WO2014098036A1 - 導電性ペースト - Google Patents

導電性ペースト Download PDF

Info

Publication number
WO2014098036A1
WO2014098036A1 PCT/JP2013/083638 JP2013083638W WO2014098036A1 WO 2014098036 A1 WO2014098036 A1 WO 2014098036A1 JP 2013083638 W JP2013083638 W JP 2013083638W WO 2014098036 A1 WO2014098036 A1 WO 2014098036A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
conductive paste
parts
mass
group
Prior art date
Application number
PCT/JP2013/083638
Other languages
English (en)
French (fr)
Inventor
森内 文夫
英晴 佐藤
Original Assignee
ペルノックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペルノックス株式会社 filed Critical ペルノックス株式会社
Priority to CN201380066287.1A priority Critical patent/CN105008462B/zh
Priority to JP2014553131A priority patent/JPWO2014098036A1/ja
Priority to KR1020157011586A priority patent/KR101699645B1/ko
Publication of WO2014098036A1 publication Critical patent/WO2014098036A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Definitions

  • the present invention relates to a conductive paste.
  • the conductive paste is a material used for forming, for example, a linear fine electrode or a dot-like microelectrode on a printed circuit board, and a silver paste is conventionally used because of its high conductivity.
  • the coating film obtained from the conductive silver paste tends to cause ion migration. Above all, silver particles are very expensive. Therefore, the conductive paste using inexpensive copper particles has begun to be used in the industry.
  • the conductive paste using copper particles is a composition obtained by kneading copper particles, a resin binder, and an organic solvent with a kneader, three rolls, or the like. And after apply
  • circuits and electrodes obtained from conductive copper paste tend to increase in volume resistivity over time and do not exhibit long-term conductivity. This is because copper particles are easily oxidized and a thick oxide film is formed on the surface thereof.
  • Patent Document 1 proposes a method of adding a reducing agent such as alkylbenzoic acid, hydroquinone, and aminophenol as an additive to the conductive copper paste. The effect has not yet satisfied the high standards required by industry.
  • the temperature is lower than the thermal decomposition temperature of copper formate itself, and the resin can be used as a base material.
  • Patent Document 2 A technique for obtaining a copper film at a temperature of ⁇ 140 ° C. is disclosed (Patent Document 2).
  • the present invention greatly contributes to the provision of a conductive paste capable of forming an electrode having excellent conductivity stability over time and / or having excellent printing characteristics by solving at least one technical problem described above. obtain.
  • the conductive paste can solve at least a part of the above-mentioned problems by containing three specific materials.
  • One conductive paste of the present invention contains (A) fine metal particles, (B) a resin binder, and (C) an organic solvent, and (D1) an organic monocarboxylic acid metal salt, D2) a diketone chelating agent and (D3) an aromatic compound represented by the following general formula (Chemical Formula 1).
  • R 1 , R 2 , R 3 , R 4 and R 5 all represent hydrogen, a hydroxyl group, an alkyl group, a carboxy group or an amino group, and n is 0 or 1 When n is 1, A represents an alkylene group, and X represents a carboxyl group or a formyl group.
  • the oxide film formed on the surface of the component (A) is reduced by the reducing action of the organic monocarboxylic acid derived from the component (D1) generated as a result of the ligand exchange reaction. As a result, it is considered that the conductivity inherent to the component (A) is restored.
  • the metal complex of component (D2) generated as a result of the above-described ligand exchange reaction is decomposed under heating. As a result, the fine particles derived from the released component (D1), in other words, the metal particles generated by the ligand exchange reaction between the component (D1) and the component (D2) are converted into the component (A). It precipitates on the surface and in the continuous phase.
  • particles (metal particles) generated from a metal that is a part of the component (D1) cover part or all of the surface of the component (A).
  • the metal particles do not have an oxide film on the surface, they themselves have excellent conductivity. Therefore, according to this conductive paste, a coating film having a small decrease in volume resistivity over time can be obtained not only at room temperature but also at a high temperature (hereinafter, “the decrease in volume resistivity over time is small. "The change in conductivity over time is small” is simply referred to as “conductive stability over time”).
  • this conductive paste has good screen printing suitability, fine wiring and fine electrodes can be formed.
  • this electroconductive paste what can be provided with the temporal electroconductive stability of a silver paste with the temporal electroconductive stability is also obtained.
  • one conductive paste of the present invention it is possible to obtain a coating film having a small decrease in volume resistivity over time not only at room temperature but also at high temperature.
  • the conductive paste since the conductive paste has good screen printing suitability, fine wirings and fine electrodes can be formed.
  • (A) component, (B) component, (C) component, (D1) component, (D2) component, and (D3) component are mixed by a well-known means (for example, kneading processes, such as a three-roll). Thereby, the conductive paste of this embodiment is manufactured.
  • a well-known means for example, kneading processes, such as a three-roll.
  • the conductive paste of this embodiment is manufactured.
  • the above (D1), (D2), and (D3) are employed as additives.
  • copper particles are typically employed as the component (A).
  • the component (A) of this embodiment is copper particles, but this embodiment is not limited to copper particles.
  • the component (A) of the present embodiment includes at least one of copper, cobalt, iron, zinc, aluminum, titanium, vanadium, manganese, zirconium, molybdenum, indium, bismuth, antimony, tungsten, and the aforementioned metals.
  • the fine particles are composed of at least one selected from the group consisting of the alloys to be contained, the effects of the present embodiment can be equivalent to or at least partially effective.
  • the average primary particle diameter of the component (A) is not particularly limited, but from the viewpoint of the temporal conductivity stability and the screen printing suitability, it is a preferred embodiment that it is about 0.05 ⁇ m or more and 50 ⁇ m or less. Moreover, it is a more preferable aspect that it is about 0.05 micrometer or more and 30 micrometers or less.
  • the average primary particle size is a value measured by a laser diffraction / scattering method.
  • fine particles having a true spherical shape, a substantially spherical shape, a flat shape, or a dendritic shape can be adopted as a representative example. However, from the viewpoint of the temporal conductivity stability, the dendritic component (A) is particularly preferable.
  • the type of copper particles employed as the component (A) of the present embodiment is not particularly limited. Can use various known copper particles as the component (A) without any particular limitation.
  • the copper particles also include copper alloy particles. Typical examples of metals other than copper constituting the copper alloy include cobalt, iron, zinc, aluminum, titanium, vanadium, manganese, zirconium, molybdenum, indium, bismuth, antimony, tungsten, and the like.
  • An example of the component (B) in the present embodiment is a resin binder that can be used for a conductive paste.
  • Various known thermosetting resins or thermoplastic resins can be used as the component (B).
  • Specific preferred examples of the component (B) are at least one selected from the group consisting of phenol resins, polyester resins, epoxy resins, polyurethane resins, and acrylic resins.
  • a typical example of the above-mentioned phenol resin is a novolac type phenol resin or a resol type phenol resin.
  • the above-mentioned phenol resin is not particularly limited.
  • Typical examples of phenols that are used as raw materials are carboxylic acid, cresol, amylphenol, bisphenol A, butylphenol, octylphenol, nonylphenol, dodecylphenol, and the like.
  • Typical examples of formaldehydes are formalin and paraformaldehyde.
  • polyester resin is a product obtained by reacting an acid component and a glycol component.
  • representative examples of the acid component include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid, or Aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, or Alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydrophthalic anhydride, 1,1′-bicyclohexane-4,4′-dicarboxylic acid, 2,6-decalin dicarboxylic acid, or And trivalent or higher polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid
  • glycol component examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,3 -Aliphatic diols such as butanediol, neopentyl glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, dipropylene glycol, or Alicyclic diols such as 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, or Trivalent or higher polyols such as glycerin, trimethylolpropane, trimethylolethane, diglycerin, triglycerin, 1,2,6-hexanetriol, pentaery
  • the physical property of the above-mentioned polyester resin is not particularly limited.
  • the hydroxyl value is about 3 KOHmg / g or more and 200 KOHmg / g or less
  • the acid value is about 0.1 KOHmg / g or more and 50 KOHmg / g or less.
  • epoxy resins include bisphenol-type epoxy resins, hydrogenated products of bisphenol-type epoxy resins, or novolac-type epoxy resins obtained by reacting phenol novolak resins or cresol novolak resins with haloepoxides, biphenyl types.
  • bisphenols are bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrabromobisphenol A, Tetrachlorobisphenol A, tetrafluorobisphenol A and the like.
  • amines include toluidines, xylidines, cumidine (isopropylaniline) s, hexylanilines, nonylanilines, dodecylanilines and the like, or Cycloaliphatic amines such as cyclopentylamines, cyclohexylamines, norbornylamines, or Methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, stearylamine, icosylamine, 2-ethylhexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, diheptylamine, etc.
  • Cycloaliphatic amines such as cyclopentylamines, cyclohexylamines, norbornylamines, or Methylamine, ethylamine
  • Aliphatic amines such as diethanolamine, diisopropanolamine, di-2-hydroxybutylamine, N-methylethanolamine, N-ethylethanolamine, N-benzylethanolamine, and the like.
  • polyisocyanates include 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4 -Various aliphatic, alicyclic or aromatic diisocyanates such as trimethylhexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate.
  • a representative example of the above-mentioned epoxy resin is selected from the group consisting of those derived from the above-mentioned bisphenols and epichlorohydrin (so-called phenoxy resin), amine-modified epoxy resins, and amine-urethane-modified epoxy resins. It is preferable that it is a seed
  • a typical example of the above-mentioned polyurethane resin is a polymer polyol, polyisocyanate, and, if necessary, a poly (urea) urethane resin using an amine as a raw material.
  • the polymer polyol include the polyester resin having a hydroxyl group at the end (polyester polyol), polycarbonate polyol, and polyether polyol.
  • polyisocyanates include butane-1,4-diisocyanate, 1,6-hexamethylene diisocyanate, lysine diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethyl.
  • amines are diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, or n-butylamine, mono-n-butylamine, diethanolamine.
  • diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, or n-butylamine, mono-n-butylamine, diethanolamine.
  • monoamines such as monoethanolamine, and alkanolamines such as monoethanolamine and diethanolamine.
  • a typical example of the above-mentioned polyurethane resin is that an isocyanate group-terminated urethane prepolymer obtained by reacting the above-described polymer polyol and the above-mentioned polyisocyanate is chain-extended and / or chain-stopped with the above-mentioned amine. Can be used.
  • a typical example of the above-mentioned acrylic resin is obtained by copolymerizing various acrylic monomers.
  • the monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic.
  • resin binder with the above-mentioned (B) component.
  • resin binders include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin, polyvinyl acetate, polytetrafluoroethylene resin, ABS resin, AS resin, polyamide resin, polyvinyl acetal resin, Polycarbonate resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, cyclic polyolefin resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, amorphous polyarylate resin, liquid crystal polymer resin, polyetheretherketone resin, And at least one selected from the group of polyamideimide resins and the like.
  • the usage-amount of the above-mentioned (B) component is not specifically limited.
  • the amount of the component (B) is preferably about 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the component (A).
  • the aforementioned range is more preferably about 5 parts by mass or more and 25 parts by mass or less, and particularly preferably about 10 parts by mass or more and 20 parts by mass or less.
  • component (C) is an organic solvent that can be used for the conductive paste.
  • Various known organic solvents can be used without particular limitation.
  • Typical examples of component (C) are ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-i-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether, diethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether , Diethylene Recall diethyl ether, diethylene glycol monomethyl ether, Diethylene Recall
  • the group consisting of the aforementioned ether alcohol, the aforementioned non-ether alcohol, the aforementioned ester solvent, the aforementioned ketone solvent, the aforementioned aliphatic solvent, the aforementioned aromatic solvent, and the aforementioned plant solvent. It is one aspect that can be adopted in the present embodiment that it is at least one selected from the above. However, among these, the ether-based alcohols are preferable from the viewpoint of the temporal conductivity stability and / or screen printing suitability.
  • the amount of the above component (C) used is not particularly limited. However, in terms of handling properties, screen printing suitability, and / or conductive stability over time, the amount of the component (C) is about 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the component (A). Preferably there is. From the same viewpoint, the aforementioned range is more preferably about 3 parts by mass or more and 20 parts by mass or less, and particularly preferably about 5 parts by mass or more and 15 parts by mass or less.
  • the component (D1), the component (D2), and the component (D3) are blended as a part of the constituent material of the conductive paste.
  • desired electrical stability over time and / or screen printing suitability is achieved by the interaction of the component (D1), the component (D2), and the component (D3).
  • a metal complex of the component (D2) can be produced by a ligand exchange reaction between the component (D1) and the component (D2). This is because the metal ion of the organic monocarboxylic acid metal salt that is the component (D1) that is an ion pair consisting of an organic monocarboxylic acid ion and a metal ion forms a complex with the component (D2) that is a bidentate ligand This is because it can exist more stably from the viewpoint of the entropy effect.
  • the oxide film formed on the surface of the component (A) is reduced by the reducing action of the organic monocarboxylic acid derived from the component (D1) generated as a result of the ligand exchange reaction. As a result, it is considered that the conductivity inherent to the component (A) is restored.
  • the metal complex of the component (D2) generated as a result of the above-described ligand exchange reaction is decomposed under heating, the metal ion derived from the released component (D1) (in this embodiment, Copper ions) are deposited as fine particles on the surface of component (A) or in the continuous phase.
  • generated through the ligand exchange reaction of (D1) component and (D2) component will precipitate a metal particle by thermal decomposition.
  • the metal particles are considered to cover part or all of the surface of the component (A).
  • FIG. 1 is an electron micrograph showing that the metal ions are considered to be precipitated as fine particles (X in FIG. 1) on the surface of component (A) (Y in FIG. 1) or in the continuous phase. is there. In addition, since this metal particle does not have an oxide film on the surface, itself has excellent conductivity.
  • this conductive paste is excellent in the temporal conductivity stability not only at room temperature but also at high temperatures.
  • this conductive paste was confirmed to have good screen printing suitability, fine wiring and fine electrodes can be formed.
  • (D1) component, (D2) component, and (D3) component play together the effect which (D1) component, (D2) component, and (D3) component cannot each show
  • the component (D1) is not particularly limited as long as it is a metal salt of an organic monocarboxylic acid.
  • a typical example of the organic monocarboxylic acid is one selected from the group consisting of formic acid, oxalic acid, salicylic acid, benzoic acid, hydroxyacetic acid, and glyoxylic acid.
  • a typical example of the metal is one selected from the group consisting of copper, silver, palladium, and platinum.
  • the component (D1) is not particularly limited.
  • Suitable examples of component D1) are copper formate and / or copper oxalate.
  • the amount of component (D1) used is not particularly limited. However, from the viewpoint of the temporal conductivity stability and / or screen printing suitability, the amount of the component (D1) is about 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the component (A). Is preferred. From the same viewpoint, the aforementioned range is more preferably about 3 parts by mass or more and 15 parts by mass or less.
  • a typical example of the component (D2) is a diketone compound that acts as a chelating agent for monovalent or divalent metal ions.
  • Various known diketone compounds can be used without particular limitation as the component (D2).
  • the component (D2) forms a complex with a monovalent or divalent metal ion.
  • an example particularly suitable as the component (D2) is likely to cause a ligand exchange reaction with the component (D1) described above, and as a result, contributes to the temporal conductivity stability of the conductive paste of the present embodiment. Is. Accordingly, it is a particularly preferable aspect to employ a ⁇ -diketone compound represented by the following general formula (Formula 2) as the component (D2).
  • Y 1 and Y 2 may be the same or different, and are each selected from the group consisting of an alkyl group, a fluoroalkyl group, an alkenyl group, an alkoxy group, a (meth) acryloyl group, a phenyl group and a benzyl group. Represents one selected group.
  • the number of carbon atoms of the alkyl group, alkenyl group, and alkoxy group is not particularly limited. Their typical carbon number is about 6 or more and 18 or less.
  • the alkyl group, alkenyl group, and alkoxy group may be branched.
  • a halogen atom chlorine, fluorine, or the like
  • one or more groups selected from the group consisting of the alkyl group, alkenyl group, and alkoxy group, an amino group, a nitro group, or a hydroxy group are bonded to the above phenyl group. It is one mode to obtain.
  • ⁇ -diketone compounds are methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, methyl 4-methoxyacetoacetate, 2-acetoacetoxyethyl methacrylate, methyl pivaloyl acetate, methyl Isobutyroyl acetate, ethyl benzoyl acetate, ethyl paraanisoyl acetate, methyl caproyl acetate, methyl lauroyl acetate, methyl palmitoyl acetate, methyl-4-methoxyacetoacetate, methyl acetoacetate, diethylacetylacetone malonate, hexafluoroacetylacetone, benzoylacetone And at least one selected from the group consisting of dibenzoylmethane and the like.
  • Examples of other (D2) components that can be employed include dehydroacetic acid, 2-cyclopentanone ethyl carboxylate, 2-cyclohexanone ethyl carboxylate, 2-cyclopentanone methyl carboxylate, or 2-cyclohexanone methyl carboxylate. It is a cyclic diketone compound.
  • the amount of component (D2) used is not particularly limited. However, from the viewpoint of the temporal conductivity stability and / or screen printing suitability, the amount of the component (D2) is about 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the component (A). Is preferred. From the same viewpoint, the aforementioned range is more preferably about 0.5 parts by mass or more and 5 parts by mass or less. And it is especially preferable that the above-mentioned range is about 1 part by mass or more and 5 parts by mass or less.
  • R 1 , R 2 , R 3 , R 4 and R 5 all represent hydrogen, a hydroxyl group, an alkyl group, a carboxy group or an amino group, and n is 0 or 1 When n is 1, A represents an alkylene group, and X represents a carboxyl group or a formyl group.
  • the number of carbon atoms of the alkyl group in the above [Chemical Formula 3] is not particularly limited.
  • the typical alkyl group has about 1 to 9 carbon atoms.
  • the number of carbon atoms of the alkoxy group is not particularly limited.
  • the typical alkoxy group has about 1 to 4 carbon atoms.
  • the typical carbon number of A is about 1 or more and 3 or less.
  • the A may be a branched alkylene group.
  • R 1 or R 5 in the above [Chemical Formula 3] is a carboxyl group and X is a carboxyl group, both carboxyl groups may form an anhydrous ring. .
  • typical examples of the component (D3) in which X is a carboxyl group include benzoic acid, parahydroxybenzoic acid, salicylic acid, terephthalic acid, phthalic acid, phthalic anhydride, and isophthalic acid.
  • Other representative examples are paraethylbenzoic acid, parapropylbenzoic acid, parabutylbenzoic acid, parapentylbenzoic acid, parahexylbenzoic acid, paranonylbenzoic acid, m-aminobenzoic acid, 3,5-diaminobenzoic acid, and the like.
  • representative examples of the component (D3) where X is an aldehyde group include benzaldehyde, 2-methylbenzaldehyde, 4-methylbenzaldehyde, 2-methoxybenzaldehyde, 3-methoxybenzaldehyde, 4-methoxybenzaldehyde, 4-butoxybenzaldehyde.
  • a suitable example of the component (D3) is at least one selected from the group consisting of benzoic acid, aminobenzoic acid and benzaldehyde.
  • the amount of component (D3) used is not particularly limited. However, from the viewpoint of the temporal conductivity stability and / or screen printing suitability, the amount of the component (D3) is about 0.1 to 15 parts by weight, preferably about 100 parts by weight of the component (A), preferably About 0.5 to 5 parts by mass, more preferably about 1 to 5 parts by mass.
  • the conductive paste of the present embodiment can further contain other additives.
  • other additives include a coupling agent, a surfactant, a curing agent for the component (B), a conductive auxiliary agent, a leveling agent, an antifoaming agent, a thixotropic agent (such as fine silica), and / Or a leveling agent.
  • Typical examples of the above-mentioned coupling agents are known coupling agents such as silane, titanate, and aluminate.
  • this coupling agent By using this coupling agent, the dispersibility of the component (A) in the conductive paste of this embodiment and the adhesion between the components (A) and (B) can be improved.
  • the silane coupling agent can be suitably used to improve the adhesion between the conductive paste of the present embodiment and the substrate.
  • Specific examples thereof include, for example, 3-glycidoxypropyltrimethoxysilane, epoxy-functional silanes such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N-2 -(Aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, 3 -Acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like.
  • typical examples of the above-mentioned surfactants are amphoteric surfactants, anionic surfactants, cationic surfactants, or nonionic surfactants.
  • the screen printing suitability of the conductive paste of the present embodiment can be improved.
  • Typical examples of the amphoteric surfactant include alkylbetaines and alkylamine oxides.
  • Representative examples of the anionic surfactant include alkyl sulfates, polyoxyethylene alkyl sulfate esters, alkylbenzene sulfonates, alkyl naphthalene sulfonates, fatty acid salts, and salts of naphthalene sulfonate formalin condensates.
  • Polycarboxylic acid type polymer surfactants alkenyl succinates, alkane sulfonates, polyoxyalkylene alkyl ether phosphates and salts thereof, or polyoxyalkylene alkyl ether phosphates and salts thereof, etc.
  • a typical example of the cationic surfactant is an alkylamine salt or a quaternary ammonium salt.
  • Representative examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin. Examples thereof include fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkylamines, polyoxyalkylalkyleneamines, and alkylalkanolamides.
  • curing agent contains the hydroxyl group in the above-mentioned (B) component in a molecule
  • the curing agent include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, or Aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate, or These are diisocyanate compounds such as alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, hydrogenated xylene diisocyanate, and hydrogenated tolylene diisocyanate. Furthermore, diisocyanates and trimers of the above-mentioned diisocyanate compounds, and iso
  • typical examples of the above-mentioned curing agent are amino-based compounds such as melamine, urea, benzoguanamine, acetoguanamine, spiroguanamine, and dicyandiamide. It is a curing agent.
  • a typical example of the above curing agent is an aziridine curing agent or an epoxy curing agent.
  • Typical examples of the above-mentioned conductive auxiliary agent are metal oxides such as indium tin oxide (ITO), antimony trioxide (ATO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide (AZO), or graphite powder.
  • metal oxides such as indium tin oxide (ITO), antimony trioxide (ATO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide (AZO), or graphite powder.
  • Carbon black fillers such as furnace black, channel black, lamp black, acetylene black, and ketjen black.
  • a typical example of the above-mentioned leveling agent is a silicone leveling agent, a fluorine leveling agent, an acrylic leveling agent, or the like.
  • the conductive paste of the present embodiment includes the above-mentioned component (A), component (B), component (C), component (D1), component (D2), component (D3), and other additives as necessary.
  • a conductive coating film, wiring, and electrodes can be obtained.
  • the substrate are plastic films such as polyethylene terephthalate, polycarbonate, polyethylene, polyvinyl chloride, polypropylene, polystyrene, or polymethyl methacrylate, or an ITO film or glass obtained by ITO sputtering on the plastic film.
  • plastic films such as polyethylene terephthalate, polycarbonate, polyethylene, polyvinyl chloride, polypropylene, polystyrene, or polymethyl methacrylate, or an ITO film or glass obtained by ITO sputtering on the plastic film.
  • Such as a board Such as a board.
  • a typical example of the printing method is screen printing or intaglio printing.
  • the heating temperature is not particularly limited. A typical heating temperature is about 110 ° C. or higher and 150 ° C. or lower.
  • Part is based on mass.
  • Example 1 Copper particle (trade name “SCX-17”, manufactured by DOWA Electronics Co., Ltd., average primary particle size 5.7 ⁇ m) 65.9 parts, phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., PL-5208, solid content 60) (Mass% diethylene glycol monoethyl ether solution) 13.6 parts, diethylene glycol monoethyl ether acetate (hereinafter also referred to as DEGMEEA) 10.2 parts, copper oxalate hemihydrate 5.7 parts, acetylacetone 2.3 parts , And 2.3 parts of benzoic acid were kneaded with three rolls to obtain a conductive paste.
  • DEGMEEA diethylene glycol monoethyl ether acetate
  • Example 2 51.1 parts of copper particles (SCX-17), 13.5 parts of phenoxy resin (trade name “YP-50”, manufactured by Nippon Steel Co., Ltd., diethylene glycol monoethyl ether solution with a solid content of 35 mass%), copper formate (II) By kneading 5.7 parts of tetrahydrate, 2.3 parts of acetylacetone, 2.3 parts of benzoic acid, and 26.3 parts of diethylene glycol monoethyl ether acetate (DEGMEAA) with three rolls, Sex paste was obtained.
  • phenoxy resin trade name “YP-50”, manufactured by Nippon Steel Co., Ltd., diethylene glycol monoethyl ether solution with a solid content of 35 mass
  • copper formate (II) By kneading 5.7 parts of tetrahydrate, 2.3 parts of acetylacetone, 2.3 parts of benzoic acid, and 26.3 parts of diethylene glycol monoethyl ether acetate
  • Example 3 9.5 parts of phenoxy resin YP-50, 4.1 parts of polyester resin (trade name “XA0653”, manufactured by Unitika Ltd., ethylene glycol monoethyl ether solution with a solid content of 40% by mass), 25.0 parts of DEGMEEA Except for the points described above, the components (D1) to (D3) were treated at the same ratio as in Example 2 to obtain a conductive paste. In addition, the ratio of (A) component may change with the fluctuation
  • Example 4 8.0 parts of phenoxy resin YP-50, 3.4 parts of polyester resin (trade name “XA0653”, manufactured by Unitika Ltd., ethylene glycol monoethyl ether solution with a solid content of 40% by mass), 28.4 parts of DEGMEEA Except for the points described above, the components (D1) to (D3) were treated at the same ratio as in Example 2 to obtain a conductive paste.
  • Example 5 Copper particles (SCX-17) 65.9 parts, phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., PL-5208, solid content 60 mass% diethylene glycol monoethyl ether solution) 13.6 parts, DEGMEEA 10.2 parts, formic acid A conductive paste was obtained by kneading 5.7 parts of copper (II) tetrahydrate, 2.3 parts of acetylacetone, and 2.3 parts of benzoic acid with three rolls.
  • phenol resin manufactured by Gunei Chemical Industry Co., Ltd., PL-5208, solid content 60 mass% diethylene glycol monoethyl ether solution
  • DEGMEEA 10.2 parts
  • formic acid A conductive paste was obtained by kneading 5.7 parts of copper (II) tetrahydrate, 2.3 parts of acetylacetone, and 2.3 parts of benzoic acid with three rolls.
  • Example 6 The ratio was the same as in Example 5 except that the copper particles (SCX-17) were changed to other copper particles (trade name “FCC-TB”, manufactured by Fukuda Metal Foil Industry Co., Ltd., average primary particle diameter: 7 ⁇ m). By processing, a conductive paste was obtained.
  • Example 7 The same as Example 5 except that the copper particles (SCX-17) were changed to other copper particles (trade name “FCC-CP-X5”, manufactured by Fukuda Metal Foil Industry Co., Ltd., average primary particle size 15 ⁇ m). By processing at a ratio, a conductive paste was obtained.
  • Example 8 A conductive paste was obtained by treating at the same ratio as in Example 5 except that copper (II) formate tetrahydrate was changed to 11.4 parts.
  • Example 9 A conductive paste was obtained by treating at the same ratio as in Example 6 except that benzoic acid was changed to m-aminobenzoic acid.
  • Example 10 A conductive paste was obtained by treating at the same ratio as in Example 9 except that m-aminobenzoic acid was changed to 3,5-diaminobenzoic acid.
  • Example 11 A conductive paste was obtained by treating at the same ratio as in Example 10 except that 3,5-diaminobenzoic acid was changed to benzaldehyde.
  • Example 12 A conductive paste was obtained by treating at the same ratio as in Example 6 except that acetylacetone was changed to methyl acetoacetate.
  • Example 13 A conductive paste was obtained by treating at the same ratio as in Example 12 except that methyl acetoacetate was changed to ethyl acetoacetate.
  • Example 14 Copper particle (SCX-17) 65.9 parts, phenol resin (trade name “PL-5208”, manufactured by Gunei Chemical Industry Co., Ltd., solid content 60 mass% diethylene glycol monoethyl ether solution) 13.6 parts, DEGMEEA 10. 2 parts, 5.7 parts of silver formate, 2.3 parts of acetylacetone, and 2.3 parts of benzoate were kneaded with three rolls to obtain a conductive paste.
  • FIG. 2 is an electron micrograph corresponding to FIG. As shown in FIG. 2, precipitates (considered substances) observed in FIG. 1 are not observed.
  • Example 3 A conductive paste was obtained by treating at the same ratio as in Example 6 except that benzoic acid and copper (II) formate tetrahydrate were not used.
  • the initial volume resistivity of the coating film immediately after drying 12 hours, 72 hours, 192 hours And volume resistivity (unit: ⁇ ⁇ cm) when 520 hours passed, respectively, were measured at 80 ° C. Further, for the coating films of Examples 1 to 8, the volume resistivity after 1000 hours was also measured at 80 ° C.
  • the conductive paste of the above-described embodiment and each example is mainly useful as an electrode for an electronic component or a wiring for a printed wiring board.
  • the present invention can be applied to various uses of baking type and non-baking type conductive pastes.
  • the conductive paste of this embodiment can be applied to a capacitor external electrode, a solar cell conductive circuit, an ITO glass electrode, a TO glass electrode, a soldered conductive portion of a printed circuit, and the like.
  • a cured product, an electronic component, or an electronic device provided with the conductive paste of each of the above-described embodiments can be applied to a wide range of uses, like the conductive paste of each of the above-described embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の1つの導電性ペーストは、(A)金属微粒子、(B)樹脂結着剤、及び(C)有機溶剤と、を含有し、さらに、(D1)有機モノカルボン酸金属塩と、(D2)ジケトン系キレート剤と、(D3)下記一般式(化1)で表される芳香族化合物と、を含有する。この導電性ペーストは、経時的な導電安定性に優れる電極を形成可能な、及び/又は印刷特性に優れている。

Description

導電性ペースト
 本発明は、導電性ペーストに関する。
 導電性ペーストは、例えばプリント基板上に線状の微細電極や点状の微小電極を形成するために用いる材料であり、従来、その導電性の高さ故、銀ペーストが賞用されている。
 しかし、導電性銀ペーストより得られる塗膜はイオンマイグレーションを起こしやすい。また、何より銀粒子は非常に高価である。それゆえ産業界においては、安価な銅粒子を用いた導電性ペーストも使用され始めている。
 銅粒子を用いた導電性ペーストは、銅粒子、樹脂結着剤、及び有機溶剤をニーダーや3本ロール等により混練して得られる組成物である。そして、これを基材上に所望の配線パターンとなるよう塗布した後、乾燥、硬化、又は焼成することにより、所望の回路や電極を形成できる。
 しかし、導電性銅ペーストから得られる回路や電極は、経時的に体積抵抗率が増大しやすく、長期に亘る導電性を呈さない。これは銅粒子が酸化しやすく、その表面に厚い酸化皮膜が生じるためである。
 導電性銅ペーストの経時的な導電安定性を達成する手段として、特許文献1は、導電性銅ペーストに添加剤としてアルキル安息香酸やヒドロキノン、アミノフェノール等の還元剤を加える方法を提案するが、その効果は未だ産業界が求める高い基準を満足するに至っていない。
 その他の例として、パラジウムとギ酸銅とが併存する状態において、パラジウムが触媒として作用させることにより、ギ酸銅自身の熱分解温度より低温であって、樹脂を基材として利用可能な温度である130~140℃との温度で、銅膜を得る技術が開示されている(特許文献2)。
 しかしながら、当該方法では、液相法により調製した粗大複合体粒子をそのまま利用しているため、印刷用インクとしての均一性が得られ難いことに加えて、印刷法によるパターン形成が出来ない可能性が高い。また、成膜時には銅粉末が同時に生成し、材料効率が低いといった問題も存在する。
特開平5-135619号公報 特開平6-93455号公報
 本発明は、上述の少なくとも1つの技術課題を解決することにより、経時的な導電安定性に優れる電極を形成可能な、及び/又は印刷特性に優れた導電性ペーストを提供することに大きく貢献し得る。
 本発明者らが鋭意研究と分析を重ねた結果、導電性ペーストが特定の3種の材料を含有することにより上述の課題の少なくとも一部を解決し得ることを見出した。
 本発明の1つの導電性ペーストは、(A)金属微粒子、(B)樹脂結着剤、及び(C)有機溶剤と、を含有し、さらに、(D1)有機モノカルボン酸金属塩と、(D2)ジケトン系キレート剤と、(D3)下記一般式(化1)で表される芳香族化合物と、を含有する。
Figure JPOXMLDOC01-appb-C000002
(式(化1)中、R、R、R、RおよびRはいずれも水素、ヒドロキシル基、アルキル基、カルボキシ基またはアミノ基を表す。また、nは0又は1であり、nが1のときAはアルキレン基を表す。また、Xはカルボキシル基またはホルミル基を表す。)
 未だ明確なメカニズムについて明らかにはなっていないが、この導電性ペーストによれば、上述の(D1)成分と上述の(D2)成分との間に配位子交換反応が生じることにより、(D2)成分の金属錯体が生じ得る。これは、有機モノカルボン酸イオンと金属イオンからなるイオン対である(D1)成分である有機モノカルボン酸金属塩の金属イオンが、二座配位子である(D2)成分と錯体を形成した方がエントロピー効果の観点からより安定に存在し得るためである。
さらに、配位子交換反応の結果として生成した(D1)成分由来の有機モノカルボン酸の還元作用により、上述の(A)成分の表面に形成されている酸化皮膜が還元される。その結果、(A)成分が本来有する導電性が回復すると考えられる。加えて、上述の配位子交換反応の結果として生じた(D2)成分の金属錯体は、加熱下で分解する。その結果、放出された(D1)成分由来の、換言すれば、(D1)成分と(D2)成分との配位子交換反応により生成された金属粒子である微細粒子が、(A)成分の表面や、連続相中に析出する。代表的な一例においては、その(D1)成分の一部である金属から生成された粒子(金属粒子)が、前述の(A)成分の表面の一部又は全部を覆うことになる。しかしながら、この金属粒子は表面に酸化皮膜を有していないため、それ自体が導通性に優れる。従って、この導電性ペーストによれば、室温下のみならず高温下でも体積抵抗率の経時的な低下幅が小さい塗膜が得られる(以下、「体積抵抗率の経時的な低下幅が小さいために経時的な導電性の変化が小さい」ことを、簡略的に「経時導電安定性」ともいう。)。また、この導電性ペーストはスクリーン印刷適性が良好であるため、微細な配線や微小な電極を形成することができる。なお、この導電性ペーストによれば、銀ペーストの経時導電安定性を同等の経時導電安定性を備え得るものも得られる。
 本発明の1つの導電性ペーストによれば、室温下のみならず高温下でも体積抵抗率の経時的な低下幅が小さい塗膜が得られる。また、該導電性ペーストはスクリーン印刷適性が良好であるため、微細な配線や微小な電極を形成することができる。
本発明の第1の実施形態において、(D1)成分由来の金属イオンが(A)成分の表面や連続相中に微細な粒子として析出していると考えられる様子を表す電子顕微鏡写真である。 比較例2における、図1に相当する電子顕微鏡写真である。
 以下に、本発明の実施形態である導電性ペーストの一例について詳細に述べる。
<第1の実施形態>
 本実施形態の導電性ペーストは、(A)金属微粒子(以下、(A)成分という。)、(B)樹脂結着剤(以下、(B)成分という。)、及び(C)有機溶剤(以下、(C)成分という。)を含む導電性ペーストである。加えて、本実施形態の導電性ペーストは、さらに、(D1)有機モノカルボン酸金属塩(以下、(D1)成分という。)と、(D2)ジケトン系キレート剤(以下、(D2)成分という。)と、(D3)所定の一般式で表される芳香族化合物(以下、(D3)成分という。)とを含有している。(A)成分、(B)成分、(C)成分、(D1)成分、(D2)成分、及び(D3)成分が公知の手段(例えば、3本ロールなどの混練工程など)によって混合されることにより、本実施形態の導電性ペーストが製造される。なお、本実施形態においては、前述の(D1)、(D2)、及び(D3)は、添加剤として採用されている。また、本実施形態においては、代表的に銅粒子を(A)成分として採用している。
 本実施形態の(A)成分の例は銅粒子であるが、本実施形態は銅粒子に限定されない。例えば、本実施形態の(A)成分が、銅、コバルト、鉄、亜鉛、アルミニウム、チタン、バナジウム、マンガン、ジルコニウム、モリブデン、インジウム、ビスマス、アンチモン、タングステン、及び前述の各金属の少なくとも1種を含有する合金からなる群より選ばれる少なくとも1種からなる微粒子であれば、本実施形態の効果と同等、又は少なくとも一部の効果が奏され得る。また、(A)成分の平均一次粒子径は特に限定されないが、経時導電安定性やスクリーン印刷適性の観点から言えば、0.05μm以上50μm以下程度であることは好適な一態様である。また、0.05μm以上30μm以下程度であることは更に好適な一態様である。なお、当該平均一次粒子径は、レーザー回折・散乱法による測定値である。また、(A)成分は、真球状、略球状、扁平状、又は樹枝状である微粒子が代表例として採用され得る。但し、経時導電安定性の観点から言えば、樹枝状の(A)成分であることが特に好ましい。
 加えて、本実施形態の(A)成分として採用する銅粒子の種類は特に限定されない。は、各種の公知の銅粒子を(A)成分として特に制限なく使用することができる。また、該銅粒子には銅合金粒子も含まれる。当該銅合金を構成する銅以外の金属の代表的な例は、コバルト、鉄、亜鉛、アルミニウム、チタン、バナジウム、マンガン、ジルコニウム、モリブデン、インジウム、ビスマス、アンチモン、タングステン等である。
 本実施形態の(B)成分の例は、導電性ペーストに利用可能な樹脂結着剤である。各種の公知の熱硬化性樹脂又は熱可塑性樹脂を(B)成分として使用することができる。具体的な(B)成分の好適な例は、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、及びアクリル樹脂からなる群より選ばれる少なくとも1種である。
 ここで、上述のフェノール樹脂の代表的な例は、ノボラック型フェノール樹脂、又はレゾール型フェノール樹脂等である。上述のフェノール樹脂は、特に制限されない。なお、原料となるフェノール類の代表的な例は、石炭酸、クレゾール、アミルフェノール、ビスフェノールA、ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール等である。また、ホルムアルデヒド類の代表的な例は、ホルマリン、パラホルムアルデヒド等である。
 また、上述のポリエステル樹脂の代表的な例は、酸成分とグリコール成分とを反応させたものである。
 ここで、酸成分の代表的な例は、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、又は、
コハク酸、アジピン酸、アゼライン酸、セバチン酸、ドデカンジカルボン酸等の脂肪族ジカルボン酸、又は、
1,4-シクロヘキサンジカルボン酸、ヘキサヒドロ無水フタル酸、1,1´-ビシクロヘキサン-4,4´-ジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸、又は、
無水トリメリット酸、無水ピロメリット酸等の3価以上のポリカルボン酸等
である。
 また、上述のグリコール成分の代表的な例は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ネオペンチルグリコ-ル、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジプロピレングリコール等の脂肪族系ジオール、又は、
1,4-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF等の脂環系ジオール、又は、
グリセリン、トリメチロールプロパン、トリメチロールエタン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、ジペンタエリスリトール、ソルビトール、マンニトール等の3価以上のポリオールである。
 なお、上述のポリエステル樹脂の物性は、特に限定されない。代表的には、水酸基価が3KOHmg/g以上200KOHmg/g以下程度であり、酸価が0.1KOHmg/g以上50KOHmg/g以下程度である。
 上述のエポキシ樹脂の代表的な例は、ビスフェノール型エポキシ樹脂、ビスフェノール型エポキシ樹脂の水添物、あるいは、フェノールノボラック樹脂又はクレゾールノボラック樹脂にハロエポキシドを反応させて得られるノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、又は、
前述の各エポキシ樹脂に各種の公知のアミン類を反応させて得られるアミン変性樹脂、又は、
前述の各エポキシ樹脂に各種公知のアミン類とポリイソシアネート類とを反応させて得られるアミン・ウレタン変性樹脂(特開2010-235918号公報参照。)等である。
 なお、上述のビスフェノール類の代表的な例は、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等である。
 また、上述のアミン類の代表的な例は、トルイジン類、キシリジン類、クミジン(イソプロピルアニリン)類、ヘキシルアニリン類、ノニルアニリン類、ドデシルアニリン類等の該芳香族アミン類、又は、
シクロペンチルアミン類、シクロヘキシルアミン類、ノルボニルアミン類等の脂環族アミン類、又は、
メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ステアリルアミン、イコシルアミン、2-エチルヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘプチルアミン等の脂肪族アミン類、又は、
ジエタノ-ルアミン、ジイソプロパノ-ルアミン、ジ-2-ヒドロキシブチルアミン、N-メチルエタノ-ルアミン、N-エチルエタノ-ルアミン、N-ベンジルエタノ-ルアミン等のアルカノ-ルアミン類等である。
 また、上述のポリイソシアネートの代表的な例は、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート等の各種の脂肪族系、脂環族系、又は芳香族系のジイソシアネートである。
 また、上述のエポキシ樹脂の代表的な例は、上述のビスフェノール類とエピクロルヒドリンとから誘導されるもの(いわゆるフェノキシ樹脂)、アミン変性エポキシ樹脂、及びアミン・ウレタン変性エポキシ樹脂からなる群より選ばれる1種であることが基材への密着性及び/又は印刷適性の観点から好ましい。
 上述のポリウレタン樹脂の代表的な例は、高分子ポリオール、及びポリイソシアネート、並びに必要に応じてアミンを原料とするポリ(ウレア)ウレタン樹脂である。該高分子ポリオールとしては、前記ポリエステル樹脂であって末端が水酸基のもの(ポリエステルポリオール)や、ポリカーボネートポリオール、ポリエーテルポリオール等である。
 また、上述のポリイソシアネートの代表的な例は、ブタン-1,4-ジイソシアネート、1,6-ヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、トリレンジイソシアネート等である。
 また、上述のアミンの代表的な例は、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等のジアミン、又は、n-ブチルアミン、モノ-n-ブチルアミン、ジエタノールアミン、モノエタノールアミン等のモノアミン、モノエタノールアミン、ジエタノールアミン等のアルカノールアミン等である。
 また、上述のポリウレタン樹脂の代表的な例は、上述の高分子ポリオール及び上述のポリイソシアネートを反応させることによって得られるイソシアネート基末端ウレタンプレポリマーを、上述のアミンで鎖伸長及び/又は鎖停止させたものを採用することができる。
 また、上述のアクリル樹脂の代表的な例は、各種アクリルモノマーを共重合させたものである。該モノマーの代表的な例は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸イソボルニル等のアルキル(メタ)アクリレート、又は、
(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチル、2-ヒドロキシプロピオン酸4-(ヒドロキシメチル)シクロヘキシルメチル、(メタ)アクリル酸ヒドロキシフェニル等のヒドロキシ(メタ)アクリレート、又は、
アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、フマル酸、(無水)マレイン酸等のα,β不飽和カルボン酸、又は、
スチレン、α-メチルスチレン、t-ブチルスチレン、ジメチルスチレン等の芳香族ビニルモノマー、又は、
アクリルアミド、メタクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-(1-メチル-2-ヒドロキシエチル)アクリルアミド、(メタ)アクリルアミド類、又は、不飽和スルホン酸類、又は、
アミノアルキル系不飽和単量体類、又は、
ポリオキシアルキレン系不飽和単量体類、又は、
クロロシラン系(メタ)アクリレート類、又は、
(ポリ)シロキサンモノ(メタ)アクリレート類、又は、
フルオロアルキル(モノ)アクリレート類等である。
 なお、本実施形態においては、上述の(B)成分とともに他の樹脂結着剤を併用することも採用し得る一態様である。他の樹脂結着剤の具体的な例は、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリ酢酸ビニル、ポリテトラフルオロエチレン樹脂、ABS樹脂、AS樹脂、ポリアミド樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、環状ポリオレフィン樹脂、ポリフェニレンスルファイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、非晶ポリアリレート樹脂、液晶ポリマー樹脂、ポリエーテルエーテルケトン樹脂、及びポリアミドイミド樹脂等の群より選ばれる少なくとも1種である。
 また、上述の(B)成分の使用量は特に限定されない。但し、スクリーン印刷適性や経時導電安定性等の観点から言えば、(A)成分100質量部に対して(B)成分の量が1質量部以上30質量部以下程度であることが好ましい。同様の観点から、前述の範囲は、5質量部以上25質量部以下程度であることがより好ましく、10質量部以上20質量部以下程度であることが特に好ましい。
 また、上述の(C)成分は、導電性ペーストに利用可能な有機溶剤である。各種の公知の有機溶剤を特に制限なく使用できる。代表的な(C)成分の例は、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-i-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフラン等のエーテル系アルコール、又は、
メチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、乳酸エチル、乳酸ブチル、ジアセトンアルコール、テレピネオール、ボルネオール等の非エーテル系アルコール、又は、
アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、又は、
酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネート、エチルエトキシプロピオネート、シュウ酸ジエチル、マロン酸ジエチル等のエステル系溶剤、又は、
ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン、o-ジクロルベンゼン等のハロゲン系溶剤、又は、
ヘキサン、ヘプタン、オクタン等の脂肪族系溶剤、又は、
ベンゼン、トルエン、キシレン等の芳香族系溶剤、又は、
テレピン油又はα-ピネン等の植物系溶剤、又は、
炭酸プロピレン等である。
 従って、前述のエーテル系アルコール、前述の非エーテル系アルコール、前述のエステル系溶剤、前述のケトン系溶剤、前述の脂肪族系溶剤、前述の芳香族系溶剤、及び前述の植物系溶剤からなる群より選ばれる少なくとも1種であることは、本実施形態において採用し得る一態様である。但し、これらの中でも経時導電安定性及び/又はスクリーン印刷適性の観点より前記エーテル系アルコールが好ましい。
 また、上述の(C)成分の使用量は特に限定されない。但し、ハンドリング性、スクリーン印刷適性、及び/又は経時導電安定性等の観点から言えば、(A)成分100質量部に対して(C)成分の量が1質量部以上30質量部以下程度であることが好ましい。同様の観点から、前述の範囲は、3質量部以上20質量部以下程度であることがより好ましく、5質量部以上15質量部以下程度であることが特に好ましい。
<添加剤について>
 本実施形態の導電性ペーストは、上述のとおり、添加剤として(D1)成分、(D2)成分、及び(D3)成分が導電性ペーストの構成材料の一部として配合されている。本実施形態においては、(D1)成分、(D2)成分、及び(D3)成分の相互作用により、所望の経時導電安定性及び/又はスクリーン印刷適性が達成される。
 なお、本願発明者らは、そのような効果が得られる理由は定かではないが、本実施形態の導電性ペースト製造時の混練工程及び/又は導電性ペーストをスクリーン印刷した後の加熱・乾燥する過程において、以下の[1]~[3]に示す反応が生じるためと推察する。
[1](D1)成分と(D2)成分との間に配位子交換反応が生じることにより、(D2)成分の金属錯体が生じ得る。これは、有機モノカルボン酸イオンと金属イオンからなるイオン対である(D1)成分である有機モノカルボン酸金属塩の金属イオンが、二座配位子である(D2)成分と錯体を形成した方がエントロピー効果の観点からより安定に存在し得るためである。
[2]配位子交換反応の結果として生成した(D1)成分由来の有機モノカルボン酸の還元作用により、上述の(A)成分の表面に形成されている酸化皮膜が還元される。その結果、(A)成分が本来有する導電性が回復すると考えられる。
[3]一方、上述の配位子交換反応の結果生じた(D2)成分の金属錯体は、加熱下で分解するため、放出された(D1)成分由来の金属イオン(本実施形態においては、銅イオン)が微細粒子として、(A)成分の表面や、連続相中に析出する。本願発明者らが予測するより具体的なメカニズムは次のとおりである。まず、(D1)成分と(D2)成分との配位子交換反応を経て生成した(D2)成分の金属錯体が熱分解によって金属粒子を析出させることになる。その金属粒子が、前記(A)成分の表面の一部又は全部を覆うと考えられる。
 図1は、その金属イオンが、(A)成分(図1におけるY)の表面や、連続相中に微細粒子(図1におけるX)として析出していると考えられる様子を表す電子顕微鏡写真である。なお、この金属粒子は表面に酸化皮膜を有していないため、それ自体が導通性に優れる。
 上述の作用により、この導電性ペーストは、室温下のみならず高温下でも経時導電安定性に優れている。また、この導電性ペーストはスクリーン印刷適性も良好であることが確認されたため、微細な配線や微小な電極を形成することができる。なお、(D1)成分、(D2)成分、及び(D3)成分がそれぞれ単体では奏し得ない効果を、(D1)成分、(D2)成分、及び(D3)成分が相俟って奏させることは、大変興味深く、かつ特筆に値する。
 ところで、(D1)成分は、有機モノカルボン酸の金属塩であれば特に限定されない。該有機モノカルボン酸の代表的な例は、蟻酸、シュウ酸、サリチル酸、安息香酸、ヒドロキシ酢酸、及びグリオキシル酸からなる群より選ばれる1種である。また、該金属の代表的な例は、銅、銀、パラジウム、及び白金からなる群より選ばれる1種である。加えて、(D1)成分は特に限定されない。但し、(D2)成分と配位子交換反応しやすく、かつ取り扱い上安全であること、及び本実施形態の導電性ペーストの経時導電安定性及び/又はスクリーン印刷適性を好適化しやすいことから、(D1)成分の好適な例は、蟻酸銅及び/又はシュウ酸銅である。
 また、(D1)成分の使用量は特に限定されない。但し、経時導電安定性及び/又はスクリーン印刷適性等の観点から言えば、(A)成分100質量部に対して(D1)成分の量が0.5質量部以上20質量部以下程度であることが好ましい。同様の観点から、前述の範囲は、3質量部以上15質量部以下程度であることが更に好ましい。
 また、(D2)成分の代表的な例は、一価または二価の金属イオンのキレート剤として作用するジケトン化合物である。各種の公知のジケトン化合物を(D2)成分として特に制限なく使用することができる。本実施形態においては、(D2)成分は、一価または二価の金属イオンと錯体を形成する。ここで、(D2)成分として特に好適な例は、上述の(D1)成分と配位子交換反応を生じやすく、その結果として本実施形態の導電性ペーストの経時的な導電安定性に寄与するものである。従って、下記一般式(化2)で表されるβ-ジケトン化合物を(D2)成分として採用することが、特に好適な一態様である。
Figure JPOXMLDOC01-appb-C000003
(式(化2)中、YおよびYは同一または異なっていてよく、それぞれアルキル基、フルオロアルキル基、アルケニル基、アルコキシ基、(メタ)クリロイル基、フェニル基およびベンジル基からなる群より選ばれる1種の基を表す。)
 ところで、該アルキル基、アルケニル基、及びアルコキシ基の炭素数は、特に限定されない。代表的なそれらの炭素数は、6以上18以下程度である。なお、該アルキル基、アルケニル基、及びアルコキシ基は分岐していてもよい。また、ハロゲン原子(塩素、フッ素等)が、当該アルキル基、アルケニル基、及びアルコキシ基に結合することも採用し得る一態様である。加えて、当該アルキル基、アルケニル基、及びアルコキシ基からなる群より選ばれる1つ又は複数の基や、アミノ基、ニトロ基、又はヒドロキシ基等が、上述のフェニル基に結合することも採用し得る一態様である。
 上述のβ-ジケトン化合物の代表的な例は、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、4-メトキシアセト酢酸メチル、2-アセトアセトキシエチルメタクリレート、メチルピバロイルアセテート、メチルイソブチロイルアセテート、エチルベンゾイルアセテート、エチルパラアニソイルアセテート、カプロイル酢酸メチル、ラウロイル酢酸メチル、パルミトイル酢酸メチル、メチル-4-メトキシアセトアセテート、アセト酢酸メチル、マロン酸ジエチルアセチルアセトン、ヘキサフルオロアセチルアセトン、ベンゾイルアセトン、及びジベンゾイルメタン等からなる群より選ばれる少なくとも1種である。
 他の(D2)成分として採用し得る例は、デヒドロ酢酸、2-シクロペンタノンエチルカルボキシレート、2-シクロヘキサノンエチルカルボキシレート、2-シクロペンタノンメチルカルボキシレート、又は2-シクロヘキサノンメチルカルボキシレート等の環状ジケトン化合物である。
 また、(D2)成分の使用量は特に限定されない。但し、経時導電安定性及び/又はスクリーン印刷適性等の観点から言えば、(A)成分100質量部に対して(D2)成分の量が0.1質量部以上15質量部以下程度であることが好ましい。同様の観点から、前述の範囲は、0.5質量部以上5質量部以下程度であることが更に好ましい。そして、前述の範囲が、1質量部以上5質量部以下程度であることが特に好ましい。
 (D3)成分は、代表的には、下記一般式(化3)で表される。
Figure JPOXMLDOC01-appb-C000004
(式(化3)中、R、R、R、RおよびRはいずれも水素、ヒドロキシル基、アルキル基、カルボキシ基またはアミノ基を表す。また、nは0又は1であり、nが1のときAはアルキレン基を表す。また、Xはカルボキシル基またはホルミル基を表す。)
 なお、上述の[化3]の該アルキル基の炭素数は、特に限定されない。代表的な該アルキル基の炭素数は1以上9以下程度である。また、該アルコキシ基の炭素数は、特に限定されない。代表的な該アルコキシ基の炭素数は1以上4以下程度である。また、上述の[化3]のAの代表的な炭素数は1以上3以下程度である。なお、該Aは、分岐アルキレン基であってよい。また、上述の[化3]のRとRのいずれかがカルボキシル基であり、かつXがカルボキシル基である場合、両カルボキシル基は無水環を形成することも採用し得る一態様である。
 また、(D3)成分のうちXがカルボキシル基の代表的な例は、安息香酸、パラヒドロキシ安息香酸、サルチル酸、テレフタル酸、フタル酸、無水フタル酸、又はイソフタル酸等である。他の代表的な例は、パラエチル安息香酸、パラプロピル安息香酸、パラブチル安息香酸、パラペンチル安息香酸、パラヘキシル安息香酸、パラノニル安息香酸、m-アミノ安息香酸、3,5-ジアミノ安息香酸等である。
 また、(D3)成分のうちXがアルデヒド基の代表的な例は、ベンズアルデヒド、2-メチルベンズアルデヒド、4-メチルベンズアルデヒド、2-メトキシベンズアルデヒド、3-メトキシベンズアルデヒド、4-メトキシベンズアルデヒド、4-ブトキシベンズアルデヒド、クミンアルデヒド、シクラメンアルデヒド、3,4-ジヒドロキシベンズアルデヒド、2,4-ジメチルベンズアルデヒド、2-エトキシベンズアルデヒド、4-エトキシベンズアルデヒド、4-エチルベンズアルデヒド、2-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、3,4-ジメトキシベンズアルデヒド、2,3-ジメトキシベンズアルデヒド、又は4-ヒドロキシ‐3,5-ジメトキシベンズアルデヒド等である。
 また、経時導電安定性及び/又はスクリーン印刷適性の観点から言えば、(D3)成分の好適な例は、安息香酸、アミノ安息香酸およびベンズアルデヒドからなる群より選ばれる少なくとも1種である。
 また、(D3)成分の使用量は特に限定されない。但し、経時導電安定性及び/又はスクリーン印刷適性等の観点から言えば、(A)成分100質量部に対して(D3)成分の量が0.1質量部以上15質量部以下程度、好ましくは0.5~5質量部程度、いっそう好ましくは1~5質量部程度である。
<その他の添加剤>
 本実施形態の導電性ペーストには、必要に応じ、更に他の添加剤を配合することできる。具体的な他の添加剤の例は、カップリング剤、界面活性剤、前記(B)成分用の硬化剤、導電補助剤、レベリング剤、消泡剤、チキソトロピック剤(微細シリカ等)、及び/又はレベリング剤等である。
 上述のカップリング剤の代表的な例は、シラン系、チタネート系、アルミネート系等の公知のカップリング剤である。このカップリング剤を用いることにより、本実施形態の導電性ペースト内の(A)成分の分散性や、(A)成分と(B)成分の密着性が向上し得る。
 シラン系カップリング剤は、本実施形態の導電性ペーストと基材との密着性を向上させるのに好適に使用することができる。その具体種としては、例えば、3‐グリシドキシプロピルトリメトキシシラン、2‐(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等である。
 また、上述の界面活性剤の代表的な例は、両性界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤、又は非イオン界面活性剤である。界面活性剤を用いることにより、本実施形態の導電性ペーストのスクリーン印刷適性を改善し得る。該両性界面活性剤の代表的な例は、アルキルベタイン又はアルキルアミンオキサイド等である。また、該陰イオン性界面活性剤の代表的な例は、アルキル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、脂肪酸塩、ナフタレンスルホン酸ホルマリン縮合物の塩、ポリカルボン酸型高分子界面活性剤、アルケニルコハク酸塩、アルカンスルホン酸塩、ポリオキシアルキレンアルキルエーテルのリン酸エステル及びその塩、又はポリオキシアルキレンアルキルエーテルのリン酸エステル及びその塩等である。また、該陽イオン性界面活性剤の代表的な例は、アルキルアミン塩又は第4級アンモニウム塩等である。また、該非イオン界面活性剤の代表的な例は、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルアミン、ポリオキシアルキルアルキレンアミン、又はアルキルアルカノールアミド等である。
 また、上述の硬化剤は、上述の(B)成分が分子内に水酸基を含有するものである。該硬化剤の代表的な例は、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、及びキシリレンジイソシアネート等の芳香族ジイソシアネート、又は、
ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、及びリジンジイソシアネー等の脂肪族ジイソシアネート、又は、
ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、水添キシレンジイソシアネート、水添トリレンジイソシアネート等の脂環式ジイソシアネートといったジイソシアネート化合物である。
さらに、上述の各ジイソシアネート化合物の二量体や三量体、並びにそれらのアダクト体やブロック体といったイソシアネート系硬化剤を利用することができる。
 また、上述の(B)成分が分子内にエポキシ基を有するものであれば、上述の硬化剤の代表的な例は、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、スピログアナミン、及びジシアンジアミド等のアミノ系硬化剤である。
 また、上述の(B)成分が分子内にカルボキシル基を有するものであれば、上述の硬化剤の代表的な例は、アジリジン系硬化剤又はエポキシ系硬化剤等である。
 上述の導電補助剤の代表的な例は、酸化インジウムスズ(ITO)、三酸化アンチモン(ATO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛(AZO)などの金属酸化、又は、グラファイト粉末、ファーネスブラック、チャンネルブラック、ランプブラック、アセチレンブラック、ケッチェンブラック等のカーボン系フィラーである。
 上述のレベリング剤の代表的な例は、シリコーン系レベリング剤、フッ素系レベリング剤、又はアクリル系レベリング剤等である。
 本実施形態の導電性ペーストは、上述の(A)成分、(B)成分、(C)成分、(D1)成分、(D2)成分、及び(D3)成分、並びに必要に応じてその他添加剤を、3本ロールミル、超音波分散機、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーザー、KDミル、コロイドミル、ダイナトロン、遊星ミル、及び/又は加圧ニーダー等の各種公知の分散手段を用いることにより製造することができる。
 本実施形態の導電性ペーストを各種基材に塗布ないし印刷し、加熱硬化させることにより、導電性塗膜や配線、電極が得られる。該基材の代表的な例は、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、又はポリメチル・メタクリレート等のプラスチックフィルム、あるいは、当該プラスチックフィルムにITOスパッタして得られるITOフィルム又はガラス板等である。また、印刷方法の代表的な例は、スクリーン印刷又は凹版印刷等である。また、加熱温度は特に限定されない。代表的な加熱温度は、110℃以上150℃以下程度である。
<実施例>
 以下、実施例によって上述の実施形態をさらに具体的に説明するが、上述の実施形態は実施例に何ら制約されるものではない。なお、「部」は質量基準である。
[実施例1]
 銅粒子(商品名「SCX-17」、DOWAエレクトロニクス(株)製、平均一次粒子径5.7μm)65.9部、フェノール樹脂(群栄化学工業(株)製、PL-5208、固形分60質量%ジエチレングリコールモノエチルエーテル溶液)13.6部、ジエチレングリコールモノエチルエーテルアセテート(以下、DEGMEEAともいう。)10.2部、シュウ酸銅0.5水和物5.7部、アセチルアセトン2.3部、及び安息香酸2.3部を、3本ロールで混練することにより、導電性ペーストを得た。
[実施例2]
 銅粒子(SCX-17)51.1部、フェノキシ樹脂(商品名「YP-50」、新日鐵(株)製、固形分35質量%のジエチレングリコールモノエチルエーテル溶液)13.5部、ギ酸銅(II)4水和物5.7部、アセチルアセトン2.3部、安息香酸2.3部、及びジエチレングリコールモノエチルエーテルアセテート(DEGMEEA)26.3部を、3本ロールで混練することにより、導電性ペーストを得た。
[実施例3]
 フェノキシ樹脂YP-50を9.5部とし、ポリエステル樹脂(商品名「XA0653」、ユニチカ(株)製、固形分40質量%のエチレングリコールモノエチルエーテル溶液)4.1部とし、DEGMEEA25.0部とした点以外、(D1)~(D3)成分を実施例2と同様の比率で処理することにより、導電性ペーストを得た。なお、(A)成分の比率は上述の各比率の変動によって変わり得る。(以下の各実施例、各比較例、及び参考例の説明において同じ)
[実施例4]
 フェノキシ樹脂YP-50を8.0部とし、ポリエステル樹脂(商品名「XA0653」、ユニチカ(株)製、固形分40質量%のエチレングリコールモノエチルエーテル溶液)3.4部とし、DEGMEEA28.4部とした点以外、(D1)~(D3)成分を実施例2と同様の比率で処理することにより、導電性ペーストを得た。
[実施例5]
 銅粒子(SCX-17)65.9部、フェノール樹脂(群栄化学工業(株)製、PL-5208、固形分60質量%ジエチレングリコールモノエチルエーテル溶液)13.6部、DEGMEEA10.2部、ギ酸銅(II)4水和物5.7部、アセチルアセトン2.3部、及び安息香酸2.3部を、3本ロールで混練することにより、導電性ペーストを得た。
[実施例6]
 銅粒子(SCX-17)を別の銅粒子(商品名「FCC-TB」、福田金属箔工業(株)製、平均一次粒子径7μm)に変更した点以外は実施例5と同様の比率で処理することにより、導電性ペーストを得た。
[実施例7]
 銅粒子(SCX-17)を別の銅粒子(商品名「FCC-CP-X5」、福田金属箔工業(株)製、平均一次粒子径15μm)に変更した点以外は実施例5と同様の比率で処理することにより、導電性ペーストを得た。
[実施例8]
 ギ酸銅(II)4水和物を11.4部に変更した点以外は実施例5と同様の比率で処理することにより、導電性ペーストを得た。
[実施例9]
 安息香酸をm-アミノ安息香酸に変更した点以外は実施例6と同様の比率で処理することにより、導電性ペーストを得た。
[実施例10]
 m-アミノ安息香酸を3,5-ジアミノ安息香酸に変更した点以外は実施例9と同様の比率で処理することにより、導電性ペーストを得た。
[実施例11]
 3,5-ジアミノ安息香酸をベンズアルデヒドに変更した点以外は実施例10と同様の比率で処理することにより、導電性ペーストを得た。
[実施例12]
 アセチルアセトンをアセト酢酸メチルに変更した点以外は実施例6と同様の比率で処理することにより、導電性ペーストを得た。
[実施例13]
 アセト酢酸メチルをアセト酢酸エチルに変更した点以外は実施例12と同様の比率で処理することにより、導電性ペーストを得た。
[実施例14]
 銅粒子(SCX-17)65.9部、フェノール樹脂(商品名「PL-5208」、群栄化学工業(株)製、固形分60質量%ジエチレングリコールモノエチルエーテル溶液)13.6部、DEGMEEA10.2部、ギ酸銀5.7部、アセチルアセトン2.3部、及び安息香2.3部を、3本ロールで混練することにより、導電性ペーストを得た。
[比較例1]
 90部の銅粒子(SCX-17)、及び20.0部のフェノール樹脂(PL-5208)を、3本ロールで混練することにより、導電性ペーストを得た。
[比較例2]
 90部の銅粒子(SCX-17)、20.0部のフェノール樹脂(PL-5208)、及び2.0部の安息香酸を、3本ロールで混練することにより、導電性ペーストを得た。なお、図2は、比較例2における、図1に相当する電子顕微鏡写真である。図2に示すように、図1において観察された析出物(と考えられる物質)は観察されない。
[比較例3]
 安息香酸とギ酸銅(II)4水和物を用いなかった点以外は実施例6と同様の比率で処理することにより、導電性ペーストを得た。
[参考例]
 銀粒子(商品名「SILFLAKE241」、Technic製、平均一次粒子径2.7μm)70.1部、エポキシ樹脂(商品名「jer‐1007」、三菱化学(株)製、固形分100質量%)6.1部、フェノール樹脂(商品名「ヒタノール3305N」、日立化成(株)製、固形分40質量%ジエチレングリコールモノエチルエーテルアセテート溶液)2.6部、DEGMEEA10.4部、ブチルカルビトール7.5部、ブチルカルビトールアセテート3.3部を、3本ロールで混練することにより、導電性の銀ペーストを得た。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1および2中、「質量部」は、(A)成分を100質量部としたときの換算値である。また、(C)成分の質量部の値には、(B)成分に含まれているジエチレングリコールモノエチルエーテルアセテートの質量部の値が考慮されている。
<導電性ペーストの塗膜の形成>
 実施例と比較例の各導電性ペーストを印刷条件でソーダガラス板上に膜厚8μmとなるよう印刷し、150℃で60分乾燥させることにより硬化塗膜を形成した。
スクリーン印刷版:ポリエステル180メッシュ(線径48μm)、乳剤=25μm
版フレームサイズ:320mm×320mm
スキ―ジスピード:200mm/sec
スキ―ジ硬度  :80度
スキ―ジ角度  :65度
ドクタースピード:200mm/sec
クリアランス  :1.5mm
 次いで、市販の四端子型抵抗率計(製品名「ミリオームハイテスタ3540」、日置電気(株)製)を用い、乾燥直後の塗膜の初期体積抵抗率と、12時間、72時間、192時間および520時間をそれぞれ経過したときの体積抵抗率(単位は、Ω・cm)とを、いずれも80℃において測定した。また、実施例1~8の塗膜については、1000時間を経過したときの体積抵抗率も、同じく80℃において測定した。
Figure JPOXMLDOC01-appb-T000007
 なお、上述の実施形態又は実施例の開示は、その実施形態又は実施例の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、上述の実施形態又は実施例の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 上述の実施形態、及び各実施例の導電ペーストは、主に電子部品の電極かプリント配線基板用の配線等の電極として有用である。また、他にも、焼付けタイプ及び非焼付けタイプの導電ペーストの種々の用途に適用し得る。例えば、コンデンサー外部電極、太陽電池用導電回路、ITOガラス電極、TOガラス電極、プリント回路のハンダ付導通部等に本実施形態の導電ペーストは適用可能である。
 また、上述の各実施形態の導電ペーストを備える硬化物、電子部品、又は電子デバイスも、上述の各実施形態の導電ペーストと同様に、広範囲な用途に適用し得る。

Claims (14)

  1.  (A)金属微粒子、(B)樹脂結着剤、及び(C)有機溶剤と、を含有し、さらに、
     (D1)有機モノカルボン酸金属塩と、
     (D2)ジケトン系キレート剤と、
     (D3)下記一般式(化1)で表される芳香族化合物と、
    を含有する、
     導電性ペースト。
    Figure JPOXMLDOC01-appb-C000001
    (式(化1)中、R、R、R、RおよびRはいずれも水素、ヒドロキシル基、アルキル基、カルボキシ基またはアミノ基を表す。また、nは0又は1であり、nが1のときAはアルキレン基を表す。また、Xはカルボキシル基またはホルミル基を表す。)
  2.  前記(D1)成分と前記(D2)成分との配位子交換反応により生成された金属粒子が、前記(A)成分の表面の一部又は全部を覆う、
     請求項1に記載の導電性ペースト。
  3.  前記(D1)成分をなす有機モノカルボン酸が、蟻酸、シュウ酸、サリチル酸、安息香酸、ヒドロキシ酢酸、及びグリオキシル酸からなる群より選ばれる1種である、
     請求項1又は請求項2に記載の導電性ペースト。
  4.  前記(D1)成分をなす金属が、銅、銀、パラジウム、及び白金からなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項3のいずれか1項に記載の導電性ペースト。
  5.  前記(D1)成分の量が、前記(A)成分100質量部に対して0.5質量部以上20質量部以下である、
     請求項1乃至請求項4のいずれか1項に記載の導電性ペースト。
  6.  前記(D2)成分の量が、前記(A)成分100質量部に対して0.1質量部以上15質量部以下である、
     請求項1乃至請求項5のいずれか1項に記載の導電性ペースト。
  7.  前記(D3)成分が、安息香酸、アミノ安息香酸、及びベンズアルデヒドからなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項6のいずれか1項に記載の導電性ペースト。
  8.  前記(D3)成分の量が、前記(A)成分100質量部に対して0.1質量部以上15質量部以下である、
     請求項1乃至請求項7のいずれか1項に記載の導電性ペースト。
  9.  前記(A)成分である金属微粒子が、銅、コバルト、鉄、亜鉛、アルミニウム、チタン、バナジウム、マンガン、ジルコニウム、モリブデン、インジウム、ビスマス、アンチモン、タングステン、及び前記各金属の少なくとも1種を含有する合金からなる群より選ばれる少なくとも1種からなる微粒子である、
     請求項1乃至請求項8のいずれか1項に記載の導電性ペースト。
  10.  前記金属微粒子の平均粒子径が、0.05μm以上50μm以下の粒度分布を有する、
     請求項9に記載の導電性ペースト。
  11.  前記(B)成分が、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、及びアクリル樹脂からなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項10のいずれか1項に記載の導電性ペースト。
  12.  前記(B)成分の量が、(A)成分100質量部に対して1質量部以上30質量部以下である、
     請求項1乃至請求項11のいずれか1項に記載の導電性ペースト。
  13.  前記(C)成分が、エーテル系アルコール、非エーテル系アルコール、エステル系溶剤、ケトン系溶剤、脂肪族系溶剤、芳香族系溶剤、及び植物系溶剤からなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項12のいずれか1項に記載の導電性ペースト。
  14.  前記(C)成分の量が、(A)成分100質量部に対して1質量部以上30質量部以下である、
     請求項1乃至請求項13のいずれか1項に記載の導電性ペースト。
PCT/JP2013/083638 2012-12-21 2013-12-16 導電性ペースト WO2014098036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380066287.1A CN105008462B (zh) 2012-12-21 2013-12-16 导电性浆料
JP2014553131A JPWO2014098036A1 (ja) 2012-12-21 2013-12-16 導電性ペースト
KR1020157011586A KR101699645B1 (ko) 2012-12-21 2013-12-16 도전성 페이스트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012289431 2012-12-21
JP2012-289431 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098036A1 true WO2014098036A1 (ja) 2014-06-26

Family

ID=50978365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083638 WO2014098036A1 (ja) 2012-12-21 2013-12-16 導電性ペースト

Country Status (5)

Country Link
JP (1) JPWO2014098036A1 (ja)
KR (1) KR101699645B1 (ja)
CN (1) CN105008462B (ja)
TW (1) TW201432723A (ja)
WO (1) WO2014098036A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663494A (zh) * 2014-07-22 2017-05-10 阿尔法装配解决方案公司 用于柔性电子件表面的可拉伸互连部

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545945A (zh) * 2017-07-03 2018-01-05 杭州正祺新材料有限公司 一种薄膜电容器电极封装用导电浆料及其制造方法
KR102007862B1 (ko) * 2017-10-31 2019-08-06 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
CN110157246B (zh) * 2019-06-18 2022-04-08 海盐华达油墨有限公司 一种导电油墨的制备方法
CN115602357A (zh) * 2022-10-24 2023-01-13 浙江振有电子股份有限公司(Cn) 一种强稳定性、高导电性的贯孔铜浆及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217422A (ja) * 1992-02-04 1993-08-27 Kao Corp 導電性ペーストおよび導電性塗膜
JPH0822722A (ja) * 1994-07-08 1996-01-23 Mitsubishi Materials Corp 透明導電膜形成用組成物
JPH1072673A (ja) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk 金属ペースト及び金属膜の製造方法
WO2013147235A1 (ja) * 2012-03-30 2013-10-03 荒川化学工業株式会社 導電ペースト、硬化物、電極、及び電子デバイス
JP2014011006A (ja) * 2012-06-29 2014-01-20 Arakawa Chem Ind Co Ltd 導電性ペースト

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693455A (ja) * 1991-04-08 1994-04-05 Mitsubishi Gas Chem Co Inc 銅膜形成基材の製造法
JPH05135619A (ja) * 1991-11-13 1993-06-01 Kao Corp 導電性銅ペーストの製造方法および該方法により得られる導電性銅ペースト
KR100709724B1 (ko) * 2007-01-30 2007-04-24 (주)이그잭스 도전막 형성을 위한 금속 페이스트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217422A (ja) * 1992-02-04 1993-08-27 Kao Corp 導電性ペーストおよび導電性塗膜
JPH0822722A (ja) * 1994-07-08 1996-01-23 Mitsubishi Materials Corp 透明導電膜形成用組成物
JPH1072673A (ja) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk 金属ペースト及び金属膜の製造方法
WO2013147235A1 (ja) * 2012-03-30 2013-10-03 荒川化学工業株式会社 導電ペースト、硬化物、電極、及び電子デバイス
JP2014011006A (ja) * 2012-06-29 2014-01-20 Arakawa Chem Ind Co Ltd 導電性ペースト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663494A (zh) * 2014-07-22 2017-05-10 阿尔法装配解决方案公司 用于柔性电子件表面的可拉伸互连部

Also Published As

Publication number Publication date
JPWO2014098036A1 (ja) 2017-01-12
KR20150089001A (ko) 2015-08-04
CN105008462A (zh) 2015-10-28
TW201432723A (zh) 2014-08-16
CN105008462B (zh) 2017-03-08
KR101699645B1 (ko) 2017-01-24

Similar Documents

Publication Publication Date Title
TWI553665B (zh) A conductive composition and a conductive molded article using the same
JP6592363B2 (ja) 薄膜印刷用導電性組成物及び薄膜導電パターン形成方法
WO2014098036A1 (ja) 導電性ペースト
JP5742112B2 (ja) 硬化性電磁波シールド性接着性フィルムおよびその製造方法
JP4832615B1 (ja) 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法
JP5989173B2 (ja) 熱硬化型導電性ペーストとその製造方法および配線基板
JP6063568B2 (ja) インク組成物および回路基板およびそれらの製造方法
US20070123645A1 (en) Ultraviolet curable silver composition and related method
TW201937006A (zh) 電子零件封裝及其製造方法
JP6089175B2 (ja) 導電性ペーストの製造方法
JP2010504612A (ja) 導電膜形成のための銀ペースト
JP6301267B2 (ja) スクリーン印刷用導電性ペースト、並びに配線の製造方法及び電極の製造方法
JP2011171522A (ja) 硬化性電磁波シールド性接着性フィルムおよびその製造方法
JP2010123355A (ja) 導電性インキおよび導電性被膜
KR20100109233A (ko) 박막 금속적층필름의 제조방법
JP5859823B2 (ja) 加熱硬化型導電性ペースト組成物
JP2015115314A (ja) レーザーエッチング用導電性銀ペースト、回路基板用基材および回路基板
JP2010132736A (ja) 導電性インキおよび導電性被膜
TW201833940A (zh) 導電性組成物
JP6296290B2 (ja) 金属ベースプリント配線板及びその製造方法
TWI548524B (zh) Laminated body, conductive pattern and circuit
WO2018135458A1 (ja) 銀被覆シリコーンゴム粒子及びこの粒子を含有する導電性ペースト並びにこの導電性ペーストを用いた導電膜の製造方法
JP2010153506A (ja) 導電性バンプ形成用組成物及びそれを用いてなるプリント配線基板
JP2007204673A (ja) エポキシ樹脂組成物とそれを用いた導電性接着剤および異方導電膜
JP2011143689A (ja) 導電性被膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553131

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011586

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865004

Country of ref document: EP

Kind code of ref document: A1