WO2013172190A1 - イミド酸化合物の製造方法 - Google Patents

イミド酸化合物の製造方法 Download PDF

Info

Publication number
WO2013172190A1
WO2013172190A1 PCT/JP2013/062541 JP2013062541W WO2013172190A1 WO 2013172190 A1 WO2013172190 A1 WO 2013172190A1 JP 2013062541 W JP2013062541 W JP 2013062541W WO 2013172190 A1 WO2013172190 A1 WO 2013172190A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic base
salt
carbonate
reaction
complex
Prior art date
Application number
PCT/JP2013/062541
Other languages
English (en)
French (fr)
Inventor
真太朗 佐々木
勉 南明
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013172190A1 publication Critical patent/WO2013172190A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms

Definitions

  • the present invention relates to an industrial production method of an imido acid compound useful as a battery electrolyte, an acid catalyst, and an ionic liquid, specifically, a bis (halogenated sulfonyl) imidic acid compound.
  • Bis (fluorosulfonyl) imide salt is a useful compound as a battery electrolyte solvent, ionic liquid, and antistatic agent.
  • Patent Document 1 discloses a method in which urea and fluorosulfonic acid are reacted to obtain bis (fluorosulfonyl) imide acid.
  • a production method is known in which a metal fluoride is reacted with (sulfonyl) imidic acid to obtain bis (fluorosulfonyl) imidic acid.
  • Patent Document 1 fluorosulfonic acid having high toxicity and corrosivity is used, and furthermore, it is difficult to separate bis (fluorosulfonyl) imidic acid and fluorosulfonic acid obtained by this reaction, so that the yield is low. Therefore, it is difficult to adopt as an industrial manufacturing method.
  • the method of Non-Patent Document 1 is disadvantageous for industrial mass production because it uses arsenic trifluoride or antimony trifluoride, which is highly toxic and expensive.
  • Patent Document 2 proposes a method for obtaining a bis (halogenated sulfonyl) imidic acid derivative by reacting sulfuryl halide with ammonia as a method suitable for larger-scale production of a bis (fluorosulfonyl) imidic acid compound.
  • Patent Document 2 is a useful production method for obtaining a high-yield and high-purity bis (halogenated sulfonyl) imidic acid compound, but on an industrial scale, in the water washing operation in the post-treatment after the reaction, Part of the product was dissolved in the aqueous layer, and the yield could be significantly reduced, leaving room for improvement.
  • the present invention has an object to provide an industrially effective method in which the yield is improved as compared with the conventional method in a method for obtaining a bis (halogenated sulfonyl) imidic acid derivative by reacting sulfuryl halide with ammonia.
  • the inventors of the present invention have intensively studied in view of the above problems.
  • a method of obtaining a bis (halogenated sulfonyl) imidic acid derivative by reacting a sulfuryl halide with ammonia a “salt composed of imido acid and an organic base B or
  • target product By contacting the aqueous layer containing the “complex” (hereinafter sometimes simply referred to as “target product”) with the organic base A, the target product dissolved in the aqueous layer can be efficiently recovered, and the yield of the target product is increased. I found it to improve.
  • the present invention represents a “salt or complex comprising imide acid and organic base B” represented by the formula [1].
  • each R independently represents a halosulfonyl group (—SO 2 X 1 ;
  • X 1 represents X 2 or X 3 , and
  • X 2 and X 3 are the same or different halogens (fluorine, chlorine, bromine, iodine) )).
  • B represents an organic base.
  • reaction process In the presence of the organic base B, sulfuryl halide (SO 2 X 2 X 3 ; X 2 and X 3 represent the same or different halogen (fluorine, chlorine, bromine, iodine)) and ammonia are reacted, and the reaction mixture (Hereinafter sometimes referred to as “reaction process”) Step of adding water to the reaction mixture and separating into an organic mixture containing “salt or complex consisting of imide acid and organic base B” and an aqueous layer containing “salt or complex consisting of imide acid and organic base B” (Hereafter, sometimes referred to as “cleaning process”) A step of bringing the aqueous layer separated in the washing step into contact with the organic base A and extracting the “salt or complex comprising imide acid and the organic base B” into the organic base A (hereinafter, also referred to as “recovery step”). )
  • the present invention is the above method, wherein X 1 in the “salt or complex composed of imido acid and organic base B” represented by the formula [1], and X 2 and X 3 of the sulfuryl halide are
  • the present invention provides a method characterized in that each is either fluorine or chlorine.
  • the organic base B used in the reaction step is a tertiary amine represented by the formula [2].
  • R 1 , R 2 and R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group (aryl A part or all of the hydrogen atoms of the group are halogen (fluorine, chlorine, bromine, iodine), an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, And may be substituted with an amino group, a nitro group, an acetyl group, a cyano group, or a hydroxyl group.
  • the present invention provides an alkali metal carbonate or hydrogen carbonate or an alkaline earth metal carbonate when the aqueous layer separated in the washing step and the organic base A are brought into contact in the recovery step.
  • the present invention provides a method characterized in that
  • an alkali metal hydroxide or carbonate, or alkaline earth metal water is added to the “salt or complex consisting of imido acid and organic base B” obtained by any of the methods described above.
  • M represents an alkali metal or an alkaline earth metal.
  • n represents an integer having the same number as the valence of M. ] Is provided.
  • Patent Document 3 in the production of a fluorosulfonylimide salt using chlorosulfonylimide or a salt thereof as a raw material, a part of the fluorosulfonylimide salt that flows out to the aqueous layer when performing liquid separation extraction in the purification step is used as an organic solvent.
  • a method for recovery is disclosed, the reaction raw materials and conditions are different from those of the present invention.
  • the “salt or complex comprising imide acid and organic base B” dissolved in the aqueous layer can be efficiently recovered, and even on an industrial scale, the highly pure “salt comprising imide acid and organic base B or "Complex" can be produced in high yield.
  • the present invention represents a “salt or complex comprising imide acid and organic base B” represented by the formula [1].
  • each R independently represents a halosulfonyl group (—SO 2 X 1 ;
  • X 1 represents X 2 or X 3 , and
  • X 2 and X 3 are the same or different halogens (fluorine, chlorine, bromine, iodine) )).
  • B represents an organic base.
  • This manufacturing method includes the following steps.
  • reaction process A step of adding water to the reaction mixture and separating it into an oil containing “salt or complex consisting of imido acid and organic base B” and an aqueous layer containing “salt or complex consisting of imido acid and organic base B” ( Cleaning process) The step of bringing the aqueous layer separated in the washing step into contact with the organic base A, and extracting the “salt or complex comprising imide acid and the organic base B” into the organic base A (recovery step)
  • the amount of sulfuryl halide is usually 1 to 10 moles, preferably 1 to 8 moles, more preferably 2 to 5 moles per mole of ammonia.
  • Organic base used in the reaction step (In this specification, the organic base used in the reaction step is sometimes referred to as “organic base B”, and the organic base used in the recovery step described later is sometimes referred to as “organic base A”. ) Is a tertiary amine represented by the formula [2], a nitrogen-containing aromatic heterocyclic compound, or the following imine skeleton —C ⁇ N—C— In the following, specific examples of each compound will be clarified.
  • (A) Tertiary amine trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, trioctylamine, tridecylamine, triphenylamine, tribenzylamine, tris (2 -Ethylhexyl) amine, N, N-dimethyldecylamine, N-benzyldimethylamine, N-butyldimethylamine, N, N-dimethylcyclohexylamine, N, N, N ', N'-tetramethylethylenediamine, N , N-dimethylaniline, N, N-diethylaniline, 1,4-diazabicyclo [2.2.2] octane, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, N-ethylmorpholine, N, N '-Dimethylpiperazine,
  • Nitrogen-containing aromatic heterocyclic compounds pyridine, 2,4,6-trimethylpyridine, 4-dimethylaminopyridine, lutidine, pyrimidine, pyridazine, pyrazine, oxazole, isoxazole, thiazole, isothiazole, imidazole, 1 , 2-dimethylimidazole, 3- (dimethylamino) propylimidazole, pyrazole, furazane, pyrazine, quinoline, isoquinoline, purine, 1H-indazole, quinazoline, cinnoline, quinoxaline, phthalazine, pteridine, phenanthridine, 2,6-di -T-butylpyridine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 5,5'
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tri-n-butylamine, secondary amines such as diisopropylamine, pyridine, 2,3-lutidine, 2,4-lutidine, Nitrogen-containing aromatic heterocyclic compounds such as 2,6-lutidine, 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine and 3,5,6-collidine are preferred. Furthermore, trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and the like are more preferable.
  • the amount of the organic base B used is stoichiometrically 3 moles per mole of ammonia and 1.5 moles per mole of sulfuryl halide. In order to facilitate the reaction, It is preferable to use more than the stoichiometric amount.
  • the organic base B is used in an amount of 1 to 50 mol (preferably 1 to 10 mol) with respect to 1 mol of ammonia, and 1.5 to 10 mol (preferably 2 with respect to 1 mol of sulfuryl). ⁇ 5 mol).
  • the reaction when the organic base B is less than 1.5 mol with respect to 1 mol of the sulfuryl, the reaction itself proceeds, but in this case, the proportion of ammonia increases in the reaction system, so that a large amount of sulfamide is generated and the conversion rate is increased. In some cases, the reaction is preferably carried out at the above-mentioned equivalent.
  • the reaction can be carried out in the presence of an organic solvent or water.
  • the organic solvent means an inert organic compound that does not directly participate in the reaction of the present invention.
  • Reaction solvents include aliphatic hydrocarbons such as n-hexane, cyclohexane and n-heptane, aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene, halogens such as methylene chloride, chloroform and 1,2-dichloroethane.
  • Hydrocarbons such as diethyl ether, tetrahydrofuran and tert-butyl methyl ether, esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • Examples include amides, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide.
  • esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide are preferable. Nitriles such as acetonitrile and propionitrile are more preferable.
  • the amount of the organic solvent or water used is not particularly limited, but it is sufficient to use 0.1 L (liter) or more with respect to 1 mol of ammonia, usually 0.1 to 20 L is preferable, particularly 0.1 to 10L is more preferable.
  • organic base B when the above-mentioned organic base B is a liquid, since these organic bases B (for example, triethylamine etc.) also serve as a solvent, they can be used in excess to function as a solvent.
  • organic bases B for example, triethylamine etc.
  • the temperature condition it may be performed in the range of ⁇ 50 to + 150 ° C. Usually, ⁇ 20 to + 100 ° C. is preferable, and ⁇ 10 to + 70 ° C. is more preferable. If the temperature is lower than ⁇ 50 ° C., the reaction rate is slow, and if the temperature is higher than + 150 ° C., decomposition of the product may occur.
  • the pressure condition is not particularly limited, and can be performed under normal pressure conditions (0.1 MPa (absolute pressure; the same applies hereinafter)) or under reduced pressure conditions or pressurized conditions using a reactor that can withstand the pressure. . That is, it may be carried out in the range of 0 to 5 MPa, but is preferably 0.01 to 2 MPa, more preferably 0.02 to 1 MPa.
  • reaction vessel used in the reaction process examples include a pressure-resistant reaction vessel lined with stainless steel, monel, hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, and perfluoropolyether resin.
  • the reaction time is not particularly limited. Since the time required for the reaction varies depending on the substrate and the reaction conditions, the progress of the reaction can be traced by an analytical means such as gas chromatography, liquid chromatography, NMR, etc. preferable. For example, if the raw material disappears immediately after the start of the reaction, the reaction may be terminated at that point, or the reaction may be continued for about one week.
  • a “salt or complex composed of imidic acid and the organic base B” represented by the formula [1] can be obtained. It is preferable to add the organic solvent, the organic base B, and the sulfuryl halide to a pressure-resistant reaction vessel such as an autoclave, and then add ammonia, and then close the vessel for the reaction. Further, the reaction is preferably carried out with 2 to 5 moles of sulfuryl halide and 2 to 5 moles of organic base B with respect to 1 mole of ammonia.
  • the amount of the organic solvent used is preferably 0.1 to 20 L with respect to 1 mol of ammonia, and the temperature condition is preferably 0 to 100 ° C.
  • the pressure condition is preferably 0.02 to 1 MPa.
  • reaction step By passing through the reaction step, a reaction mixture containing “a salt or complex composed of imide acid and organic base B” is obtained.
  • the following by-products hereinafter sometimes simply referred to as “by-products”
  • XSO 2 NHSO 2 NHSO 2 X May form in trace amounts (see Scheme 1).
  • the by-product can be removed by a simple operation such as washing with water.
  • the point of passing through the step of washing by adding water as in the washing step described later in the present invention improves the chemical purity of the “salt or complex comprising imide acid and organic base B” which is the target product. However, it is preferable.
  • washing step water is added to the reaction mixture for washing (hereinafter, sometimes simply referred to as “water washing”), and an organic mixture containing a “salt or complex composed of imide acid and organic base B” by a separation operation ( Hereinafter, this may also be referred to as “organic mixture”) and an aqueous layer containing “salt or complex comprising imide acid and organic base B” (hereinafter, simply referred to as “aqueous layer containing salt or complex”). ).
  • organic mixture an organic mixture containing a “salt or complex composed of imide acid and organic base B” by a separation operation
  • aqueous layer containing salt or complex hereinafter, simply referred to as “aqueous layer containing salt or complex”.
  • reaction mixture when the reaction mixture contains a solvent that is insoluble or hardly soluble in water, it may be concentrated as described above, or water may be added as it is, and the organic mixture and the salt or complex are washed and separated by water. (See (c) of Scheme 2). The same applies when the reaction is carried out without solvent in the reaction step.
  • the amount of water used in the water washing is not particularly limited, but it is usually preferable to use about 50 to 300% by mass with respect to the “salt or complex consisting of imido acid and organic base B” in the reaction mixture. It is also a preferable operation to repeat the washing / separation by dividing the amount of water into several times.
  • the water washing is usually preferably performed at room temperature, but the temperature condition is not particularly limited and may be heated.
  • the reaction vessel used for water washing include a pressure-resistant reaction vessel lined with stainless steel, monel, hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, and perfluoropolyether resin. It is done.
  • the separation operation after washing with water is not particularly limited as long as it is a method capable of separating an organic mixture and an aqueous layer containing a salt or a complex. In general, it can be carried out by simple separation, filtration, centrifugation or the like.
  • the organic mixture obtained by the washing step is preferably further subjected to washing / separation with an alkali metal carbonate or hydrogen carbonate or an alkaline earth metal carbonate.
  • the organic mixture includes a salt formed from the organic base B and hydrogen halide formed in the reaction step (see Scheme 1). Therefore, by performing washing / separation operation with the carbonate or the hydrogen carbonate, the salt composed of the organic base B and the hydrogen halide is effectively removed, and the target product “from imidic acid and the organic base B is obtained. (Refer to Scheme 2 (d).
  • the crude product is obtained by further concentration).
  • the crude product can be purified by operations such as solvent concentration and washing.
  • the organic mixture can be used as it is without washing and separation with an alkali metal carbonate or hydrogen carbonate or an alkaline earth metal carbonate (Scheme 2 (e)), but an organic base
  • Scheme 2 (f) The method of using a crude product from which a salt composed of B and a hydrogen halide is removed (Scheme 2 (f)) is an alkali metal hydroxide or carbonate, or an alkaline earth metal hydroxide or Since the amount of carbonate used can be suppressed, it can be said to be preferable.
  • the aqueous layer obtained by the separation operation may contain a trace amount of “salt or complex consisting of imide acid and organic base B”, it is mixed with the aqueous layer containing the salt or complex obtained in the washing step. It can also be said that it is a preferred embodiment of the present invention to be used in the recovery step (Scheme 2 (g)).
  • alkali metal carbonate examples include lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), cesium carbonate (Cs 2 CO 3), lithium hydrogen carbonate (LiHCO 3 as an alkali metal hydrogen carbonate), sodium bicarbonate (NaHCO 3), potassium bicarbonate (KHCO 3), bicarbonate rubidium (RbHCO 3), cesium hydrogencarbonate (CsHCO 3 )
  • alkaline earth metal carbonates examples include magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), and strontium carbonate (SrCO 3 ).
  • lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), and cesium carbonate (Cs 2 CO 3 ) are preferable.
  • the recovery step recovers the target “salt or complex consisting of imido acid and organic base B” from the aqueous layer containing “salt or complex consisting of imido acid and organic base B” obtained in the washing step. It is.
  • the aqueous layer containing the salt or complex is brought into contact with the organic base A to efficiently and selectively extract the target “salt or complex consisting of imide acid and organic base B” into the organic base A. (See Scheme 3 (h)).
  • the by-product generated in the reaction step may be contained together with the target product in the aqueous layer, but the by-product is contained in the organic base A containing the target product obtained in the recovery step. The product is not mixed, and the target product can be recovered with high purity.
  • the organic base A brought into contact with the aqueous layer is not particularly limited as long as it is separated into two layers when mixed with water.
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tripropylamine and tributylamine
  • secondary amines such as diisopropylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,6- And nitrogen-containing aromatic heterocyclic compounds such as lutidine, 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine, and 3,5,6-collidine.
  • triethylamine, diisopropylethylamine, and tributylamine are preferable because they are easily available on an industrial scale and are inexpensive.
  • the aqueous layer may contain a salt composed of an organic base B and a hydrogen halide produced in the reaction step (see Scheme 1). Therefore, in the recovery step, when the aqueous layer and the organic base A are brought into contact with each other, an alkali metal carbonate or hydrogen carbonate or an alkaline earth metal carbonate is added, and the organic base B and hydrogen halide are added. Removal of the resulting salt is one of the preferred operations (Scheme 3 (i)). At this time, the organic base B which has formed a salt with the hydrogen halide is liberated.
  • the liberated organic base B functions as the organic base A for extracting the target product, it has an effect of reducing the amount of the organic base A added to the aqueous layer, and is also preferable in this respect. Moreover, it is also possible to use only the free organic base B as the organic base A in the recovery step. In this case, the separation operation may be performed without adding the additional organic base A (Scheme 3 (j)).
  • alkali metal carbonate examples include lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), cesium carbonate (Cs 2 CO 3), lithium hydrogen carbonate (LiHCO 3 as an alkali metal hydrogen carbonate), sodium bicarbonate (NaHCO 3), potassium bicarbonate (KHCO 3), bicarbonate rubidium (RbHCO 3), cesium hydrogencarbonate (CsHCO 3 )
  • alkaline earth metal carbonates examples include magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), and strontium carbonate (SrCO 3 ).
  • lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), and cesium carbonate (Cs 2 CO 3 ) are preferable.
  • the amount of the organic base A may be appropriately determined according to the content of the target product contained in the aqueous layer, but it is usually preferably 0.1 to 5% by mass with respect to the target product. More preferably, the content is 0.3 to 3% by mass, and particularly preferably 0.5 to 2% by mass.
  • the content of the target product in the aqueous layer can be confirmed by 19 F-NMR measurement.
  • the contact time between the aqueous layer and the organic base A is not particularly limited, but usually about 0.5 to 12 hours is sufficient.
  • the time is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours.
  • the contact method is not particularly limited, and usually, the mixed solution of the aqueous layer and the organic base A may be stirred in the reactor.
  • a crude product of “salt or complex composed of imido acid and organic base B” can be obtained.
  • the crude product may be used alone for purification such as recrystallization, alone or mixed with an organic mixture obtained in the washing step or a crude product of “salt or complex comprising imido acid and organic base B”. Then, it may be used in the [cation exchange step]. Further, it is one of preferable operations to obtain the crude product by repeating the extraction and separation by dividing the amount of the organic base A into several times. Further, when the aqueous layer that is the extracted residual liquid is analyzed and the target product remains, it is also preferable to perform extraction / separation by further adding the organic base A to the poured residual liquid.
  • alkali metal hydroxide examples include lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), and cesium hydroxide (CsOH).
  • lithium carbonate (Li 2 CO 3 ) sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), alkaline earth
  • metal hydroxides include magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and strontium hydroxide (Sr (OH)).
  • magnesium carbonate as the alkaline earth metal carbonate (MgCO 3), calcium carbonate (CaCO 3), barium carbonate (BaCO 3), charcoal Strontium (SrCO 3) and the like, preferably lithium hydroxide (LiOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), magnesium hydroxide (Mg (OH) 2), Examples include calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and strontium hydroxide (Sr (OH) 2 ). These alkali metal hydroxides or carbonates, or alkaline earth metal hydroxides or carbonates may be used alone or in combination of two or more.
  • a combination of the same alkali metal hydroxide and carbonate for example, potassium hydroxide and potassium carbonate
  • the same alkaline earth metal hydroxide and carbonate for example, hydroxide
  • magnesium and magnesium carbonate it is preferable to use a combination of magnesium and magnesium carbonate.
  • the amount of the alkali metal hydroxide or carbonate, or the alkaline earth metal hydroxide or carbonate used is preferably 1 to 5 mol per mol of the “salt or complex consisting of imide acid and organic base B”. More preferably, it is 1 to 3 mol.
  • the amount exceeds 5 mol that is, when an excess amount of base is reacted, the reaction proceeds, but the “salt or complex composed of imido acid and organic base B” is decomposed, resulting in a decrease in yield. Therefore, it is not preferable to use an excessive amount of base.
  • the amount is less than 1 mol, the conversion rate decreases, which is not preferable.
  • a solvent When reacting an alkali metal hydroxide or carbonate or an alkaline earth metal hydroxide or carbonate, a solvent can be used.
  • water when water is used as a solvent, it is preferable to add water so that the concentration of the base is usually 10 to 70% by mass, preferably 20 to 60% by mass, more preferably 20 to 40% by mass. If the amount of water is too small, stirring in the reaction system becomes difficult, and if it is too large, processing after the reaction becomes complicated and a reaction container larger than usual is required.
  • An organic solvent other than water can also be used.
  • Solvents such as ethers such as diethyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether can be used. It can also be used in combination with water.
  • the amount of the solvent to be used is appropriately selected from the range of usually 0.5 to 10 times, preferably 1 to 7 times the volume of “salt or complex comprising imide acid and organic base B”. However, since the reaction proceeds sufficiently even if water is used, there is little merit in using an organic solvent other than water.
  • the reaction temperature is not particularly limited, but is usually ⁇ 10 ° C. to + 110 ° C., preferably +25 to + 80 ° C. If the temperature is lower than ⁇ 10 ° C., the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or causes a problem that the reaction rate decreases and it takes a long time to complete the reaction. There is a case. On the other hand, if it exceeds + 110 ° C., by-products are likely to be generated, and excessive heating is not energy efficient.
  • the reaction time is not particularly limited, but it may usually be within a range of 24 hours.
  • the progress of the reaction is traced by an analytical means such as ion chromatography or NMR, and the end point when the raw material substrate has almost disappeared. Is preferable.
  • the reactor used for the cation exchange process is made of metal containers such as stainless steel, hastelloy, monel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, polyethylene resin, and A reactor that can sufficiently react at normal pressure or under pressure, such as glass lined inside, can be used.
  • the reaction mixture obtained in this step can provide a purified high-purity bishalogenated sulfonylimide acid metal salt by a simple operation such as neutralization or recrystallization.
  • the obtained organic base B containing water can be used again for the reaction by performing a dehydration operation such as distillation.
  • the extraction residue after recovery was similarly quantified by 19 F-NMR.
  • the yield of bisfluorosulfonylimide triethylammonium salt relative to the starting ammonia was 0.4% (0.0024 mol).
  • Example 2 The reaction and washing were carried out in the same manner as in Example 1. As a result, the quantitative value by 19 F-NMR for the bisfluorosulfonylimide triethylammonium salt in the aqueous layer was 0.074 mol.
  • Example 3 The reaction and washing were carried out in the same manner as in Example 1 except that 238 g (1.84 mole) of diisopropylethylamine was used instead of triethylamine. As a result, 19 F-NMR of bisfluorosulfonylimide diisopropylethylammonium salt in the aqueous layer was used. The quantitative value was 0.052 mol.
  • Example 4 According to 19 F-NMR of bisfluorosulfonylimide diisopropylethyl ammonium salt of the aqueous layer was subjected to reaction and washed in the same manner except for using 238g (1.84 m Examl) diisopropylethylamine to Example 1 in place of triethylamine The quantitative value was 0.052 mol.
  • the aqueous layer obtained by washing with 20% potassium carbonate was added to the aqueous layer obtained by washing with water, and bisfluorosulfonylimide triethylammonium salt was quantified by 19 F-NMR. The yield was 19.5% (0.074 mol).
  • the imidoate can be recovered using an organic solvent such as ether, but more efficiently can be recovered using the organic base A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」の製造方法であって、 有機塩基Bの存在下、ハロゲン化スルフリル(SO223;X2、X3は同一、又は異なるハロゲンを表す。)とアンモニアとを反応させ、反応混合物を得る工程(反応工程)と 前記反応混合物に水を添加し、「イミド酸と有機塩基Bからなる塩又は錯体」を含む有機混合物と、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層とに分離する工程(洗浄工程)と 前記洗浄工程において分離された水層と有機塩基Aとを接触させ、「イミド酸と有機塩基Bからなる塩又は錯体」を有機塩基Aに抽出する工程(回収工程)とを含む。

Description

イミド酸化合物の製造方法
 本発明は、電池電解質、酸触媒、イオン液体として有用なイミド酸化合物、具体的にはビス(ハロゲン化スルホニル)イミド酸化合物の工業的な製造方法に関する。
 ビス(フルオロスルホニル)イミド塩は電池電解質溶媒やイオン液体、帯電防止剤としても有用な化合物である。
 ビス(フルオロスルホニル)イミド酸化合物の製造方法として、特許文献1に尿素とフルオロスルホン酸とを反応させて、ビス(フルオロスルホニル)イミド酸を得る方法が、非特許文献1には、ビス(クロロスルホニル)イミド酸に金属フッ化物を反応させて、ビス(フルオロスルホニル)イミド酸を得る製造法が知られている。
 しかしながら、特許文献1の方法では、毒性・腐食性の高いフルオロスルホン酸を使用しており、さらにこの反応で得られるビス(フルオロスルホニル)イミド酸とフルオロスルホン酸の分離が困難なため低収率となることから、工業的な製造法として採用するには難がある。また、非特許文献1の方法は、毒性が高く、高価である三フッ化砒素や三フッ化アンチモンを使用することから、工業的に量産を行うには不利である。
 本出願人らは、ビス(フルオロスルホニル)イミド酸化合物のより大量規模製造に適した方法として、ハロゲン化スルフリルとアンモニアを反応させて、ビス(ハロゲン化スルホニル)イミド酸誘導体を得る方法を提案している(特許文献2)。
米国特許第3379509号明細書 特開2010-254554号公報 特開2011-144086号公報
Inorganic Chemistry, 37(24), 6295-6303頁(1998年)
 特許文献2の方法は、高収率で高純度なビス(ハロゲン化スルホニル)イミド酸化合物が得られる有用な製法であるが、工業的スケールでは、反応後の後処理での水洗操作において、目的物の一部が水層に溶解し大幅に収率が低下する場合があり、改善の余地があった。
 そこで、本発明は、ハロゲン化スルフリルとアンモニアを反応させて、ビス(ハロゲン化スルホニル)イミド酸誘導体を得る方法において、従来よりも収率が向上し工業的に有効な方法を提供することを課題とする。
 発明者らは、上記課題に鑑み、鋭意検討したところ、ハロゲン化スルフリルとアンモニアを反応させて、ビス(ハロゲン化スルホニル)イミド酸誘導体を得る方法において、「イミド酸と有機塩基Bからなる塩又は錯体」(以下、単に「目的物」ということがある)を含む水層と有機塩基Aとを接触させることで、水層に溶解した目的物を効率的に回収でき、目的物の収率が向上することを見出した。
 すなわち、本発明は、式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」
Figure JPOXMLDOC01-appb-C000004
[式中、Rはそれぞれ独立してハロスルホニル基(-SO21;X1はX2又はX3を表し、X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Bは有機塩基を表す。]
の製造方法であって、以下の工程を含むことを特徴とする方法を提供するものである。
 有機塩基B存在下、ハロゲン化スルフリル(SO223;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表す。)とアンモニアとを反応させ、反応混合物を得る工程(以下、「反応工程」ということもある)
 前記反応混合物に水を添加し、「イミド酸と有機塩基Bからなる塩又は錯体」を含む有機混合物と、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層とに分離する工程(以下、「洗浄工程」ということもある)
 前記洗浄工程において分離された水層と有機塩基Aとを接触させ、「イミド酸と有機塩基Bからなる塩又は錯体」を有機塩基Aに抽出する工程(以下、「回収工程」ということもある)
 また、本発明は、前記方法であって、式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」中のX1、及び、ハロゲン化スルフリルのX2、X3がそれぞれフッ素又は塩素のいずれかであることを特徴とする方法を提供するものである。
 また、本発明は、前記方法において、反応工程で用いる有機塩基Bが、式[2]で表される3級アミン
Figure JPOXMLDOC01-appb-C000005
 [式[2]中、R1、R2、R3は同一、又は異なり、炭素数1~6の直鎖又は分岐のアルキル基、炭素数3~8のシクロアルキル基、又はアリール基(アリール基の水素原子の一部又は全てが、ハロゲン(フッ素、塩素、臭素、ヨウ素)、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、アミノ基、ニトロ基、アセチル基、シアノ基もしくはヒドロキシル基で置換されていても良い。)を示す。]、含窒素芳香族複素環式化合物、又はイミン骨格(-C=N-C-)を有する化合物であることを特徴とする「イミド酸と有機塩基Bからなる塩または錯体」の製造方法を提供するものである。
 また、本発明は、前記回収工程において、前記洗浄工程で分離された水層と有機塩基Aとを接触させる際に、アルカリ金属の炭酸塩もしくは炭酸水素塩、又は、アルカリ土類金属の炭酸塩を存在させることを特徴とする方法を提供するものである。
 また、本発明は、前記の何れかに記載の方法で得られた「イミド酸と有機塩基Bからなる塩または錯体」に、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させカチオン交換を行うことを特徴とする、式[3]で表されるイミド酸金属塩
Figure JPOXMLDOC01-appb-C000006
[式[3]中、Rは前記に同じ。Mはアルカリ金属又はアルカリ土類金属を示す。nはMの価数と同数の整数を示す。]の製造方法を提供するものである。
 特許文献3には、クロロスルホニルイミド又はその塩を原料とするフルオロスルホニルイミド塩の製造において、精製工程の分液抽出を行う際に水層に流出するフルオロスルホニルイミド塩の一部を有機溶媒で回収する方法が開示されているが、本発明とは反応原料や条件が異なるものである。
 本発明によれば、水層に溶解した「イミド酸と有機塩基Bからなる塩又は錯体」を効率的に回収でき、工業スケールにおいても、高純度な「イミド酸と有機塩基Bからなる塩又は錯体」を高収率で製造できる。
 本発明は、式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」
Figure JPOXMLDOC01-appb-C000007
[式中、Rはそれぞれ独立してハロスルホニル基(-SO21;X1はX2又はX3を表し、X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Bは有機塩基を表す。]
の製造方法であって、以下の工程を含むことを特徴とする。
 有機塩基Bの存在下、ハロゲン化スルフリル(SO223;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表す)とアンモニアとを反応させ、反応混合物を得る工程(反応工程)
 前記反応混合物に水を添加し、「イミド酸と有機塩基Bからなる塩又は錯体」を含む油分と、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層とに分離する工程(洗浄工程)
 前記洗浄工程において分離された水層と有機塩基Aとを接触させ、「イミド酸と有機塩基Bからなる塩又は錯体」を有機塩基Aに抽出する工程(回収工程)
[反応工程]
 まずは、本発明の反応工程について説明する。
 反応工程で用いるハロゲン化スルフリルとしては、フッ化スルフリル、塩化スルフリル、臭化スルフリル、ヨウ化スルフリルが挙げられるが、これらの中で、フッ化スルフリル、塩化スルフリルは工業的規模での入手がしやすいため好ましく、特にフッ化スルフリルが好ましい。よって、式[1]におけるX1(つまり、ハロゲン化スルフリルにおけるX2、X3)は、フッ素又は塩素である場合が好ましく、特にフッ素が好ましい。
 ハロゲン化スルフリルの量が、アンモニア1モルに対して、通常、1~10モルで行い、好ましくは1~8モル、より好ましくは2~5モルで行う。
 反応工程で使用する有機塩基(本明細書では、反応工程で使用する有機塩基を「有機塩基B」、後述する回収工程で使用する有機塩基を「有機塩基A」と記載し区別することもある。)は、式[2]で表される3級アミン、含窒素芳香族複素環式化合物、又は次のイミン骨格
 -C=N-C-
を有する化合物(以下、「イミン系塩基」ということもある)であるが、それぞれの化合物の具体的な例を、以下、明示する。
 (a)3級アミン:トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリオクチルアミン、トリデシルアミン、トリフェニルアミン、トリベンジルアミン、トリス(2-エチルへキシル)アミン、N,N-ジメチルデシルアミン、N-ベンジルジメチルアミン、N-ブチルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、N,N′-ジメチルピペラジン、N-メチルピペコリン、N-メチルピロリドン、N-ビニル-ピロリドン、ビス(2-ジメチルアミノ-エチル)エーテル、N,N,N,N',N''-ペンタメチル-ジエチレントリアミン、トリエタノールアミン、トリプロパノールアミン、ジメチルエタノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチルアミノプロピルアミン、N,N,N',N',N''-ペンタメチルジプロピレントリアミン、トリス(3-ジメチルアミノプロピル)アミン、テトラメチルイミノ-ビス(プロピルアミン)、N-ジエチル-エタノールアミンなど。
 (b)含窒素芳香族複素環式化合物:ピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、ルチジン、ピリミジン、ピリダジン、ピラジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、1,2-ジメチルイミダゾール、3-(ジメチルアミノ)プロピルイミダゾール、ピラゾール,フラザン、ピラジン、キノリン、イソキノリン、プリン、1H-インダゾール、キナゾリン、シンノリン、キノキサリン、フタラジン、プテリジン、フェナントリジン、2,6-ジ-t-ブチルピリジン、2,2'-ビピリジン、4,4'-ジメチル-2,2'-ビピリジル、4,4'-ジメチル-2,2'-ビピリジル、5,5'-ジメチル-2,2'-ビピリジル、6,6'-t-ブチル-2,2'-ジピリジル、4,4'-ジフェニル-2,2'-ビピリジル、1,10-フェナントロリン、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリンなど。
 (c)イミン系塩基:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エンなど。
 これらの中でもトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等の3級アミン、ジイソプロピルアミン等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物が好ましい。さらに、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン等がより好ましい。
 前記有機塩基Bの使用量は、化学量論的には、アンモニア1モルに対して3モルであり、ハロゲン化スルフリル1モルに対して1.5モルであるが、反応を円滑に進行させる為には、化学量論量より多く用いることが好ましい。
 従って、前記有機塩基Bの使用量として、アンモニア1モルに対し1~50モル(好ましくは1~10モル)であり、又、該スルフリル1モルに対して1.5~10モル(好ましくは2~5モル)である。
 なお、有機塩基Bが該スルフリル1モルに対して1.5モル未満の場合、反応自体は進行するが、この場合、反応系内にアンモニアの割合が多くなり、スルファミドが多く生成し、変換率が低下することもあるので、前述の当量で反応を行うことが好ましい。
 また、本工程は、有機溶媒又は水を共存させて反応を行うこともできる。ここで有機溶媒とは、本発明の反応に直接関与しない不活性な有機化合物のことを言う。反応溶媒としては、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシド等が挙げられる。
 その中でも酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシドが好ましく、アセトニトリル、プロピオニトリル等のニトリル類がより好ましい。これらの反応溶媒は単独又は組み合わせて使用することができる。
 有機溶媒又は水の使用量としては、特に制限はないが、アンモニア1モルに対して0.1L(リットル)以上を使用すればよく、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
 なお、上述の有機塩基Bが液体である場合には、これら有機塩基B(例えばトリエチルアミンなど)が溶媒としての役割も兼ねるため、これらを過剰に用いて溶媒として機能させることもできる。
 温度条件としては、特に制限はないが、-50~+150℃の範囲で行えばよい。通常は-20~+100℃が好ましく、特に-10~+70℃がより好ましい。-50℃よりも低い温度であれば反応速度が遅くなり、+150℃を超える温度であれば、生成物の分解等が生じることもある。
 圧力条件としては、特に制限はなく、常圧条件(0.1MPa(絶対圧。以下同じ。))、又は圧力に耐えられる反応器を用いて減圧条件もしくは加圧条件の下で行うことができる。すなわち、0~5MPaの範囲で行えば良いが、0.01~2MPaが好ましく、0.02~1MPaがより好ましい。
 反応工程に使われる反応容器としては、ステンレス鋼、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 反応時間としては、特に制限はない。反応に必要な時間は、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。例えば、反応開始直後に原料が消失しているのであれば、その時点で反応を終わらせて良いし、逆に一週間程度反応を続けても良い。
 以下、[反応工程]において好ましい条件を述べる。
 有機塩基Bの存在下、ハロゲン化スルフリル、及びアンモニアを反応させることで、式[1]で表される、「イミド酸と有機塩基Bからなる塩又は錯体」が得られるが、例えば、反応器への仕込みの順番として、オートクレーブ等の耐圧反応容器に有機溶媒、有機塩基B、ハロゲン化スルフリルを加えた後に、アンモニアを加えた後、容器を密閉して反応させることが好ましい。また、反応させる際、アンモニア1モルに対して、ハロゲン化スルフリルが2~5 モル、有機塩基Bが2~5モルで行うのが好ましい。
 また、有機溶媒の使用量として、アンモニア1モルに対して0.1~20Lが好ましく、温度条件として、0~100℃が好ましい。また、圧力条件としては、0.02~1MPaが好ましい。
 前記反応工程を経ることで、「イミド酸と有機塩基Bからなる塩又は錯体」を含む反応混合物が得られる。該反応混合物中には、以下の副生成物(以下、単に「副生成物」ということもある)、
 XSO2NHSO2NHSO2
が微量、生成することがある(スキーム1参照)。
Figure JPOXMLDOC01-appb-C000008
 該副生成物は、水洗などの簡便な操作により除去することが可能である。本発明で後述する洗浄工程のように、水を添加して洗浄する工程を経ることは、該目的物である「イミド酸と有機塩基Bからなる塩又は錯体」の化学純度を向上させるという点でも、好ましいものである。
 [洗浄工程]
 次に、得られた反応混合物を水洗し、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層を得る工程(洗浄工程)について説明する。
 洗浄工程は、前記反応混合物に水を添加して洗浄し(以下、単に「水洗浄」ということもある)、分離操作によって「イミド酸と有機塩基Bからなる塩又は錯体」を含む有機混合物(以下、これを「有機混合物」ということもある)、及び、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層(以下、単に「塩又は錯体を含む水層」ということもある)を得る工程である。洗浄工程は、特にその操作は限定されないが、主な方法について以下に記載する。
 まず、反応混合物にアセトニトリルやテトラヒドロフラン等の水に可溶な溶媒が含まれる場合、水を添加する前に、該溶媒を蒸留等で濃縮することが好ましい。濃縮の際に蒸留等で留去した該溶媒は再度反応に使用することも出来る。濃縮により残った「イミド酸と有機塩基Bからなる塩又は錯体」を含む残渣に、水を添加し、水洗浄した後に、分離操作により有機混合物と塩又は錯体を含む水層とがそれぞれ得られる(スキーム2の(b)参照)。この時、水と共に、水に不溶・難溶な溶媒を添加し、水洗浄・分離操作を行い、有機溶媒で希釈された有機混合物としても良い(スキーム2の(a)参照)。
 次に、反応混合物中に水に不溶・難溶な溶媒が含まれる場合、前記のように濃縮を行っても良いし、そのまま水を添加して、水洗浄・分離によって有機混合物と塩又は錯体を含む水層とを得ても良い(スキーム2の(c)参照)。反応工程において、無溶媒で反応を行った場合も同様である。
Figure JPOXMLDOC01-appb-C000009
 前記水洗浄で用いられる水の量は特に限定されないが、通常、反応混合物中の「イミド酸と有機塩基Bからなる塩又は錯体」に対して、50~300質量%程度を用いることが好ましい。また、前記の量の水を数回に分けて洗浄・分離を繰り返すことも好ましい操作の一つである。
 前記水洗浄は通常は常温で行うことが好ましいが、温度条件に特に制限はなく、加温してもよい。また、水洗浄に使われる反応容器としては、ステンレス鋼、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 洗浄工程において、水洗浄した後の分離操作とは、有機混合物と、塩又は錯体を含む水層とを分けられる方法であれば特に限定はない。一般的には簡便な分液やろ過、遠心分離等で行うことが出来る。
 洗浄工程によって得られた有機混合物は、さらにアルカリ金属の炭酸塩もしくは炭酸水素塩、又は、アルカリ土類金属の炭酸塩による洗浄・分離操作を行うことが好ましい。該有機混合物には、反応工程で生成した、有機塩基Bとハロゲン化水素とからなる塩が含まれる(スキーム1参照)。そのため、該炭酸塩もしくは該炭酸水素塩による洗浄・分離操作を行うことで、有機塩基Bとハロゲン化水素とからなる塩が効果的に除かれ、目的物である「イミド酸と有機塩基Bからなる塩又は錯体」の粗体を得ることが出来る(スキーム2(d)参照。該有機混合物が溶媒で希釈されている場合、さらに濃縮を行うことで粗体が得られる)。該粗体は、溶媒濃縮や洗浄等の操作によって精製を行うことができる。また、後述する[カチオン交換工程]に用いることで、式[3]で表されるビスハロゲン化スルホニルイミド酸金属塩に変換することが出来る。カチオン交換工程へは、アルカリ金属の炭酸塩もしくは炭酸水素塩又はアルカリ土類金属の炭酸塩による洗浄・分離を経ずに有機混合物のまま用いることも出来る(スキーム2(e))が、有機塩基Bとハロゲン化水素とからなる塩を取り除いた粗体を用いる(スキーム2(f))方が、カチオン工程における、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩の使用量を抑えることが出来るため、好ましいといえる。また、該分離操作によって得られた水層は、微量の「イミド酸と有機塩基Bからなる塩又は錯体」を含むことがあるため、洗浄工程で得られた塩又は錯体を含む水層に混ぜて回収工程に用いることも本発明の好ましい形態といえる(スキーム2(g))。
 前記アルカリ金属の炭酸塩としては炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が、アルカリ金属の炭酸水素塩としては炭酸水素リチウム(LiHCO3)、炭酸水素ナトリウム(NaHCO3)、炭酸水素カリウム(KHCO3)、炭酸水素ルビジウム(RbHCO3)、炭酸水素セシウム(CsHCO3)アルカリ土類金属の炭酸塩としては炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)、炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が挙げられる。中でも炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が好ましい。
 [回収工程]
 回収工程は、洗浄工程によって得られた「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層から、目的物である「イミド酸と有機塩基Bからなる塩又は錯体」を回収するものである。回収工程では、塩又は錯体を含む水層と有機塩基Aとを接触させることで、目的物である「イミド酸と有機塩基Bからなる塩又は錯体」を効率よく選択的に有機塩基Aに抽出することが出来る(スキーム3(h)参照)。この際、水層中には目的物と共に、反応工程において生成した前記副生成物が含まれていることがあるが、回収工程によって得られた目的物を含む有機塩基A中には前記副生成物が混入することはなく、高純度で目的物を回収することができる。
 水層と接触させる有機塩基Aは、水と混合した時に2層に分離するものであれば特に限定はされない。具体的には、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物等が挙げられる。中でもトリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンは、工業的規模での入手がし易く且つ、安価である点で好ましい。
 該水層には、反応工程で生成した有機塩基Bとハロゲン化水素とからなる塩が含まれていることがある(スキーム1参照)。そこで、回収工程において、該水層と有機塩基Aとを接触させる際に、アルカリ金属の炭酸塩もしくは炭酸水素塩又はアルカリ土類金属の炭酸塩を添加し、該有機塩基Bとハロゲン化水素からなる塩を取り除くことは好ましい操作の一つである(スキーム3(i))。この際、ハロゲン化水素と塩をなしていた有機塩基Bが遊離する。遊離した有機塩基Bは目的物抽出用の有機塩基Aとして機能するため、該水層に添加する有機塩基Aの量を低減させる効果があり、その点でも好ましい。また、前記遊離した有機塩基Bのみを回収工程の有機塩基Aとして用いることも可能であり、この場合、追加の有機塩基Aを添加せずに分離操作を行ってよい(スキーム3(j))
Figure JPOXMLDOC01-appb-C000010
 前記アルカリ金属の炭酸塩としては炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が、アルカリ金属の炭酸水素塩としては炭酸水素リチウム(LiHCO3)、炭酸水素ナトリウム(NaHCO3)、炭酸水素カリウム(KHCO3)、炭酸水素ルビジウム(RbHCO3)、炭酸水素セシウム(CsHCO3)アルカリ土類金属の炭酸塩としては炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)、炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が挙げられる。中でも炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が好ましい。
 前記有機塩基Aの量は、水層中に含まれる目的物の含有量に合わせて適宜検討すればよいが、通常、目的物に対して0.1~5質量%であることが好ましい。より好ましくは0.3~3質量%であり、特に好ましくは0.5~2質量%である。水層中の目的物の含有量については、19F-NMR測定によって確認することができる。
 該水層と有機塩基Aとの接触時間は特に限定されないが、通常0.5~12時間程度で充分である。好ましくは0.5~5時間であり、さらに好ましくは0.5~3時間がよい。また、接触方法は特に限定はなく、通常、反応器内にて水層と有機塩基Aとの混合溶液を攪拌すればよい。
 水層と有機塩基Aとを接触させた後、分離を行うことで、目的物である「イミド酸と有機塩基Bからなる塩又は錯体」を含む有機層が得られる。該有機層を濃縮することで、「イミド酸と有機塩基Bからなる塩又は錯体」の粗体を得ることが出来る。該粗体は、そのまま単独で再結晶などの精製に用いてもよく、単独で、又は洗浄工程で得られた有機混合物又は「イミド酸と有機塩基Bからなる塩又は錯体」の粗体と混合して、[カチオン交換工程]に使用してもよい。また、前記の量の有機塩基Aを数回に分けて抽出・分離を繰り返して該粗体を得ることも好ましい操作の一つである。また、抽残液である水層を分析し、目的物が残っていた場合は、注残液にさらに有機塩基Aを加えて抽出・分離を行うことも好ましい。
 [カチオン交換工程]
 本工程は、洗浄工程及び回収工程において得られた有機混合物又は「イミド酸と有機塩基Bからなる塩又は錯体」の粗体を用いて、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させ、式[3]で表されるビスハロゲン化スルホニルイミド酸金属塩を得る工程である。
 アルカリ金属の水酸化物としては、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)が、アルカリ金属の炭酸塩としては炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が、アルカリ土類金属の水酸化物としては、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)、アルカリ土類金属の炭酸塩としては炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)、炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が挙げられ、好ましくは水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)が挙げられる。また、これらのアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩は1種または2種以上を組み合わせて用いることもできる。2種以上を用いる場合、同一のアルカリ金属の水酸化物と炭酸塩(例えば、水酸化カリウムと炭酸カリウム)の組み合わせ、又は同一のアルカリ土類金属の水酸化物と炭酸塩(例えば、水酸化マグネシウムと炭酸マグネシウム)の組み合わせを用いることが好ましい。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩の使用量は、「イミド酸と有機塩基Bからなる塩又は錯体」1モルあたり1~5モルが好ましく、より好ましくは1~3モルである。5モルを超える量、すなわち過剰量の塩基を反応させた場合、反応は進行するが、「イミド酸と有機塩基Bからなる塩又は錯体」が分解してしまい、収率が低下してしまうことがある為、過剰量の塩基を用いることは好ましくない。また、1モルよりも少ないと、変換率が低下することからも、好ましくない。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させる際、溶媒を用いることができる。例えば水を溶媒として用いた場合、塩基の濃度を、通常10~70質量%、好ましくは20~60質量%、より好ましくは20~40質量%となるように水を加えると良い。水の量が少なすぎると反応系内における攪拌が困難になり、また多すぎる場合は、反応後の処理が煩雑になることや、通常よりも大きな反応容器が必要となる。
 なお、水以外の有機溶媒を用いることもできる。ジエチルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテルなどのエーテル類等の溶媒が使用できる。また、水と共に組み合わせて使用することもできる。溶媒の使用量としては、「イミド酸と有機塩基Bからなる塩又は錯体」に対して通常0.5~10倍容量、好ましくは1~7倍容量の範囲から適宜選択される。しかしながら、水を用いても十分反応が進行する為、水以外の有機溶媒を特に用いるメリットは少ない。
 反応温度に特別に制限はないが、通常-10℃~+110℃、好ましくは+25~+80℃である。-10℃未満であると反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合がある。一方、+110℃を超えると、副生物が生じやすく、また過剰な加熱はエネルギー効率が悪い。
 反応時間としては、特に制限はないが、通常は24時間以内の範囲で行えばよく、イオンクロマトグラフィー、NMR等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とするのが好ましい。
 カチオン交換工程に用いられる反応器は、ステンレス鋼、ハステロイ、モネルなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、そしてガラスなどを内部にライニングしたもの等、常圧又は加圧下で十分反応を行うことができる反応器を使用することができる。
 本工程で得られた反応混合物は、中和や再結晶等の簡便な操作によって、精製された高純度のビスハロゲン化スルホニルイミド酸金属塩を得ることが出来る。この際、得られる水を含む有機塩基Bは、蒸留等の脱水操作を行うことにより再度反応に使用することができる。
 次に本発明を実施例に基づき詳細に説明する。なお、本発明はかかる実施例に限定されるものではない。
[実施例1]
[反応工程]
 1Lオートクレーブにアセトニトリルを186g、トリエチルアミンを186g(1.84 mоl)仕込み、氷水で5℃に冷却し、フッ化スルフリルを129g(1.27 mоl)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニアを9.8g(0.58mоl)、3時間掛けて導入した。反応器を室温まで昇温させ、12時間攪拌した。この反応における目的物の生成比は、99.9%であり、FSO2NHSO2NHSO2Fが0.1%であった。この反応液を19F-NMRにより定量を行ったところ出発原料のアンモニアに対するビスフルオロスルホニルイミドトリエチルアンモニウム塩の収率は100.3%であった。
[洗浄工程]
 上記反応工程で得られた反応液の溶媒を留去し、残渣に水を加え、水洗浄・分離を行い、トリエチルアンモニウム塩を含む有機混合物とトリエチルアンモニウム塩を含む水層とを得た。得られた有機混合物を20%炭酸カリウム水溶液で洗浄し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を150g得た。この粗体を19F-NMRにより定量を行ったところ出発原料のアンモニアに対する収率は74.3%(0.431mol)であった(なお、粗体をここでは単離精製せずに、このままカチオン交換反応に用いた)。水洗浄で得られた水層に、20%炭酸カリウム水溶液洗浄にて得られた水層を加えて19F-NMRにより定量を行ったところ、出発原料のアンモニアに対する収率は20.9%(0.114mоl)であった。
[回収工程]
 上記、洗浄工程における水洗浄および、20%炭酸カリウム水溶液洗浄にて、分離した水層に対し攪拌下、炭酸カリウムを23g添加した。その後、トリエチルアミンを70g添加し、水層と有機層を分離した。得られた有機層を濃縮し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を33.2g得た。この水層から回収した粗体を19F-NMRにより定量を行ったところ、出発原料のアンモニアに対するビスフルオロスルホニルイミドトリエチルアンモニウム塩の収率は19.5%(0.112mоl)であり、回収工程における回収率は98.2%であった。回収後の抽残液についても同様に19F-NMRにより定量を行ったところ出発原料のアンモニアに対するビスフルオロスルホニルイミドトリエチルアンモニウム塩の収率は0.4%(0.0024mоl)であった。回収工程を経ることで、洗浄工程で水層に溶解したビスフルオロスルホニルイミドトリエチルアンモニウム塩を効率的に回収できた。
[カチオン交換工程]
 次に、洗浄工程及び回収工程で得られたビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を混合し、水酸化カリウム31.8gを含む水溶液を1時間、室温で混合した。反応混合物のトリエチルアミンおよび水を留去して、ビスフルオロスルホニルイミドカリウムを得た。さらにこれにイソプロパノールを加え、60℃に加温し未溶解成分を濾別後、冷却することで結晶を析出させて、分離、乾燥後、純度99%以上のビスフルオロスルホニルイミドカリウムを107.3g、収率85.1%(0.469mоl)であった。
[実施例2]
 実施例1と同様の手法により反応および洗浄を行ったところ水層のビスフルオロスルホニルイミドトリエチルアンモニウム塩の19F-NMRによる定量値は0.074molであった。
[回収工程]
 上記、洗浄工程で分離した水層に対し攪拌下、ジイソプロピルエチルアミンを100g添加し、水層と有機層を分離した。得られた有機層を濃縮し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を21.3g得た。この粗体を19F-NMRにより定量を行ったところ、回収工程における回収率は82.4%(0.061mоl)であった。
[実施例3]
 トリエチルアミンの代わりにジイソプロピルエチルアミンを238g(1.84 mоl)用いた以外は実施例1と同様の手法により反応および洗浄を行ったところ水層のビスフルオロスルホニルイミドジイソプロピルエチルアンモニウム塩の19F-NMRによる定量値は0.052molであった。
[回収工程]
 上記、洗浄工程で分離した水層に対し攪拌下、トリエチルアミンを100g添加し、水層と有機層を分離した。得られた有機層を濃縮し、ビスフルオロスルホニルイミドジイソプロピルエチルアンモニウム塩の粗体を13.7g得た。この粗体を19F-NMRにより定量を行ったところ、回収工程における回収率は88.8%(0.046mоl)であった。
[実施例4]
 トリエチルアミンの代わりにジイソプロピルエチルアミンを238g(1.84 mоl)用いた以外は実施例1と同様の手法により反応および洗浄を行ったところ水層のビスフルオロスルホニルイミドジイソプロピルエチルアンモニウム塩の19F-NMRによる定量値は0.052molであった。
[回収工程]
 上記、洗浄工程で分離した水層に対し攪拌下、ジイソプロピルエチルアミンを100g添加し、水層と有機層に分離した。得られた有機層を濃縮し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を16.7g得た。この粗体を19F-NMRにより定量を行ったところ、回収工程における回収率は75.4%(0.039mоl)であった。
[比較例1]
[反応工程]
 1Lオートクレーブにアセトニトリルを121g、トリエチルアミンを121g(1.20 mоl)仕込み、氷水で5℃に冷却し、フッ化スルフリルを84.7g(0.83 mоl)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニアを6.5g(0.38mоl)、3時間掛けて導入した。反応器を室温まで昇温させ、12時間攪拌した。この反応における目的物の生成比は、99.9%であり、FSO2NHSO2NHSO2Fが0.1%であった。この反応液を19F-NMRにより定量を行ったところ出発原料のアンモニアに対するビスフルオロスルホニルイミドトリエチルアンモニウム塩の収率は99.3%であった。
[洗浄工程]
 上記反応工程で得られた反応液の溶媒を留去し、残渣に水を加え、水洗浄・分離を行い、トリエチルアンモニウム塩を含む有機混合物とトリエチルアンモニウム塩を含む水層とを得た。得られた有機混合物を20%炭酸カリウム水溶液で洗浄し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を100g得た。この粗体を19F-NMRにより定量を行ったところ出発原料のアンモニアに対する収率は73.7%(0.280mol)であった(なお、粗体をここでは単離精製せずに、このままカチオン交換反応に用いた)。水洗浄で得られた水層に、20%炭酸カリウム水溶液洗浄にて得られた水層を加えて19F-NMRによりビスフルオロスルホニルイミドトリエチルアンモニウム塩の定量を行ったところ、出発原料のアンモニアに対する収率は19.5%(0.074mоl)であった。
[回収工程]
 上記、洗浄工程で分離した水層に対しジイソプロピルエーテル100gを添加し、水層と有機層に分離した。得られた有機層を濃縮し、ビスフルオロスルホニルイミドトリエチルアンモニウム塩の粗体を14.1g得た。この水層から回収した粗体を19F-NMRにより定量を行ったところ、回収工程における回収率は54.1%(0.040mоl)であった。
 実施例及び比較例の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000011
 このように、エーテルなどの有機溶媒を用いても該イミド酸塩は回収可能であるが、有機塩基Aを用いることでより効率的に回収が行えることがわかる。

Claims (5)

  1.  式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rはそれぞれ独立にハロスルホニル基(-SO21;X1はX2又はX3を表し、X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Bは有機塩基を表す。]
    の製造方法であって、以下の3工程を含むことを特徴とする製造方法。
     有機塩基Bの存在下、ハロゲン化スルフリル(SO223;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表す。)とアンモニアとを反応させ、反応混合物を得る工程(反応工程)
     前記反応混合物に水を添加し、「イミド酸と有機塩基Bからなる塩又は錯体」を含む有機混合物と、「イミド酸と有機塩基Bからなる塩又は錯体」を含む水層とに分離する工程(洗浄工程)
     前記洗浄工程において分離された水層と有機塩基Aとを接触させ、「イミド酸と有機塩基Bからなる塩又は錯体」を有機塩基Aに抽出する工程(回収工程)
  2.  請求項1に記載の方法であって、式[1]で表される「イミド酸と有機塩基Bからなる塩又は錯体」中のX1、及び、ハロゲン化スルフリルのX2、X3がそれぞれフッ素又は塩素のいずれかであることを特徴とする「イミド酸と有機塩基Bからなる塩または錯体」の製造方法。
  3.  請求項1又は2に記載の方法において、反応工程で用いる有機塩基Bが、式[2]で表される3級アミン
    Figure JPOXMLDOC01-appb-C000002
     [式[2]中、R1、R2、R3は同一、又は異なり、炭素数1~6の直鎖又は分岐のアルキル基、炭素数3~8のシクロアルキル基、又はアリール基(アリール基の水素原子の一部又は全てが、ハロゲン(フッ素、塩素、臭素、ヨウ素)、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、アミノ基、ニトロ基、アセチル基、シアノ基もしくはヒドロキシル基で置換されていても良い。)を示す。]、含窒素芳香族複素環式化合物、又はイミン骨格(-C=N-C-)を有する化合物であることを特徴とする「イミド酸と有機塩基Bからなる塩または錯体」の製造方法。
  4.  請求項1乃至請求項3の何れかに記載の回収工程において、洗浄工程で分離された水層と有機塩基Aとを接触させる際に、アルカリ金属の炭酸塩もしくは炭酸水素塩、又はアルカリ土類金属の炭酸塩を存在させることを特徴とする「イミド酸と有機塩基Bからなる塩または錯体」の製造方法。
  5.  請求項1乃至4の何れかに記載の方法で得られた「イミド酸と有機塩基Bからなる塩または錯体」に、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させカチオン交換を行うことを特徴とする、式[3]で表されるイミド酸金属塩
    Figure JPOXMLDOC01-appb-C000003
    [式[3]中、Rは前記に同じ。Mはアルカリ金属又はアルカリ土類金属を示す。nはMの価数と同数の整数を示す。]の製造方法。
PCT/JP2013/062541 2012-05-18 2013-04-30 イミド酸化合物の製造方法 WO2013172190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012114706A JP5928149B2 (ja) 2012-05-18 2012-05-18 イミド酸化合物の製造方法
JP2012-114706 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172190A1 true WO2013172190A1 (ja) 2013-11-21

Family

ID=49583599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062541 WO2013172190A1 (ja) 2012-05-18 2013-04-30 イミド酸化合物の製造方法

Country Status (2)

Country Link
JP (1) JP5928149B2 (ja)
WO (1) WO2013172190A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072353A1 (ja) * 2013-11-18 2015-05-21 日本曹達株式会社 ジスルホニルアミド塩の顆粒または粉末、およびその製造方法
CN107074753A (zh) * 2014-11-20 2017-08-18 中央硝子株式会社 (氟磺酰)全氟烷烃磺酰亚胺盐的制造方法
CN110217764A (zh) * 2018-03-02 2019-09-10 中国科学院上海有机化学研究所 一种双氟磺酰亚胺的有机碱盐的制备方法
CN111051278A (zh) * 2017-08-29 2020-04-21 中央硝子株式会社 全氟烷基磺酰亚胺酸金属盐的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069904A (ja) * 2016-02-29 2019-05-09 セントラル硝子株式会社 パーフルオロアルカンスルホニルイミド酸金属塩の製造方法
KR102396198B1 (ko) 2017-04-10 2022-05-10 샌트랄 글래스 컴퍼니 리미티드 포스포릴이미드염의 제조방법, 당해 염을 포함하는 비수전해액의 제조방법 및 비수 이차 전지의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254554A (ja) * 2009-03-31 2010-11-11 Central Glass Co Ltd イミド酸化合物の製造方法
JP2011144086A (ja) * 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) * 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117716A (ja) * 2004-10-19 2006-05-11 Nippon Zeon Co Ltd 開環重合体水素化物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254554A (ja) * 2009-03-31 2010-11-11 Central Glass Co Ltd イミド酸化合物の製造方法
JP2011144086A (ja) * 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) * 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072353A1 (ja) * 2013-11-18 2015-05-21 日本曹達株式会社 ジスルホニルアミド塩の顆粒または粉末、およびその製造方法
US10214419B2 (en) 2013-11-18 2019-02-26 Nippon Soda Co., Ltd. Granules or powder of disulfonylamide salt and method for producing same
CN107074753A (zh) * 2014-11-20 2017-08-18 中央硝子株式会社 (氟磺酰)全氟烷烃磺酰亚胺盐的制造方法
CN111051278A (zh) * 2017-08-29 2020-04-21 中央硝子株式会社 全氟烷基磺酰亚胺酸金属盐的制造方法
CN111051278B (zh) * 2017-08-29 2022-05-13 中央硝子株式会社 全氟烷基磺酰亚胺酸金属盐的制造方法
CN110217764A (zh) * 2018-03-02 2019-09-10 中国科学院上海有机化学研究所 一种双氟磺酰亚胺的有机碱盐的制备方法
CN110217764B (zh) * 2018-03-02 2022-08-09 中国科学院上海有机化学研究所 一种双氟磺酰亚胺的有机碱盐的制备方法

Also Published As

Publication number Publication date
JP5928149B2 (ja) 2016-06-01
JP2013241353A (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5630048B2 (ja) イミド酸化合物の製造方法
JP5928149B2 (ja) イミド酸化合物の製造方法
KR102160319B1 (ko) 비스(플루오로설폰일)이미드의 합성
JP5471045B2 (ja) イミド酸塩の製造方法
JP2018172274A (ja) フルオロスルホニル基を含むイミド塩を調製するための方法
WO2017169874A1 (ja) ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法
JP6631534B2 (ja) (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法
CN111517293B (zh) 双氟磺酰亚胺类化合物及其金属盐的制备方法
US11718524B2 (en) Method for manufacturing sulfur tetrafluoride
JP5471121B2 (ja) パーフルオロアルカンスルフィン酸塩の製造方法
JP6691740B2 (ja) フルオロスルホニルイミド化合物の製造方法
JP5146149B2 (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP2022552308A (ja) ビス(フルオロスルホニル)イミド塩及びその調製方法
JP5891598B2 (ja) フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
WO2011148958A1 (ja) フッ素含有イミド化合物の製造方法
JP2010059071A (ja) トリフルオロメタンスルホニルフルオリドの精製方法
CN111051278B (zh) 全氟烷基磺酰亚胺酸金属盐的制造方法
JP6035835B2 (ja) フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
WO2017150244A1 (ja) パーフルオロアルカンスルホニルイミド酸金属塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790683

Country of ref document: EP

Kind code of ref document: A1