WO2014097772A1 - 有機化合物を配位子とするイオン性金属錯体塩の製造方法 - Google Patents
有機化合物を配位子とするイオン性金属錯体塩の製造方法 Download PDFInfo
- Publication number
- WO2014097772A1 WO2014097772A1 PCT/JP2013/080485 JP2013080485W WO2014097772A1 WO 2014097772 A1 WO2014097772 A1 WO 2014097772A1 JP 2013080485 W JP2013080485 W JP 2013080485W WO 2014097772 A1 WO2014097772 A1 WO 2014097772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- metal complex
- complex salt
- organic compound
- aqueous solution
- Prior art date
Links
- -1 metal complex salt Chemical class 0.000 title claims abstract description 52
- 150000002894 organic compounds Chemical class 0.000 title claims abstract description 24
- 239000003446 ligand Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 144
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 239000007864 aqueous solution Substances 0.000 claims abstract description 62
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000005049 silicon tetrachloride Substances 0.000 claims abstract description 58
- 239000006227 byproduct Substances 0.000 claims abstract description 50
- 239000000243 solution Substances 0.000 claims abstract description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 27
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 claims abstract description 27
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 17
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 10
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 58
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 150000001350 alkyl halides Chemical class 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 150000001502 aryl halides Chemical class 0.000 claims description 4
- 125000000732 arylene group Chemical group 0.000 claims description 4
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 claims description 2
- 125000006835 (C6-C20) arylene group Chemical group 0.000 claims description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 150000004010 onium ions Chemical class 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 235000011121 sodium hydroxide Nutrition 0.000 description 12
- 230000005587 bubbling Effects 0.000 description 10
- 208000012839 conversion disease Diseases 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000013110 organic ligand Substances 0.000 description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000001784 detoxification Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical group [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- DBUIPOHPUNIWBU-UHFFFAOYSA-N 2-hydroxybenzoic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)C1=CC=CC=C1O DBUIPOHPUNIWBU-UHFFFAOYSA-N 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 0 CCC1(*)N(*(C)C)C1(CC)**C(C)=O Chemical compound CCC1(*)N(*(C)C)C1(CC)**C(C)=O 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- IJLYPAVWZKXQNW-UHFFFAOYSA-N O=C(C(O1)=O)O[B]1(OC1=O)OC1=O Chemical compound O=C(C(O1)=O)O[B]1(OC1=O)OC1=O IJLYPAVWZKXQNW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- HKHZMIILVSABCM-UHFFFAOYSA-N boric acid;2-hydroxybenzoic acid Chemical compound OB(O)O.OC(=O)C1=CC=CC=C1O HKHZMIILVSABCM-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- JTDPJYXDDYUJBS-UHFFFAOYSA-N quinoline-2-carbohydrazide Chemical compound C1=CC=CC2=NC(C(=O)NN)=CC=C21 JTDPJYXDDYUJBS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/022—Boron compounds without C-boron linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65742—Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65744—Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65748—Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
Definitions
- the present invention relates to a method for producing a metal complex used as an electrolyte for nonaqueous electrolyte batteries, a polymerization catalyst such as polyolefin, and a catalyst for organic synthesis.
- Patent Document 4 describes that these by-product gases are brought into contact with soda lime and subjected to adsorption neutralization treatment.
- the treatment of the solid content after adsorption is complicated and is not suitable for the treatment on an industrial scale.
- Non-Patent Document 1 describes a method of neutralizing with an aqueous alkali solution such as caustic soda as a method for detoxifying silicon tetrafluoride.
- the by-product during the synthesis of metal complex salts using silicon tetrachloride contains not only silicon tetrafluoride but also a large amount of hydrogen chloride.
- aqueous alkali solution such as caustic soda, sodium hexafluorosilicate (Na 2 SiF 6 ) or silicic acid (SiO 2 ⁇ H 2 O)
- a hydrolyzate of silicon tetrafluoride Precipitates and causes problems such as clogging in the processing pipe.
- JP 2003-137890 A Japanese Patent Laid-Open No. 2003-212879 JP 2006-225372 A JP 2010-143835 A
- the objective of this invention is providing the manufacturing method of the ionic metal complex salt which uses the organic compound including the process of making it harmless industrially cheaply.
- the present inventors contacted silicon tetrafluoride and hydrogen chloride, which are by-produced during the production of an ionic metal complex salt having an organic compound as a ligand, with a hydrofluoric acid aqueous solution. As a result, it was recovered as a mixture of an aqueous hexafluorosilicic acid solution and hydrochloric acid, and found a method that can be made inexpensive and industrially harmless, and has led to the present invention.
- the present invention A method for producing an ionic metal complex salt having an organic compound as a ligand by reacting an organic compound that forms a ligand by reaction with a metal complex salt containing a fluorine atom using silicon tetrachloride as a reaction aid
- It comprises a step of bringing a mixed gas of silicon tetrafluoride and hydrogen chloride produced as a by-product (reaction by-product gas) into contact with a hydrofluoric acid aqueous solution and detoxifying it as a mixture of a hexafluorosilicic acid aqueous solution and hydrochloric acid,
- This is a method for producing an ionic metal complex salt having an organic compound as a ligand hereinafter sometimes simply referred to as “ionic metal complex salt”).
- a compound represented by the general formula (2) is used as an organic compound that forms a ligand by reaction, and a compound represented by the general formula (3) is used as a metal complex salt containing a fluorine atom. It is preferable to produce an ionic metal complex salt having a chemical structural formula represented by the general formula (1) by reacting silicon chloride as a reaction aid.
- M is B or P
- a + is an alkali metal ion, a hydrogen ion, or an onium ion, a is 0 or 1, b is 0 or 1, m is 1 to 3, n is 0-4 q represents 0 or 1 respectively;
- R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 3 -C 10 cycloalkylene, C 3 -C 10 halogenated cycloalkylene, C 6 -C 20 arylene, Or a C 6 -C 20 halogenated arylene (these alkylenes and arylenes may contain a substituent or a hetero atom in the structure thereof),
- Each R 2 is independently halogen, C 1 -C 10 alkyl, C 1 -C 10 alkyl halide, C 4 -C 20 aryl, C 4 -C 20 aryl halide, X 1, X 2 are, each independently, O,
- anion of the ionic metal complex salt represented by the general formula (1) include the following anions.
- the ionic metal complex salt produced in the present invention is not limited by the following examples.
- the molar ratio of silicon tetrachloride as a reaction raw material to hydrogen fluoride in a hydrofluoric acid aqueous solution brought into contact with the reaction by-product gas is 2 mol amount or more of hydrogen fluoride with respect to 1 mol amount of silicon tetrachloride. It is preferable that
- the concentration of the hydrofluoric acid aqueous solution to be brought into contact with the reaction byproduct gas is preferably 1 to 50% by mass.
- the temperature at which the reaction by-product gas and the hydrofluoric acid aqueous solution are contacted is preferably in the range of ⁇ 10 to 100 ° C.
- the exhaust gas after the reaction by-product gas is brought into contact with the hydrofluoric acid aqueous solution is further brought into contact with water or an alkaline aqueous solution.
- a gas produced as a by-product in producing an ionic metal complex salt having an organic compound useful as a ligand as a catalyst for polymerization of non-aqueous electrolyte batteries, polyolefin, and the like, or as a catalyst for organic synthesis since it can be detoxified and recovered without the need for large-scale facilities and complicated processes, an ionic metal complex salt having an organic compound as a ligand can be produced industrially at low cost.
- an ionic metal complex salt having an organic compound as a ligand by reacting an organic compound that forms a ligand by reaction with a metal complex salt containing a fluorine atom using silicon tetrachloride as a reaction aid.
- This reaction is represented, for example, by the following formula.
- silicon tetrafluoride and hydrogen chloride are generated as by-product gases at the same time as the reaction proceeds, so they are harmless at the same time as the reaction proceeds. It is necessary to carry out processing.
- the method of detoxifying the by-product gas described in the present invention is simple in its process, has no problem of clogging of solids, etc., and does not require a large heat removal facility. In particular, it becomes possible to produce the target ionic metal complex salt.
- the method for treating the by-product gas in the production of the ionic metal complex salt having the organic compound of the present invention as a ligand is obtained by bringing a by-product gas (silicon tetrafluoride, hydrogen chloride, etc.) into contact with a hydrofluoric acid aqueous solution, It is recovered as a mixture of an acid aqueous solution and hydrochloric acid.
- a by-product gas silicon tetrafluoride, hydrogen chloride, etc.
- the reaction between silicon tetrafluoride and hydrogen fluoride is represented by the following formula. SiF 4 + 2HF ⁇ H 2 SiF 6
- the hydrofluoric acid aqueous solution used for the reaction with the by-product gas of the present invention is not particularly limited and may be a commercially available one.
- the amount of the hydrofluoric acid aqueous solution is not particularly limited, and may be prepared according to the amount of silicon tetrafluoride or hydrogen chloride generated, that is, the amount of silicon tetrachloride as a reaction raw material. If you want to completely convert silicon tetrafluoride to hexafluorosilicic acid, prepare a solution so that the amount of hydrogen fluoride is more than twice the amount of silicon tetrafluoride generated, and the reaction is quantitative. In other words, the hydrofluoric acid aqueous solution may be prepared so that the amount of hydrogen fluoride is twice or more moles relative to the amount of silicon tetrachloride.
- the concentration of the aqueous hydrofluoric acid solution is not particularly limited, but may be in the range of 1 to 50% by mass. Usually, 1 to 30% by mass is preferable, and 3 to 20% by mass is more preferable. If the concentration is lower than 1% by mass, the amount of hydrofluoric acid aqueous solution necessary for recovering silicon tetrafluoride increases, which is disadvantageous for industrial treatment. In addition, if the concentration exceeds 50% by mass, the volatilization of hydrogen fluoride itself occurs, which is not preferable.
- the temperature condition in the reaction between the by-product gas and the hydrofluoric acid aqueous solution is not particularly limited, but may be in the range of ⁇ 10 to 100 ° C. Usually, 0 to 70 ° C. is preferable, and 10 to 50 ° C. is more preferable. If the temperature is lower than ⁇ 10 ° C., the reaction rate becomes slow, and silicon tetrafluoride is not converted into hexafluorosilicic acid but scattered outside the system, which may reduce the recovery efficiency. If the concentration is low, the hydrofluoric acid aqueous solution may solidify.
- the method of contacting the by-product gas with the hydrofluoric acid aqueous solution is not particularly limited, and may be performed under any conditions according to the situation. For example, a method of blowing the by-product gas into the hydrofluoric acid aqueous solution through a bubbler or a sparger. And a method of bringing a by-product gas into contact with an absorbing solution of a scrubber equipped with a filling using an aqueous hydrofluoric acid solution.
- an inert gas such as nitrogen is preferably accompanied with the by-product gas in order to prevent a back flow of the hydrofluoric acid aqueous solution or the by-product gas. Further, since heat is generated when the by-product gas and the hydrofluoric acid aqueous solution are in contact with each other, it is preferable to install equipment for cooling the hydrofluoric acid aqueous solution for the purpose of controlling the temperature.
- the hydrofluoric acid aqueous solution for the purpose of capturing a small amount of acidic volatile components from the contact liquid of the by-product gas and the hydrofluoric acid aqueous solution, it is preferable to provide a step of contacting with the hydrofluoric acid aqueous solution and then contacting with water or an alkaline aqueous solution.
- Example 1 A 1 L glass three-necked flask was charged with 450 g of ethyl methyl carbonate, 70.0 g (0.746 mol) of lithium tetrafluoroborate, and 70.2 g (0.780 mol) of oxalic acid, and stirred at room temperature. Next, 62.1 g (0.365 mol) of silicon tetrachloride was introduced over 1 hour. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas is bubbled into 500 g of 3% by weight hydrofluoric acid aqueous solution (0.75 mol of hydrogen fluoride) prepared in a fluororesin container immersed in water bath with nitrogen (100 mL / min) and treated. did.
- the aqueous hydrofluoric acid solution was kept at 20-50 ° C.
- stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium difluoro (oxalato) borate was produced at a reaction conversion rate of 98%.
- Example 2 A 1 L glass three-necked flask was charged with 420 g of acetonitrile, 70.0 g (0.746 mol) of lithium tetrafluoroborate, and 144 g (1.60 mol) of oxalic acid, and heated to 40 ° C. in an oil bath and stirred. Next, 131 g (0.770 mol) of silicon tetrachloride was introduced over 2 hours. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas was bubbled into 500 g (hydrogen fluoride 2.50 mol) of 10 mass% hydrofluoric acid aqueous solution prepared in a fluororesin container immersed in water bath with nitrogen (100 mL / min) and treated. did. During the reaction, the hydrofluoric acid aqueous solution was kept at 10 to 40 ° C. After completion of the introduction of silicon tetrachloride, stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium bis (oxalato) borate was produced at a reaction conversion rate of 92%.
- Example 3 A 1 L glass three-necked flask was charged with 450 g of ethyl methyl carbonate, 70.0 g (0.746 mol) of lithium tetrafluoroborate, and 104 g (0.755 mol) of salicylic acid, and heated to 40 ° C. in an oil bath and stirred. Next, 64.5 g (0.380 mol) of silicon tetrachloride was introduced over 1 hour. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas is bubbled into 200 g of a 10% by mass hydrofluoric acid aqueous solution (1.00 mol of hydrogen fluoride) prepared in a fluororesin container soaked in nitrogen (100 mL / min) and treated. did. During the reaction, the hydrofluoric acid aqueous solution was kept at 10 to 40 ° C. After completion of the introduction of silicon tetrachloride, stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium difluoro (salicylate) borate was produced at a reaction conversion rate of 94%.
- Example 4 A 1 L glass three-necked flask was charged with 400 g of dimethyl carbonate, 76.0 g (0.500 mol) of lithium hexafluorophosphate, and 46.4 g (0.515 mol) of oxalic acid, and stirred at room temperature. Next, 42.8 g (0.252 mol) of silicon tetrachloride was introduced over 2 hours. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas was bubbled into 150 g of a 10% by mass hydrofluoric acid solution (0.75 mol of hydrogen fluoride) prepared in a fluororesin container immersed in a water bath accompanied with nitrogen (100 mL / min), Further, the exhaust gas was bubbled into 100 g of a 10% by mass aqueous caustic soda solution.
- the hydrofluoric acid aqueous solution was kept at 20 to 50 ° C. After the introduction of silicon tetrachloride, stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium tetrafluoro (oxalato) phosphate was produced at a reaction conversion rate of 99%.
- Example 5 A 1 L glass three-necked flask is charged with 350 g of ethyl methyl carbonate, 76.0 g (0.500 mol) of lithium hexafluorophosphate, and 90.0 g (1.00 mol) of oxalic acid, and heated to 40 ° C. in an oil bath and stirred. did. Next, 86.6 g (0.510 mol) of silicon tetrachloride was introduced over 2 hours. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas is bubbled into 200 g of a 20 mass% hydrofluoric acid aqueous solution (2.00 mol of hydrogen fluoride) prepared in a fluororesin container immersed in a water bath with nitrogen (100 mL / min) and treated. did.
- the aqueous hydrofluoric acid solution was kept at 20-50 ° C.
- stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium difluorobis (oxalato) phosphate was produced at a reaction conversion rate of 95%.
- Example 6 A 1 L glass three-necked flask was charged with 350 g of ethyl methyl carbonate, 65.0 g (0.693 mol) of lithium tetrafluoroborate, and 77.1 g (0.700 mol) of catechol, and stirred at room temperature. Next, 60.1 g (0.354 mol) of silicon tetrachloride was introduced over 1 hour. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas is bubbled into 400 g (hydrogen fluoride 1.00 mol) of 10% by mass hydrofluoric acid solution prepared in a fluororesin container immersed in a water bath accompanied by nitrogen (100 mL / min). did.
- the aqueous hydrofluoric acid solution was kept at 20-50 ° C.
- stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that lithium difluoro (catecholato) borate was produced at a reaction conversion rate of 94%.
- Example 7 A 2 L glass three-necked flask was charged with 500 g of acetonitrile, 84.7 g (0.502 mol) of sodium hexafluorophosphate, and 71.1 g (0.515 mol) of salicylic acid, and stirred. Next, 43.0 g (0.253 mol) of silicon tetrachloride was introduced over 2 hours. Silicon tetrafluoride and hydrogen chloride were generated at the same time as the introduction of silicon tetrachloride.
- the generated by-product gas was bubbled into 150 g of a 10% by mass hydrofluoric acid solution (0.75 mol of hydrogen fluoride) prepared in a fluororesin container immersed in water bath with nitrogen (100 mL / min) and treated. did. During the reaction, the aqueous hydrofluoric acid solution was kept at 20-50 ° C. After the introduction of silicon tetrachloride, stirring was continued for 1 hour, and then NMR measurement of the reaction solution confirmed that sodium tetrafluoro (salicylate) phosphate was produced at a reaction conversion rate of 96%.
- SiO 2 .H 2 O silicic acid
- SiO 2 .H 2 O silicic acid
- Example 8 The reaction was performed in the same manner as in Example 4 except that the amount of the 10 mass% hydrofluoric acid aqueous solution in Example 4 was changed to 80 g (0.40 mol). During the reaction, a slight amount of gel-insoluble matter was generated in the hydrofluoric acid aqueous solution in which by-product gas was bubbled, but no clogging occurred, and the introduction of silicon tetrachloride could be carried out without stopping. It was confirmed that lithium tetrafluoro (oxalato) phosphate was produced at a reaction conversion rate of 99%.
- Example 9 The reaction was performed in the same manner as in Example 1 except that a 55% by mass hydrofluoric acid aqueous solution was used instead of the 3% by mass hydrofluoric acid aqueous solution of Example 1, and that the exhaust gas was bubbled into 100 g of 10% by mass caustic soda aqueous solution. Went. It was confirmed that lithium difluoro (oxalato) borate was produced at a reaction conversion rate of 98%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Silicon Compounds (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
開示されているのは、反応により配位子を形成する有機化合物とフッ素原子を含む金属錯体塩を、四塩化ケイ素を反応助剤に用いて反応させて有機化合物を配位子とするイオン性金属錯体塩を得る方法である。この方法は、副生する四フッ化ケイ素と塩化水素をフッ酸水溶液と接触させることにより、ヘキサフルオロケイ酸水溶液と塩酸の混合物として無害化回収することを特徴とする。この方法によって、目的のイオン性金属錯体塩を安価で工業的に製造できる。
Description
本発明は、非水電解液電池用電解質、ポリオレフィン等の重合触媒、また、有機合成用触媒として利用される金属錯体の製造方法に関するものである。
従来、PF6-、BF4-、AsF6-のようなルイス酸とFイオンの結合したイオン性錯体がその溶解性、イオン解離性、反応に対する高活性という特性のため、非水電解液電池用電解質、ポリオレフィン等の重合触媒、また、有機合成用触媒等の用途に使用されてきた。
前記イオン性錯体の応用範囲が多種多様化している中で、それぞれの用途に対する最適なイオン性錯体が探索されており、その性質として耐熱性、耐加水分解性、低毒性、リサイクル性等が求められている。そういう中で従来のように単純に中心元素にフッ素、酸素などが結合した形の錯体だけでなく、有機系の配位子が中心元素に結合した様式の錯体も多数みられるようになってきた。有機系の配位子が中心元素に結合した錯体の製造方法として、特許文献1、2、3、4には、テトラフルオロホウ酸塩または、ヘキサフルオロリン酸塩と有機系配位子を有機溶媒中、四塩化ケイ素等の反応助剤の存在下で反応させる方法が開示されている。
このように、フッ素含有化合物と有機系の配位子を形成する化合物とを四塩化ケイ素を反応助剤に用いて反応させ目的の有機配位子錯体を得る場合、副生成物として、有毒な気体である四フッ化ケイ素と塩化水素が生成するため、これらの無害化方法が必要となる。
この無害化方法としては、特許文献4に、これらの副生ガスをソーダ石灰と接触させ吸着中和処理することが記載されている。しかしながら、この方法では、吸着後の固形分の処理が煩雑で、工業スケールでの処理には適さない。また、非特許文献1には四フッ化ケイ素の無害化方法として苛性ソーダ等のアルカリ水溶液で中和処理する方法が記載されている。しかし、四塩化ケイ素を使用した金属錯体塩の合成時の副生物は、四フッ化ケイ素だけではなく塩化水素も多量に含まれるため、中和熱が大きくその温度を制御するには相当な設備が必要になるほか、苛性ソーダ等のアルカリ水溶液で中和した場合、ヘキサフルオロケイ酸ナトリウム(Na2SiF6)や、四フッ化ケイ素の加水分解物であるケイ酸(SiO2・H2O)が析出し、処理配管中において閉塞などの問題が生じるため、好ましくない。
分離技術(分離技術会)、27(5)、11-18、1997
有機化合物を配位子とするイオン性金属錯体塩を製造する際に生じる副生ガスの無害化において、従来の技術では、上記のように、工程が煩雑であったり、大がかりな設備が必要であり、工業的に上記イオン性金属錯体塩を製造するには不利であった。本発明の目的は、安価で工業的に無害化する工程を含んだ有機化合物を配位子とするイオン性金属錯体塩の製造方法を提供することである。
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、有機化合物を配位子とするイオン性金属錯体塩製造時に副生する四フッ化ケイ素と塩化水素をフッ酸水溶液と接触させることで、ヘキサフルオロケイ酸水溶液、塩酸の混合物として回収し、安価で工業的に無害化できる方法を見出し、本発明に至った。
すなわち本発明は、
反応により配位子を形成する有機化合物とフッ素原子を含む金属錯体塩を、四塩化ケイ素を反応助剤に用いて反応させて有機化合物を配位子とするイオン性金属錯体塩を製造する方法において、
副生する四フッ化ケイ素及び塩化水素の混合ガス(反応副生ガス)をフッ酸水溶液と接触させ、ヘキサフルオロケイ酸水溶液及び塩酸の混合物として無害化回収する工程を含むことを特徴とする、有機化合物を配位子とするイオン性金属錯体塩(以降、単に「イオン性金属錯体塩」と記載する場合がある)の製造方法である。
反応により配位子を形成する有機化合物とフッ素原子を含む金属錯体塩を、四塩化ケイ素を反応助剤に用いて反応させて有機化合物を配位子とするイオン性金属錯体塩を製造する方法において、
副生する四フッ化ケイ素及び塩化水素の混合ガス(反応副生ガス)をフッ酸水溶液と接触させ、ヘキサフルオロケイ酸水溶液及び塩酸の混合物として無害化回収する工程を含むことを特徴とする、有機化合物を配位子とするイオン性金属錯体塩(以降、単に「イオン性金属錯体塩」と記載する場合がある)の製造方法である。
反応により配位子を形成する有機化合物として一般式(2)で示される化合物を用い、フッ素原子を含む金属錯体塩として一般式(3)で示される化合物を用い、非水溶媒中において、四塩化ケイ素を反応助剤に用いて反応させて一般式(1)で示される化学構造式よりなるイオン性金属錯体塩を製造することが好ましい。
一般式(1)~(3)において、Mは、B、またはP
A+は、アルカリ金属イオン、水素イオン、又はオニウムイオン、
aは、0または1、
bは、0または1、
mは、1~3、
nは、0~4
qは、0または1をそれぞれ表し、
R1は、C1~C10のアルキレン、C1~C10のハロゲン化アルキレン、C3~C10のシクロアルキレン、C3~C10のハロゲン化シクロアルキレン、C6~C20のアリーレン、又はC6~C20のハロゲン化アリーレン(これらのアルキレンおよびアリーレンはその構造中に置換基、ヘテロ原子を含んでもよい。)、
R2は、それぞれ独立で、ハロゲン、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリール、
X1、X2は、それぞれ独立で、O、SO3、又は、NR3を表す(R3は、水素、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリールを表す。)。
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリールは分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
A+は、アルカリ金属イオン、水素イオン、又はオニウムイオン、
aは、0または1、
bは、0または1、
mは、1~3、
nは、0~4
qは、0または1をそれぞれ表し、
R1は、C1~C10のアルキレン、C1~C10のハロゲン化アルキレン、C3~C10のシクロアルキレン、C3~C10のハロゲン化シクロアルキレン、C6~C20のアリーレン、又はC6~C20のハロゲン化アリーレン(これらのアルキレンおよびアリーレンはその構造中に置換基、ヘテロ原子を含んでもよい。)、
R2は、それぞれ独立で、ハロゲン、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリール、
X1、X2は、それぞれ独立で、O、SO3、又は、NR3を表す(R3は、水素、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリールを表す。)。
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリールは分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
一般式(1)で示されるイオン性金属錯体塩のアニオンとしては、具体的には、例えば以下のアニオン等が挙げられる。ただし、本発明で製造されるイオン性金属錯体塩は、以下の例示により何ら制限を受けるものではない。
また、反応原料である四塩化ケイ素と、前記反応副生ガスと接触させるフッ酸水溶液中のフッ化水素とのモル比が、四塩化ケイ素1モル量に対し、フッ化水素が2モル量以上であることが好ましい。
また、前記反応副生ガスと接触させるフッ酸水溶液の濃度が1~50質量%であることが好ましい。
また、前記反応副生ガスとフッ酸水溶液とを接触させる温度が-10~100℃の範囲であることが好ましい。
また、反応副生ガスをフッ酸水溶液に接触させた後の排ガスを、さらに水またはアルカリ水溶液に接触させることが好ましい。
本発明により、非水電解液電池用電解質、ポリオレフィン等の重合触媒、また、有機合成用触媒として有用な有機化合物を配位子とするイオン性金属錯体塩を製造する際に副生するガスを、大規模な設備や煩雑な工程の必要がなく無害化回収できるため、有機化合物を配位子とするイオン性金属錯体塩を安価で工業的に製造することができる。
反応により配位子を形成する有機化合物とフッ素原子を含む金属錯体塩を、四塩化ケイ素を反応助剤に用いて反応させて有機化合物を配位子とするイオン性金属錯体塩を製造する際の反応は、例えば、以下の式で示される。
上記式で示されるように、目的のイオン性金属錯体塩を製造する際、反応の進行と同時に、四フッ化ケイ素、塩化水素が副生ガスとして発生するため、反応の進行と同時にこれらを無害化処理することが必要となる。本発明で記載する副生ガスを無害化処理する方法は、その工程が簡易で、固形物等の閉塞の問題もなく、また大がかりな除熱設備も不要であるため、その結果、安価で工業的に目的のイオン性金属錯体塩を製造することが可能となる。
以下に、本発明をより詳細に説明する。
本発明の有機化合物を配位子とするイオン性金属錯体塩の製造における副生ガスの処理方法は、副生ガス(四フッ化ケイ素、塩化水素等)をフッ酸水溶液と接触させヘキサフルオロケイ酸水溶液及び塩酸の混合物として回収することを特徴とするものである。四フッ化ケイ素とフッ化水素の反応は、以下の式で示される。
SiF4+ 2HF → H2SiF6
SiF4+ 2HF → H2SiF6
本発明の副生ガスとの反応に用いるフッ酸水溶液は、特に限定されず市販されているものを用いればよい。
フッ酸水溶液の量は特に限定するものではなく、四フッ化ケイ素や塩化水素の発生量、すなわち反応原料である四塩化ケイ素の量に応じて、用意すればよい。四フッ化ケイ素を完全にヘキサフルオロケイ酸に変換したい場合には、四フッ化ケイ素の発生量に対しフッ化水素の量が2倍モル以上となるように用意すればよく、反応が定量的に進行する場合には、すなわち、四塩化ケイ素の量に対しフッ化水素の量が2倍モル以上となるようにフッ酸水溶液を用意すればよい。
フッ酸水溶液の濃度としては、特に制限はないが、1~50質量%の範囲で行えばよい。通常は1~30質量%が好ましく、特に3~20質量%がより好ましい。1質量%よりも低い濃度であれば、四フッ化ケイ素を回収するために必要なフッ酸水溶液量が多くなり、工業的な処理として不利となる。また、50質量%を超える濃度であれば、フッ化水素自体の揮発が多く生じてしまうため好ましくない。
副生ガスとフッ酸水溶液との反応における温度条件としては、特に制限はないが、-10~100℃の範囲で行えばよい。通常は0~70℃が好ましく、特に、10~50℃がより好ましい。-10℃よりも低い温度であれば、反応速度が遅くなり四フッ化ケイ素がヘキサフルオロケイ酸に変換されずに系外に飛散してしまい回収効率が低下する恐れがあり、また、フッ酸濃度が低い場合にはフッ酸水溶液が固化してしまう可能性がある。また、100℃を超える温度であれば、フッ化水素の揮発が多く生じてしまうことや、反応回収されたヘキサフルオロケイ酸が熱分解され、再び四フッ化ケイ素として系外に揮発してしまい、回収効率が低下してしまう恐れがある。
副生ガスとフッ酸水溶液との接触方法は特に限定するものではなく、状況に合わせた任意の条件で実施すればよいが、例えば、フッ酸水溶液にバブラーやスパージャーを通して副生ガスを吹き込む方法、充填物を備えたスクラバーの吸収液にフッ酸水溶液を用いて副生ガスを接触させる方法等が挙げられる。
副生ガスをフッ酸水溶液に接触させる際には、フッ酸水溶液や副生ガスの逆流を防止するために、窒素等の不活性ガスを副生ガスと同伴させることが好ましい。また、副生ガスとフッ酸水溶液との接触時には発熱するため、温度を制御する目的で、フッ酸水溶液を冷却する設備を設置することが好ましい。さらに、副生ガスとフッ酸水溶液との接触液からの微量の酸性揮発成分を捕捉する目的で、フッ酸水溶液と接触させた後に、水やアルカリ水溶液と接触させる工程を設けることが好ましい。
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
[実施例1]
1Lガラス三口フラスコに、エチルメチルカーボネートを450g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、シュウ酸を70.2g(0.780mol)仕込み、室温にて攪拌した。次に四塩化ケイ素62.1g(0.365mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した3質量%フッ酸水溶液500g(フッ化水素 0.75mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率98%でジフルオロ(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、3質量%フッ酸水溶液バブリング導入前後の排ガスをフーリエ変換赤外分光光度計(以下FT-IR)にて測定した。結果を表1に示す。
1Lガラス三口フラスコに、エチルメチルカーボネートを450g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、シュウ酸を70.2g(0.780mol)仕込み、室温にて攪拌した。次に四塩化ケイ素62.1g(0.365mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した3質量%フッ酸水溶液500g(フッ化水素 0.75mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率98%でジフルオロ(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、3質量%フッ酸水溶液バブリング導入前後の排ガスをフーリエ変換赤外分光光度計(以下FT-IR)にて測定した。結果を表1に示す。
このように、反応副生ガスを3質量%フッ酸水溶液にバブリング導入することにより、微量揮発した原料の四塩化ケイ素と反応副生ガスである四フッ化ケイ素を完全に無害化回収し、塩化水素もほぼ完全に無害化回収することができる。
[実施例2]
1Lガラス三口フラスコに、アセトニトリルを420g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、シュウ酸を144g(1.60mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素131g(0.770mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液500g(フッ化水素 2.50mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は10~40℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率92%でビス(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表2に示す。
1Lガラス三口フラスコに、アセトニトリルを420g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、シュウ酸を144g(1.60mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素131g(0.770mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液500g(フッ化水素 2.50mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は10~40℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率92%でビス(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表2に示す。
[実施例3]
1Lガラス三口フラスコに、エチルメチルカーボネートを450g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、サリチル酸を104g(0.755mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素64.5g(0.380mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液200g(フッ化水素 1.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は10~40℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率94%でジフルオロ(サリチラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表3に示す。
1Lガラス三口フラスコに、エチルメチルカーボネートを450g、テトラフルオロホウ酸リチウムを70.0g(0.746mol)、サリチル酸を104g(0.755mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素64.5g(0.380mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液200g(フッ化水素 1.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は10~40℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率94%でジフルオロ(サリチラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表3に示す。
[実施例4]
1Lガラス三口フラスコに、ジメチルカーボネートを400g、ヘキサフルオロリン酸リチウムを76.0g(0.500mol)、シュウ酸を46.4g(0.515mol)仕込み、室温にて攪拌した。次に四塩化ケイ素42.8g(0.252mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液150g(フッ化水素 0.75mol)にバブリング導入し、さらに、その排ガスを10質量%苛性ソーダ水溶液100gにバブリング導入させた。反応中、フッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率99%でテトラフルオロ(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表4に示す。
1Lガラス三口フラスコに、ジメチルカーボネートを400g、ヘキサフルオロリン酸リチウムを76.0g(0.500mol)、シュウ酸を46.4g(0.515mol)仕込み、室温にて攪拌した。次に四塩化ケイ素42.8g(0.252mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液150g(フッ化水素 0.75mol)にバブリング導入し、さらに、その排ガスを10質量%苛性ソーダ水溶液100gにバブリング導入させた。反応中、フッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率99%でテトラフルオロ(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表4に示す。
このように、反応副生ガスを10質量%フッ酸水溶液にバブリング導入することで、微量揮発した原料の四塩化ケイ素と反応副生ガスである四フッ化ケイ素を完全に無害化回収し、さらに続けて苛性ソーダ水溶液にバブリング導入することにより、フッ酸水溶液では回収しきれなかった塩化水素を完全に無害化回収することができる。また、反応終了後における10質量%苛性ソーダ水溶液中のフッ素イオン量をイオンクロマトグラフィーで定量したところ、0.01molのフッ素イオンが検出された。このことからフッ酸水溶液からフッ化水素自体の揮発がほとんどないことがわかる。
[実施例5]
1Lガラス三口フラスコに、エチルメチルカーボネートを350g、ヘキサフルオロリン酸リチウムを76.0g(0.500mol)、シュウ酸を90.0g(1.00mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素86.6g(0.510mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した20質量%フッ酸水溶液200g(フッ化水素 2.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率95%でジフルオロビス(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、20質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表5に示す。
1Lガラス三口フラスコに、エチルメチルカーボネートを350g、ヘキサフルオロリン酸リチウムを76.0g(0.500mol)、シュウ酸を90.0g(1.00mol)仕込み、オイルバスにて40℃に加熱し攪拌した。次に四塩化ケイ素86.6g(0.510mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した20質量%フッ酸水溶液200g(フッ化水素 2.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率95%でジフルオロビス(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、20質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表5に示す。
[実施例6]
1Lガラス三口フラスコに、エチルメチルカーボネートを350g、テトラフルオロホウ酸リチウムを65.0g(0.693mol)、カテコールを77.1g(0.700mol)仕込み、室温にて攪拌した。次に四塩化ケイ素60.1g(0.354mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液400g(フッ化水素 1.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率94%でジフルオロ(カテコラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表6に示す。
1Lガラス三口フラスコに、エチルメチルカーボネートを350g、テトラフルオロホウ酸リチウムを65.0g(0.693mol)、カテコールを77.1g(0.700mol)仕込み、室温にて攪拌した。次に四塩化ケイ素60.1g(0.354mol)を1時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液400g(フッ化水素 1.00mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率94%でジフルオロ(カテコラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表6に示す。
[実施例7]
2Lガラス三口フラスコに、アセトニトリルを500g、ヘキサフルオロリン酸ナトリウムを84.7g(0.502mol)、サリチル酸を71.1g(0.515mol)仕込み、攪拌した。次に四塩化ケイ素43.0g(0.253mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液150g(フッ化水素 0.75mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率96%でテトラフルオロ(サリチラト)リン酸ナトリウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表7に示す。
2Lガラス三口フラスコに、アセトニトリルを500g、ヘキサフルオロリン酸ナトリウムを84.7g(0.502mol)、サリチル酸を71.1g(0.515mol)仕込み、攪拌した。次に四塩化ケイ素43.0g(0.253mol)を2時間かけて導入した。四塩化ケイ素導入開始と同時に四フッ化ケイ素および塩化水素が発生した。発生した副生ガスは、窒素(100mL/min)と同伴させて、水浴に浸したフッ素樹脂製の容器に準備した10質量%フッ酸水溶液150g(フッ化水素 0.75mol)にバブリング導入し処理した。反応中、このフッ酸水溶液は20~50℃に保たれた。四塩化ケイ素導入終了後、1時間攪拌を継続したのち、反応液のNMR測定により、反応変換率96%でテトラフルオロ(サリチラト)リン酸ナトリウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後の排ガスをFT-IRにて測定した。結果を表7に示す。
[比較例1]
実施例1の3質量%フッ酸水溶液に変えて水を使用したこと以外は、実施例1と同様に反応を行った。反応中、副生ガスをバブリングした水中にゲル状不溶解物が生成し、副生ガス吹込口が閉塞したため、四塩化ケイ素導入(=反応)を止めざるを得なくなった。
このように、副生ガスを水で処理すると、四フッ化ケイ素の加水分解物であるケイ酸(SiO2・H2O)が析出し、ラインを閉塞してしまう。
実施例1の3質量%フッ酸水溶液に変えて水を使用したこと以外は、実施例1と同様に反応を行った。反応中、副生ガスをバブリングした水中にゲル状不溶解物が生成し、副生ガス吹込口が閉塞したため、四塩化ケイ素導入(=反応)を止めざるを得なくなった。
このように、副生ガスを水で処理すると、四フッ化ケイ素の加水分解物であるケイ酸(SiO2・H2O)が析出し、ラインを閉塞してしまう。
[比較例2]
実施例1の3質量%フッ酸水溶液に変えて10質量%苛性ソーダ水溶液を使用したこと以外は実施例1と同様に反応を行った。反応中、副生ガスをバブリングした苛性ソーダ水中にゲル状不溶解物が生成し、副生ガス吹込口が閉塞したため、四塩化ケイ素導入(=反応)を止めざるを得なくなった。
このように、副生ガスをアルカリ水溶液で処理した場合においても、四フッ化ケイ素の加水分解物であるケイ酸(SiO2・H2O)が析出し、ラインを閉塞してしまう。
実施例1の3質量%フッ酸水溶液に変えて10質量%苛性ソーダ水溶液を使用したこと以外は実施例1と同様に反応を行った。反応中、副生ガスをバブリングした苛性ソーダ水中にゲル状不溶解物が生成し、副生ガス吹込口が閉塞したため、四塩化ケイ素導入(=反応)を止めざるを得なくなった。
このように、副生ガスをアルカリ水溶液で処理した場合においても、四フッ化ケイ素の加水分解物であるケイ酸(SiO2・H2O)が析出し、ラインを閉塞してしまう。
[実施例8]
実施例4の10質量%フッ酸水溶液の量を80g(0.40mol)に変更したこと以外は実施例4と同様に反応を行った。反応中、副生ガスをバブリングしたフッ酸水溶液中に若干量のゲル状不溶解物の生成が見られたが閉塞は生じず、四塩化ケイ素の導入は止めることなく実施できた。反応変換率99%でテトラフルオロ(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表8に示す。
実施例4の10質量%フッ酸水溶液の量を80g(0.40mol)に変更したこと以外は実施例4と同様に反応を行った。反応中、副生ガスをバブリングしたフッ酸水溶液中に若干量のゲル状不溶解物の生成が見られたが閉塞は生じず、四塩化ケイ素の導入は止めることなく実施できた。反応変換率99%でテトラフルオロ(オキサラト)リン酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始1時間後、および2時間後(四塩化ケイ素導入終了直後)にて、10質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表8に示す。
[実施例9]
実施例1の3質量%フッ酸水溶液に変えて55質量%フッ酸水溶液を使用し、さらに、その排ガスを10質量%苛性ソーダ水溶液100gにバブリング導入させたこと以外は、実施例1と同様に反応を行った。反応変換率98%でジフルオロ(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、55質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表9に示す。また、この反応にて、10質量%苛性ソーダ水溶液に白色不溶物が析出した。この白色不溶物は、フッ化ナトリウムであり、フッ酸水溶液からフッ化水素自体の揮発が多く生じていることがわかる。
実施例1の3質量%フッ酸水溶液に変えて55質量%フッ酸水溶液を使用し、さらに、その排ガスを10質量%苛性ソーダ水溶液100gにバブリング導入させたこと以外は、実施例1と同様に反応を行った。反応変換率98%でジフルオロ(オキサラト)ホウ酸リチウムが生成していることを確認した。この反応において、四塩化ケイ素導入開始30分後、および1時間後(四塩化ケイ素導入終了直後)にて、55質量%フッ酸水溶液バブリング導入前後と10質量%苛性ソーダ水溶液バブリング導入後の排ガスをFT-IRにて測定した。結果を表9に示す。また、この反応にて、10質量%苛性ソーダ水溶液に白色不溶物が析出した。この白色不溶物は、フッ化ナトリウムであり、フッ酸水溶液からフッ化水素自体の揮発が多く生じていることがわかる。
Claims (6)
- 反応により配位子を形成する有機化合物とフッ素原子を含む金属錯体塩を、四塩化ケイ素を反応助剤に用いて反応させて有機化合物を配位子とするイオン性金属錯体塩を製造する方法において、
副生する四フッ化ケイ素及び塩化水素の混合ガス(反応副生ガス)をフッ酸水溶液と接触させ、ヘキサフルオロケイ酸水溶液及び塩酸の混合物として無害化回収する工程を含むことを特徴とする、有機化合物を配位子とするイオン性金属錯体塩の製造方法。 - 反応により配位子を形成する有機化合物として一般式(2)で示される化合物を用い、フッ素原子を含む金属錯体塩として一般式(3)で示される化合物を用い、非水溶媒中において、四塩化ケイ素を反応助剤に用いて反応させて一般式(1)で示される化学構造式よりなるイオン性金属錯体塩を製造することを特徴とする、請求項1に記載の有機化合物を配位子とするイオン性金属錯体塩の製造方法。
A+は、アルカリ金属イオン、水素イオン、又はオニウムイオン、
aは、0または1、
bは、0または1、
mは、1~3、
nは、0~4
qは、0または1をそれぞれ表し、
R1は、C1~C10のアルキレン、C1~C10のハロゲン化アルキレン、C3~C10のシクロアルキレン、C3~C10のハロゲン化シクロアルキレン、C6~C20のアリーレン、又はC6~C20のハロゲン化アリーレン(これらのアルキレンおよびアリーレンはその構造中に置換基、ヘテロ原子を含んでもよい。)、
R2は、それぞれ独立で、ハロゲン、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリール、
X1、X2は、それぞれ独立で、O、SO3、又は、NR3を表す(R3は、水素、C1~C10のアルキル、C1~C10のハロゲン化アルキル、C4~C20のアリール、C4~C20のハロゲン化アリールを表す。)。
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリールは分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。 - 反応原料である四塩化ケイ素と、前記反応副生ガスと接触させるフッ酸水溶液中のフッ化水素とのモル比が、四塩化ケイ素1モル量に対し、フッ化水素が2モル量以上であることを特徴とする、請求項1又は請求項2に記載の有機化合物を配位子とするイオン性金属錯体塩の製造方法。
- 前記反応副生ガスと接触させるフッ酸水溶液の濃度が1~50質量%であることを特徴とする、請求項1乃至請求項3のいずれかに記載の有機化合物を配位子とするイオン性金属錯体塩の製造方法。
- 前記反応副生ガスとフッ酸水溶液とを接触させる温度が-10~100℃の範囲であることを特徴とする、請求項1乃至請求項4のいずれかに記載の有機化合物を配位子とするイオン性金属錯体塩の製造方法。
- 反応副生ガスをフッ酸水溶液に接触させた後の排ガスを、さらに水またはアルカリ水溶液に接触させることを特徴とする、請求項1乃至請求項5のいずれかに記載の有機化合物を配位子とするイオン性金属錯体塩の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-279957 | 2012-12-21 | ||
JP2012279957A JP2014122185A (ja) | 2012-12-21 | 2012-12-21 | 有機化合物を配位子とするイオン性金属錯体塩の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014097772A1 true WO2014097772A1 (ja) | 2014-06-26 |
Family
ID=50978118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080485 WO2014097772A1 (ja) | 2012-12-21 | 2013-11-12 | 有機化合物を配位子とするイオン性金属錯体塩の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014122185A (ja) |
TW (1) | TWI529176B (ja) |
WO (1) | WO2014097772A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104387411A (zh) * | 2014-11-07 | 2015-03-04 | 周阳 | 一种草酸二氟硼酸锂盐的串联一锅法合成方法 |
CN110240617A (zh) * | 2019-06-19 | 2019-09-17 | 上海如鲲新材料有限公司 | 一种二氟二草酸磷酸锂的制备方法 |
CN113800525A (zh) * | 2021-11-03 | 2021-12-17 | 九江天赐高新材料有限公司 | 一种利用硼盐尾气联产氟硅酸盐和盐酸的方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106946921A (zh) * | 2017-04-07 | 2017-07-14 | 上海如鲲新材料有限公司 | 乙二酸氟硼酯制备二氟草酸硼酸锂与双草酸硼酸锂的方法 |
CN110003277A (zh) * | 2019-05-05 | 2019-07-12 | 上海如鲲新材料有限公司 | 一种四氟草酸磷酸锂及其制备方法 |
CN113549095A (zh) * | 2021-07-13 | 2021-10-26 | 河北津宏化工有限公司 | 一种双草酸硼酸锂的制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231446A (ja) * | 1995-01-31 | 1996-09-10 | Bayer Ag | 核ハロゲン化ベンゾトリクロリドの対応するベンゾトリフルオリドからの製造方法 |
JP2005334729A (ja) * | 2004-05-25 | 2005-12-08 | Canon Inc | ガス処理方法 |
WO2007096113A1 (de) * | 2006-02-21 | 2007-08-30 | Universität Regensburg | Ionische flüssigkeiten auf basis asymmetrischer semichelatoborate |
JP2010143835A (ja) * | 2008-12-16 | 2010-07-01 | Central Glass Co Ltd | ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 |
JP2012025697A (ja) * | 2010-07-23 | 2012-02-09 | Daikin Industries Ltd | ジフルオロ酢酸エステルの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3907483B2 (ja) * | 2002-01-18 | 2007-04-18 | セントラル硝子株式会社 | イオン性金属錯体の合成法 |
JP3907446B2 (ja) * | 2001-11-05 | 2007-04-18 | セントラル硝子株式会社 | イオン性金属錯体の合成法 |
JP5211422B2 (ja) * | 2005-01-24 | 2013-06-12 | セントラル硝子株式会社 | イオン性錯体の合成法 |
-
2012
- 2012-12-21 JP JP2012279957A patent/JP2014122185A/ja active Pending
-
2013
- 2013-11-12 WO PCT/JP2013/080485 patent/WO2014097772A1/ja active Application Filing
- 2013-12-20 TW TW102147640A patent/TWI529176B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231446A (ja) * | 1995-01-31 | 1996-09-10 | Bayer Ag | 核ハロゲン化ベンゾトリクロリドの対応するベンゾトリフルオリドからの製造方法 |
JP2005334729A (ja) * | 2004-05-25 | 2005-12-08 | Canon Inc | ガス処理方法 |
WO2007096113A1 (de) * | 2006-02-21 | 2007-08-30 | Universität Regensburg | Ionische flüssigkeiten auf basis asymmetrischer semichelatoborate |
JP2010143835A (ja) * | 2008-12-16 | 2010-07-01 | Central Glass Co Ltd | ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 |
JP2012025697A (ja) * | 2010-07-23 | 2012-02-09 | Daikin Industries Ltd | ジフルオロ酢酸エステルの製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104387411A (zh) * | 2014-11-07 | 2015-03-04 | 周阳 | 一种草酸二氟硼酸锂盐的串联一锅法合成方法 |
CN104387411B (zh) * | 2014-11-07 | 2017-08-25 | 周阳 | 一种草酸二氟硼酸锂盐的串联一锅法合成方法 |
CN110240617A (zh) * | 2019-06-19 | 2019-09-17 | 上海如鲲新材料有限公司 | 一种二氟二草酸磷酸锂的制备方法 |
CN113800525A (zh) * | 2021-11-03 | 2021-12-17 | 九江天赐高新材料有限公司 | 一种利用硼盐尾气联产氟硅酸盐和盐酸的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2014122185A (ja) | 2014-07-03 |
TWI529176B (zh) | 2016-04-11 |
TW201434849A (zh) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014097772A1 (ja) | 有機化合物を配位子とするイオン性金属錯体塩の製造方法 | |
EP3381923B1 (en) | Novel method for preparing lithium bis(fluorosulfonyl)imide | |
JP5443118B2 (ja) | ビス(フルオロスルホニル)イミド塩の製造方法、ビス(フルオロスルホニル)イミド塩及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法 | |
JP6064724B2 (ja) | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 | |
JP4616925B2 (ja) | ジフルオロリン酸塩の製造方法 | |
JP4560132B2 (ja) | ジフルオロリン酸塩の製造方法 | |
KR20090110869A (ko) | 5불화인 및 6불화인산염의 제조방법 | |
WO2021025107A1 (ja) | ジフルオロリン酸リチウムの製造方法、ジフルオロリン酸エステルの製造方法、ジフルオロリン酸リチウム、非水電解液の製造方法、及び非水二次電池の製造方法 | |
TWI595003B (zh) | Method for producing difluoride ion complex | |
CN108929212B (zh) | 一种全氟己酮的制备方法 | |
JP2016204218A (ja) | フルオロスルホニルイミド化合物の製造方法 | |
JP2010042939A (ja) | フッ化物ガスの製造方法 | |
WO2013172190A1 (ja) | イミド酸化合物の製造方法 | |
US6781005B1 (en) | Process for the fluorination of boron hydrides | |
JP5653130B2 (ja) | ビス(フルオロスルホニル)イミドの製造方法 | |
JP2014189452A (ja) | フッ化リチウム粉末の製造方法及び六フッ化リン酸リチウムの製造方法 | |
JP5740451B2 (ja) | ビス(フルオロスルホニル)イミド塩の製造方法 | |
JP2014105115A (ja) | 高純度ビス(フルオロスルホニル)イミドおよびその製造方法 | |
JP2012162470A (ja) | ビス(フルオロスルホニル)アミド塩、及びペルフルオロ−n−(フルオロスルホニル)アルカンスルホニルアミド塩の製造方法 | |
CN101735194A (zh) | 高纯度4-氯-1,3-二氧戊环-2-酮的制造方法 | |
US20170101375A1 (en) | Process for producing quaternary ammonium cations and ionic liquids | |
CN116495759A (zh) | 一种采用氟硅烷类化合物制备氟化锂的方法 | |
CN117163925A (zh) | 一种三氟化磷的制备方法 | |
JP2012214464A (ja) | N−スルフィニル−ペルフルオロアルカンスルホンアミドの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866171 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13866171 Country of ref document: EP Kind code of ref document: A1 |