.6 mole / l to 1.5 mole / l Do.
  • concentration of the lithium bisfluorosulfonylimide is less than the above range, the effect of improving the low temperature output and the high temperature cycle characteristics of the battery is insignificant.
  • the concentration of the lithium bisfluorosulfonylimide exceeds the above range, When the battery is charged and discharged, side reactions in the electrolyte may be excessively generated, resulting in a swelling phenomenon.
  • the non-aqueous electrolyte solution of the present invention may further include a lithium salt.
  • the lithium salt may be used a lithium salt commonly used in the art, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 And LiC 4 BO 8 It may include any one selected from the group consisting of or a mixture of two or more thereof.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide by adjusting the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide, it is possible to improve the low-temperature output characteristics, capacity characteristics after high-temperature storage and cycle characteristics of the lithium secondary battery.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is preferably 1: 6 to 9 as molar ratio.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is out of the range of the molar ratio, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur.
  • propylene carbonate as a non-aqueous organic solvent may be included 5 parts by weight to 60 parts by weight, preferably 10 parts by weight to 50 parts by weight based on 100 parts by weight of the non-aqueous organic solvent.
  • a swelling phenomenon may occur in which a gas is continuously generated due to decomposition of the surface of the positive electrode during high temperature cycles, and when the content of the propylene carbonate exceeds 60 parts by weight, the initial rechargeable battery negative electrode There is a possibility that it is difficult to form a solid SEI film at.
  • non-aqueous organic solvent which may be included in the non-aqueous electrolyte solution in addition to the propylene carbonate, decomposition may be minimized by an oxidation reaction or the like during the charging and discharging process of the battery. none.
  • the non-aqueous organic solvent preferably does not include ethylene carbonate (EC), for example ethyl propionate (ep), methyl propionate (methyl) Propionate (MP), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate ( EPC), ester-based, ether-based and ketone-based organic solvents may be any one selected from the group consisting of, or a mixture of two or more thereof.
  • EC ethylene carbonate
  • ep ethyl propionate
  • MP methyl propionate
  • BEC butylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • the non-aqueous electrolyte according to an embodiment of the present invention may further include a vinylidene carbonate compound and a sultone compound.
  • the vinylidene carbonate compound may serve to form an SEI film.
  • the kind of the vinylidene carbonate-based compound is not limited as long as it can play the role, for example, vinylene carbonate (VC), vinylene ethylene carbonate (VEC), or a mixture thereof. It may include. Among these, it is preferable to include especially vinylene carbonate.
  • the sultone-based compound which may be further included according to an embodiment of the present invention, may serve to improve low temperature output and high temperature cycle characteristics of the battery.
  • the type of the sultone-based compound is not limited as long as it can play the role, for example, the 1,3-propane sultone (PS), 1,4-butane sultone, 1,3 It may include any one selected from the group consisting of propenesultone, or a mixture of two or more thereof. Especially, it is preferable to contain 1, 3- propane sultone.
  • a lithium secondary battery includes a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; A separator interposed between the positive electrode and the negative electrode; And it may include the non-aqueous electrolyte.
  • the positive electrode active material may include a manganese spinel active material, a lithium metal oxide, or a mixture thereof.
  • a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more thereof.
  • the crystalline carbon is graphite such as natural graphite and artificial graphite. (graphite) may comprise carbon.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer This may be a single or two or more laminated.
  • a porous nonwoven fabrics such as high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used, but are not limited thereto.
  • PC Ethylmethyl carbonate
  • DMC Dimethyl carbonate
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared as described above were manufactured in a conventional manner with a PE separator, and then the non-aqueous electrolyte solution was prepared and then the lithium secondary battery was completed.
  • LiPF 6 0.1 mole / L and lithium bisfluorosulfonylimide (LiFSI) were used. Secondary batteries were prepared.
  • Ethylene carbonate (EC): Ethylmethyl carbonate (EMC): Dimethyl carbonate (DMC) 3: 3: 4
  • a non-aqueous organic solvent having a composition of (volume ratio) was used, except that LiPF 6 was used alone as a lithium salt.
  • LiPF 6 was used alone as a lithium salt.
  • Ethylene carbonate (EC): ethylmethyl carbonate (EMC): dimethyl carbonate (DMC) was carried out in the same manner as in Example 1, except that a non-aqueous organic solvent having a composition of 3: 3: 4 (volume ratio) was used. A nonaqueous electrolyte solution and a lithium secondary battery were prepared.
  • Example 2 Except for using LiPF 6 alone as a lithium salt, it was carried out in the same manner as in Example 1 to prepare a non-aqueous electrolyte solution and a lithium secondary battery.
  • LiPF 6 0.1 mole / L and lithium bisfluorosulfonylimide (LiFSI) 0.5 mole / L were used. Secondary batteries were prepared.
  • the low temperature output was calculated by the voltage difference generated by discharging the lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 at 0.5C for 10 seconds for each SOC (charge depth) at -30 ° C. The results are shown in FIG.
  • the lithium secondary battery of Example 1 has better output characteristics from 20% SOC than the lithium secondary batteries of Comparative Examples 1 to 3, and its output characteristics are more remarkable than those of the comparative examples after 60%. I started to see the difference. In addition, when the SOC is 100%, it can be seen that the lithium secondary battery of Example 1 has improved low-temperature output characteristics by about 1.2 to 1.4 times or more as compared to the lithium secondary batteries of Comparative Examples 1 to 3.
  • the low temperature characteristics can be significantly improved by using propylene carbonate without using ethylene carbonate as the non-aqueous organic solvent.
  • Example 1 and Comparative Examples 1 to 3 were charged at 1 C to 4.2 V / 38 mA at 55 ° C. under constant current / constant voltage (CC / CV) conditions, and then discharged at 3 C to 3.03 V under constant current (CC) conditions. And the discharge capacity was measured. This was repeated 1 to 900 cycles, the measured discharge capacity is shown in FIG.
  • the lithium secondary battery of Example 1 according to the present invention had a capacity retention similar to that of the lithium secondary batteries of Comparative Examples 1 to 3 until the 200th cycle. There was a significant difference in.
  • the lithium secondary battery (Example 1) using a combination of propylene carbonate and lithium bisfluorosulfonylimide according to the embodiment of the present invention has a cycle characteristic at a high temperature of 55 °C compared to Comparative Examples 1 to 3 It can be seen that the discharge capacity characteristics according to the remarkably excellent.
  • the lithium secondary battery of Example 1 has an effect of improving capacity characteristics after high temperature storage as compared with the lithium secondary batteries of Comparative Examples 1 to 3.
  • the thickness of the lithium secondary battery of Example 1 was significantly increased after 2 weeks of storage period, whereas the thickness of the lithium secondary battery of Example 1 was smaller than that of the comparative examples.
  • the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were discharged at -30 ° C. for 10 seconds at 0.5C per SOC (depth of charge). The low temperature output was calculated from the voltage difference. The results are shown in FIG.
  • the lithium secondary battery of Example 1 having a molar ratio of LiPF 6 and LiFSI of 1: 9 is output from SOC 20% compared to the lithium secondary battery of Comparative Example 4 having a molar ratio of LiPF 6 and LiFSI of 1: 5.
  • the characteristics were remarkably excellent, and since SOC was 60%, the output characteristics began to show more remarkable difference with the lithium secondary battery of Comparative Example 4.
  • the lithium secondary battery of Example 2 in which the molar ratio of LiPF 6 and LiFSI is 1: 6 was lower than the lithium secondary battery of Example 1 in which the molar ratio of LiPF 6 and LiFSI was 1: 9.
  • LiPF 6 and a molar ratio of 1 LiFSI I showed the characteristics similar to the output 5, the lithium secondary battery of Comparative Example 4:
  • the lithium secondary battery of 6 in the second embodiment is that the mole ratio of LiPF 6 and LiFSI 1. From the SOC 90% or more, it can be seen that the low temperature output characteristics are improved compared to the lithium secondary battery of Comparative Example 4.
  • the low-temperature output characteristics of the lithium secondary battery can be improved by controlling the molar ratio of LiPF 6 and LiFSI.
  • the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were 4.2V at 55 ° C under constant current / constant voltage (CC / CV) conditions. Charged at 1 C up to / 38 mA, then discharged at 3 C up to 3.03 V under constant current (CC) conditions, the discharge capacity was measured. This was repeated 1 to 1000 cycles, the measured discharge capacity is shown in FIG.
  • the lithium secondary battery of Example 1 according to the present invention had a capacity retention similar to that of the lithium secondary battery of Comparative Example 4 up to about the 70th cycle, but was cycled 1000 times after the 70th cycle. There was a significant difference of up to about 7% in capacity retention.
  • the lithium secondary battery of Example 2 showed a remarkable difference from Comparative Example 4 in capacity retention rate up to about 600th cycle.
  • the slope of the graph may be remarkably decreased.
  • the lithium secondary battery of Example 2 has a difference of about 3 to 5% in capacity retention ratio from the 900th cycle to the 1000th cycle compared to the lithium secondary battery of Comparative Example 4.
  • the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were stored at 60 ° C. for 14 weeks, and then constant current / constant voltage
  • the battery was charged at 1 C up to 4.2 V / 38 mA under (CC / CV) conditions, then discharged at 1 C up to 3.0 V under constant current (CC) conditions, and the discharge capacity thereof was measured.
  • the results are shown in FIG.
  • the capacity characteristics of the lithium secondary batteries of Examples 1, 2 and Comparative Example 4 were not changed until 1 week of storage, but after 2 weeks of storage, the lithium secondary batteries of Examples 1 and 2 were compared. Compared with the lithium secondary battery of Example 4, it turns out that the difference of capacity characteristics becomes large.
  • the lithium secondary battery of Example 1 had a gentle slope of the graph until the storage period of 14 weeks. As a result, the lithium secondary battery of Example 1 showed a difference in capacity retention of about 6% or more compared with the lithium secondary battery of Comparative Example 4 at the storage period of 14 weeks.
  • the lithium secondary battery of Comparative Example 4 can be seen that the slope of the graph remarkably falls from 2 weeks after the storage period, the capacity characteristics gradually decrease as the storage period increases.
  • the molar ratio of LiPF 6 and LiFSI it is possible to improve the high temperature storage characteristics of the lithium secondary battery, especially when the molar ratio of LiPF 6 and LiFSI is 1: 6 to 1: 9, compared to the case out of this range It can be seen that the high temperature storage characteristics of the lithium secondary battery are remarkably excellent.
  • a solid SEI film is formed at the negative electrode during initial charging of the lithium secondary battery to improve low temperature output characteristics, as well as high temperature cycle characteristics and high temperature storage. Since output characteristics, capacity characteristics, and swelling characteristics can be improved, they can be usefully applied to lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 프로필렌 카보네이트(PC) 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 비수성 전해액 및 이를 포함하는 리튬 이차 전지를 제공한다. 본 발명의 비수성 전해액을 포함하는 리튬 이차 전지는 저온 출력 특성, 고온 사이클 특성, 고온 저장 후 출력 특성, 용량 특성 및 스웰링 특성을 향상시킬 수 있다.

Description

비수성 전해액 및 이를 포함하는 리튬 이차 전지
본 발명은 프로필렌 카보네이트(Propylene carbonate; PC) 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 비수성 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
리튬 이차 전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차 전지를 제조한다.
이러한 리튬 이차 전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 흑연 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3, LiO 또는 LiOH 등을 생성시켜 음극의 표면에 피막을 형성할 수 있다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 피막이라고 하는데, 충전 초기에 형성된 SEI 피막은 충방전중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아줄 수 있다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킬 수 있다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다.
따라서, 리튬 이차 전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차 전지의 음극에 견고한 SEI 피막을 형성하여야만 한다. SEI 피막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬 이온과 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다.
일반적으로, 리튬 이온 전지의 전해질로는 에틸렌 카보네이트(Ethylene Carbonate; EC)를 기본으로 한 이/삼 성분계 전해질이 사용된다. 그러나 EC는 녹는점이 높아서 사용 온도가 제한되어 있고, 저온에 있어서 상당한 전지 성능 저하를 가져올 수 있다.
본 발명의 해결하고자 하는 과제는 저온 출력 특성을 개선할 뿐 아니라, 고온 사이클 특성, 고온 저장 후 출력 특성, 용량 특성 및 스웰링 특성을 향상시킬 수 있는 리튬 이차 전지용 비수성 전해액 및 이를 포함하는 리튬 이차 전지를 제공하는 것이다.
상기 해결하고자 하는 과제를 해결하기 위하여, 본 발명은 i) 프로필렌 카보네이트(PC)를 포함하는 비수성 유기 용매; 및 ii) 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 비수성 전해액을 제공한다.
또한, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 상기 비수성 전해액을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 비수성 전해액에 의하면, 이를 포함하는 리튬 이차 전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 특성, 고온 저장 후 출력 특성, 용량 특성 및 스웰링 특성을 향상시킬 수 있다.
도 1은 실험예 1에 따라, 실시예 1, 및 비교예 1 내지 3의 리튬 이차 전지의 SOC(충전심도)에 따른 저온 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 2는 실험예 2에 따라, 실시예 1, 및 비교예 1 내지 3의 리튬 이차 전지의 사이클 수에 따른 용량 특성을 측정한 결과를 나타내는 그래프이다.
도 3은 실험예 3에 따라, 실시예 1, 및 비교예 1 내지 3의 리튬 이차 전지의 고온 저장 후 저장 기간에 따른 SOC 50%에서의 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 4는 실험예 4에 따라, 실시예 1, 및 비교예 1 내지 3의 리튬 이차 전지의 고온 저장 후 저장 기간에 따른 용량 특성을 측정한 결과를 나타내는 그래프이다.
도 5는 실험예 5에 따라, 실시예 1, 및 비교예 1 내지 3의 리튬 이차 전지의 고온 저장 후 저장 기간에 따른 스웰링(swelling) 특성을 측정한 결과를 나타내는 그래프이다.
도 6은 실험예 6에 따라, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지의 SOC(충전심도)에 따른 저온 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 7은 실험예 7에 따라, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지의 사이클 수에 따른 용량 특성을 측정한 결과를 나타내는 그래프이다.
도 8은 실험예 8에 따라, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지의 고온 저장 후 저장 기간에 따른 용량 특성을 측정한 결과를 나타내는 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예를 따르는 비수성 전해액은 프로필렌 카보네이트(Propylene Carbonate; PC)를 포함하는 비수성 유기 용매 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 프로필렌 카보네이트(PC)의 용매하에 리튬비스플루오로설포닐이미드를 조합하여 사용할 경우, 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온 출력 특성을 개선시킴은 물론, 55℃ 이상의 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지하여 스웰링(swelling) 현상을 억제하여 전지의 용량을 향상시킬 수 있다.
일반적으로, 리튬 이온 전지의 전해질로 에틸렌 카보네이트(Ethylene Carbonate; EC)를 기본으로 한 이/삼 성분계 전해질이 사용되어 왔다. 그러나 EC는 녹는점이 높아서 사용 온도가 제한되어 있고, 저온에 있어서 상당한 전지 성능 저하를 가져온다. 이에 반해, 프로필렌 카보네이트를 포함하는 전해질은 에틸렌 카보네이트의 전해질보다는 넓은 온도 범위를 가지면서 전해질로서 뛰어난 역할을 할 수 있는 장점이 있다.
그러나, 용매로서 프로필렌 카보네이트를 LiPF6 등의 리튬염과 함께 사용할 경우, 프로필렌 카보네이트는 탄소 전극을 사용하는 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 탄소층 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생할 수 있다. 이는 고온 사이클 특성 등 전지의 성능이 저하되는 문제를 야기할 수 있다.
또한, 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 음극을 구성하는 탄소층에 삽입될 때, 탄소 표면층의 박리(exfoliation)가 진행될 수 있다. 이러한 박리는 탄소층 사이에서 용매가 분해될 때 발생하는 기체가 탄소층 사이에 큰 뒤틀림을 유발함으로써 발생될 수 있다. 이와 같은 탄소 표면층의 박리와 전해액의 분해는 계속적으로 진행될 수 있으며, 이로 인하여 프로필렌 카보네이트를 포함하는 전해액을 탄소계 음극재와 병용하는 경우 효과적인 SEI가 생성되지 않아 리튬 이온이 삽입되지 않을 수 있다.
본 발명에서는 에틸렌 카보네이트의 사용으로 인한 저온 특성의 문제를 융점이 낮은 프로필렌 카보네이트를 사용하여 해결하였으며, 프로필렌 카보네이트와 LiPF6 등의 리튬염을 함께 사용할 경우의 상기와 같은 문제점을 리튬비스플루오로설포닐이미드를 사용하여 이들을 조합함으로써 해결할 수 있는 것이다.
본 발명의 일 실시예에 따르면, 상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.1 mole/ℓ 내지 2 mole/ℓ인 것이 바람직하며, 0.6 mole/ℓ 내지 1.5 mole/ℓ이 더욱 바람직하다. 상기 리튬비스플루오로설포닐이미드의 농도가 상기 범위 미만이면 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미하고, 상기 리튬비스플루오로설포닐이미드의 농도가 상기 범위를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있다.
이러한 부반응을 더욱 방지하기 위해, 본 발명의 비수성 전해액에는 리튬염을 더 포함할 수 있다. 상기 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비를 조절함으로써, 리튬 이차 전지의 저온 출력 특성, 고온 저장 후 용량 특성 및 사이클 특성을 향상시킬 수 있다.
구체적으로, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서, 1:6 내지 9인 것이 바람직하다. 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 상기 몰비의 범위를 벗어날 경우, 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있다. 구체적으로, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 몰비로서, 1:6 미만인 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 음극 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생할 수 있으며, 음극 표면층(예를 들어, 탄소 표면층)의 박리와 전해액의 분해에 의해, 이차 전지의 저온 출력 개선, 고온 저장 후, 사이클 특성 및 용량 특성의 개선의 효과가 미미할 수 있다.
한편, 본 발명의 일 실시예에 따르는 비수성 유기 용매로서 프로필렌 카보네이트는 비수성 유기용매 100 중량부를 기준으로 5 중량부 내지 60 중량부, 바람직하게는 10 중량부 내지 50 중량부로 포함될 수 있다. 상기 프로필렌 카보네이트의 함량이 5 중량부 보다 적으면 고온 사이클 시 양극 표면의 분해로 인해 가스가 지속적으로 발생되어 전지의 두께가 증가되는 스웰링 현상이 발생할 수 있고, 60 중량부를 초과할 경우 초기 충전지 음극에서 견고한 SEI 막을 형성시키기 어려울 가능성이 있다.
또한, 상기 프로필렌 카보네이트 외에 비수성 전해액에 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다.
본 발명의 일 실시예에 따르는 비수성 유기 용매는, 바람직하게는, 에틸렌 카보네이트(EC)를 포함하지 않는 것이 좋으며, 예를 들어 에틸 프로피오네이트(Ethyl Propionate; EP), 메틸 프로피오네이트(Methyl Propionate; MP), 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에스테르계, 에테르계 및 케톤계 유기 용매로 이루어진 군으로부터 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 더 포함할 수 있다.
한편, 본 발명의 일 실시예에 따르는 비수성 전해액은 비닐리덴 카보네이트계 화합물 및 설톤(sultone)계 화합물을 더 포함할 수 있다.
상기 비닐리덴 카보네이트계 화합물은 SEI막을 형성하는 역할을 할 수 있다. 상기 비닐리덴 카보네이트계 화합물의 종류는 상기 역할을 할 수 있는 것이라면 제한이 없으며, 예를 들어, 비닐렌 카보네이트(vinylene carbonate; VC), 비닐렌 에틸렌 카보네이트(vinylene ethylene carbonate; VEC), 또는 이들의 혼합물을 포함할 수 있다. 이중에서도 특히 비닐렌 카보네이트를 포함하는 것이 바람직하다.
또한, 본 발명에 일 실시예에 따라 추가로 포함될 수 있는 설톤계 화합물은 전지의 저온 출력 및 고온 사이클 특성을 향상시키는 역할을 할 수 있다. 상기 설톤계 화합물의 종류는 상기 역할을 할 수 있는 것이라면 제한이 없으며, 예를 들어, 상기 1,3-프로판설톤(1,3-propane sultone; PS), 1,4-부탄 설톤, 1,3-프로펜설톤으로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다. 이 중에서도 특히 1,3-프로판설톤을 포함하는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따르는 리튬 이차 전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 상기 비수성 전해액을 포함할 수 있다.
여기서, 상기 양극 활물질은 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함할 수 있다. 나아가, 상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2)를 포함할 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있으며, 바람직하게는 결정질 탄소로 천연흑연과 인조흑연과 같은 흑연질(graphite) 탄소를 포함할 수 있다.
또한, 상기 세퍼레이터는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 2종 이상이 적층된 것일 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으며, 이에 한정되는 것은 아니다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
[비수성 전해액의 제조]
프로필렌 카보네이트(PC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =2:4:4 (부피비)의 조성을 갖는 비수성 유기 용매 및 비수성 전해액 총량을 기준으로 LiPF6 0.1 mole/ℓ 및 리튬비스플루오로설포닐이미드(LiFSI) 0.9 mole/ℓ, 비닐렌 카보네이트(VC) 3 중량% 및 1,3-프로판설톤(PS) 0.5 중량%를 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차 전지의 제조]
양극 활물질로서 LiMn2O4 및 Li(Ni0.33Co0.33Mn0.33)O2의 혼합물 96 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 PE 세퍼레이터와 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
실시예 2
비수성 전해액 총량을 기준으로 LiPF6 0.1 mole/ℓ 및 리튬비스플루오로설포닐이미드(LiFSI) 0.6 mole/ℓ을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 1
에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매를 사용하고, 리튬염으로서 LiPF6를 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 2
에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 3
리튬염으로서 LiPF6를 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 4
비수성 전해액 총량을 기준으로 LiPF6 0.1 mole/ℓ 및 리튬비스플루오로설포닐이미드(LiFSI) 0.5 mole/ℓ을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실험예 1
<저온 출력 특성 시험>
실시예 1 및 비교예 1 내지 3의 리튬 이차 전지를 -30℃에서 SOC(충전 심도) 별로 0.5C로 10초간 방전하여 발생하는 전압차로 저온 출력을 계산하였다. 그 결과를 도 1에 나타내었다.
도 1을 참조하면, 실시예 1의 리튬 이차 전지는 비교예 1 내지 3의 리튬 이차 전지에 비해 SOC 20%부터 출력 특성이 우수하였고, SOC가 60% 이후부터 출력 특성이 비교예들과 더욱 현저한 차이를 보기 시작하였다. 또한, SOC가 100%인 경우 실시예 1의 리튬 이차 전지는 비교예 1 내지 3의 리튬 이차 전지에 비하여 약 1.2 내지 1.4배 정도 이상 저온 출력 특성이 향상됨을 알 수 있다.
이는 비수성 유기 용매로서 에틸렌 카보네이트를 사용하지 않고 프로필렌 카보네이트를 사용함으로써 저온 특성을 현저히 개선할 수 있음을 확인할 수 있다.
실험예 2
<고온(55℃) 사이클 특성 시험>
실시예 1 및 비교예 1 내지 3의 리튬 이차 전지를 55℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.03V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 900 사이클로 반복 실시하였고, 측정한 방전 용량을 도 2에 나타내었다.
도 2에서 알 수 있는 바와 같이, 200 회째 사이클까지는 본 발명에 따른 실시예 1의 리튬 이차 전지는 비교예 1 내지 3의 리튬 이차 전지와 유사한 용량 보유율을 나타내었지만, 약 360 회째 사이클 이후부터 용량 보유율에 있어서 현저한 차이를 보였다.
따라서, 본 발명의 실시예에 따라 프로필렌 카보네이트와 리튬비스플루오로설포닐이미드를 조합하여 사용한 리튬 이차 전지(실시예 1)는 비교예 1 내지 비교예 3에 비해 55℃의 고온 조건에서 사이클 특성에 따른 방전 용량 특성이 현저히 우수함을 알 수 있었다.
실험예 3
<고온 저장 후 출력 특성>
실시예 1 및 비교예 1 내지 3의 리튬 이차 전지를 60℃에서 14주 동안 저장 후, SOC 50%에서 5C로 10초간 방전하여 발생하는 전압차로 출력을 계산하였다. 그 결과를 도 3에 나타내었다.
도 3을 참조하면, 60℃에서 저장 후 SOC 50%에서의 출력특성은 본 발명의 실시예 1에 따라 프로필렌 카보네이트와 리튬비스플루오로설포닐이미드를 조합하여 사용한 리튬 이차 전지가 비교예 1 내지 비교예 3에 비해 현저히 우수함을 확인할 수 있다. 구체적으로, 실시예 1의 경우 저장기간 2주부터 출력 특성이 증가하였고, 저장기간이 증가하여 저장기간 14주까지도 고온 조건에서도 지속적으로 출력 특성이 향상됨을 확인할 수 있다. 이에 반해 비교예 1 및 3은 초기 출력 특성부터 실시예 1과 차이가 있었고, 저장기간 14주 째에는 실시예와 현저한 차이를 보였다. 또한 비교예 2의 경우 초기 출력 특성은 실시예 1과 유사하였으나, 저장기간 2주째부터 서서히 감소하여 저장기간 14주째에는 비교예 1 및 3과 마찬가지로 실시예 1과 현저한 차이를 보였다.
실험예 4
<고온 저장 후 용량 특성 시험>
실시예 1 및 비교예 1 내지 3의 리튬 이차 전지를 60℃에서 14주 동안 저장 후, 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.0V까지 1C로 방전하고, 그 방전 용량을 측정하였다. 그 결과를 도 4에 나타내었다.
도 4를 참조하면, 저장기간 2주까지 비교예 1 내지 3 및 실시예 1의 용량 특성에 차이가 없었으나, 저장기간 4주 이후 비교예 1 내지 3의 경우 저장기간이 증가할수록 용량특성이 점차 감소하였고, 저장기간 8주 이후 실시예 1은 비교예 1 내지 3의 용량 특성과 그 차이가 점차 커짐을 알 수 있다.
따라서, 실시예 1의 리튬 이차 전지는 비교예 1 내지 3의 리튬 이차 전지에 비해 고온 저장 후 용량 특성이 개선되는 효과가 있음을 확인할 수 있다.
실험예 5
<고온 저장 후 스웰링(swelling) 특성 시험>
실시예 1 및 비교예 1 내지 3의 리튬 이차 전지를 60℃에서 14주 동안 저장 후, SOC 95%로 저장 후 전지 두께를 측정하여 그 결과를 도 5에 나타내었다.
도 5를 참조하면, 비교예 1 내지 3의 리튬 이차 전지의 경우 저장 기간 2주 이후부터 전지 두께가 현저히 증가한 반면, 실시예 1의 리튬 이차 전지는 비교예들에 비해 두께 증가 폭이 작았다.
이는, 프로필렌 카보네이트와 리튬비스플루오로설포닐이미드를 조합하여 사용함으로써, 고온 저장 후 저장 기간이 증가하여도 전지의 스웰링 억제 효과를 향상시킬 수 있음을 알 수 있다.
실험예 6
<LiPF6 및 LiFSI의 몰비에 따른 저온 출력 특성 시험>
LiPF6 및 LiFSI의 몰비에 따른 저온 출력 특성을 알아보기 위하여, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지를 -30℃에서 SOC(충전 심도) 별로 0.5C로 10초간 방전하여 발생하는 전압차로 저온 출력을 계산하였다. 그 결과를 도 6에 나타내었다.
도 6을 참조하면, LiPF6 및 LiFSI의 몰비가 1:9인 실시예 1의 리튬 이차 전지는 LiPF6 및 LiFSI의 몰비가 1:5인 비교예 4의 리튬 이차 전지에 비해 SOC 20%부터 출력 특성이 현저히 우수하였고, SOC가 60% 이후부터 출력 특성이 비교예 4의 리튬 이차 전지와 더욱 현저한 차이를 보기 시작하였다.
또한, LiPF6 및 LiFSI의 몰비가 1:6인 실시예 2의 리튬 이차 전지는 LiPF6 및 LiFSI의 몰비가 1:9인 실시예 1의 리튬 이차 전지에 비해 저온 출력 특성이 감소하였다.
한편, LiPF6 및 LiFSI의 몰비가 1:6인 실시예 2의 리튬 이차 전지는 LiPF6 및 LiFSI의 몰비가 1:5인 비교예 4의 리튬 이차 전지와 유사한 출력 특성을 보였으나. SOC 90% 이상부터 비교예 4의 리튬 이차 전지에 비해 저온 출력 특성이 향상되었음을 알 수 있다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차 전지의 저온 출력 특성을 향상시킬 수 있음을 확인할 수 있다.
실험예 7
<LiPF6 및 LiFSI의 몰비에 따른 고온(55℃) 사이클 특성 시험>
LiPF6 및 LiFSI의 몰비에 따른 고온(55℃) 사이클 특성을 알아보기 위하여, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지를 55℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.03V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 1000 사이클로 반복 실시하였고, 측정한 방전 용량을 도 7에 나타내었다.
도 7에서 알 수 있는 바와 같이, 약 70 회째 사이클까지는 본 발명에 따른 실시예 1의 리튬 이차 전지는 비교예 4의 리튬 이차 전지와 유사한 용량 보유율을 나타내었지만, 약 70 회째 사이클 이후부터 1000회째 사이클까지 용량 보유율에 있어서 약 7% 이상의 현저한 차이를 보였다.
한편, 실시예 2의 리튬 이차 전지는 약 600회째 사이클까지 용량 보유율에 있어서 비교예 4와 현저한 차이를 보였다. 비교예 4의 리튬 이차 전지는 사이클수가 증가함에 따라, 그래프의 기울기가 현저히 떨어짐을 확인할 수 있다. 또한, 실시예 2의 리튬 이차전지는 비교예 4의 리튬 이차 전지에 비해 900회째 사이클부터 1000회째 사이클까지 용량 보유율에 있어서 약 3 내지 5% 정도 차이를 보임을 알 수 있다.
따라서, LiPF6 및 LiFSI의 몰비가 1: 6 내지 1: 9인 경우, 이 범위를 벗어나는 경우에 비해 리튬 이차 전지의 고온(55℃) 사이클 특성이 현저히 우수함을 확인할 수 있다.
실험예 8
<LiPF6 및 LiFSI의 몰비에 따른 고온 저장(60℃) 후 용량 특성 시험>
LiPF6 및 LiFSI의 몰비에 따른 고온 저장(60℃) 후 용량 특성 시험을 확인하기 위하여, 실시예 1과 2, 및 비교예 4의 리튬 이차 전지를 60℃에서 14주 동안 저장 후, 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.0V까지 1C로 방전하고, 그 방전 용량을 측정하였다. 그 결과를 도 8에 나타내었다.
도 8을 참조하면, 저장기간 1주까지 실시예 1과 2 및 비교예 4의 리튬 이차 전지의 용량 특성에 차이가 없었으나, 저장기간 2주 이후, 실시예 1과 2의 리튬 이차 전지는 비교예 4의 리튬 이차 전지에 비해, 용량 특성의 차이가 커짐을 알 수 있다.
구체적으로 살펴보면, 실시예 1의 리튬 이차 전지는 저장기간 14주까지 그래프의 기울기가 완만하였다. 이 결과, 실시예 1의 리튬 이차 전지는 저장기간 14주째에 비교예 4의 리튬 이차 전지에 비해 용량 보유율이 약 6% 이상까지의 차이를 보였다.
한편, 비교예 4의 리튬 이차 전지는 저장 기간 2주 이후 부터 그래프의 기울기가 현저히 떨어지면서, 저장기간이 증가할수록 용량특성이 점차 감소함을 확인할 수 있다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차 전지의 고온 저장 특성을 향상시킬 수 있으며, 특히 LiPF6 및 LiFSI의 몰비가 1: 6 내지 1: 9인 경우, 이 범위를 벗어나는 경우에 비해 리튬 이차 전지의 고온 저장 특성이 현저히 우수함을 확인할 수 있다.
본 발명의 일 실시예에 따른 비수성 전해액은 리튬 이차 전지에 적용할 경우, 리튬 이차 전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 특성, 고온 저장 후 출력 특성, 용량 특성 및 스웰링 특성을 향상시킬 수 있으므로, 리튬 이차 전지에 유용하게 적용할 수 있다.

Claims (15)

  1. i) 프로필렌 카보네이트(PC)를 포함하는 비수성 유기 용매; 및
    ii) 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 것을 특징으로 하는 비수성 전해액.
  2. 제 1 항에 있어서,
    상기 비수성 전해액은 리튬염을 더 포함하는 것을 특징으로 하는 비수성 전해액.
  3. 제 2 항에 있어서,
    상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:6 내지 9인 것을 특징으로 하는 비수성 전해액.
  4. 제 1 항에 있어서,
    상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.6 mole/ℓ 내지 1.5 mole/ℓ인 것을 특징으로 하는 비수성 전해액.
  5. 제 1 항에 있어서,
    상기 비수성 전해액은 에틸렌 카보네이트(EC)를 포함하지 않는 것을 특징으로 하는 비수성 전해액.
  6. 제 1 항에 있어서,
    상기 프로필렌 카보네이트의 함량은 비수성 유기용매 100 중량부를 기준으로 5 중량부 내지 60 중량부인 것을 특징으로 하는 비수성 전해액.
  7. 제 6 항에 있어서,
    상기 프로필렌 카보네이트의 함량은 비수성 유기용매 100 중량부를 기준으로 10 중량부 내지 50 중량부인 것을 특징으로 하는 비수성 전해액.
  8. 제 1 항에 있어서,
    상기 비수성 유기 용매는 에틸 프로피오네이트(Ethyl propionate; EP), 메틸프로피오네이트(Methyl propionate; MP), 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에스테르계, 에테르계 및 케톤계 유기 용매로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 비수성 전해액.
  9. 제 1 항에 있어서,
    상기 비수성 전해액은 비닐리덴 카보네이트계 화합물 및 설톤계 화합물을 더 포함하는 것을 특징으로 하는 비수성 전해액.
  10. 제 9 항에 있어서,
    상기 비닐리덴 카보네이트계 화합물은 비닐렌 카보네이트(vinylene carbonate), 비닐렌 에틸렌 카보네이트(vinylene ethylene carbonate), 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 비수성 전해액.
  11. 제 9 항에 있어서,
    상기 설톤계 화합물은 1,3-프로판설톤(1,3-propane sultone), 1,4-부탄 설톤, 1,3-프로펜설톤으로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 비수성 전해액.
  12. 제 2 항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 비수성 전해액.
  13. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극;
    상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및
    제 1 항의 비수성 전해액을 포함하는 리튬 이차 전지.
  14. 제 13 항에 있어서,
    상기 음극 활물질은 탄소계 음극 활물질인 것을 포함하는 리튬 이차 전지.
  15. 제 14 항에 있어서,
    상기 음극 활물질은 흑연질(graphite) 탄소인 것을 포함하는 리튬 이차 전지.
PCT/KR2013/012101 2012-12-24 2013-12-24 비수성 전해액 및 이를 포함하는 리튬 이차 전지 WO2014104710A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13834349.6A EP2922136B1 (en) 2012-12-24 2013-12-24 Non-aqueous electrolyte and lithium secondary battery including same
CN201380003281.XA CN104011927B (zh) 2012-12-24 2013-12-24 非水电解质溶液和包含其的锂二次电池
JP2014554678A JP5948660B2 (ja) 2012-12-24 2013-12-24 非水性電解液及びこれを含むリチウム二次電池
US14/197,423 US9620819B2 (en) 2012-12-24 2014-03-05 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120152043 2012-12-24
KR10-2012-0152043 2012-12-24
KR1020130161528A KR20140082573A (ko) 2012-12-24 2013-12-23 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR10-2013-0161528 2013-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/197,423 Continuation US9620819B2 (en) 2012-12-24 2014-03-05 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2014104710A1 true WO2014104710A1 (ko) 2014-07-03

Family

ID=51733470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012101 WO2014104710A1 (ko) 2012-12-24 2013-12-24 비수성 전해액 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US9620819B2 (ko)
EP (1) EP2922136B1 (ko)
JP (2) JP5948660B2 (ko)
KR (2) KR20140082573A (ko)
TW (1) TWI536635B (ko)
WO (1) WO2014104710A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2797155A4 (en) * 2013-02-20 2015-02-18 Lg Chemical Ltd WATER-FREE ELECTROLYTE AND LITHIUM SUBSTITUTING BATTERY THEREWITH
US9608290B2 (en) 2013-02-20 2017-03-28 Lg Chem, Ltd. Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
KR20190005314A (ko) 2017-07-06 2019-01-16 에스케이케미칼 주식회사 신규한 수산염 화합물, 이의 제조방법 및 이를 포함하는 이차전지용 전해액
WO2019198716A1 (ja) 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109885B2 (en) * 2014-05-07 2018-10-23 Sila Nanotechnologies, Inc. Complex electrolytes and other compositions for metal-ion batteries
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101797271B1 (ko) 2014-09-26 2017-11-13 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2016048104A1 (ko) * 2014-09-26 2016-03-31 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR20160037102A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR101797290B1 (ko) * 2014-09-26 2017-12-12 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101802018B1 (ko) * 2014-09-26 2017-11-27 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101797289B1 (ko) 2014-09-26 2017-11-13 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
US11637320B2 (en) * 2014-10-03 2023-04-25 Nippon Shokubai Co., Ltd. Method for manufacturing electrolyte solution material
US10756390B2 (en) * 2014-11-20 2020-08-25 Ses Holdings Pte. Ltd. Concentrated electrolyte solution
CN107710492A (zh) 2015-06-23 2018-02-16 株式会社日本触媒 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂
EP3425718A4 (en) 2015-10-15 2019-10-30 Central Glass Company, Limited ELECTROLYTIC SOLUTION FOR NONAQUEOUS ELECTROLYTE BATTERIES, AND NONAQUEOUS ELECTROLYTE BATTERY USING THE SAME
JP2017191740A (ja) * 2016-04-15 2017-10-19 国立大学法人 東京大学 リチウムイオン二次電池
WO2018094101A1 (en) * 2016-11-16 2018-05-24 Sillion, Inc. Additive enhancements for ionic liquid electrolytes in li-ion batteries
CN110036521B (zh) * 2016-12-02 2022-11-15 日本电气株式会社 锂离子二次电池
WO2018173521A1 (ja) * 2017-03-22 2018-09-27 パナソニックIpマネジメント株式会社 二次電池用負極およびその製造方法並びに二次電池
KR102264636B1 (ko) * 2017-11-30 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP7257109B2 (ja) * 2018-06-01 2023-04-13 株式会社日本触媒 非水電解液、及びリチウムイオン二次電池
WO2020137816A1 (ja) 2018-12-28 2020-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JPWO2020137818A1 (ja) 2018-12-28 2021-11-25 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP7337096B2 (ja) 2018-12-28 2023-09-01 三洋電機株式会社 非水電解質二次電池
WO2022209063A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106047A1 (en) * 2002-10-23 2004-06-03 Kumiko Mie Non-aqueous electrolyte secondary battery and electrolyte for the same
KR20100053457A (ko) * 2008-11-11 2010-05-20 주식회사 엘지화학 비수 전해액 리튬 이차전지
KR20120016019A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR20120079390A (ko) * 2011-01-04 2012-07-12 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69535612T2 (de) * 1994-03-21 2008-07-24 Centre National De La Recherche Scientifique (C.N.R.S.) Ionenleitendes material mit guten korrosionshemmenden eigenschaften
JP4847675B2 (ja) * 2002-10-23 2011-12-28 パナソニック株式会社 非水電解質二次電池およびそれに用いる電解質
JP5125559B2 (ja) * 2008-02-04 2013-01-23 株式会社Gsユアサ 非水電解質電池及びその製造方法
JP2011150958A (ja) * 2010-01-25 2011-08-04 Sony Corp 非水電解質および非水電解質電池
CN102074734A (zh) 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 一种含氟磺酰亚胺锂锂盐的电解质溶液及其用途
JP6065367B2 (ja) * 2011-06-07 2017-01-25 ソニー株式会社 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
IN2014CN02844A (ko) * 2011-10-17 2015-07-03 Ube Industries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106047A1 (en) * 2002-10-23 2004-06-03 Kumiko Mie Non-aqueous electrolyte secondary battery and electrolyte for the same
KR20100053457A (ko) * 2008-11-11 2010-05-20 주식회사 엘지화학 비수 전해액 리튬 이차전지
KR20120016019A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR20120079390A (ko) * 2011-01-04 2012-07-12 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN, H. B. ET AL.: "Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties", JOURNAL OF POWER SOURCES, vol. 196, no. 7, 1 April 2011 (2011-04-01), pages 3623 - 3632, XP028129764 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2797155A4 (en) * 2013-02-20 2015-02-18 Lg Chemical Ltd WATER-FREE ELECTROLYTE AND LITHIUM SUBSTITUTING BATTERY THEREWITH
US9590273B2 (en) 2013-02-20 2017-03-07 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
US9608290B2 (en) 2013-02-20 2017-03-28 Lg Chem, Ltd. Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
KR20190005314A (ko) 2017-07-06 2019-01-16 에스케이케미칼 주식회사 신규한 수산염 화합물, 이의 제조방법 및 이를 포함하는 이차전지용 전해액
WO2019198716A1 (ja) 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
KR20140082573A (ko) 2014-07-02
EP2922136A1 (en) 2015-09-23
US20140186722A1 (en) 2014-07-03
JP2015509271A (ja) 2015-03-26
EP2922136B1 (en) 2017-11-29
CN104011927A (zh) 2014-08-27
TWI536635B (zh) 2016-06-01
JP2016164879A (ja) 2016-09-08
EP2922136A4 (en) 2015-10-21
KR101634910B1 (ko) 2016-06-29
US9620819B2 (en) 2017-04-11
JP5948660B2 (ja) 2016-07-06
KR20150129636A (ko) 2015-11-20
TW201503457A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
WO2014104710A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014129823A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014129824A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2013168882A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 구비하는 리튬 이차 전지
WO2015065093A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016048106A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2016053040A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2015037852A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
KR20150044004A (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2018097575A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014116084A1 (ko) 고전압 리튬 이차 전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2014046408A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2014046409A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20200126781A (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2017057963A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2016053041A1 (ko) 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013834349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013834349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014554678

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE