WO2014103806A1 - 金属製環状部材の研削加工方法および装置 - Google Patents

金属製環状部材の研削加工方法および装置 Download PDF

Info

Publication number
WO2014103806A1
WO2014103806A1 PCT/JP2013/083786 JP2013083786W WO2014103806A1 WO 2014103806 A1 WO2014103806 A1 WO 2014103806A1 JP 2013083786 W JP2013083786 W JP 2013083786W WO 2014103806 A1 WO2014103806 A1 WO 2014103806A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
grinding
spark
change
radial dimension
Prior art date
Application number
PCT/JP2013/083786
Other languages
English (en)
French (fr)
Inventor
健 海老名
光治 小澤
智基 小笠原
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201380002625.5A priority Critical patent/CN104010768B/zh
Priority to US14/758,130 priority patent/US9914194B2/en
Priority to JP2013557303A priority patent/JP5692420B2/ja
Priority to EP13869417.9A priority patent/EP2942153B1/en
Publication of WO2014103806A1 publication Critical patent/WO2014103806A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/35Accessories
    • B24B5/355Feeding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/35Accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45161Grinding machine

Definitions

  • the present invention relates to a method and an apparatus for grinding a peripheral surface of a metal annular member, which is a workpiece, with a rotating grindstone.
  • the peripheral surface of a metal annular member such as a raceway surface of a raceway ring member or a cylindrical fitting surface constituting a radial rolling bearing is subjected to grinding in order to improve surface accuracy and surface roughness.
  • This grinding process is performed using a grinding apparatus as schematically shown in FIGS. 1 (A) and 1 (B).
  • the grinding apparatus is usually provided with a rotary drive shaft (not shown), a backing plate 2 fixed to the tip of the rotary drive shaft and magnetically attracting an annular workpiece (workpiece) 1 to its end surface, A workpiece including at least two shoes 3 for positioning the workpiece 1 in the radial direction, a rotating grindstone 4 for grinding an outer peripheral surface or an inner peripheral surface of the workpiece 1, and at least two measuring elements 5.
  • a contact sensor or non-contact sensor for measuring the outer diameter D of 1 and a controller (not shown) for controlling the feed amount of the grindstone 4 based on the obtained measurement result.
  • the sensor measures the outer diameter D at two locations on the opposite side in the radial direction out of the outer peripheral surface of the workpiece 1 being ground by in-process, and feeds back the measurement results to the controller, thereby 4 is controlled appropriately.
  • the grinding of the metal annular member is performed in the order of rough grinding, finish grinding, and spark out.
  • the feed speed (feed amount / time) of the grindstone 4 is decreased stepwise.
  • the feed speed of the grindstone 4 is set to 0 and spark out is started.
  • the spark-out is performed only when the peripheral surface of the workpiece 1 is pressed against the surface of the grindstone 4 by elastic restoration of the workpiece 1 in a state in which the feed speed of the grindstone is zero. This is a step of grinding the peripheral surface of the.
  • a predetermined time (a time sufficient for the spark and grinding noise to be generated from the contact portion between the outer peripheral surface of the workpiece 1 and the surface of the grindstone 4 and the outer peripheral surface of the workpiece 1 to be smooth) elapses. After that, the grindstone 4 is displaced in a direction away from the outer peripheral surface of the workpiece 1 to finish the grinding process.
  • the workpiece 1 is exaggerated from the state of FIG. 7 (A) by pressing the grindstone 4 against the workpiece 1 in the rough grinding process.
  • the workpiece 1 is elastically deformed into an ellipse, and the workpiece 1 is elastically restored in the subsequent steps (finish grinding and spark-out).
  • the elastic deformation of the workpiece 1 becomes more remarkable as the rigidity of the workpiece 1 is lower.
  • the setting position of the measuring element 5 is usually shifted by approximately 90 degrees in the circumferential direction from the contact position between the workpiece 1 and the grindstone 4.
  • the outer diameter D of the workpiece 1 measured by the probe 5 is larger than the outer diameter in the free state (the outer peripheral surface is not pressed by the shoe 3 and the grindstone 4 and the elastic deformation is released). Become. As a result, after processing until the outer diameter D of the workpiece 1 reaches the target dimension, when sparking is performed, the grinding amount becomes excessive, and the outer diameter in the free state of the workpiece 1 to be obtained becomes the target dimension. Smaller than.
  • the feed speed of the grindstone 4 is set to 0, and the spark-out is performed for a predetermined time. It is conceivable to set the outer diameter in a free state of 1 as a target dimension.
  • the amount of elastic deformation of the workpiece 1 varies depending on the sharpness of the grindstone 4. That is, as the sharpness of the grindstone 4 deteriorates, the amount of elastic deformation of the workpiece 1 increases. As the sharpness of the grindstone 4 improves, the amount of elastic deformation of the workpiece 1 decreases.
  • the sharpness of the grindstone 4 is worse than the set value, and the elastic deformation amount of the workpiece 1 is set. If the value is larger than the value, the amount that the workpiece 1 is elastically restored becomes large, the grinding amount due to spark-out becomes excessive, and the outer diameter D of the workpiece 1 becomes smaller than the target dimension. On the contrary, when the sharpness of the grindstone 4 is better than the set value, the amount that the workpiece 1 is elastically restored at the time of spark-out becomes smaller than the set value, and the workpiece is caused by the spark-out.
  • the amount of grinding of the outer peripheral surface of 1 is less than the set value, and the outer diameter D of the workpiece 1 in the grinding completion state becomes larger than the target dimension.
  • the outer diameter D at the end of the spark-out of the workpiece 1 is larger than the target dimension, the feed speed and the cutting amount of the grindstone 4 are made minute on the workpiece 1 as shown in FIG. It is also conceivable that the outer diameter of the workpiece 1 is set to the target dimension by further performing step feed grinding. However, the addition of this process may increase the processing effort and the manufacturing cost.
  • Japanese Patent Laid-Open No. 2000-343425 discloses a sparkout start point (timing for switching from finish grinding to sparkout from the amount of change in the outer diameter of the workpiece per revolution at the end of sparkout. ) And adjusting the spark-out start point in the next grinding process performed after the completion of the learning.
  • Japanese Patent Laid-Open No. 2012-143843 discloses a method for adjusting the feed speed of a grindstone in the next grinding process performed thereafter based on the time required to set the outer diameter of the workpiece to the target dimension. Are listed. However, in the case of the methods described in these documents, learning may not converge if the grinding process varies due to changes in the sharpness of the grindstone.
  • the present invention may vary the radial dimension of the workpiece at the completion of the spark-out regardless of the change in the elastic deformation amount of the workpiece based on the change in the sharpness of the grindstone.
  • An object of the present invention is to provide a grinding method capable of preventing an unnecessarily long grinding time.
  • the grinding method of the metallic annular member of the present invention is to grind the circumferential surface of the metallic annular workpiece with a rotating grindstone while measuring the radial dimension of the workpiece in-process, The peripheral surface of the workpiece is ground, and after the rough grinding process, the feed speed of the rotating grindstone is slowed to perform the finishing grinding process, and then the feed speed of the rotating grindstone is set to 0 to generate a spark. Out process is performed.
  • the method for grinding a metal annular member according to the present invention includes a change in radial dimension, which is a change in radial dimension per unit time of the workpiece or per rotation of the workpiece. Based on the rate, a condition of at least one of the start of the spark out (switching from the finish grinding to the spark out) and the end is determined.
  • the first dimension relating to the rate of change in the radial dimension of the workpiece for each of a plurality of different preset target values relating to the radial dimension of the workpiece is set in advance. Then, when the radial dimension of the workpiece reaches any one of the plurality of target values, the absolute value of the rate of change in the radial dimension of the workpiece is either The spark-out is started on the condition that the first threshold value corresponding to the target value is exceeded (switching from the finish grinding to the spark-out).
  • the spark-out is terminated on the condition that the absolute value of the rate of change in the radial dimension of the workpiece during the spark-out step falls below a preset second threshold value.
  • the metal annular member grinding apparatus of the present invention comprises means for supporting and rotating a workpiece, rotating the workpiece, means for positioning the workpiece in the radial direction, and a periphery of the workpiece.
  • a rotating grindstone for grinding a surface a sensor for measuring the outer diameter of the workpiece, and a controller for controlling the rotation of the rotating grindstone based on a measurement result measured by the sensor.
  • a grinding method for the annular member is executed.
  • the controller is configured to start the spark out and end the spark out based on a change rate of a radial dimension of the workpiece. And at least one of them is determined.
  • the controller is configured such that the radial dimension of the workpiece becomes any one of a plurality of different target values set in advance with respect to the radial dimension of the workpiece.
  • the absolute value of the rate of change in the radial dimension of the workpiece is a first threshold value relating to the rate of change in the radial dimension of the workpiece set in advance corresponding to each of the target values.
  • the absolute value of the rate of change in the radial dimension of the workpiece exceeded the first threshold value corresponding to the target value at the time point.
  • start the spark out Preferably, the controller ends the spark-out when an absolute value of a rate of change in the radial dimension of the workpiece falls below a preset second threshold value.
  • the radial dimension of the workpiece may vary regardless of a change in the elastic deformation amount of the workpiece based on a change in the sharpness of the grindstone. It is possible to prevent the grinding time from becoming unnecessarily long. That is, in the present invention, in the grinding process, at least one of the start and end conditions of the spark-out is determined based on the diameter of the workpiece per unit time or per rotation of the workpiece. It is determined on the basis of the rate of change in the radial dimension, which is the amount of change in the direction dimension. For this reason, it is possible to carry out the spark-out in consideration of the amount of elastic deformation of the workpiece.
  • FIG. 1A is a side view showing a state where a workpiece is ground by an example of a grinding apparatus to which the present invention is applied
  • FIG. 1B is a state shown in FIG. It is the end elevation seen from the right side of Drawing 1 (A) about.
  • FIG. 2 is a diagram showing an example of a change in the outer diameter of a workpiece during grinding in an example of an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a process for determining the spark-out start timing in this example.
  • FIG. 4 is a flowchart showing a process for determining the end timing of the spark-out in this example.
  • FIG. 5 is a view corresponding to an enlarged view of a portion X in FIG. FIG.
  • FIG. 6 is a diagram illustrating an example of changes in the feed amount of the grindstone, the outer diameter D of the workpiece, and the change rate v of the outer diameter D during grinding in the present example.
  • FIG. 7A is a side view showing a workpiece supported by a grinding apparatus in the prior art in a state before the grindstone is pressed against the workpiece, and FIG. It is a side view which exaggerates and shows the state which pressed the grindstone against the workpiece.
  • FIG. 8 is a diagram showing an example of a change in the outer diameter of a workpiece due to grinding in the prior art.
  • the grinding apparatus of this example basically has a rotational drive shaft (not shown), which is a means for supporting and fixing a workpiece and rotating it, as in the configuration of the conventional apparatus, and this rotation.
  • a backing plate 2 which is fixed to the tip of the drive shaft and magnetically attracts an annular workpiece (workpiece) 1 to its end face, and two shoes 3 which are means for positioning the workpiece 1 in the radial direction;
  • the rotary grindstone 4 that grinds the outer peripheral surface of the workpiece 1, at least two measuring elements 5, a sensor (not shown) that measures the outer diameter D of the workpiece 1, and the sensor A controller (not shown) for controlling the rotation of the rotating grindstone 4 based on the measurement result.
  • a mechanical chuck which can be attached to the rotation drive shaft and the rotation drive shaft, and the work piece 1 can be supported and fixed to the rotation drive shaft.
  • a combination with a known chuck device such as a magnet chuck can be used.
  • means for positioning the workpiece 1 in the radial direction means such as a roller can be used, and any number of rollers and shoes can be used in combination.
  • a sensor for measuring the outer diameter D of the workpiece a contact displacement sensor using a contact as the measuring element 5, a non-contact displacement sensor using a laser beam or the like as the measuring element 5 can be used.
  • the basic steps including the method of grinding the workpiece 1 with the grindstone 4 are the same as the conventional method. That is, in the grinding method of this example, the outer peripheral surface of the workpiece 1 is ground by the rotating grindstone 4 while measuring the radial dimension of the workpiece 1 in-process, and is applied to the outer peripheral surface of the workpiece 1. Grinding is performed in the order of rough grinding, finish grinding, and spark out. More specifically, the outer diameter D of the workpiece 1 can be measured in-process by the two measuring elements 5, and the outer diameter D of the workpiece 1 measured by these measuring elements 5 is predetermined. When the value is reached, the controller switches from rough grinding to finish grinding.
  • the controller starts sparkout based on the rate of change v ( ⁇ m / s), which is the amount of change per unit time, of the outer diameter D of the workpiece 1 measured by the probe 5. It is characterized in that both end and end are judged. Specifically, in order for the controller to determine the sparking start timing (timing for switching from finish grinding to sparking out), a plurality (for example, 5 to 6) of the outer diameter D of the workpiece 1 are previously set. Target value Di is set. When the number of target values is 5, the value i is a natural number (1 ⁇ i ⁇ 5) of 1 or more and 5 and the target value Di is D1> D2>. Is set as follows.
  • a first threshold value vi is determined for the change rate v of the outer diameter D of the workpiece 1 for each of these target values Di.
  • a target value Di and the first threshold value vi are obtained in advance through experiments or calculations in accordance with the shape and material of the workpiece 1. That is, the target value Di and the first threshold value vi vary depending on the shape and material of the workpiece 1.
  • a method by which the controller determines the spark-out start timing based on the outer diameter D of the workpiece 1 and the change rate v of the outer diameter D will be described with reference to the flowchart of FIG.
  • the work shown in this flowchart is from the start of finish grinding until the spark out is started, or until the start timing of appropriate spark out cannot be determined and the grinding process is finished. It is executed by the controller.
  • step 3 When the outer diameter D is smaller than the target value Di (D ⁇ Di), the process proceeds to step 3, 1 is added to the value i, and the process proceeds to step 4.
  • step 2 and step 3 when the outer diameter D is smaller than the target value Di (D ⁇ Di), the outer diameter D and the target value Di are the same even if finish grinding is continued thereafter. This is a procedure for setting the target value Di used for comparison with the outer diameter D to Di + 1, which is one step smaller.
  • step 4 it is determined whether or not the value i is equal to or less than the number (total number) n of the target values Di.
  • the process proceeds to step 5 where grinding of the workpiece 1 is finished and an appropriate spark-out start timing can be determined. If not, the controller issues a warning by an indicator such as a buzzer or a warning light.
  • the process returns to step 1 after a predetermined time has elapsed.
  • step 4 and step 5 are determined by comparing the target value Dn that is the smallest among the target values Di and the outer diameter D of the workpiece 1, which is performed in the procedure from step 1 to step 6 described later. Then, it is a procedure (exception process) for abnormally terminating the grinding process when an appropriate spark-out start timing cannot be determined.
  • step 6 the process proceeds to step 6 where the absolute value of the rate of change v of the outer diameter D of the workpiece 1 at that time corresponds to the target value Di. It is determined whether or not it is larger than the first threshold vi.
  • the process proceeds to step 7 to start spark out (set the feed speed of the grindstone 4 to 0) and start spark out. The procedure for determining the timing ends.
  • the absolute value of the rate of change v is equal to or less than the first threshold value vi (
  • the process proceeds from step 3 to step 4 and then the process is performed as described above.
  • the controller determines the end timing of the spark-out according to the procedure shown in the flowchart of FIG.
  • the work shown in the flowchart of FIG. 4 is executed by the controller from the start to the end of the spark-out.
  • step 8 it is determined at predetermined time intervals (fixed time intervals) whether or not the absolute value of the change rate v is smaller than a preset second threshold value vf.
  • the process proceeds to step 9 to end the spark-out.
  • the spark-out is continued without ending the spark-out.
  • the second threshold value vf is obtained in advance through experiments or calculations.
  • the feed speed of the grindstone 4 is set to set the outer diameter D of the workpiece 1 as the target dimension after the spark-out is finished. Further, step feed grinding with a small cutting amount can be applied to the workpiece 1.
  • the grinding method for a metal annular member of the present invention even when the amount of elastic deformation of the workpiece 1 varies based on the change in sharpness of the grindstone 4 or the like, the workpiece at the end of the spark-out is processed. It is possible to prevent the outer diameter of the object 1 from varying, and it is possible to prevent the time required for the grinding process from becoming unnecessarily long. That is, in the case of this example, in order to determine the start and end timing of the spark-out, the change rate v, which is the change amount of the outer diameter D per unit time of the workpiece 1 is used. In short, the start and end timing of the spark-out can be determined in consideration of the elastic deformation amount of the workpiece 1.
  • FIGS. 2 and 5 show changes in the outer diameter D of the workpiece 1 measured in-process by the probe 5, and the amount of elastic deformation of the workpiece 1 accompanying the pressing of the grindstone 4 indicates the sharpness of the grindstone 4.
  • the first threshold value v1 corresponding to the target value D1 is smaller than the rate of change va1 when the amount of elastic deformation of the workpiece 1 is large, and is equal to or greater than the rate of change vb1 when the amount of elastic deformation of the workpiece 1 is small. (Vb1 ⁇ v1 ⁇ va1).
  • the outer diameter D of the workpiece 1 is the same as the target value D2 when the first threshold value v2 corresponding to the target value D2 smaller than the target value D1 is set. So that the rate of change is less than the rate of change vb2 at the time (v2 ⁇ vb2).
  • the elasticity of the workpiece 1 when the outer diameter D of the workpiece 1 becomes the target value D1 (D D1) by finish grinding.
  • the spark-out is started in order to satisfy the spark-out start condition (va1> v1) in step 6.
  • a plurality of target values Di are defined for the outer diameter D, and for each of these target values Di, the first threshold value vi corresponding to the target value Di decreases as the value of the target value Di decreases. By setting the first threshold value vi, it is possible to determine the spark-out start timing (switching from finish grinding to spark-out) while taking into account the amount of elastic deformation of the workpiece 1.
  • the rate of change v is smaller than the second threshold value vf regardless of the change in the amount of elastic deformation based on the sharpness deterioration of the grindstone 4. If it is substantially zero (except for measurement errors), the spark-out is terminated.
  • the rate of change v is substantially zero when the elastic deformation of the workpiece 1 is fully released and the outer peripheral surface of the workpiece 1 becomes smooth. Therefore, when the sharpness of the grindstone 4 is good and the amount of elastic deformation is small, the time required to release the elastic deformation of the workpiece 1 is short, so that the end of the spark-out can be accelerated.
  • the method and apparatus for grinding a metal annular member according to the present invention is not only applied when grinding the outer peripheral surface of a metal annular workpiece, but also when grinding the inner peripheral surface thereof. Can also be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

 砥石4の切れ味変化などに基づく被加工物1の弾性変形量の変化に拘らず、研削加工完了時における被加工物1の外径がばらつくことを防止できる研削方法を提供する。研削加工中の被加工物1の外径Dを、測定子5によりインプロセスで計測する。被加工物1の外径Dに関して、互いに異なる複数の目標値Diを定め、これらの目標値Diごとに、被加工物1の外径Dの変化率に関する第1の閾値を定める。そして、被加工物1の外径Dが、目標値Diになった場合に変化率vの絶対値が、この目標値Diに対応する第1の閾値を上回った場合に、スパークアウトを開始する。

Description

金属製環状部材の研削加工方法および装置
 本発明は、被加工物である金属製環状部材の周面を回転砥石により研削加工する方法および装置に関する。
 ラジアル転がり軸受を構成する軌道輪部材の軌道面や円筒状の嵌合面などの金属製環状部材の周面には、面精度や表面粗さを向上させるために、研削加工が施される。この研削加工は、図1(A)および図1(B)に概略を示すように、研削加工装置を用いて行われる。研削加工装置は、通常、回転駆動軸(図示せず)と、この回転駆動軸の先端部に固定され、環状の被加工物(ワーク)1をその端面に磁気吸着させるバッキングプレート2と、被加工物1の径方向の位置決めを図るための少なくとも2つのシュー3と、被加工物1の外周面または内周面を研削する回転砥石4と、少なくとも2つの測定子5を備え、被加工物1の外径Dを計測するための接触センサあるいは非接触センサ(図示せず)と、得られた測定結果に基づいて砥石4の送り量を制御するための制御器(図示せず)とを備える。研削加工は、被加工物1をバッキングプレート2に支持固定し、かつ、被加工物1の外周面にシュー3を摺接させて、被加工物1の径方向の位置決めを図った状態で行われる。同時に、センサにより、研削加工中の被加工物1の外周面のうち径方向反対側の2箇所位置の外径Dをインプロセスで計測し、その測定結果を制御器にフィードバックすることにより、砥石4の送り量を適切に制御する。
 より具体的には、金属製環状部材の研削加工は、粗研削、仕上げ研削、スパークアウトの順に行われる。粗研削および仕上げ研削では、砥石4の送り速度(送り量/時間)を段階的に減少させる。そして、測定子5による計測値に基づいて算出される被加工物1の外径Dが目標寸法になると、砥石4の送り速度を0とし、スパークアウトを開始する。スパークアウトは、砥石の送り速度を0にした状態で、被加工物1の弾性的な復元により、被加工物1の周面が、砥石4の表面に押し付けられることのみによって、被加工物1の周面を研削する工程である。そして、所定時間(被加工物1の外周面と砥石4の表面との接触部から火花や研削音が発生しなくなり、被加工物1の外周面が滑らかになるのに十分な時間)が経過した後、砥石4を被加工物1の外周面から離れる方向に変位させ、研削加工を終了する。
 このような研削加工では、粗研削工程における被加工物1への砥石4の押し付けにより、被加工物1が、図7(A)の状態から、図7(B)に誇張して示すように楕円形に弾性変形し、かつ、その後の工程(仕上げ研削およびスパークアウト)において、被加工物1が弾性的に復元する。被加工物1の弾性変形は、被加工物1の剛性が低いほど顕著になる。ここで、測定子5の設置位置は、砥石4との干渉を避けるために、通常、被加工物1と砥石4との接触位置から円周方向に略90度ずれている。したがって、測定子5により計測される被加工物1の外径Dは、自由状態(外周面をシュー3および砥石4により押圧されていない、弾性変形が解放された状態)の外径よりも大きくなる。この結果、被加工物1の外径Dが目標寸法となるまで加工した後、スパークアウトを実施すると、研削量が過剰になって、得られる被加工物1の自由状態における外径が目標寸法よりも小さくなる。
 そこで、測定子5により計測される被加工物1の外径Dが本来の目標寸法よりも大きい状態で、砥石4の送り速度を0にし、スパークアウトを所定時間だけ実施して、被加工物1の自由状態における外径を目標寸法にすることが考えられる。ただし、被加工物1の弾性変形量は、砥石4の切れ味などにより変動する。すなわち、砥石4の切れ味が劣化するほど、被加工物1の弾性変形量は大きくなり、砥石4の切れ味が良好であるほど、被加工物1の弾性変形量は小さくなる。
 したがって、被加工物1の外径Dが目標寸法よりも大きい状態からスパークアウトを所定時間だけ実施しても、砥石4の切れ味が設定値よりも悪く、被加工物1の弾性変形量が設定値よりも大きいと、被加工物1が弾性的に復元する量が大きくなって、スパークアウトによる研削量が過剰となり、被加工物1の外径Dが目標寸法よりも小さくなってしまう。逆に、砥石4の切れ味が設定値よりも良好な場合には、スパークアウトの際に被加工物1が弾性的に復元する量が設定値よりも小さくなり、かつ、スパークアウトにより被加工物1の外周面を研削する量が設定値よりも少なくって、被加工物1の研削加工完了状態における外径Dが目標寸法よりも大きくなってしまう。なお、被加工物1のスパークアウト終了時の外径Dが目標寸法よりも大きい場合には、図8に示すように、被加工物1に、砥石4の送り速度および切り込み量を微小とした、ステップ送り研削をさらに施すことで、被加工物1の外径を目標寸法とすることも考えられる。しかしながら、この工程の追加により、加工の手間および製造コストが増大する可能性がある。
 また、被加工物1の弾性変形量が設定値よりも小さく、スパークアウト時に被加工物1が弾性的に復元する量が小さい場合、スパークアウトの際に、被加工物1の弾性変形の解放に要する時間は短くて済む。ただし、従来構造の場合、スパークアウトの実施時間は、砥石4の切れ味の設定値を基準として、被加工物1の外周面と、砥石4の表面との接触部から火花や研削音が発生しなくなり、被加工物1の外周面が滑らかになるのに十分な時間が設定される。このため、砥石4の切れ味が設定値よりも良好な場合には、スパークアウトの実施時間、ひいては、研削加工全体の実施時間がいたずらに長くなってしまう。
 これに対し、特開2000-343425号公報には、スパークアウト終了時の被加工物の1回転当たりの外径の変化量から、スパークアウトの開始点(仕上げ研削からスパークアウトへの切り換えのタイミング)を学習し、この学習完了後に行われる次の研削加工におけるスパークアウトの開始点を調整する方法が記載されている。また、特開2012-143843号公報には、被加工物の外径を目標寸法とするために要した時間に基づいて、その後に行われる次の研削加工における砥石の送り速度を調整する方法が記載されている。しかしながら、これらの文献に記載された方法の場合、砥石の切れ味の変化などにより研削加工にばらつきが生じると、学習が収束しない可能性がある。
特開2000-343425号公報 特開2012-143843号公報
 本発明は、上述のような事情に鑑みて、砥石の切れ味の変化などに基づく被加工物の弾性変形量の変化に拘らず、スパークアウト完了時における、被加工物の径方向寸法がばらついたり、研削加工の実施時間がいたずらに長くなったりすることを防止できる研削加工方法を提供することを目的とする。
 本発明の金属製環状部材の研削加工方法は、金属製で環状の被加工物の周面を、該被加工物の径方向寸法をインプロセスで計測しつつ、回転砥石により研削することで、該被加工物の周面に研削加工を施すもので、粗研削工程の後、該回転砥石の送り速度を遅くして仕上げ研削工程を行い、次いで、該回転砥石の送り速度を0にしてスパークアウト工程を行う。
 特に、本発明の金属製環状部材の研削加工方法は、前記被加工物の、単位時間当たり、あるいは、該被加工物の1回転当たりの径方向寸法の変化量である、径方向寸法の変化率に基づいて、前記スパークアウトの開始(前記仕上げ研削から前記スパークアウトへの切り換え)と終了とのうちの少なくとも一方の条件を定める。
 好ましくは、前記仕上げ研削工程時における、前記被加工物の径方向寸法に関する、それぞれが予め設定された互いに異なる複数の目標値ごとに、該被加工物の径方向寸法の変化率に関する第1の閾値を定めておく。そして、該被加工物の径方向寸法が、前記複数の目標値のうちの何れかの目標値になった場合に、該被加工物の径方向寸法の変化率の絶対値が、該何れかの目標値に対応する第1の閾値を上回ったことを条件に、前記スパークアウトを開始する(前記仕上げ研削から前記スパークアウトへと切り換える)。
 好ましくは、前記スパークアウト工程中における、前記被加工物の径方向寸法の変化率の絶対値が、予め設定した第2の閾値を下回ったことを条件に、該スパークアウトを終了する。
 また、本発明の金属製環状部材の研削加工装置は、被加工物を支持固定し、かつ、回転させる手段と、前記被加工物の径方向の位置決めを図る手段と、前記被加工物の周面を研削する回転砥石と、前記被加工物の外径を計測するセンサと、該センサにより計測された測定結果に基づき、前記回転砥石の回転を制御する制御器とを備え、本発明の金属製環状部材の研削加工方法を実行する。
 すなわち、本発明の金属製環状部材の研削加工装置において、前記制御器は、前記被加工物の径方向寸法の変化率に基づいて、前記スパークアウトの開始のタイミングと前記スパークアウトの終了のタイミングとのうちの少なくとも一方を判定する。好ましくは、前記制御器は、前記被加工物の径方向寸法が、該被加工物の径方向寸法に関して予め設定された互いに異なる複数の目標値のうちの何れかの目標値になった場合に、前記被加工物の径方向寸法の変化率の絶対値が、前記目標値のそれぞれに対応して予め設定された該被加工物の径方向寸法の変化率に関する第1の閾値のうち、その時点の前記目標値に対応する第1の閾値と比較し、前記被加工物の径方向寸法の変化率の絶対値が、その時点の前記目標値に対応する第1の閾値を上回ったことを条件に、前記スパークアウトを開始する。また、好ましくは、前記制御器は、前記被加工物の径方向寸法の変化率の絶対値が、予め設定した第2の閾値を下回った場合に、前記スパークアウトを終了する。
 本発明の金属製環状部材の研削加工方法および研削加工装置によれば、砥石の切れ味変化などに基づく被加工物の弾性変形量の変化に拘らず、この被加工物の径方向寸法がばらついたり、研削加工の実施時間がいたずらに長くなったりすることを防止することができる。すなわち、本発明では、研削加工工程のうち、スパークアウトの開始と終了とのうちの少なくとも一方の条件を、前記被加工物の、単位時間当たり、あるいは、前記被加工物の1回転当たりの径方向寸法の変化量である、径方向寸法の変化率に基づいて定める。このため、前記被加工物の弾性変形量を考慮した上で、スパークアウトを実施することが可能となる。
図1(A)は、本発明が適用される研削加工装置の1例により被加工物に研削加工を施す状態を示す側面図であり、図1(B)は、図1(A)の状態について図1(A)の右方から見た端面図である。 図2は、本発明の実施の形態の1例における、研削加工中の被加工物の外径変化の1例を示す線図である。 図3は、本例における、スパークアウトの開始タイミングを判定するための処理を示す、フローチャートである。 図4は、本例における、スパークアウトの終了タイミングを判定するための処理を示す、フローチャートである。 図5は、図2のX部拡大図に相当する図である。 図6は、本例における、研削加工中における、砥石の送り量、被加工物の外径D、外径Dの変化率vの変化の1例を示す線図である。 図7(A)は、従来技術における、研削加工装置に支持された被加工物について、この被加工物に砥石を押し付ける以前の状態で示す側面図であり、図7(B)は、この被加工物に砥石を押し付けた状態を誇張して示す側面図である。 図8は、従来技術における、研削加工による被加工物の外径変化の1例を示す線図である。
 図1~図6は、本発明の実施の形態の1例を示している。なお、本例の特徴は、研削加工工程のうち、スパークアウトの開始(仕上げ研削からスパークアウトへの切り換え)および終了のタイミングを適切に決定することにより、砥石4の切れ味変化などに基づく被加工物1の弾性変形量の変化に拘らず、被加工物(ワーク)1の外径Dが、加工完了時の状態でばらついてしまうことを抑制し、かつ、研削加工にかかる時間がいたずらに長くなってしまうことを防止する点にある。本例の研削加工装置は、基本的には従来の装置の構成と同様に、被加工物を支持固定し、かつ、回転させる手段である、回転駆動軸(図示せず)、および、この回転駆動軸の先端部に固定され、環状の被加工物(ワーク)1をその端面に磁気吸着させるバッキングプレート2と、被加工物1の径方向の位置決めを図る手段である、2つのシュー3と、被加工物1の外周面を研削する回転砥石4と、少なくとも2つの測定子5を備え、被加工物1の外径Dを計測するセンサ(図示せず)と、このセンサにより計測された測定結果に基づき、回転砥石4の回転を制御する制御器(図示せず)とを備える。被加工物1を支持固定し、かつ、回転させる手段としては、回転駆動軸と、回転駆動軸に取り付け可能で、かつ、この回転駆動軸に被加工物1を支持固定可能である、メカニカルチャック、マグネットチャックなどの公知のチャック装置などとの組み合わせを用いることができる。また、被加工物1の径方向の位置決めを図る手段としては、ローラなどの手段も用いることができ、任意の数のローラとシューを組み合わせて用いることも可能である。被加工物1の外径Dを計測するセンサとしては、計測子5として接触子を用いた接触変位センサや計測子5としてレーザ光を用いた非接触変位センサなどを用いることができる。
 本例の研削加工方法についても、被加工物1を砥石4により研削する方法を含め、基本的な工程は従来の方法と同様である。すなわち、本例の研削加工方法では、被加工物1の外周面を、被加工物1の径方向寸法をインプロセスで計測しつつ、回転砥石4により研削し、被加工物1の外周面に、粗研削、仕上げ研削、スパークアウトの順で研削加工を施している。より具体的には、被加工物1の外径Dは、2つの測定子5によりインプロセスで計測可能となっており、これらの測定子5により計測した被加工物1の外径Dが所定値となった時に、粗研削から仕上げ研削への切り換えが、制御器により行われる。
 本例の場合、制御器は、測定子5により測定した被加工物1の外径Dの、単位時間当たりの変化量である、変化率v(μm/s)に基づいて、スパークアウトの開始と終了の両方を判断する点に特徴がある。具体的には、スパークアウトの開始タイミング(仕上げ研削からスパークアウトへの切り換えのタイミング)を制御器が判定するために、被加工物1の外径Dに関して、予め複数(たとえば5~6個)の目標値Diを設定している。なお、目標値の数が5個である場合、値iは1以上5以下の自然数(1≦i≦5)をとり、かつ、目標値Diは、D1>D2>・・・>D5となるように設定される。さらに、これらの目標値Diごとに、被加工物1の外径Dの変化率vについて、第1の閾値viが定められる。このような目標値Diおよび第1の閾値viは、被加工物1の形状や材質に応じて、予め実験ないし計算により求められる。すなわち、目標値Diおよび第1の閾値viは、被加工物1の形状や材質に応じて変化する。
 被加工物1の外径Dや外径Dの変化率vに基づいて、スパークアウトの開始タイミングを、制御器が判定する方法について、図3のフローチャートを参照しつつ説明する。なお、このフローチャートに示した作業は、仕上げ研削を開始した後からスパークアウトが開始されるまでの間、あるいは、適切なスパークアウトの開始タイミングを判定できず、研削加工を終了するまでの間、制御器により実行される。
 まず、ステップ1で、測定子5により計測した、その時点の被加工物1の外径Dが、目標値Diと同じであるか否か(外径Dが、目標値Diを中心とする所定の範囲内にあるか否か)を判定する。なお、値iの初期値は1とする(i=1)。外径Dが、目標値Diと同じでない(D≠Di)場合、ステップ2に進み、外径Dが、目標値Diよりも小さいか(D<Di)否かを判定する。ステップ2において、外径Dが目標値Di以上である(D≧Di)場合(ただし、ステップ1において、これらの値が同じ(D=Di)場合は除かれる)、仕上げ研削を継続して、所定時間経過後、ステップ1に戻る。外径Dが目標値Diよりも小さい(D<Di)場合、ステップ3に進み、値iに1を加えて、ステップ4に進む。この作業は、ステップ2およびステップ3は、外径Dが目標値Diよりも小さい(D<Di)場合には、その後に仕上げ研削を継続しても、外径Dと目標値Diとが同じになることはないため、外径Dとの比較に用いる目標値Diを、一段階小さな値であるDi+1とするための手順である。
 ステップ4では、値iが、目標値Diの個数(総数)n以下であるか否かを判定する。値iが、目標値Diの個数nよりも大きい(i>n)場合には、ステップ5に進み、被加工物1の研削加工を終了し、かつ、適切なスパークアウトの開始タイミングを判定できなかったとして、制御器は、ブザーや警告灯などの表示器により警告を発する。値iが、目標値Diの個数n以下である(i≦n)場合、所定時間経過後、ステップ1に戻る。すなわち、ステップ4およびステップ5は、後述するステップ1からステップ6への手順で行われる、目標値Diのうちで最小となる目標値Dnと、被加工物1の外径Dとの比較による判定では、適切なスパークアウトの開始タイミングを判定できなかった場合に、研削加工を異常終了するための手順(例外処理)である。
 一方、ステップ1において、目標値Diと同じである(D=Di)場合、ステップ6に進み、その時点の被加工物1の外径Dの変化率vの絶対値が、目標値Diに対応する第1の閾値viよりも大きいか否かを判定する。変化率vの絶対値が、第1の閾値viよりも大きい(|v|>vi)場合、ステップ7に進み、スパークアウトを開始して(砥石4の送り速度を0として)、スパークアウト開始タイミングを判定するための手順を終了する。変化率vの絶対値が、第1の閾値vi以下である(|v|≦vi)場合には、ステップ3からステップ4への手順に進み、その後、前述した手順の通りに処理を行う。
 スパークアウトを開始した後は、図4のフローチャートに示す手順により、スパークアウトの終了タイミングを、制御器が判定する。なお、図4のフローチャートに示した作業は、スパークアウトを開始した後から終了するまでの間、制御器により実行される。まず、ステップ8で、変化率vの絶対値が、予め設定した第2の閾値vfより小さいか否かを所定時間(一定時間)ごとに判定する。そして、変化率vの絶対値が、第2の閾値vfよりも小さくなった(|v|<vf)場合、ステップ9に進み、スパークアウトを終了する。一方、変化率vの絶対値が、第2の閾値vf以上である(|v|≧vf)場合は、スパークアウトを終了することなく、スパークアウトを継続し、所定時間経過後、ステップ8に戻る。なお、第2の閾値vfについては、予め実験ないし計算により求めておく。なお、特に寸法公差を小さく抑える(たとえば1μm以下とする)必要がある場合には、スパークアウトを終了した後、被加工物1の外径Dを目標寸法とするために、砥石4の送り速度および切り込み量を微小とした、ステップ送り研削を、被加工物1に施すこともできる。
 本発明の金属製環状部材の研削加工方法によれば、砥石4の切れ味変化などに基づいて被加工物1の弾性変形量にばらつきが生じた場合であっても、スパークアウト終了時における被加工物1の外径が、ばらついてしまうことを防止することができ、かつ、研削加工にかかる時間がいたずらに長くなることも防止することができる。すなわち、本例の場合、スパークアウトの開始および終了タイミングを判定するために、被加工物1の単位時間当たりの外径Dの変化量である、変化率vを用いている。要するに、スパークアウトの開始および終了タイミングを、被加工物1の弾性変形量を考慮して、判定することができる。ここで、被加工物1の弾性変形量を考慮しながら、スパークアウトの開始タイミングを判定できる理由について、図2および図5を参照しつつ、説明する。図2および図5は、測定子5によりインプロセスで計測される被加工物1の外径Dの変化を、砥石4の押し付けに伴う被加工物1の弾性変形量が、砥石4の切れ味の劣化により大きくなった場合(実線a)と、被加工物1の弾性変形量が砥石4の切れ味が劣化する以前の小さい場合(破線b)とについて、それぞれ表わしている。
 なお、図2では、被加工物1の弾性変形量の違いにより、仕上げ研削からスパークアウト工程の実施にかかる時間が変化することを明確にするため、粗研削から仕上げ研削への切り換えが、被加工物1の弾性変形量が大きくなった場合と小さい場合とで同じタイミングとなるように記載している。実際には、粗研削から仕上げ研削への切り換えは、被加工物1の外径Dが所定値になった時に行うため、この切り換えのタイミングは、砥石4の切れ味の変化などにより変化する。砥石4の切れ味が劣化して、粗研削工程時における被加工物1の弾性変形量が大きくなるほど、スパークアウト時に被加工物1が弾性的に復元する量は大きくなり、スパークアウトによる研削量が増大する。したがって、被加工物1の弾性変形量が大きいほど、仕上げ研削による研削量を減らすために、仕上げ研削の終了を早め、仕上げ研削からスパークアウトへの切り換えを早くする(被加工物1の外径Dが大きい状態でスパークアウトを開始する)必要がある。
 図2および図5から明らかな通り、仕上げ研削工程中において、外径Dが同じ(たとえばD=D1)とすると、粗研削工程における被加工物1の弾性変形量が大きく、被加工物1が弾性的に復元する量の大きい場合の変化率va1の方が、被加工物1が弾性的に復元する量の小さい場合の変化率vb1よりも大きくなる(va1>vb1)。そこで、目標値D1に対応する第1の閾値v1を、被加工物1の弾性変形量が大きい場合の変化率va1よりも小さく、被加工物1の弾性変形量が小さい場合の変化率vb1以上となるように規制する(vb1≦v1<va1)。また、目標値D1よりも小さい目標値D2に対応する第1の閾値v2を、被加工物1の弾性変形量が小さい場合に、被加工物1の外径Dが目標値D2と同じとなった時の変化率vb2よりも小さくなるように規制する(v2<vb2)。このように、目標値Diおよび第1の閾値viを規制することで、仕上げ研削により被加工物1の外径Dが目標値D1となった(D=D1)時に、被加工物1の弾性変形量が大きい場合には、ステップ6のスパークアウト開始の条件(va1>v1)を満たすため、スパークアウトを開始する。
 一方、被加工物1の弾性変形量が小さい場合には、ステップ6の条件(vb1≦v1)を満たさない(そのままスパークアウト工程に切り換えると、被加工物1の外径が目標寸法よりも大きくなってしまう)ため、スパークアウトを開始せず、仕上げ研削を継続する。そして、さらに仕上げ研削を施し、外径Dが小さくなり、目標値D2と同じになった(D=D2)時は、ステップ6の条件(vb2>v2)を満たすため、スパークアウトを開始する。このように、外径Dに関して複数の目標値Diを定め、目標値Diの値が小さくなるほど、目標値Diに対応する第1の閾値viが小さくなるように、これらの目標値Diごとに、第1の閾値viを設定することで、被加工物1の弾性変形量を考慮しつつ、スパークアウトの開始タイミング(仕上げ研削からスパークアウトへの切り換え)を判定することができる。
 一方、本例のスパークアウトの終了の判定においては、砥石4の切れ味の劣化に基づく弾性変形量の大きさの変化に拘らず、変化率vが、前記第2の閾値vfよりも小さくなった(測定誤差などを除き、実質的に0となった)場合に、スパークアウトを終了する。変化率vは、被加工物1の弾性変形が解放し切って、被加工物1の外周面が滑らかとなった時に、実質的に0となる。したがって、砥石4の切れ味が良好で、弾性変形量が小さい場合、被加工物1の弾性変形の解放にかかる時間が短いため、スパークアウトの終了を早くすることができる。一方、砥石4の切れ味が悪く、弾性変形量が大きい場合、被加工物1の弾性変形の解放にかかる時間が長くなり、スパークアウトの実施時間を十分に確保することができる。このように、本例の場合、弾性変形量の大きさの変化に拘らず、スパークアウトの適切な終了タイミングを判定することができる。したがって、本例の場合、砥石4の切れ味変化などに基づく被加工物1の弾性変形量の変化に拘らず、研削加工完了時の被加工物1の外径にばらつきが生じてしまうことを防止することができ、かつ、研削加工にかかる時間がいたずらに長くなることも防止することができる。
 本発明の金属製環状部材の研削方法および装置は、金属製で環状の被加工物の外周面に研削加工を施す場合に適用されるだけでなく、その内周面に研削加工を施す場合にも適用することができる。
  1  被加工物
  2  バッキングプレート
  3  シュー
  4  砥石
  5  測定子

Claims (6)

  1.  金属製で環状の被加工物の周面を、該被加工物の径方向寸法をインプロセスで計測しつつ、該被加工物の周面に、粗研削、仕上げ研削、スパークアウトの順で、回転砥石を用いて研削加工を施す、金属製環状部材の研削加工方法であって、
     前記被加工物の径方向寸法の変化率に基づいて、前記スパークアウトの開始と前記スパークアウトの終了とのうちの少なくとも一方の条件を定める、金属製環状部材の研削加工方法。
  2.  前記被加工物の径方向寸法に関する、それぞれが予め設定された互いに異なる複数の目標値ごとに、該被加工物の径方向寸法の変化率に関する第1の閾値を定めておき、該被加工物の径方向寸法が、前記目標値のうちの何れかの目標値になった場合に、該被加工物の径方向寸法の変化率の絶対値が、該目標値に対応する第1の閾値を上回ったことを条件に、前記スパークアウトを開始する、請求項1に記載した金属製環状部材の研削加工方法。
  3.  前記被加工物の径方向寸法の変化率の絶対値が、予め設定した第2の閾値を下回った場合に、前記スパークアウトを終了する、請求項1に記載した金属製環状部材の研削加工方法。
  4.  金属製で環状の被加工物を支持固定し、かつ、回転させる手段と、前記被加工物の径方向の位置決めを図る手段と、前記被加工物の周面を研削する回転砥石と、前記被加工物の外径を計測するセンサと、該センサにより計測された測定結果に基づき、前記回転砥石の回転を制御する制御器とを備え、
     前記被加工物の周面を、該被加工物の径方向寸法をインプロセスで計測しつつ、該被加工物の周面に、粗研削、仕上げ研削、スパークアウトの順で、回転砥石を用いて研削加工を施す際に、該制御器は、前記被加工物の径方向寸法の変化率に基づいて、前記スパークアウトの開始のタイミングと前記スパークアウトの終了のタイミングとのうちの少なくとも一方を判定する、
    金属製環状部材の研削加工装置。
  5.  前記制御器は、前記被加工物の径方向寸法が、該被加工物の径方向寸法に関して予め設定された互いに異なる複数の目標値のうちの何れかの目標値になった場合に、前記被加工物の径方向寸法の変化率の絶対値が、前記目標値のそれぞれに対応して予め設定された該被加工物の径方向寸法の変化率に関する第1の閾値のうち、その時点の前記目標値に対応する第1の閾値と比較し、前記被加工物の径方向寸法の変化率の絶対値が、その時点の前記目標値に対応する第1の閾値を上回ったことを条件に、前記スパークアウトを開始する、請求項4に記載した金属製環状部材の研削加工装置。
  6.  前記制御器は、前記被加工物の径方向寸法の変化率の絶対値が、予め設定した第2の閾値を下回った場合に、前記スパークアウトを終了する、請求項4に記載した金属製環状部材の研削加工装置。
PCT/JP2013/083786 2012-12-25 2013-12-17 金属製環状部材の研削加工方法および装置 WO2014103806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380002625.5A CN104010768B (zh) 2012-12-25 2013-12-17 金属制环状构件的磨削加工方法及装置
US14/758,130 US9914194B2 (en) 2012-12-25 2013-12-17 Method and device for grinding metal annular member
JP2013557303A JP5692420B2 (ja) 2012-12-25 2013-12-17 金属製環状部材の研削加工方法および装置
EP13869417.9A EP2942153B1 (en) 2012-12-25 2013-12-17 Method and device for grinding metal annular member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280550 2012-12-25
JP2012280550 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103806A1 true WO2014103806A1 (ja) 2014-07-03

Family

ID=51020893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083786 WO2014103806A1 (ja) 2012-12-25 2013-12-17 金属製環状部材の研削加工方法および装置

Country Status (5)

Country Link
US (1) US9914194B2 (ja)
EP (1) EP2942153B1 (ja)
JP (1) JP5692420B2 (ja)
CN (1) CN104010768B (ja)
WO (1) WO2014103806A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166036A1 (de) * 2015-04-13 2016-10-20 Erwin Junker Grinding Technology A.S. Verfahren und system zum aussenschleifen von wellenteilen zwischen spitzen
JP2017001112A (ja) * 2015-06-05 2017-01-05 株式会社ジェイテクト 円筒ワークの研削加工装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768630B1 (de) * 2011-10-19 2016-12-07 Walter Maschinenbau GmbH Verfahren und vorrichtung zur bearbeitung eines rotationswerkzeugs mit einer vielzahl von schneidkörpern
CN104827398B (zh) * 2015-04-09 2017-06-13 北京第二机床厂有限公司 跟随磨削中在线跟随直径测量方法及装置
JP6578772B2 (ja) * 2015-07-07 2019-09-25 株式会社ジェイテクト 円筒研削方法及び円筒研削盤

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703054A (en) * 1971-05-17 1972-11-21 Cincinnati Milacron Heald Grinding machine
JPH01171743A (ja) * 1987-12-28 1989-07-06 Mitsubishi Heavy Ind Ltd 研削加工方法
JPH06278019A (ja) * 1993-03-29 1994-10-04 Toyoda Mach Works Ltd 研削装置
JPH06335858A (ja) * 1993-03-29 1994-12-06 Toyoda Mach Works Ltd 研削装置
JP2000343425A (ja) 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd 研削盤
JP2005059141A (ja) * 2003-08-12 2005-03-10 Kazuhito Ohashi 研削方法および研削盤の制御装置
JP2012143843A (ja) 2011-01-13 2012-08-02 Toyo Advanced Technologies Co Ltd 内面研削盤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125590A (en) * 1978-03-22 1979-09-29 Ntn Toyo Bearing Co Ltd Grinding control method in complex grinding
US4926337A (en) * 1988-07-13 1990-05-15 Bryant Grinder Corporation Automatic workpart centering mechanism for a chuck
US5562526A (en) 1993-03-29 1996-10-08 Toyoda Koki Kabushiki Kaisha Method and apparatus for grinding a workpiece
JP3467807B2 (ja) * 1993-09-30 2003-11-17 豊田工機株式会社 研削装置
JPH09314439A (ja) * 1996-05-28 1997-12-09 Denso Corp 研削加工方法
JP2000158292A (ja) * 1998-11-20 2000-06-13 Nsk Ltd 機械部品の加工方法
DE19857364A1 (de) * 1998-12-11 2000-06-29 Junker Erwin Maschf Gmbh Verfahren und Schleifmaschine zur Prozeßführung beim Schälschleifen eines Werkstückes
JP3787248B2 (ja) * 1999-09-30 2006-06-21 株式会社ジェイテクト 工作機械の定寸加工制御方法及びその装置
JP2001269864A (ja) * 2000-03-24 2001-10-02 Toyoda Mach Works Ltd 半径測定式定寸装置を備えた工作機械
JP2003094335A (ja) * 2001-09-26 2003-04-03 Toyoda Mach Works Ltd 研削盤における研削液供給方法及び装置
JP4923549B2 (ja) * 2005-12-08 2012-04-25 株式会社ジェイテクト 定寸装置の取付構造
DE102007026562B4 (de) * 2007-06-08 2010-08-26 Erwin Junker Maschinenfabrik Gmbh Schleifzentrum und Verfahren zum gleichzeitigen Schleifen mehrerer Lager von Kurbelwellen
JP5332507B2 (ja) * 2008-10-28 2013-11-06 株式会社ジェイテクト 研削盤および研削加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703054A (en) * 1971-05-17 1972-11-21 Cincinnati Milacron Heald Grinding machine
JPH01171743A (ja) * 1987-12-28 1989-07-06 Mitsubishi Heavy Ind Ltd 研削加工方法
JPH06278019A (ja) * 1993-03-29 1994-10-04 Toyoda Mach Works Ltd 研削装置
JPH06335858A (ja) * 1993-03-29 1994-12-06 Toyoda Mach Works Ltd 研削装置
JP2000343425A (ja) 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd 研削盤
JP2005059141A (ja) * 2003-08-12 2005-03-10 Kazuhito Ohashi 研削方法および研削盤の制御装置
JP2012143843A (ja) 2011-01-13 2012-08-02 Toyo Advanced Technologies Co Ltd 内面研削盤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166036A1 (de) * 2015-04-13 2016-10-20 Erwin Junker Grinding Technology A.S. Verfahren und system zum aussenschleifen von wellenteilen zwischen spitzen
CN107530857A (zh) * 2015-04-13 2018-01-02 埃尔温容克尔研磨技术股份公司 用于对尖顶之间的轴部件进行外磨削的方法和系统
US10766114B2 (en) 2015-04-13 2020-09-08 Erwin Junker Grinding Technology A.S. Method and system for grinding the exterior of shaft parts between tips
JP2017001112A (ja) * 2015-06-05 2017-01-05 株式会社ジェイテクト 円筒ワークの研削加工装置

Also Published As

Publication number Publication date
JPWO2014103806A1 (ja) 2017-01-12
JP5692420B2 (ja) 2015-04-01
US9914194B2 (en) 2018-03-13
CN104010768A (zh) 2014-08-27
EP2942153B1 (en) 2019-10-23
CN104010768B (zh) 2016-09-07
EP2942153A4 (en) 2017-03-01
EP2942153A1 (en) 2015-11-11
US20150343598A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5692420B2 (ja) 金属製環状部材の研削加工方法および装置
CN105729306B (zh) 用于机器人支持的磨料加工方法和设备
EP2921259B1 (en) Grinding wheel truing method and grinding machine
JP6023598B2 (ja) 研削加工方法
WO2013099721A1 (ja) 研削盤の測定異常判定機能付き加工径測定装置
JP4387706B2 (ja) 研削加工装置及び研削加工方法
US9238297B2 (en) Actual grinding depth measurement method, machining method, and machine tool
JP5592294B2 (ja) ワーク内面の研削方法
US10486288B2 (en) Cylindrical grinding method and cylindrical grinding machine
US9238289B2 (en) Grinding method of grinding roller workpiece and grinding apparatus for grinding roller workpiece
JP5821616B2 (ja) 研削異常監視方法および研削異常監視装置
JP6089928B2 (ja) 工作機械
JP2020138244A (ja) 研磨品の製造方法
JP2020114615A (ja) 工作機械のメンテナンス支援装置および工作機械システム
JP2024046938A (ja) センタレスシューによる研削方法
JP4150897B2 (ja) 玉軸受の軌道輪用超仕上げ装置および超仕上げ方法
JP7363393B2 (ja) 研削装置
JP2023150900A (ja) 研削加工システム
JP2017127925A (ja) ホーニング加工機
JP2009006456A (ja) 研削装置
JP2009269114A (ja) 研削盤を用いたワークの研削方法
JP2008012559A (ja) 微細凹部加工装置及び微細凹部加工方法
JP2014104552A (ja) 研削加工方法および研削加工装置
JP2014104553A (ja) 研削加工方法および研削加工装置
JP2012206203A (ja) 円筒研削加工方法、および円筒研削加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557303

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14758130

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013869417

Country of ref document: EP