WO2014098051A1 - ビニルアセタール系重合体 - Google Patents

ビニルアセタール系重合体 Download PDF

Info

Publication number
WO2014098051A1
WO2014098051A1 PCT/JP2013/083679 JP2013083679W WO2014098051A1 WO 2014098051 A1 WO2014098051 A1 WO 2014098051A1 JP 2013083679 W JP2013083679 W JP 2013083679W WO 2014098051 A1 WO2014098051 A1 WO 2014098051A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
vinyl acetal
formula
vinyl
acetal polymer
Prior art date
Application number
PCT/JP2013/083679
Other languages
English (en)
French (fr)
Inventor
徳地 一記
悠太 田岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014553141A priority Critical patent/JP6258219B2/ja
Publication of WO2014098051A1 publication Critical patent/WO2014098051A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the present invention relates to a vinyl acetal polymer.
  • a vinyl acetal polymer typified by a vinyl butyral polymer is obtained by acetalizing a vinyl alcohol polymer (hereinafter sometimes abbreviated as “PVA”), and has toughness and film-forming properties.
  • PVA vinyl alcohol polymer
  • the dispersibility of the added inorganic or organic powder is excellent. Therefore, the vinyl acetal polymer is used for interlayer films of laminated glass, inks, paints, baking enamels, wash primers, lacquers, dispersants, adhesives, ceramic green sheets, photothermographic materials, water-based ink receiving layers. It is used in various applications such as binders.
  • a vinyl acetal polymer modified with a silyl group (hereinafter referred to as a “silyl group-containing vinyl acetal polymer” in order to improve adhesion to glass, ceramics or inorganic substances. It is proposed to use (sometimes abbreviated as “polymer”) (see Japanese Patent Application Laid-Open No. 2005-194409).
  • the conventional silyl group-containing vinyl acetal polymer has a disadvantage that it is difficult to handle because it has a very low solubility in an organic solvent such as an alcohol solvent and the solution viscosity is high even when dissolved.
  • the present invention has been made based on the above circumstances, and is a vinyl acetal that has excellent solubility in alcohol solvents and the like and adhesion to inorganic substances such as glass, and has low solution viscosity and excellent handling properties.
  • An object is to provide a polymer.
  • a vinyl acetal polymer obtained by acetalizing a vinyl alcohol polymer The vinyl alcohol polymer includes a monomer unit having a group represented by the following formula (1) and satisfies the following formula (I): A vinyl acetal polymer having an acetalization degree of 45 mol% or more and 80 mol% or less.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 2 is an alkoxyl group, an acyloxyl group, or a group represented by OM.
  • M is a hydrogen atom
  • R 3 and R 4 are each independently a hydrogen atom or an alkyl group
  • the hydrogen atom possessed by the alkyl group, alkoxyl group and acyloxyl group represented by R 1 to R 4 is May be substituted with a substituent containing an oxygen atom or a nitrogen atom
  • m is an integer of 0 to 2
  • n is an integer of 3 or more
  • a plurality of R 1 to R 4 independently satisfy the above definition.
  • the vinyl acetal polymer includes a PVA having a structure in which a monomer unit having a group represented by the above formula (1) is included and a silyl group is connected to a main chain via an alkylene group having 3 or more carbon atoms. Obtained by acetalization. For this reason, the vinyl acetal polymer has sufficient solubility in an alcohol solvent and the like, and the solution viscosity can be kept low even if the amount of modification of the silyl group is increased. The reason why such an effect appears is not fully understood, but is presumed as follows.
  • the vinyl acetal polymer since the product (P ⁇ S) of the viscosity average polymerization degree (P) of the PVA and the content (S) of the monomer unit is in the above range, silyl The amount of group modification can be increased, and properties derived from a silyl group, for example, adhesion to an inorganic substance such as glass can be effectively exhibited. Moreover, the solubility etc. to the alcohol solvent etc. of the said vinyl acetal type polymer can be improved by making acetalization degree into 45 mol% or more and 80 mol% or less.
  • the PVA preferably further satisfies the following formulas (II) and (III). 200 ⁇ P ⁇ 4,000 (II) 0.1 ⁇ S ⁇ 10 (III) P: Viscosity average degree of polymerization S: Content of the monomer unit (mol%)
  • the solubility of the vinyl acetal polymer in an alcohol solvent and the like and glass As a result, it is possible to further improve the adhesiveness to the inorganic substance such as the solution, and to suppress the solution viscosity to a lower level.
  • n is preferably an integer of 6 to 20.
  • the monomer unit is preferably represented by the following formula (2).
  • formula (2) the definitions of R 1 to R 4 , m and n are the same as those in formula (1).
  • X represents a direct bond, a divalent hydrocarbon group, an oxygen atom or a nitrogen atom containing 2 R 5 is a hydrogen atom or a methyl group.
  • the monomer unit has a structure represented by the formula (2), various performances of the vinyl acetal polymer can be further enhanced.
  • X in the above formula (2) is preferably represented by the following formula (3).
  • -CO-NR 6- * (3) (In the formula (3), R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. * Represents a bonding site with the group represented by the above formula (1).)
  • R 6 in the above formula (3) is a hydrogen atom
  • n in the above formula (2) is preferably an integer of 3 to 12.
  • the aldehyde used for acetalization is preferably at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, hexylaldehyde, and benzaldehyde, with butyraldehyde being particularly preferable.
  • the vinyl acetal polymer of the present invention is excellent in solubility in alcohol solvents and the like and adhesion to inorganic substances such as glass, and has low solution viscosity and excellent handleability. Therefore, the vinyl acetal polymer includes an interlayer film composition for laminated glass, a slurry composition for ceramic capacitor electrode paste, a slurry composition for ceramic green sheet, an ink composition / paint composition, an adhesive composition, a heat It is suitably used for various applications such as a developable photosensitive material composition.
  • the vinyl acetal polymer of the present invention includes a monomer unit having a group represented by the above formula (1), and has a structure in which a silyl group is connected to a main chain via an alkylene group having 3 or more carbon atoms. It is obtained by acetalizing PVA. For this reason, the vinyl acetal polymer has sufficient solubility in an alcohol solvent and the like, and the solution viscosity can be kept low even if the amount of modification of the silyl group is increased. The reason why such an effect appears is not fully understood, but is presumed as follows.
  • the vinyl acetal polymer since the product (P ⁇ S) of the viscosity average polymerization degree (P) of the PVA and the content (S) of the monomer unit is in the above range, silyl The amount of group modification can be increased, and properties derived from a silyl group, for example, adhesion to an inorganic substance such as glass can be effectively exhibited. Moreover, the solubility etc. to the alcohol solvent etc. of the said vinyl acetal type polymer can be improved by making acetalization degree into 45 mol% or more and 80 mol% or less.
  • the PVA includes a monomer unit having a group represented by the formula (1). That is, the PVA is a copolymer including a monomer unit having a group represented by the above formula (1) and a vinyl alcohol unit (—CH 2 —CHOH—), and another monomer unit. You may have.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R 2 is a group represented by an alkoxyl group, an acyloxyl group, or OM.
  • M is a hydrogen atom, an alkali metal, or an ammonium group ( + NH 4 ).
  • the alkoxyl group include a methoxy group and an ethoxy group.
  • the acyloxyl group include an acetoxy group and a propionyloxy group.
  • the alkali metal include sodium and potassium.
  • an alkoxyl group or a group represented by OM is preferable, an alkoxyl group having 1 to 5 carbon atoms, and a group represented by OM in which M is a hydrogen atom or an alkali metal. More preferably, a methoxy group, an ethoxy group, and a group represented by OM in which M is sodium or potassium are more preferable.
  • R 3 and R 4 are each independently a hydrogen atom or an alkyl group. Examples of this alkyl group include the aforementioned alkyl groups having 1 to 5 carbon atoms. R 3 and R 4 are preferably a hydrogen atom or a methyl group.
  • the hydrogen atom of the alkyl group, alkoxyl group and acyloxyl group represented by R 1 to R 4 may be substituted with a substituent containing an oxygen atom or a nitrogen atom.
  • a substituent containing an oxygen atom include an alkoxyl group and an acyloxyl group.
  • examples of the substituent containing a nitrogen atom include an amino group and a cyano group.
  • n is an integer from 0 to 2, with 0 being preferred.
  • m is 0, that is, the monomer unit has three R 2 groups, the effect of the silyl group can be further enhanced.
  • N is an integer of 3 or more.
  • PVA in which n is less than 3 is difficult to dissolve in water as an acetalization solvent unless an alkaline compound is added, and cannot be acetalized in an acidic aqueous solution.
  • the upper limit of n is not particularly limited, but 20 is preferable, 15 is more preferable, and 12 is more preferable.
  • the vinyl acetal polymer of the present invention produced from such PVA has a structure in which n in the above formula (1) is 3 or more, that is, a silyl group is linked to the main chain via an alkylene group having 3 or more carbon atoms.
  • the PVA has a structure in which the silyl group is linked to the main chain through the alkylene group defined in the present invention, the progress of the cross-linking reaction between silanol groups during the acetalization process is suppressed, and as a result It is presumed that the vinyl acetal polymer has sufficient solubility in an alcohol solvent and the solution viscosity is kept low.
  • the specific structure of the monomer unit is not particularly limited as long as it has a group represented by the above formula (1), but is preferably represented by the above formula (2).
  • X is a direct bond, a divalent hydrocarbon group, or a divalent organic group containing an oxygen atom or a nitrogen atom.
  • Examples of the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms and a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms include a methylene group, an ethylene group, and a propylene group.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 10 carbon atoms include a phenylene group.
  • Examples of the divalent organic group containing an oxygen atom include ether groups, ester groups, carbonyl groups, amide groups, and groups in which these groups are connected to a divalent hydrocarbon group.
  • Examples of the divalent organic group containing a nitrogen atom include an imino group, an amide group, and a group in which these groups are connected to a divalent hydrocarbon group.
  • a divalent organic group containing an oxygen atom or a nitrogen atom is preferable, a group containing an amide group is more preferable, and —CO—NR 6 — * (R 6 is a hydrogen atom or a carbon atom) It is an alkyl group having a number of 1 to 5. * is more preferably a group represented by the bonding site with the group represented by the formula (1).
  • the monomer unit has a polar structure, preferably an amide structure at a position away from the silyl group, so that the performance derived from the silyl group is maintained, while the alcohol solvent of the vinyl acetal polymer, etc.
  • R 5 is a hydrogen atom or a methyl group.
  • R 3 ′ and R 4 ′ are each independently a hydrogen atom or an alkyl group.
  • the alkyl group include the aforementioned alkyl groups having 1 to 5 carbon atoms.
  • R 3 ′ and R 4 ′ are preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • the hydrogen atom contained in the alkyl group represented by R 3 ′ and R 4 ′ may be substituted with a substituent containing an oxygen atom or a nitrogen atom.
  • the substituent containing an oxygen atom include an alkoxyl group and an acyloxyl group.
  • examples of the substituent containing a nitrogen atom include an amino group and a cyano group.
  • n ′ is an integer of 1 or more.
  • the upper limit of n ' is not particularly limited, but 18 is preferable, 13 is more preferable, and 10 is more preferable.
  • the PVA satisfies the following formula (I). 370 ⁇ P ⁇ S ⁇ 6,000 (I) P: Viscosity average degree of polymerization S: Content of the monomer unit (mol%)
  • the viscosity average degree of polymerization of the vinyl acetal polymer is determined from the viscosity average degree of polymerization P of the PVA used for production. That is, since the polymerization degree does not change due to acetalization described later, the viscosity average polymerization degree of the PVA and the viscosity average polymerization degree of the vinyl acetal polymer obtained by acetalizing the same are the same.
  • the content of the monomer unit (S: mol%) can be obtained from proton NMR of the vinyl ester polymer before saponification.
  • the vinyl ester polymer is purified by reprecipitation with hexane-acetone, and the monomer having an unreacted silyl group is removed from the polymer.
  • the body is sufficiently removed and then dried at 90 ° C. under reduced pressure for 2 days, and then dissolved in CDCl 3 solvent for analysis.
  • the content (S: mol%) of the monomer unit of the vinyl acetal polymer is determined from the content (S: mol%) of the monomer unit of the PVA used for production. That is, since the content of the monomer unit does not change by acetalization described later, the content of the monomer unit of the PVA and the vinyl acetal polymer obtained by acetalizing the content The content of the monomer unit is the same.
  • the product (P ⁇ S) of the viscosity average degree of polymerization (P) and the content (S) of the monomer units corresponds to the number (average value) of the monomer units per 100 molecules.
  • this product (P ⁇ S) is less than the above lower limit, various properties derived from a silyl group such as adhesion to an inorganic substance such as glass of the vinyl acetal polymer cannot be sufficiently exhibited.
  • this product (P ⁇ S) exceeds the above upper limit, the solubility in an alcohol solvent or the like decreases.
  • the product (P ⁇ S) preferably satisfies the following formula (I ′), and more preferably satisfies the following formula (I ′′). 400 ⁇ P ⁇ S ⁇ 3,000 (I ′) 500 ⁇ P ⁇ S ⁇ 2,000 (I ′′)
  • the PVA preferably further satisfies the following formulas (II) and (III). 200 ⁇ P ⁇ 4,000 (II) 0.1 ⁇ S ⁇ 10 (III) P: Viscosity average degree of polymerization S: Content of the monomer unit (mol%)
  • the viscosity average degree of polymerization (P) When the viscosity average degree of polymerization (P) is less than the above lower limit, the effect of silyl groups such as adhesion to inorganic substances such as glass may be reduced. On the other hand, when the viscosity average degree of polymerization (P) exceeds the above upper limit, the solubility of the vinyl acetal polymer in an alcohol solvent and the adhesiveness with an inorganic substance such as glass may be lowered.
  • the content (S) of the monomer unit When the content (S) of the monomer unit is less than the lower limit, the effect of the silyl group such as adhesion to an inorganic substance such as glass may be reduced. On the other hand, when the content (S) of the monomer unit exceeds the upper limit, the solubility of the vinyl acetal polymer in an alcohol solvent and the adhesiveness with an inorganic substance such as glass are reduced. There is.
  • the saponification degree of the PVA is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and particularly preferably 97 mol% or more.
  • the upper limit of the saponification degree of the PVA is not particularly limited, but is 99.9 mol%, for example, in consideration of productivity.
  • the degree of saponification of PVA is a value measured according to the method described in JIS-K6726.
  • a copolymer obtained by copolymerizing a vinyl ester monomer and the monomer which has group represented by the said Formula (1) It can be obtained by saponifying a vinyl ester polymer).
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate and the like. Can be mentioned. Among these, vinyl acetate is preferable.
  • Polymerization may be carried out in the presence of a chain transfer agent as long as the gist of the present invention is not impaired.
  • chain transfer agents examples include aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-hydroxyethanethiol, n-dodecanethiol, Examples include mercaptans such as mercaptoacetic acid and 3-mercaptopropionic acid; halogenated hydrocarbons such as tetrachloromethane, bromotrichloromethane, trichloroethylene and perchloroethylene.
  • Examples of the monomer having a group represented by the above formula (1) include a compound represented by the following formula (5).
  • a compound represented by the following formula (5) By using a compound represented by the following formula (5), finally, a PVA containing a monomer unit having a group represented by the above formula (2) can be easily obtained.
  • Examples of the compound represented by the above formula (5) include 3- (meth) acrylamidopropyltrimethoxysilane, 4- (meth) acrylamidebutyltrimethoxysilane, 6- (meth) acrylamidehexyltrimethoxysilane, 8- ( (Meth) acrylamide octyltrimethoxysilane, 12- (meth) acrylamide dodecyltrimethoxysilane, 18- (meth) acrylamide octadecyltrimethoxysilane, 3- (meth) acrylamidopropyltriethoxysilane, 3- (meth) acrylamidopropyltributoxy Silane, 3- (meth) acrylamidopropylmethyldimethoxysilane, 3- (meth) acrylamidopropyldimethylmethoxysilane, 3- (meth) acrylamide-3-methylbutyltrimethoxysilane, 4 (Meth
  • Examples of the method for copolymerizing the vinyl ester monomer and the monomer having the group represented by the formula (1) include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a well-known method is mentioned.
  • the polymerization temperature is lower than 30 ° C.
  • an emulsion polymerization method is preferable, and when the polymerization temperature is 30 ° C. or higher, a bulk polymerization method performed without solvent or a solution polymerization method performed using a solvent such as alcohol is used.
  • a solvent such as alcohol
  • the solvent may be water, and a lower alcohol such as methanol or ethanol may be used in combination.
  • a well-known emulsifier can be used as an emulsifier.
  • an initiator for copolymerization a redox initiator using iron ions, an oxidizing agent and a reducing agent in combination is preferably used for controlling the polymerization.
  • the reaction can be carried out by either a batch method or a continuous method in carrying out the copolymerization reaction.
  • examples of the alcohol used as the solvent include lower alcohols such as methanol, ethanol, and propanol.
  • the initiator used in the copolymerization reaction in this case include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( Azo initiators such as cyclohexane-1-carbonitrile) and 2,2′-azobis (N-butyl-2-methylpropionamide); peroxide initiators such as benzoyl peroxide and n-propyl peroxycarbonate
  • the polymerization temperature for carrying out the copolymerization reaction is not particularly limited, but a range of 5 ° C. to 70 ° C. is appropriate.
  • a copolymerizable monomer can be copolymerized as necessary as long as the gist of the present invention is not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride; Derivatives thereof; acrylic acid or salts thereof, acrylic esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof, methyl methacrylate, ethyl methacrylate, n methacrylate Methacrylic esters such as propyl and isopropyl methacrylate; acrylamide derivatives such as acrylamide, N-methyl acrylamide and N-ethyl
  • the vinyl ester polymer obtained by the copolymerization is then saponified in a solvent according to a known method and led to PVA.
  • an alkaline substance is usually used as the saponification reaction catalyst.
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide
  • alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is preferably in the range of 0.004 to 0.5, as a molar ratio based on the vinyl ester monomer unit in the vinyl ester polymer, More preferably, it is in the range of 0.05.
  • this catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added in the middle of the saponification reaction.
  • the solvent that can be used for the saponification reaction examples include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, dimethylformamide, and the like. Of these solvents, methanol is preferred. In using methanol, the water content in methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass. It is good to be.
  • the saponification reaction is preferably performed at a temperature of 5 ° C to 80 ° C, more preferably 20 ° C to 70 ° C.
  • the time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the saponification reaction can be carried out by either a batch method or a continuous method.
  • the remaining saponification catalyst may be neutralized as necessary, and usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate. .
  • the PVA obtained by the saponification reaction can be washed as necessary.
  • the cleaning liquid used in this cleaning include lower alcohols such as methanol, lower fatty acid esters such as methyl acetate, and mixtures thereof. A small amount of water, alkali, acid, or the like may be added to these cleaning liquids.
  • the pH of the aqueous PVA solution is preferably 4 or more and 8 or less, more preferably 4.5 or more and 7 or less, and further preferably 5 or more and 6.5 or less. preferable. Since the above PVA is excellent in solubility in water, a uniform aqueous solution can be obtained without adding an alkali or acid such as sodium hydroxide to water. As a result, the vinyl acetal polymer can be easily obtained from the PVA.
  • the vinyl acetal polymer of the present invention can be obtained by acetalizing the PVA obtained as described above according to a conventionally known method.
  • the degree of acetalization needs to be 45 mol% or more and 80 mol% or less.
  • the degree of acetalization of the vinyl acetal polymer is preferably 55 mol% or more and 80 mol% or less, and more preferably 60 mol% or more and 80 mol% or less.
  • the amount of aldehyde added to the PVA to be used, the reaction time after adding the aldehyde and the acid catalyst, and the like may be appropriately adjusted.
  • the degree of acetalization of the vinyl acetal polymer represents the ratio of the acetalized vinyl alcohol unit to the total monomer units constituting the vinyl acetal polymer.
  • the degree of acetalization can be measured in accordance with, for example, the method of JIS K6728 (1977).
  • Examples of the method for acetalizing the PVA include (1) preparing an aqueous solution having a concentration of 5 to 30% by mass by dissolving the PVA in water and cooling the solution to 5 to 50 ° C. A method in which a fixed amount of aldehyde is added and cooled to ⁇ 10 ° C. to 30 ° C., and the pH of the aqueous solution is reduced to 1 or less by adding an acid to start acetalization. (2) An aqueous solution having a concentration of ⁇ 30% by mass was prepared, cooled to 5 ° C. to 50 ° C., the pH of the aqueous solution was reduced to 1 or less by adding an acid, and then cooled to ⁇ 10 ° C. to 30 ° C. And a method of starting acetalization by adding an aldehyde.
  • aldehydes used for acetalization include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, butyraldehyde, isobutyraldehyde, 2-ethylbutyraldehyde, valeraldehyde, pivalaldehyde, and amylaldehyde.
  • Aliphatic aldehydes such as hexyl aldehyde, heptyl aldehyde, 2-ethylhexyl aldehyde, octyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde; cyclopentane aldehyde, methyl cyclopentane aldehyde, dimethyl cyclopentane aldehyde, cyclohexane aldehyde, methyl cyclohexane aldehyde, Dimethylcyclohexanealdehyde, cyclohexaneacetoaldehyde Cyclopentene aldehyde, cyclohexene aldehyde and other cyclic unsaturated aldehydes; benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldeh
  • At least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, hexylaldehyde, and benzaldehyde is preferable, and butyraldehyde is particularly preferable.
  • an aldehyde having a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group or the like as a functional group may be used as long as the effects of the present invention are not impaired.
  • the acid used for the acetalization is not particularly limited, and examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like. Among these, hydrochloric acid, sulfuric acid, and nitric acid are preferable, hydrochloric acid and nitric acid are more preferable, and two or more of these may be used in combination.
  • the time required for the acetalization reaction is usually about 1 to 10 hours, and the reaction is preferably carried out with stirring. In addition, when the acetal is performed under the above-described temperature conditions, the reaction may be continued at a high temperature of about 50 ° C. to 80 ° C. if the degree of acetalization of the vinyl acetal polymer does not increase.
  • the granular reaction product obtained after the acetalization is filtered off, washed thoroughly with water, added with a neutralizing agent such as alkali, washed and dried to obtain the desired vinyl acetal polymer.
  • a neutralizing agent such as alkali
  • alkali compound used as a neutralizing agent include sodium hydroxide and potassium hydroxide.
  • the vinyl acetal polymer of the present invention produced in this manner is excellent in solubility in alcohol solvents and the like and adhesiveness with inorganic substances such as glass, and the solution viscosity is kept low, and the handleability is excellent. Accordingly, the vinyl acetal polymer of the present invention comprises an interlayer film composition for laminated glass, a slurry composition for ceramic capacitor electrode paste, a slurry composition for ceramic green sheet, an ink composition / paint composition, and an adhesive composition. It is suitably used for various applications such as a heat-developable photosensitive material composition.
  • parts and% represent parts by mass and mass%, respectively.
  • the monomer (monomer A) which has the silyl group used by the Example and the comparative example is as follows.
  • MAmPTMS 3-methacrylamidopropyltrimethoxysilane
  • MAmOTMS 8-methacrylamidooctyltrimethoxysilane
  • VMS vinyltrimethoxysilane
  • [Synthesis of silyl group-containing PVA] PVA is produced by the following method, the degree of saponification, the content of monomer units having a group represented by the above formula (1) (S) (in some examples, monomer units having a silyl group) Content) and viscosity average degree of polymerization (P).
  • the temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.8 g of 2,2′-azobisisobutyronitrile (AIBN) was added to initiate polymerization.
  • the delay solution was added dropwise to polymerize the monomer composition (ratio of vinyl acetate and monomer A (MAmPTMS)) in the polymerization solution at a constant rate for 2.7 hours at 60 ° C. and then cooled to stop the polymerization. .
  • the total amount of comonomer solution (sequentially added solution) added until the polymerization was stopped was 99 g. Further, the solid content concentration when the polymerization was stopped was 29.0%.
  • This gel-like material was pulverized with a pulverizer and allowed to stand at 40 ° C. for 1 hour to allow saponification to proceed. Then, methyl acetate was added to neutralize the remaining alkali. After confirming the completion of neutralization using a phenolphthalein indicator, the mixture was filtered to obtain a white solid. Methanol was added thereto, and the mixture was allowed to wash at room temperature for 3 hours. After repeating the above washing operation three times, the white solid obtained by centrifugal drainage was left in a dryer at 65 ° C. for 2 days to obtain PVA1 having a group represented by the above formula (1). PVA1 had a viscosity average polymerization degree (P) of 1,700 and a saponification degree of 98.6 mol%.
  • P viscosity average polymerization degree
  • the content of the monomer unit having the group represented by the above formula (1) of the obtained PVA1 is the proton NMR of PVAc which is a precursor of this PVA. I asked for it. Specifically, after reprecipitation purification of the obtained PVAc was sufficiently performed three times or more with n-hexane / acetone, drying was performed under reduced pressure at 50 ° C. for 2 days to prepare a PVAc for analysis. This PVAc was dissolved in CDCl 3 and measured at room temperature using 500 MHz proton NMR (JEOL GX-500).
  • the vinyl acetal polymers (VAP1 to VAP3) prepared in Examples 1 to 3 are excellent in solubility in an organic solvent such as alcohol and adhesiveness to glass, and are obtained. The viscosity was kept low.
  • the vinyl acetal polymer of the present invention is excellent in solubility in alcohol solvents and the like and adhesion to inorganic substances such as glass, and has low solution viscosity and excellent handleability. Therefore, the vinyl acetal polymer includes an interlayer film composition for laminated glass, a slurry composition for ceramic capacitor electrode paste, a slurry composition for ceramic green sheet, an ink composition / paint composition, an adhesive composition, a heat It is suitably used for various applications such as a developable photosensitive material composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 アルコール系溶媒等への溶解性及びガラス等の無機物との接着性に優れると共に、溶液粘度が低く、取扱性に優れるビニルアセタール系重合体の提供を目的とする。本発明は、ビニルアルコール系重合体をアセタール化して得られるビニルアセタール系重合体であって、上記ビニルアルコール系重合体が、下記式(1)で表される基を有する単量体単位を含み、かつ下記式(I)を満たし、アセタール化度が45モル%以上80モル%以下であることを特徴とするビニルアセタール系重合体である。上記ビニルアルコール系重合体は下記式(II)及び(III)をさらに満たすことが好ましい。 370≦P×S≦6,000 ・・・(I) 200≦P≦4,000 ・・・(II) 0.1≦S≦10 ・・・(III) P:粘度平均重合度 S:上記単量体単位の含有率(モル%)

Description

ビニルアセタール系重合体
 本発明は、ビニルアセタール系重合体に関する。
 ビニルブチラール系重合体に代表されるビニルアセタール系重合体は、ビニルアルコール系重合体(以下、「PVA」と略記することがある)をアセタール化して得られるものであり、強靭性、造膜性、添加される無機又は有機粉体等の分散性等に優れている。そのため、上記ビニルアセタール系重合体は、合わせガラスの中間膜、インク、塗料、焼付け用エナメル、ウォッシュプライマー、ラッカー、分散剤、接着剤、セラミックグリーンシート、熱現像性感光材料、水性インク受容層のバインダー等の様々な用途に使用されている。
 上記ビニルアセタール系重合体が本来有する上記特性に加えて、ガラス、セラミックあるいは無機物との接着性を向上させるため、シリル基で変性されたビニルアセタール系重合体(以下、「シリル基含有ビニルアセタール系重合体」と略記することがある)を用いることが提案されている(特開2005-194409号公報参照)。しかしながら、上記従来のシリル基含有ビニルアセタール系重合体は、アルコール系溶媒等の有機溶媒に対する溶解性が極めて低く、また溶解してもその溶液粘度が高いため、取扱い難いという不都合がある。
特開2005-194409号公報
 本発明は、上述のような事情に基づいてなされたものであり、アルコール系溶媒等への溶解性及びガラス等の無機物との接着性に優れると共に、溶液粘度が低く、取扱性に優れるビニルアセタール系重合体の提供を目的とする。
 上記課題を解決するためになされた発明は、
 ビニルアルコール系重合体をアセタール化して得られるビニルアセタール系重合体であって、
 上記ビニルアルコール系重合体が、下記式(1)で表される基を有する単量体単位を含み、かつ下記式(I)を満たし、
 アセタール化度が45モル%以上80モル%以下であることを特徴とするビニルアセタール系重合体
である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、水素原子又は炭素数1~5のアルキル基である。Rは、アルコキシル基、アシロキシル基又はOMで表される基である。Mは、水素原子、アルカリ金属又はアンモニウム基である。R及びRは、それぞれ独立して、水素原子又はアルキル基である。R~Rで表されるアルキル基、アルコキシル基及びアシロキシル基が有する水素原子は、酸素原子又は窒素原子を含有する置換基で置換されていてもよい。mは、0~2の整数である。nは、3以上の整数である。R~Rがそれぞれ複数存在する場合、複数存在する各R~Rは、独立して上記定義を満たす。)
  370≦P×S≦6,000 ・・・(I)
 P:粘度平均重合度
 S:上記単量体単位の含有率(モル%)
 当該ビニルアセタール系重合体は、上記式(1)で表される基を有する単量体単位を含み、シリル基が炭素数3以上のアルキレン基を介して主鎖と連結した構造を有するPVAをアセタール化して得られる。このため、当該ビニルアセタール系重合体は、シリル基の変性量を高めても、アルコール系溶媒等に対する十分な溶解性を有し、またその溶液粘度は低く抑えられる。このような効果が発現する理由は十分解明されてはいないが、以下のように推測される。従来のシリル基含有PVAを酸によりアセタール化すると、アセタール化の過程でシラノール基同士の架橋反応が進行し、得られるビニルアセタール系重合体のアルコール系溶媒に対する溶解性が極めて低いものとなっていた。しかし、上記PVAはシリル基が本発明で規定するアルキレン基を介して主鎖と連結した構造を有するため、アセタール化の過程においてシラノール基同士の架橋反応の進行が抑制され、その結果得られるビニルアセタール系重合体はアルコール系溶媒等に対する十分な溶解性を有し、その溶液粘度が低く抑えられているものと推測される。また、当該ビニルアセタール系重合体によれば、上記PVAの粘度平均重合度(P)と上記単量体単位の含有率(S)との積(P×S)が上記範囲であるため、シリル基変性量を高めることができ、シリル基に由来する特性、例えばガラス等の無機物との接着性等を効果的に発揮することができる。また、アセタール化度を45モル%以上80モル%以下とすることで、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性等を向上させることができる。
 上記PVAは、下記式(II)及び(III)をさらに満たすことが好ましい。
  200≦P≦4,000 ・・・(II)
  0.1≦S≦10 ・・・(III)
 P:粘度平均重合度
 S:上記単量体単位の含有率(モル%)
 このように上記PVAの粘度平均重合度(P)及び上記単量体単位の含有率(S)を上記範囲とすることで、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性及びガラス等の無機物との接着性をより向上させることができると共に、溶液粘度をより低く抑えることができる。
 上記式(1)におけるnは6~20の整数が好ましい。かかるnの値を上記範囲とすることで、アセタール化の過程でのシラノール基同士の架橋反応をより抑制することができるため、アルコール溶媒等への溶解性をより高めることができ、重合度が高い場合でもシリル基の変性率を高めることができる。
 上記単量体単位は下記式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R~R、m及びnの定義は、式(1)と同様である。Xは、直接結合、2価の炭化水素基又は酸素原子若しくは窒素原子を含む2価の有機基である。Rは、水素原子又はメチル基である。)
 上記単量体単位が上記式(2)で表される構造を有することで、当該ビニルアセタール系重合体の諸性能をより高めることができる。
 上記式(2)におけるXは下記式(3)で表されることが好ましい。
 -CO-NR-* ・・・(3)
(式(3)中、Rは、水素原子又は炭素数1~5のアルキル基である。*は、上記式(1)で表される基との結合箇所を示す。)
 上記式(3)におけるRは水素原子であり、上記式(2)におけるnは3~12の整数であることが好ましい。上記単量体単位をこのような構造とすることで、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性をより向上させることができると共に、溶液粘度をより低く抑えることができる。また、上記PVAの製造を容易に行うことができる。
 アセタール化に用いるアルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド及びベンズアルデヒドからなる群より選ばれる少なくとも1種が好ましく、ブチルアルデヒドが特に好ましい。このようなアルデヒドを用いることで、上記PVAのアセタール化を効率よく行うことができる。
 以上説明したように、本発明のビニルアセタール系重合体は、アルコール系溶媒等への溶解性及びガラス等の無機物との接着性に優れると共に、溶液粘度が低く、取扱性に優れる。従って、当該ビニルアセタール系重合体は、合わせガラス用中間膜組成物、セラミックコンデンサー電極用ペースト用スラリー組成物、セラミックグリーンシート用スラリー組成物、インク組成物・塗料組成物、接着剤組成物、熱現像性感光材料組成物等の各種の用途に好適に用いられる。
<ビニルアセタール系重合体>
 本発明のビニルアセタール系重合体は、上記式(1)で表される基を有する単量体単位を含み、シリル基が炭素数3以上のアルキレン基を介して主鎖と連結した構造を有するPVAをアセタール化して得られる。このため、当該ビニルアセタール系重合体は、シリル基の変性量を高めても、アルコール系溶媒等に対する十分な溶解性を有し、またその溶液粘度は低く抑えられる。このような効果が発現する理由は十分解明されてはいないが、以下のように推測される。従来のシリル基含有PVAを酸によりアセタール化すると、アセタール化の過程でシラノール基同士の架橋反応が進行し、得られるビニルアセタール系重合体のアルコール系溶媒に対する溶解性が極めて低いものとなっていた。しかし、上記PVAはシリル基が本発明で規定するアルキレン基を介して主鎖と連結した構造を有するため、アセタール化の過程においてシラノール基同士の架橋反応の進行が抑制され、その結果得られるビニルアセタール系重合体はアルコール系溶媒等に対する十分な溶解性を有し、その溶液粘度が低く抑えられているものと推測される。また、当該ビニルアセタール系重合体によれば、上記PVAの粘度平均重合度(P)と上記単量体単位の含有率(S)との積(P×S)が上記範囲であるため、シリル基変性量を高めることができ、シリル基に由来する特性、例えばガラス等の無機物との接着性等を効果的に発揮することができる。また、アセタール化度を45モル%以上80モル%以下とすることで、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性等を向上させることができる。
<PVA>
 上記PVAは、上記式(1)で表される基を有する単量体単位を含む。すなわち、上記PVAは、上記式(1)で表される基を有する単量体単位とビニルアルコール単位(-CH-CHOH-)とを含む共重合体であり、さらに他の単量体単位を有してもよい。
 上記式(1)中、Rは、水素原子又は炭素数1~5のアルキル基である。上記アルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。
 Rは、アルコキシル基、アシロキシル基又はOMで表される基である。Mは、水素原子、アルカリ金属又はアンモニウム基(NH)である。上記アルコキシル基としては、メトキシ基、エトキシ基等が挙げられる。上記アシロキシル基としては、アセトキシ基、プロピオニルオキシ基等が挙げられる。上記アルカリ金属としては、ナトリウム、カリウム等が挙げられる。Rで表されるこれらの基の中でも、アルコキシル基又はOMで表される基が好ましく、炭素数1~5のアルコキシル基、及びMが水素原子若しくはアルカリ金属であるOMで表される基がより好ましく、メトキシ基、エトキシ基及びMがナトリウム若しくはカリウムであるOMで表される基がさらに好ましい。
 R及びRは、それぞれ独立して、水素原子又はアルキル基である。このアルキル基としては、上述した炭素数1~5のアルキル基等が挙げられる。R及びRとしては、水素原子又はメチル基が好ましい。
 R~Rで表されるアルキル基、アルコキシル基及びアシロキシル基が有する水素原子は、酸素原子又は窒素原子を含有する置換基で置換されていてもよい。酸素原子を含有する置換基としては、アルコキシル基、アシロキシル基等が挙げられる。また、窒素原子を含有する置換基としては、アミノ基、シアノ基等が挙げられる。
 なお、R~Rがそれぞれ複数存在する場合、複数存在する各R~Rは、独立して上記定義を満たす。
 mは、0~2の整数であるが、0が好ましい。mが0である、すなわち、上記単量体単位が、3つのR基を有することで、シリル基による効果をより高めることができる。
 nは、3以上の整数である。nが3未満であるPVAは、アルカリ性化合物を添加しなければアセタール化溶媒である水に溶解し難く、酸性水溶液中でのアセタール化を行うことができない。nの上限としては、特に制限されないが、20が好ましく、15がより好ましく、12がさらに好ましい。nの下限としては、4が好ましく、6がより好ましく、8がさらに好ましい。このようなPVAから製造される本発明のビニルアセタール系重合体は、上記式(1)中のnが3以上、すなわちシリル基が炭素数3以上のアルキレン基を介して主鎖と連結した構造を有するPVAをアセタール化して得られるため、シリル基の変性量を高めても、アルコール系溶媒等に対する十分な溶解性を有し、その溶液粘度は低く抑えられる。このような効果が発現する理由は、以下のように推測される。従来のシリル基含有PVAを酸によりアセタール化すると、アセタール化の過程でシラノール基同士の架橋反応が進行し、得られるビニルアセタール系重合体のアルコール系溶媒に対する溶解性が極めて低いものとなっていた。しかし、上記PVAはシリル基が本発明で規定するアルキレン基を介して主鎖と連結した構造を有するため、アセタール化の過程でのシラノール基同士の架橋反応の進行が抑制され、その結果得られるビニルアセタール系重合体はアルコール系溶媒等に対する十分な溶解性を有し、その溶液粘度が低く抑えられているものと推測される。
 上記単量体単位の具体的構造は、上記式(1)で表される基を有する限り特に限定されないが、上記式(2)で表されることが好ましい。
 式(2)中、R~R、m及びnの定義は、式(1)と同様である。また、これらの好ましい基又は数値範囲も同様である。
 Xは直接結合、2価の炭化水素基又は酸素原子若しくは窒素原子を含む2価の有機基である。上記単量体単位が上記式(2)で表される構造を有することで、当該ビニルアセタール系重合体の諸性能をより高めることができる。
 上記2価の炭化水素基としては、炭素数1~10の2価の脂肪族炭化水素基、炭素数6~10の2価の芳香族炭化水素基等が挙げられる。上記炭素数1~10の脂肪族炭化水素基としては、メチレン基、エチレン基、プロピレン基等が挙げられる。上記炭素数6~10の2価の芳香族炭化水素基としては、フェニレン基等が挙げられる。上記酸素原子を含む2価の有機基としては、エーテル基、エステル基、カルボニル基、アミド基、及びこれらの基と2価の炭化水素基とが連結した基等が挙げられる。上記窒素原子を含む2価の有機基としては、イミノ基、アミド基、及びこれらの基と2価の炭化水素基とが連結した基等が挙げられる。
 上記Xで表される基の中でも、酸素原子又は窒素原子を含む2価の有機基が好ましく、アミド基を含む基がより好ましく、-CO-NR-*(Rは、水素原子又は炭素数1~5のアルキル基である。*は、上記式(1)で表される基との結合箇所を示す。)で表される基であることがさらに好ましい。このように上記単量体単位がシリル基と離れた位置に極性構造、好ましくはアミド構造を有することで、シリル基に由来する性能を維持しつつ、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性等をより向上させると共に、単量体の入手が容易になり、溶液粘度はより低く抑えられる。なお、上記Rとしては、上記機能をより高めたり、上記PVAの製造を容易に行うことができる点から、水素原子が好ましい。
 Rは、水素原子又はメチル基である。
 上記単量体単位としては、下記式(4)で表されるものがさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R、R、R、X及びmの定義は、上記式(2)と同様である。また、これらの好ましい基又は数値範囲も同様である。
 上記式(4)中、R’及びR’は、それぞれ独立して、水素原子又はアルキル基である。このアルキル基としては、上述した炭素数1~5のアルキル基が挙げられる。R’及びR’としては、水素原子又はメチル基が好ましく、水素原子がより好ましい。R’及びR’で表されるアルキル基が有する水素原子は、酸素原子又は窒素原子を含有する置換基で置換されていてもよい。酸素原子を含有する置換基としては、アルコキシル基、アシロキシル基等が挙げられる。また、窒素原子を含有する置換基としては、アミノ基、シアノ基等が挙げられる。なお、R’及びR’がそれぞれ複数存在する場合、複数存在する各R’及びR’は、独立して上記定義を満たす。
 上記式(4)中、n’は、1以上の整数である。n’の上限としては、特に制限されないが、18が好ましく、13がより好ましく、10がさらに好ましい。n’の下限としては、2が好ましく、4がより好ましく、6がさらに好ましい。
 上記単量体単位が、上記式(4)で表される場合、当該ビニルアセタール系重合体の諸機能をより効果的に発現させることができる。
 上記PVAは、下記式(I)を満たす。
  370≦P×S≦6,000 ・・・(I)
 P:粘度平均重合度
 S:上記単量体単位の含有率(モル%)
 上記粘度平均重合度(P)は、JIS-K6726に準じて測定される。すなわち、上記PVAをけん化度が99.5モル%未満の場合は、けん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:デシリットル/g)から次式により求めることができる。
 P=([η]×1000/8.29)(1/0.62)
 なお、当該ビニルアセタール系重合体の粘度平均重合度は、製造に用いられる上記PVAの粘度平均重合度Pから求められる。つまり、後述するアセタール化により重合度が変化することはないため、上記PVAの粘度平均重合度と、それをアセタール化して得られる当該ビニルアセタール系重合体の粘度平均重合度とは同じである。
 上記単量体単位の含有率(S:モル%)は、けん化する前のビニルエステル系重合体のプロトンNMRから求められる。ここで、けん化する前のビニルエステル系重合体のプロトンNMRを測定するに際しては、このビニルエステル系重合体をヘキサン-アセトンにより再沈精製して重合体中から未反応のシリル基を有する単量体を十分に取り除き、次いで90℃減圧乾燥を2日間行った後、CDCl溶媒に溶解して分析に供する。
 なお、当該ビニルアセタール系重合体の上記単量体単位の含有率(S:モル%)は、製造に用いられる上記PVAの上記単量体単位の含有率(S:モル%)から求められる。つまり、後述するアセタール化により上記単量体単位の含有率が変化することはないため、上記PVAの上記単量体単位の含有率と、それをアセタール化して得られる当該ビニルアセタール系重合体の上記単量体単位の含有率とは同じである。
 粘度平均重合度(P)と上記単量体単位の含有率(S)との積(P×S)は、分子100個あたりの上記単量体単位の数(平均値)に相当する。この積(P×S)が上記下限未満の場合は、当該ビニルアセタール系重合体が有するガラス等の無機物との接着性等のシリル基に由来する諸特性を十分に発揮することができない。逆に、この積(P×S)が上記上限を超えるとアルコール系溶媒等への溶解性が低下する。積(P×S)は、下記式(I’)を満たすことが好ましく、下記式(I’’)を満たすことがより好ましい。
  400≦P×S≦3,000 ・・・(I’)
  500≦P×S≦2,000 ・・・(I’’)
 上記PVAは、下記式(II)及び(III)をさらに満たすことが好ましい。
  200≦P≦4,000 ・・・(II)
  0.1≦S≦10 ・・・(III)
 P:粘度平均重合度
 S:上記単量体単位の含有率(モル%)
 このように粘度平均重合度(P)及び上記単量体単位の含有率(S)を上記範囲とすることで、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性及びガラス等の無機物との接着性をより向上させることができると共に、溶液粘度をより低く抑えることができる。
 さらには、上記粘度平均重合度(P)において、下記式(II’)を満たすことがより好ましく、下記式(II’’)を満たすことがさらに好ましい。
  500≦P≦3,000   ・・・(II’)
  1,000≦P≦2,400 ・・・(II’’)
 粘度平均重合度(P)が上記下限未満の場合は、ガラス等の無機物に対する接着性等のシリル基による効果が低下する場合がある。逆に、粘度平均重合度(P)が上記上限を超える場合は、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性及びガラス等の無機物との接着性が低下する場合がある。
 また、上記単量体単位の含有率においては、下記式(III’)を満たすことがより好ましく、下記式(III’’)を満たすことがさらに好ましい。
  0.25≦S≦6 ・・・(III’)
  0.5≦S≦5  ・・・(III’’)
 上記単量体単位の含有率(S)が上記下限未満の場合は、ガラス等の無機物に対する接着性等のシリル基による効果が低下する場合がある。逆に、上記単量体単位の含有率(S)が上記上限を超える場合は、当該ビニルアセタール系重合体のアルコール系溶媒等への溶解性及びガラス等の無機物との接着性が低下する場合がある。
 上記PVAのけん化度としては、特に制限はないが、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、97モル%以上が特に好ましい。上記PVAのけん化度が上記下限未満の場合は、ガラス、セラミックス及び無機物に対する接着性等のシリル基による効果が低下する場合がある。なお、上記PVAのけん化度の上限としては、特に制限はないが、生産性等を考慮すると、例えば99.9モル%である。ここでPVAのけん化度は、JIS-K6726に記載の方法に準じて測定した値をいう。
<PVAの製造方法>
 上記PVAの製造方法としては、特に限定されないが、例えば、ビニルエステル系単量体と、上記式(1)で表される基を有する単量体とを共重合させ、得られる共重合体(ビニルエステル系重合体)をけん化することにより得ることができる。
 上記ビニルエステル系単量体としては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等が挙げられる。これらの中でも、酢酸ビニルが好ましい。
 また、上記式(1)で表される基を有する単量体とビニルエステル系単量体との共重合に際して、得られるPVAの粘度平均重合度(P)を調節すること等を目的として、本発明の趣旨を損なわない範囲で連鎖移動剤の存在下で重合を行っても差し支えない。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン等のケトン類;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-ヒドロキシエタンチオール、n-ドデカンチオール、メルカプト酢酸、3-メルカプトプロピオン酸等のメルカプタン類;テトラクロロメタン、ブロモトリクロロメタン、トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素類が挙げられる。
 上記式(1)で表される基を有する単量体としては、例えば下記式(5)で表される化合物が挙げられる。下記式(5)で表される化合物を使用することにより、最終的に、上記式(2)で表される基を有する単量体単位を含むPVAが容易に得られる。
Figure JPOXMLDOC01-appb-C000006
 式(5)中、R~R、X、m及びnの定義は、式(2)と同様である。また、これらの好ましい基又は数値範囲も同様である。
 上記式(5)で表される化合物としては、例えば3-(メタ)アクリルアミドプロピルトリメトキシシラン、4-(メタ)アクリルアミドブチルトリメトキシシラン、6-(メタ)アクリルアミドヘキシルトリメトキシシラン、8-(メタ)アクリルアミドオクチルトリメトキシシラン、12-(メタ)アクリルアミドドデシルトリメトキシシラン、18-(メタ)アクリルアミドオクタデシルトリメトキシシラン、3-(メタ)アクリルアミドプロピルトリエトキシシラン、3-(メタ)アクリルアミドプロピルトリブトキシシラン、3-(メタ)アクリルアミドプロピルメチルジメトキシシラン、3-(メタ)アクリルアミドプロピルジメチルメトキシシラン、3-(メタ)アクリルアミド-3-メチルブチルトリメトキシシラン、4-(メタ)アクリルアミド-4-メチルブチルトリメトキシシラン、4-(メタ)アクリルアミド-3-メチルブチルトリメトキシシラン、5-(メタ)アクリルアミド-5-メチルヘキシルトリメトキシシラン、4-ペンテニルトリメトキシシラン、5-へキセニルトリメトキシシラン等が挙げられる。
 上記ビニルエステル系単量体と上記式(1)で表される基を有する単量体とを共重合させる方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。特に、重合温度が30℃より低い場合には、乳化重合法が好ましく、重合温度が30℃以上の場合には、無溶媒で行う塊状重合法又はアルコール等の溶媒を用いて行う溶液重合法が通常採用される。
 乳化重合法の場合、溶媒としては水が挙げられ、メタノール、エタノール等の低級アルコールを併用してもよい。また、乳化剤としては、公知の乳化剤を使用することができる。共重合の際の開始剤としては、鉄イオン-酸化剤-還元剤を併用したレドックス系開始剤が重合をコントロールする上で好適に用いられる。塊状重合法や溶液重合法の場合、共重合反応を行うにあたって、反応の方式は回分式及び連続式のいずれの方式にても実施可能である。溶液重合法を採用して共重合反応を行う際に、溶媒として使用されるアルコールとしては、メタノール、エタノール、プロパノール等の低級アルコールが挙げられる。この場合の共重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネートなどの過酸化物系開始剤などの公知の開始剤が挙げられる。共重合反応を行う際の重合温度については特に制限はないが、5℃~70℃の範囲が適当である。
 この共重合反応の際には、本発明の趣旨が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸又はその誘導体;アクリル酸又はその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸又はその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル類;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン類;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体などが挙げられる。これらの単量体の使用量としては、その使用される目的や用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下であり、10モル%以下であることが好ましい。
 上記共重合により得られたビニルエステル系重合体は、次いで、公知の方法に従って溶媒中でけん化され、PVAへと導かれる。
 けん化反応の触媒としては、通常、アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、及びナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。上記アルカリ性物質の使用量は、ビニルエステル系重合体中のビニルエステル系単量体単位を基準にしたモル比で、0.004~0.5の範囲内であることが好ましく、0.005~0.05の範囲内であることがより好ましい。また、この触媒は、けん化反応の初期に一括して添加してもよいし、けん化反応の初期に一部を添加し、残りをけん化反応の途中で追加して添加してもよい。
 けん化反応に用いることができる溶媒としては、例えばメタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミド等が挙げられる。これらの溶媒の中でもメタノールが好ましい。また、メタノールの使用にあたり、メタノール中の含水率が好ましくは0.001~1質量%、より好ましくは0.003~0.9質量%、特に好ましくは0.005~0.8質量%に調整されているのがよい。
 けん化反応は、好ましくは5℃~80℃、より好ましくは20℃~70℃の温度で行われる。けん化反応に必要とされる時間としては、好ましくは5分間~10時間、より好ましくは10分間~5時間である。けん化反応は、バッチ法及び連続法のいずれの方式にても実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和してもよく、使用可能な中和剤として、酢酸、乳酸などの有機酸、及び酢酸メチル等のエステル化合物等が挙げられる。
 けん化反応により得られたPVAは、必要に応じて、洗浄することができる。この洗浄の際に用いられる洗浄液としては、メタノール等の低級アルコール、酢酸メチル等の低級脂肪酸エステル、及びそれらの混合物等が挙げられる。これらの洗浄液には、少量の水やアルカリ又は酸等が添加されていてもよい。
 上記PVA水溶液のpHとしては、上記PVAを8質量%の濃度で含む水溶液のpHが4以上8以下であることが好ましく、4.5以上7以下がより好ましく、5以上6.5以下がさらに好ましい。上記PVAは水への溶解性に優れるため、水に対して水酸化ナトリウムなどのアルカリや酸を特に添加しなくとも均一な水溶液を得ることができる。その結果、上記PVAから容易に当該ビニルアセタール系重合体を得ることができる。
<ビニルアセタール系重合体の製造>
 本発明のビニルアセタール系重合体は、上述のようにして得られたPVAを従来公知の方法に従ってアセタール化することにより得られる。この際のアセタール化度は45モル%以上80モル%以下である必要がある。アセタール化度を上記範囲とすることで、当該ビニルアセタール系重合体は、シリル基に由来する諸特性を十分に発揮することができると共に、アルコール系溶媒等への溶解性等を向上させることができる。ビニルアセタール系重合体のアセタール化度としては、55モル%以上80モル%以下が好ましく、60モル%以上80モル%以下がより好ましい。ビニルアセタール系重合体のアセタール化度を調整するには、使用するPVAに対するアルデヒドの添加量、アルデヒドと酸触媒を添加した後の反応時間等を適宜調整すればよい。
 ここで、ビニルアセタール系重合体のアセタール化度とは、ビニルアセタール系重合体を構成する全単量体単位に対する、アセタール化されたビニルアルコール単位の割合を表す。上記アセタール化度は、例えばJIS K6728(1977年)の方法に準拠して測定できる。
 上記PVAをアセタール化する方法としては、例えば、(1)上記PVAを水に加熱溶解して5~30質量%の濃度の水溶液を調製し、これを5℃~50℃まで冷却した後、所定量のアルデヒドを加えて-10℃~30℃まで冷却し、酸を添加することにより水溶液のpHを1以下にしてアセタール化を開始する方法、(2)上記PVAを水に加熱溶解して5~30質量%の濃度の水溶液を調製し、これを5℃~50℃まで冷却し、酸を添加することにより水溶液のpHを1以下にした後-10℃~30℃まで冷却し、所定量のアルデヒドを加えてアセタール化を開始する方法等が挙げられる。
 アセタール化に用いるアルデヒドとしては、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、2-エチルブチルアルデヒド、バレルアルデヒド、ピバルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ドデシルアルデヒド等の脂肪族アルデヒド;シクロペンタンアルデヒド、メチルシクロペンタンアルデヒド、ジメチルシクロペンタンアルデヒド、シクロヘキサンアルデヒド、メチルシクロヘキサンアルデヒド、ジメチルシクロヘキサンアルデヒド、シクロヘキサンアセトアルデヒド等の脂環族アルデヒド;シクロペンテンアルデヒド、シクロヘキセンアルデヒド等の環式不飽和アルデヒド;ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、ジメチルベンズアルデヒド、メトキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド、クミンアルデヒド、ナフチルアルデヒド、アントラアルデヒド、シンナムアルデヒド、クロトンアルデヒド、アクロレインアルデヒド、7-オクテン-1-アール等の芳香族又は不飽和結合含有アルデヒド;フルフラール、メチルフルフラール等の複素環アルデヒド等が挙げられる。
 これらのうち、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド及びベンズアルデヒドからなる群より選ばれる少なくとも1種が好ましく、ブチルアルデヒドが特に好ましい。このようなアルデヒドを用いることで、上記PVAのアセタール化をより効率よく行うことができる。
 また、本発明の効果を損なわない範囲で、水酸基、カルボキシル基、スルホン酸基、リン酸基等を官能基として有するアルデヒドを使用してもよい。
 アセタール化に用いる酸としては、特に限定されないが、例えば酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく、塩酸、硝酸がより好ましく、これらを2種以上併用してもよい。また、アセタール化の反応に要する時間としては、通常1時間~10時間程度であり、反応は攪拌下に行うことが好ましい。また、上述した温度条件でアセタールを行った場合に、ビニルアセタール系重合体のアセタール化度が上昇しない場合には、50℃~80℃程度の高い温度で反応を継続してもよい。
 アセタール化後に得られる粒状の反応生成物を濾別してこれを水で十分に洗浄し、アルカリ等の中和剤を添加し、洗浄、乾燥することにより、目的とするビニルアセタール系重合体が得られる。中和剤として用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 このようにして製造された本発明のビニルアセタール系重合体は、アルコール系溶媒等への溶解性及びガラス等の無機物との接着性に優れると共に、溶液粘度が低く抑えられ、取扱性に優れる。従って、本発明のビニルアセタール系重合体は、合わせガラス用中間膜組成物、セラミックコンデンサー電極用ペースト用スラリー組成物、セラミックグリーンシート用スラリー組成物、インク組成物・塗料組成物、接着剤組成物、熱現像性感光材料組成物等の各種の用途に好適に用いられる。
 以下、本発明を実施例により、さらに詳細に説明する。以下の実施例及び比較例において、特に断りがない場合、部及び%はそれぞれ質量部及び質量%を示す。
 なお、実施例及び比較例で用いたシリル基を有する単量体(モノマーA)は、以下のとおりである。
 MAmPTMS :3-メタクリルアミドプロピルトリメトキシシラン
 MAmOTMS :8-メタクリルアミドオクチルトリメトキシシラン
 VMS     :ビニルトリメトキシシラン
[シリル基含有PVAの合成]
 下記の方法によりPVAを製造し、そのけん化度、上記式(1)で表される基を有する単量体単位の含有率(S)(一部の例では、シリル基を有する単量体単位の含有率)、粘度平均重合度(P)を求めた。
[PVAの分析方法]
 PVAの分析は、特に断らない限りJIS-K6726に記載の方法に従って行った。
[製造例1]PVA1の製造
 撹拌機、還流冷却管、窒素導入管、コモノマー滴下口及び開始剤の添加口を備えた6Lセパラブルフラスコに、酢酸ビニル1,500g、メタノール500g、上記式(1)で表される基を有する単量体(モノマーA)としてのMAmPTMS1.87gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。また、ディレー溶液としてMAmPTMSをメタノールに溶解して濃度8%としたコモノマー溶液を調製し、窒素ガスのバブリングにより窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)0.8gを添加し重合を開始した。ディレー溶液を滴下して重合溶液中のモノマー組成(酢酸ビニルとモノマーA(MAmPTMS)の比率)が一定となるようにしながら、60℃で2.7時間重合した後、冷却して重合を停止した。重合を停止するまで加えたコモノマー溶液(逐次添加液)の総量は99gであった。また、重合停止時の固形分濃度は29.0%であった。続いて30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルモノマーの除去を行い、上記式(1)で表される基を有するポリ酢酸ビニル(PVAc)を40%含有するメタノール溶液を得た。さらに、これにPVAc中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が0.04、PVAcの固形分濃度が30質量%となるように、メタノール及び水酸化ナトリウムを10質量%含有するメタノール溶液をこの順序で撹拌下に加え、40℃でけん化反応を開始した。アルカリ溶液を添加後、約5分でゲル状物が生成した。このゲル状物を粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチルを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得、これにメタノールを加えて室温で3時間放置洗浄した。上記の洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機中65℃で2日間放置し、上記式(1)で表される基を有するPVA1を得た。PVA1の粘度平均重合度(P)は1,700、けん化度は98.6モル%であった。
 得られたPVA1の上記式(1)で表される基を有する単量体単位の含有率(シリル基を有する単量体単位の含有率)は、このPVAの前駆体であるPVAcのプロトンNMRから求めた。具体的には、得られたPVAcの再沈精製をn-ヘキサン/アセトンで3回以上十分に行った後、50℃の減圧下で乾燥を2日間行い、分析用のPVAcを作製した。このPVAcをCDClに溶解させ、500MHzのプロトンNMR(JEOL GX-500)を用いて室温で測定した。酢酸ビニル単位の主鎖メチンに由来するピークα(4.7~5.2ppm)とモノマーA単位のメトキシ基のメチルに由来するピークβ(3.4~3.8ppm)とから、下記式を用いて式(1)で表される基を有する単量体単位の含有率(S)を算出した。PVA1において、含有率(S)は0.5モル%であった。得られたPVAについて分析した結果を表1に示す。
 式(1)で表される基を有する単量体単位の含有率(S:モル%)
={(βのピーク面積/9)/(αのピーク面積+(βのピーク面積/9))}×100
[製造例2及び3、並びに比較製造例1~3]PVA2~PVA6の製造
 酢酸ビニル及びメタノールの仕込み量、モノマーAの種類や添加量等の重合条件、けん化時におけるPVAcの濃度、酢酸ビニル単位に対する水酸化ナトリウムのモル比等のけん化条件を表1に示すように変更したこと以外は、製造例1と同様にしてPVA2~PVA6を得た。得られた各PVAについて分析した結果を表1に示す。なお、表1中、比較製造例1~3の含有率(S)は、式(1)で表される基を有する単量体単位以外の、シリル基を有する単量体単位の含有率も含む。
Figure JPOXMLDOC01-appb-T000007
<ビニルアセタール系重合体の合成>
[実施例1]VAP1の合成
 480gのPVA1を、5,520mLの水中に投入し、撹拌しながら溶液の温度を90℃まで昇温して溶解させた後、30℃まで冷却し、水溶液のpHを測定した。測定した水溶液のpHを表2に示す。この水溶液に20%濃度の塩酸水溶液400gを添加した。その後14℃まで冷却し、ブチルアルデヒド267gを10分間かけて滴下して反応を開始させた。14℃で40分間反応を行った後、約0.6℃/分の昇温速度で65℃まで昇温し、65℃で300分間維持した。その後、反応溶液を室温まで冷却し、析出した粒状物を濾別してこれを水で十分に洗浄した。得られた生成物を0.3%水酸化ナトリウム溶液に投入し、70℃に加温して中和した。引き続き、水で洗浄してアルカリ性化合物を除去した後、生成物を乾燥し、ビニルアセタール系重合体(VAP1)を得た。得られたビニルアセタール系重合体のアセタール化度をJIS K6728に記載された方法に準拠して分析したところ、70.2モル%であった。
[実施例2及び3、並びに比較例1~3]VAP2~VAP6の合成
 実施例1において用いたPVAに代えて、表2に示したPVAを用いた以外は、実施例1と同様にしてビニルアセタール系重合体(VAP2~VAP6)を得た。使用したPVA水溶液のpH及び各VAPのアセタール化度を表2に併せて示す。
<ビニルアセタール系重合体の評価>
 上記調製した各ビニルアセタール系重合体について、下記物性値の測定及び評価を行った。
(ビニルアセタール系重合体の溶解性及び溶液粘度)
 エタノール/水(95%/5%)溶液に、各ビニルアセタール系重合体を5質量%になるように調製することにより、各ビニルアセタール系重合体の溶解性を目視により観察し、評価した。完全に溶解したものを「A」、この調製液を24時間50℃で攪拌した後、得られた溶液をJIS P3801 5種Cのろ紙を用いてろ別し、ろ紙上に残ったビニルアセタール系重合体の、溶解に用いたビニルアセタール系重合体全量に対する質量割合が0.01%以上99%未満の場合を「B」、ろ紙上に残ったビニルアセタール系重合体の、溶解に用いたビニルアセタール系重合体全量に対する質量割合が99%以上の場合をほとんど溶解しなかったものとして「C」と評価した。結果を表2に示す。また、ビニルアセタール系重合体が完溶した場合には、得られた溶液を20℃恒温槽中に2時間以上放置して、ブルックフィールド型粘度計を用い溶液粘度(mPa・s)を測定した。溶液粘度が400(mPa・s)未満であれば、溶液粘度が低く抑えられていると評価できる。結果を表2に併せて示す。
(ガラスとの接着性)
 国際公開第2012/026393号に記載の方法で測定した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000008
 表2に示されるように、実施例1~3で調製したビニルアセタール系重合体(VAP1~VAP3)は、アルコール等の有機溶媒への溶解性及びガラスとの接着性に優れると共に、得られる溶液粘度が低く抑えられた。
 一方、ビニルアセタール系重合体が規定の要件を満たさない場合(比較例1~3)、アルコール等の有機溶媒にほとんど溶解しなかったり(比較例1及び比較例2)、アルコール等の有機溶媒に溶解した場合でもガラスとの接着性に劣るものとなった(比較例3)。
 本発明のビニルアセタール系重合体は、アルコール系溶媒等への溶解性及びガラス等の無機物との接着性に優れると共に、溶液粘度が低く、取扱性に優れる。従って、当該ビニルアセタール系重合体は、合わせガラス用中間膜組成物、セラミックコンデンサー電極用ペースト用スラリー組成物、セラミックグリーンシート用スラリー組成物、インク組成物・塗料組成物、接着剤組成物、熱現像性感光材料組成物等の各種の用途に好適に用いられる。

Claims (8)

  1.  ビニルアルコール系重合体をアセタール化して得られるビニルアセタール系重合体であって、
     上記ビニルアルコール系重合体が、下記式(1)で表される基を有する単量体単位を含み、かつ下記式(I)を満たし、
     アセタール化度が45モル%以上80モル%以下であることを特徴とするビニルアセタール系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子又は炭素数1~5のアルキル基である。Rは、アルコキシル基、アシロキシル基又はOMで表される基である。Mは、水素原子、アルカリ金属又はアンモニウム基である。R及びRは、それぞれ独立して、水素原子又はアルキル基である。R~Rで表されるアルキル基、アルコキシル基及びアシロキシル基が有する水素原子は、酸素原子又は窒素原子を含有する置換基で置換されていてもよい。mは、0~2の整数である。nは、3以上の整数である。R~Rがそれぞれ複数存在する場合、複数存在する各R~Rは、独立して上記定義を満たす。)
      370≦P×S≦6,000 ・・・(I)
     P:粘度平均重合度
     S:上記単量体単位の含有率(モル%)
  2.  上記ビニルアルコール系重合体が、下記式(II)及び(III)をさらに満たす請求項1に記載のビニルアセタール系重合体。
      200≦P≦4,000 ・・・(II)
      0.1≦S≦10 ・・・(III)  
     P:粘度平均重合度
     S:上記単量体単位の含有率(モル%)
  3.  上記式(1)におけるnが6~20の整数である請求項1に記載のビニルアセタール系重合体。
  4.  上記単量体単位が下記式(2)で表される請求項1に記載のビニルアセタール系重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R~R、m及びnの定義は、式(1)と同様である。Xは、直接結合、2価の炭化水素基又は酸素原子若しくは窒素原子を含む2価の有機基である。Rは、水素原子又はメチル基である。)
  5.  上記式(2)におけるXが下記式(3)で表される請求項4に記載のビニルアセタール系重合体。
     -CO-NR-* ・・・(3)
    (式(3)中、Rは、水素原子又は炭素数1~5のアルキル基である。*は、上記式(1)で表される基との結合箇所を示す。)
  6.  上記式(3)におけるRが水素原子であり、上記式(2)におけるnが3~12の整数である請求項5に記載のビニルアセタール系重合体。
  7.  アセタール化に用いるアルデヒドが、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド及びベンズアルデヒドからなる群より選ばれる少なくとも1種である請求項1に記載のビニルアセタール系重合体。
  8.  アセタール化に用いるアルデヒドがブチルアルデヒドである請求項7に記載のビニルアセタール系重合体。
PCT/JP2013/083679 2012-12-18 2013-12-16 ビニルアセタール系重合体 WO2014098051A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553141A JP6258219B2 (ja) 2012-12-18 2013-12-16 ビニルアセタール系重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276277 2012-12-18
JP2012276277 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014098051A1 true WO2014098051A1 (ja) 2014-06-26

Family

ID=50978379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083679 WO2014098051A1 (ja) 2012-12-18 2013-12-16 ビニルアセタール系重合体

Country Status (3)

Country Link
JP (1) JP6258219B2 (ja)
TW (1) TWI625337B (ja)
WO (1) WO2014098051A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125645A (ja) * 1982-01-18 1983-07-26 Kuraray Co Ltd 安全合せガラス用中間膜組成物
JPH0971443A (ja) * 1995-09-08 1997-03-18 Kuraray Co Ltd 安全合わせガラス用中間膜
JP2003160613A (ja) * 2001-08-16 2003-06-03 Wacker Polymer Systems Gmbh & Co Kg シラン変性されたポリビニルアセタール、その製造方法及びその使用
JP2003183059A (ja) * 2001-12-13 2003-07-03 Bridgestone Corp 合わせガラス中間膜用樹脂組成物、合わせガラス用中間膜及び合わせガラス
JP2005194409A (ja) * 2004-01-08 2005-07-21 Kuraray Co Ltd ビニルアセタール系重合体、その製造方法およびその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125645A (ja) * 1982-01-18 1983-07-26 Kuraray Co Ltd 安全合せガラス用中間膜組成物
JPH0971443A (ja) * 1995-09-08 1997-03-18 Kuraray Co Ltd 安全合わせガラス用中間膜
JP2003160613A (ja) * 2001-08-16 2003-06-03 Wacker Polymer Systems Gmbh & Co Kg シラン変性されたポリビニルアセタール、その製造方法及びその使用
JP2003183059A (ja) * 2001-12-13 2003-07-03 Bridgestone Corp 合わせガラス中間膜用樹脂組成物、合わせガラス用中間膜及び合わせガラス
JP2005194409A (ja) * 2004-01-08 2005-07-21 Kuraray Co Ltd ビニルアセタール系重合体、その製造方法およびその用途

Also Published As

Publication number Publication date
TW201429997A (zh) 2014-08-01
JPWO2014098051A1 (ja) 2017-01-12
JP6258219B2 (ja) 2018-01-10
TWI625337B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP5400986B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体及びそれを含有する組成物
JP6162962B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物
JP5750507B2 (ja) アルキル変性ビニルアセタール系重合体及び組成物
WO2007114472A1 (ja) ポリビニルアセタール系樹脂
JP4801904B2 (ja) スケール付着防止剤、その製造方法及びそれを用いたポリマーの製造方法
JP4794121B2 (ja) インキまたは塗料用バインダー
KR101110582B1 (ko) 스케일 부착 방지제, 이의 제조방법 및 이를 사용한중합체의 제조방법
JP6442405B2 (ja) ビニルアセタール系重合体
JP5788969B2 (ja) 変性ビニルアルコール系重合体溶液及びこの製造方法
WO2011040377A1 (ja) ビニルアルコール系重合体を含有する増粘剤
JP6066679B2 (ja) 無機質繊維用バインダー、成形体及び成形体の製造方法
JP2007297613A (ja) ポリビニルアセタール系樹脂
JP6258219B2 (ja) ビニルアセタール系重合体
JP5981527B2 (ja) 増粘剤
JP6041776B2 (ja) 増粘剤、増粘剤の製造方法、ビニルアルコール系重合体、及びビニルアルコール系重合体の製造方法
JP6023578B2 (ja) 水性エマルジョン組成物及びその製造方法
JP4355220B2 (ja) 金属表面処理剤およびそれを塗工してなる金属物品
JP5970350B2 (ja) 防曇剤
JP5886133B2 (ja) ビニルアルコール系重合体及びこれを含む水溶液
JP5834000B2 (ja) スケール付着防止剤及びポリマーの製造方法
JP6023552B2 (ja) 無機質材料用コーティング剤、塗工物、及び塗工物の製造方法
WO2022004636A1 (ja) 変性ビニルアルコール系重合体、水溶液、及び変性ビニルアルコール系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864827

Country of ref document: EP

Kind code of ref document: A1