WO2014097595A1 - 感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置 - Google Patents

感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2014097595A1
WO2014097595A1 PCT/JP2013/007347 JP2013007347W WO2014097595A1 WO 2014097595 A1 WO2014097595 A1 WO 2014097595A1 JP 2013007347 W JP2013007347 W JP 2013007347W WO 2014097595 A1 WO2014097595 A1 WO 2014097595A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
resin composition
represented
carbon atoms
Prior art date
Application number
PCT/JP2013/007347
Other languages
English (en)
French (fr)
Inventor
榎本 哲也
敬司 小野
匡之 大江
ケイ子 鈴木
和也 副島
越晴 鈴木
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to KR1020157010929A priority Critical patent/KR102215890B1/ko
Publication of WO2014097595A1 publication Critical patent/WO2014097595A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides

Definitions

  • the present invention relates to a photosensitive resin composition exhibiting excellent photosensitive properties, a method for producing a patterned cured film using the same, and a semiconductor device.
  • organic materials having high heat resistance such as polyimide resin have been widely applied as protective film materials for semiconductor integrated circuits.
  • a method of forming a necessary pattern by exposing and developing using a material imparted with photosensitivity is applied.
  • a method for imparting photosensitivity to polyimide a method of introducing a methacryloyl group into a polyimide precursor via an ester bond or an ionic bond, a method of using a soluble polyimide having a photopolymerizable olefin, a benzophenone skeleton, and nitrogen
  • a method using a self-sensitized polyimide having an alkyl group at the ortho position of an aromatic ring to which atoms are bonded is known.
  • the method of introducing a methacryloyl group into a polyimide precursor via an ester bond or an ionic bond has a high degree of freedom in monomer selection, and has been actively studied.
  • An object of this invention is to provide the resin composition which has a favorable photosensitive characteristic, and the stress of the cured film formed is low, and a pattern cured film formation method using the same.
  • a resin composition comprising the following components (a) to (c): (A) Polyimide precursor having a structural unit represented by the following general formula (1) (b) Oxime ester compound (c) Solvent (In the general formula (1), A is any one of tetravalent organic groups represented by the following formulas (2a) to (2d), and B is a divalent organic group represented by the following general formula (3). It is a group.
  • R 1 and R 2 are each independently a hydrogen atom, a monovalent organic group or a group having a carbon-carbon unsaturated double bond, and at least one of R 1 and R 2 has a carbon-carbon unsaturated double bond It is a group.
  • X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
  • R 3 to R 10 are each independently hydrogen or a monovalent organic group, provided that R 3 to R 10 are not a halogen atom and a monovalent organic group having a halogen atom.
  • component (b) is a compound represented by the following general formula (4), a compound represented by the general formula (5), or a compound represented by the general formula (6). .
  • R 11 and R 12 each represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or a phenyl group.
  • R 13 represents H, OH, COOH, O (CH 2 ) OH, O (CH 2 ) 2 OH, COO (CH 2 ) OH, or COO (CH 2 ) 2 OH.
  • R 14 represents an alkyl group having 1 to 6 carbon atoms
  • R 15 represents NO 2 or ArCO (where Ar represents an aryl group)
  • R 16 and R 17 represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group.
  • R 18 represents an alkyl group having 1 to 6 carbon atoms
  • R 19 represents an organic group having an acetal bond
  • R 20 and R 21 are each an alkyl group having 1 to 12 carbon atoms. Represents a phenyl group or a tolyl group.
  • D is a tetravalent organic group represented by the following General Formula (8), and B, R 1 and R 2 are the same as in General Formula (1).
  • Z represents an ether bond (—O—) or a sulfide bond (—S—).) 4).
  • the semiconductor device which has a pattern cured film obtained by the manufacturing method of the pattern cured film of 6.5.
  • the resin composition of the present invention is characterized by containing the following components (a) to (c).
  • (c) Solvent In the general formula (1), A is any one of tetravalent organic groups represented by the following formulas (2a) to (2d), and B is a divalent organic group represented by the following general formula (3). It is a group.
  • R 1 and R 2 are each independently a hydrogen atom, a monovalent organic group or a group having a carbon-carbon unsaturated double bond, and at least one of R 1 and R 2 has a carbon-carbon unsaturated double bond It is a group.
  • X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
  • R 3 to R 10 are each independently hydrogen or a monovalent organic group, except for a halogen atom and a monovalent organic group having a halogen atom.
  • (A) Component Polyimide precursor
  • the polyimide precursor used by this invention has a structural unit represented by the said General formula (1).
  • a in the general formula (1) is a structure derived from tetracarboxylic dianhydride used as a raw material for the polyimide precursor.
  • A is any one of tetravalent organic groups represented by the following formulas (2a) to (2d).
  • X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
  • Examples of tetracarboxylic dianhydrides that give tetravalent organic groups represented by the formulas (2a) to (2d) include pyromellitic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride. 4,4′-biphenyltetracarboxylic dianhydride, and tetracarboxylic dianhydrides represented by the following formulas (9) to (15).
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more tetracarboxylic dianhydrides during polymerization of the polyimide precursor.
  • pyromellitic dianhydride, 4,4′-biphenyltetracarboxylic dianhydride, tetracarboxylic acid diacids represented by formulas (9) and (11) are used from the viewpoint of low thermal expansion of the cured film.
  • anhydride more preferably pyromellitic dianhydride, 4,4′-biphenyltetracarboxylic dianhydride, tetracarboxylic dianhydride represented by the formula (9), More preferably, merit dianhydride and 4,4′-biphenyltetracarboxylic dianhydride are used.
  • B in the general formula (1) is a structure derived from a diamine used as a raw material for the polyimide precursor. From the viewpoint of low stress and i-line transmittance, B is preferably a divalent organic group represented by the following general formula (3).
  • R 3 to R 10 each independently represents hydrogen or a monovalent group. However, a halogen atom and a monovalent organic group having a halogen atom are excluded. In the case of a halogen atom or a monovalent organic group containing a halogen atom, when the cured film is subjected to plasma treatment, the bond between the carbon and halogen atoms may be broken to deteriorate the cured film.
  • the monovalent group represented by R 3 to R 10 include an alkyl group having 1 to 20 carbon atoms (such as a methyl group) and an alkoxy group having an alkyl group having 1 to 20 carbon atoms (such as a methoxy group).
  • the raw material diamines include 2,2'-dimethylbenzidine, 2,2'-diaminobenzidine, 3,3'-dimethylbenzidine, 3,3'-diaminobenzidine, 2,2 ', 3,3'-tetramethyl Benzidine, 2,2′-dimethoxybenzidine, 3,3′-dimethoxybenzidine and the like can be used.
  • these may be used alone or in combination of two or more diamines.
  • 2,2′-dimethylbenzidine, 2,2′-diaminobenzidine, 3,3′-dimethylbenzidine, and 3,3′-diaminobenzidine are preferably used from the viewpoint of reducing stress. More preferably, '-dimethylbenzidine is used.
  • R 1 and R 2 in the polyimide precursor represented by the general formula (1) are each independently a hydrogen atom, a monovalent organic group, or a group having a carbon-carbon unsaturated double bond. At least one of R 1 and R 2 is a group having a carbon-carbon unsaturated double bond.
  • the monovalent organic group include an alkyl group having 1 to 20 carbon atoms and a cycloalkyl group having 3 to 20 carbon atoms.
  • Examples of the group having a carbon-carbon unsaturated double bond include an acryloxyalkyl group having 1 to 10 carbon atoms and a methacryloxyalkyl group.
  • the polyimide precursor has a monovalent organic group having a carbon-carbon unsaturated double bond at least in part, so that it is combined with a compound that generates radicals upon irradiation with actinic rays (for example, i-line exposure), and radical polymerization. It is possible to crosslink between the molecular chains by the above, and it becomes easy to obtain a negative resin composition.
  • alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, 2-propyl group, n-butyl group, n-hexyl group, n-heptyl group, and n-decyl group. And n-dodecyl group.
  • cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
  • Examples of the acryloxyalkyl group having an alkyl group having 1 to 10 carbon atoms include acryloxyethyl group, acryloxypropyl group, acryloxybutyl group and the like.
  • Examples of the methacryloxyalkyl group having an alkyl group having 1 to 10 carbon atoms include a methacryloxyethyl group, a methacryloxypropyl group, and a methacryloxybutyl group.
  • R 1 and R 2 are preferably not a hydrogen group but a group introduced by an ester bond.
  • R 1 and R 2 are preferably an acryloxyethyl group, an acryloxybutyl group, a methacryloxyethyl group, or a methacryloxybutyl group introduced by an ester bond.
  • the polyimide precursor preferably has a structure represented by the general formula (1) of 10 mol% or more, more preferably 20 mol% or more with respect to all the structural units. preferable.
  • the polyimide precursor used in the resin composition of the present invention has a structure represented by the following general formula (7) from the viewpoint of improving i-line transmittance, improving adhesion after curing, and improving mechanical properties. May be.
  • D is a tetravalent organic group represented by General Formula (8)
  • B, R 1 and R 2 are the same as those in General Formula (1).
  • Z represents an ether bond (—O—) or a sulfide bond (—S—).
  • Examples of the tetracarboxylic dianhydride that gives the structure of the general formula (8) include 4,4'-oxydiphthalic dianhydride and thioether diphthalic anhydride. When synthesizing the polyimide precursor, these may be used alone or in combination. From the viewpoint of adhesion after curing, 4,4'-oxydiphthalic dianhydride is preferably used.
  • the polyimide precursor has both the structural unit represented by the general formula (1) and the structural unit represented by the general formula (7), the polyimide precursor is copolymerized.
  • the copolymer include a block copolymer and a random copolymer, but are not particularly limited.
  • the polyimide precursor which has a structural unit represented by General formula (1) and a structural unit represented by General formula (7), it is general formula (1) from a viewpoint of making low stress and favorable adhesiveness compatible.
  • the general formula (7) [formula (1) / formula (7)] is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, More preferably, it is 2/8 to 7/3.
  • the polyimide precursor of the present invention may have a structural unit other than the structural unit represented by the general formula (1) and the structural unit represented by the general formula (7).
  • a structural unit other than the structural unit represented by the general formula (1) and the structural unit represented by the general formula (7) may have a structural unit other than the structural unit represented by the general formula (1) and the structural unit represented by the general formula (7).
  • tetracarboxylic dianhydrides and diamines are preferably 20 mol% or less, preferably 10 mol% or less, based on the total amount of tetracarboxylic dianhydrides and diamines used as raw materials. Is more preferable, and it is more preferable to use only a tetracarboxylic dianhydride and a diamine which give the structures of the general formulas (1) and (7).
  • the molecular weight of the polyimide precursor of the present invention is preferably a weight average molecular weight in terms of polystyrene of 10,000 to 100,000, more preferably 15,000 to 100,000, and still more preferably 20,000 to 85,000. From the viewpoint of sufficiently reducing the stress after curing, the weight average molecular weight is preferably 10,000 or more. Moreover, it is preferable that it is 100,000 or less from the viewpoint of the solubility to a solvent and the handleability of a solution. In addition, a weight average molecular weight can be measured by the gel permeation chromatography method, and can be calculated
  • the polyimide precursor of the present invention is preferably contained in the resin composition in an amount of 20 to 60% by mass, more preferably 25 to 55% by mass. More preferably, it is contained at 55% by mass.
  • the molar ratio of the tetracarboxylic dianhydride and the diamine used when synthesizing the polyimide precursor of the present invention is usually preferably 1.0, but for the purpose of controlling the molecular weight and the terminal residue, the molar ratio is preferably 0.00.
  • the molar ratio may be in the range of 7 to 1.3. When the molar ratio is 0.7 to 1.3, the molecular weight of the obtained polyimide precursor becomes appropriate, and the stress after curing tends to be sufficiently lower.
  • the polyimide precursor of the present invention is derived from a tetracarboxylic dianhydride as a raw material into a diester derivative represented by the following general formula (16), and then converted into an acid chloride represented by the following general formula (17). And can be synthesized by an acid chloride method in which condensation is performed in the presence of a diamine and a basic compound.
  • E is a tetravalent organic group, and shows the structure of a tetravalent group including A in the formula (1) and D in the formula (7), and R 1 and R 2 are the formulas (It is the same as R 1 and R 2 in (1).)
  • E is a tetravalent organic group, and shows the structure of the tetravalent group containing A in the formula (1) and D in the formula (7), and R 1 and R 2 have the formula ( It is the same as R 1 and R 2 in 1).
  • the diester derivative represented by the formula (16) can be synthesized by reacting at least 2 molar equivalents of alcohol in the presence of a basic catalyst with respect to 1 mol of tetracarboxylic dianhydride as a raw material. it can.
  • the diester derivative represented by the formula (16) is converted to the acid chloride represented by the formula (17), if unreacted alcohol remains, the chlorinating agent is converted to the unreacted alcohol. There is concern that the conversion to acid chloride will not proceed sufficiently.
  • the equivalent of alcohol is preferably 2.0 to 2.5 molar equivalent, more preferably 2.0 to 2.3 molar equivalent, relative to 1 mole of tetracarboxylic dianhydride. More preferably, it is 2.0 to 2.2 molar equivalent.
  • Examples of the alcohol include alcohols having an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, acryloxyalkyl groups having an alkyl group having 1 to 10 carbon atoms, or methacryloxy having 1 to 10 carbon atoms. Alcohol having an alkyl group can be used.
  • 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene and the like can be used as the basic catalyst.
  • the diester derivative represented by the formula (16) In order to convert the diester derivative represented by the formula (16) into the acid chloride represented by the formula (17), it is usually used by reacting 1 mol of the diester derivative with 2 mol equivalent of a chlorinating agent.
  • the equivalent may be appropriately adjusted.
  • the chlorinating agent thionyl chloride or dichlorooxalic acid can be used, and the equivalent is 1.5 to 2 from the viewpoint of increasing the molecular weight of the polyimide precursor to be formed and sufficiently reducing the stress after curing.
  • 0.5 molar equivalent is preferable, 1.6 to 2.4 molar equivalent is more preferable, and 1.7 to 2.3 molar equivalent is still more preferable.
  • the polyimide precursor used by this invention is obtained by adding the diamine which is a raw material to acid chloride represented by Formula (17) in presence of a basic compound.
  • the basic compound is used for the purpose of capturing hydrogen chloride generated when the acid chloride and diamine react.
  • a basic compound pyridine, 4-dimethylaminopyridine, triethylamine and the like can be used.
  • the amount used is preferably 1.5 to 2.5 molar equivalents, more preferably 1.7 to 2.4 molar equivalents relative to the amount of chlorinating agent, and 1.8 to 2.3. More preferably, the molar equivalent. If it is less than 1.5 molar equivalents, the molecular weight of the polyimide precursor may be low, and the stress after curing may not be sufficiently reduced. If it is more than 2.5 molar equivalents, the polyimide precursor may be colored.
  • the polyimide precursor mentioned above can also be synthesized by an isoimide method or a DCC method other than the acid chloride method as described above.
  • polycarboxylic acid is synthesized by polycondensing a raw material tetracarboxylic dianhydride and diamine, and trifluoromethylacetic anhydride is added to convert it to isoimide, and then an alcohol compound is added to form an ester bond.
  • a polyimide precursor is synthesized.
  • a polyimide precursor can be obtained by reacting a diester derivative represented by the formula (16) with 2 molar equivalents of DCC (dicyclohexylcarbodiimide) and then adding a diamine.
  • the alcohol compound to be used is preferably an alcohol having an acryloxyalkyl group having 1 to 10 carbon atoms in the alkyl group or a methacryloxyalkyl group having 1 to 10 carbon atoms in the alkyl group.
  • 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxy Examples include butyl methacrylate. These may be used singly or in combination of two or more.
  • G is a tetravalent organic group and represents a tetravalent structure including A in the formula (1) and D in the formula (7), and R 22 represents R in the formula (1). Same as 1 or R 2 )
  • the above addition polymerization, condensation reaction and synthesis of diester derivatives and acid chlorides are preferably carried out in an organic solvent.
  • an organic solvent a polar solvent that completely dissolves the polyimide precursor to be synthesized is preferable.
  • R 11 and R 12 each represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or a phenyl group, an alkyl group having 1 to 8 carbon atoms, It is preferably a cycloalkyl group having 4 to 6 carbon atoms or a phenyl group, more preferably an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms or a phenyl group, and a methyl group, cyclopentyl group or More preferably, it is a phenyl group.
  • R 13 represents H, OH, COOH, O (CH 2 ) OH, O (CH 2 ) 2 OH, COO (CH 2 ) OH or COO (CH 2 ) 2 OH, and H, O (CH 2 ) OH O (CH 2 ) 2 OH, COO (CH 2 ) OH or COO (CH 2 ) 2 OH is preferred, and H, O (CH 2 ) 2 OH or COO (CH 2 ) 2 OH is preferred. More preferred.
  • each R 14 represents an alkyl group having 1 to 6 carbon atoms, and is preferably a propyl group.
  • R 15 represents NO 2 or ArCO (wherein Ar represents an aryl group), and Ar is preferably a tolyl group.
  • R 16 and R 17 each represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group, and is preferably a methyl group, a phenyl group, or a tolyl group.
  • R 18 represents an alkyl group having 1 to 6 carbon atoms, and is preferably an ethyl group.
  • R 19 is an organic group having an acetal bond, and is preferably a substituent corresponding to R 19 in a compound represented by formula (6-1) described later.
  • R 20 and R 21 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group.
  • Examples of the compound represented by the above formula (4) include a compound represented by the following formula (4-1) and a compound represented by the following formula (4-2).
  • a compound represented by the following formula (4-1) is available as IRGACURE OXE-01 (trade name, manufactured by BASF Corporation).
  • Examples of the compound represented by the above formula (5) include a compound represented by the following formula (5-1). This compound is available as DFI-091 (trade name, manufactured by Daitokemix Co., Ltd.).
  • Examples of the compound represented by the above formula (6) include a compound represented by the following formula (6-1). It is available as Adekaoptomer N-1919 (trade name, manufactured by ADEKA Corporation).
  • oxime ester compounds As other oxime ester compounds, the following compounds are preferably used. These oxime ester compounds may be used alone or in combination of two or more.
  • a conventionally known photoinitiator may be added.
  • the content of the component (b) is preferably 0.1 to 20 parts by mass and preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor as the component (a). More preferably, it is 0.5 to 10 parts by mass, particularly preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 5 parts by mass.
  • the blending amount is 0.1 parts by mass or more, crosslinking of the exposed part proceeds more sufficiently and the photosensitive properties (sensitivity, resolution) tend to be better, and when it is 20 parts by mass or less, the cured film The heat resistance of can be made better.
  • the resin composition of the present invention is excellent in photosensitive characteristics by combining the component (a) and the component (b), and the stress of the cured film to be formed becomes low.
  • a polyimide precursor having a structural unit represented by the general formula (1) is used as the component (a) and an oxime ester compound represented by the general formulas (4) to (6) is used as the component (b). Since the oxime ester compounds represented by the general formulas (4) to (6) exhibit high activity particularly when irradiated with an electron beam such as i-line, good photosensitive characteristics can be realized. Furthermore, when it becomes a polyimide by heat treatment, it has a feature of exhibiting low stress due to its rigid skeleton.
  • the component (c) is preferably a polar solvent that completely dissolves the polyimide precursor as the component (a). Specifically, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexamethylphosphoric triamide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -Valerolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, propylene carbonate, ethyl lactate, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea and the like. These may be used alone or in combination of two or more.
  • the solvent is preferably contained in the resin composition in an amount of 40 to 80% by mass, more preferably 45 to 75% by mass, and further preferably 45 to 70% by mass.
  • Tetrazole derivatives include 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole, 1-methyl-1H-tetrazole, 5,5′-bis-1H— Examples include tetrazole, 1-methyl-5-ethyl-tetrazole, 1-methyl-5-mercapto-tetrazole, and 1-carboxymethyl-5-mercapto-tetrazole. Among these, 1H-tetrazole or 5-amino-1H-tetrazole is preferable.
  • benzotriazole derivatives examples include benzotriazole, 1H-benzotriazole-1-acetonitrile, benzotriazole-5-carboxylic acid, 1H-benzotriazole-1-methanol, carboxybenzotriazole, and mercaptobenzoxazole. Among these, benzotriazole is preferable.
  • the tetrazole derivative or benzotriazole derivative is used alone or in combination of two or more. These are usually 0.1 to 10 parts by weight per type per 100 parts by weight of component (A), and a total of 0.1 to 10 parts by weight when two or more types are combined. More preferably, it is in the range of 0.2 to 5 parts by weight.
  • the resin composition of the present invention may contain an organosilane compound in order to improve adhesion to a cured silicon substrate or the like.
  • Organic silane compounds include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropyltrimethoxy.
  • Silane ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, bis (2-hydroxyethyl) ) -3-Aminopropyltriethoxysilane, triethoxysilylpropylethylcarbamate, 3- (triethoxysilyl) propyl succinic anhydride, phenyltriethoxysilane, phenyltrimethoxy Silane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. Can be
  • the content is preferably 0.1 to 20 parts by mass, and 0.5 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor from the viewpoint of adhesion after curing.
  • the amount is more preferably 0.5 to 10 parts by mass.
  • an addition polymerizable compound may be blended as necessary.
  • addition polymerizable compounds include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate.
  • the content is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the polyimide precursor from the viewpoint of solubility in a developer and heat resistance of the resulting cured film. It is preferably 1 to 75 parts by mass, more preferably 1 to 50 parts by mass.
  • radical polymerization inhibitors or radical polymerization inhibitors may be blended with the resin composition of the present invention in order to ensure good storage stability.
  • radical polymerization inhibitors or radical polymerization inhibitors include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N- Examples thereof include phenyl-2-naphthylamine, cuperone, 2,5-toluquinone, tannic acid, parabenzylaminophenol, nitrosamines and the like. These may be used alone or in combination of two or more.
  • the content is preferably from about 0.1 parts by mass with respect to 100 parts by mass of the polyimide precursor from the viewpoint of the storage stability of the resin composition and the heat resistance of the resulting cured film.
  • the amount is preferably 01 to 30 parts by mass, more preferably 0.01 to 10 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • the resin composition of the present invention may consist essentially of at least one of the above components (a) to (c) and optionally the other components described above, and consists only of these components. It may be. “Substantially” means that the composition mainly comprises at least one of the above components (a) to (c), and optionally the other components described above. It means that it is 95 mass% or more or 98 mass% or more.
  • the pattern cured film of the present invention can be obtained by heating the above-described resin composition of the present invention.
  • the patterned cured film of the present invention is preferably used as a protective layer of a low-k material that is an interlayer insulating film.
  • the low-k material include porous silica, benzocyclobutene, hydrogen silsesquioxane, polyallyl ether, and the like.
  • the pattern cured film production method of the present invention includes a step of applying the resin composition of the present invention on a substrate and drying to form a coating film, and irradiating the coating film formed in the above step with an actinic ray to form a pattern. And a step of removing unexposed portions other than the exposed portion by development, and a step of heat-treating the pattern obtained in the step to form a polyimide pattern.
  • Examples of the method for applying the resin composition of the present invention on a substrate include dipping, spraying, screen printing, and spin coating.
  • the substrate include a silicon wafer, a metal substrate, and a ceramic substrate. Since the resin composition of the present invention can form a low-stress cured film, it is particularly suitable for application to a silicon wafer having a large diameter of 12 inches or more.
  • the solvent is removed by heating (drying), whereby a coating film (resin film) with less adhesiveness can be formed.
  • the heating temperature for drying is preferably 80 to 130 ° C., and the drying time is preferably 30 to 300 seconds. Drying is preferably performed using an apparatus such as a hot plate.
  • the coating film obtained by the above method is exposed to actinic rays through a mask on which a desired pattern is drawn to be exposed in a pattern.
  • the resin composition of the present invention is suitable for i-line exposure, ultraviolet rays, far ultraviolet rays, visible rays, electron beams, X-rays, and the like can be used as the active rays to be irradiated.
  • a desired pattern resin film can be obtained by dissolving and removing the unexposed portion with an appropriate developer.
  • the developer is not particularly limited, but is a flame retardant solvent such as 1,1,1-trichloroethane, an aqueous alkali solution such as an aqueous solution of sodium carbonate and an aqueous solution of tetramethylammonium hydroxide, N, N-dimethylformamide, dimethyl sulfoxide, Good solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, cyclopentanone, ⁇ -butyrolactone, and acetic acid esters, and these good solvents and poor solvents such as lower alcohols, water, and aromatic hydrocarbons A mixed solvent or the like is used. After development, rinsing with a poor solvent (for example, water, ethanol, 2-propanol) or the like is performed as necessary.
  • a poor solvent for example, water, ethanol, 2-propanol
  • the imidization of the polyimide precursor contained in the resin composition proceeds to obtain a cured pattern film.
  • a curing furnace that can be cured at a low oxygen concentration of 100 ppm or less, for example, an inert gas oven or a vertical diffusion furnace. Can do.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device having a rewiring structure according to an embodiment of the present invention.
  • the semiconductor device of this embodiment has a multilayer wiring structure.
  • An Al wiring layer 2 is formed on the interlayer insulating layer (interlayer insulating film) 1, and an insulating layer (insulating film) 3 (for example, a P-SiN layer) is further formed on the Al wiring layer 2.
  • a (surface protective film) 4 is formed.
  • a rewiring layer 6 is formed from the pad portion 5 of the wiring layer 2, and extends to the upper portion of the core 8, which is a connection portion with a conductive ball 7 formed of solder, gold or the like as an external connection terminal. Further, a cover coat layer 9 is formed on the surface protective layer 4. The rewiring layer 6 is connected to the conductive ball 7 through the barrier metal 10, and a collar 11 is provided to hold the conductive ball 7. When a package having such a structure is mounted, an underfill 12 may be provided to further relieve stress.
  • the photosensitive composition using IRGACURE OXE-01 (trade name, manufactured by BASF Corporation) has an opening portion when a pattern cured film is formed.
  • polyimide residue may be formed. It is speculated that this may occur on copper because a specific oxime ester compound generates radicals during pre-baking and also cures unexposed areas. This can be suppressed by adding a tetrazole derivative or a benzotriazole derivative to the photosensitive resin composition.
  • the tetrazole derivative or benzotriazole derivative forms a thin film on copper and prevents the active metal surface and the resin composition from being in direct contact with each other. It is presumed that unnecessary photoinitiator decomposition and radical polymerization reaction in the unexposed area can be suppressed, and photosensitive characteristics on the copper substrate can be secured.
  • the cured film or pattern cured film of the present invention can be used for so-called package applications such as the cover coat material, the core material for rewiring, the color material for balls such as solder, the underfill material, and the like.
  • the cured film or pattern cured film of the present invention has the cured film or pattern cured film of the present invention because it has excellent adhesion to a metal layer, a sealant, and the like, as well as excellent copper migration resistance and a high stress relaxation effect.
  • the semiconductor element is extremely excellent in reliability.
  • the semiconductor device of the present invention has a pattern cured film obtained by the manufacturing method of the present invention.
  • Examples of the semiconductor device include Logic semiconductor devices such as MPU and memory semiconductor devices such as DRAM and NAND flash.
  • Example 1-12 Comparative Example 1-6
  • Synthesis of polyamic acid ester (polyimide precursor) Tetracarboxylic dianhydride 1 shown in Table 1 or 2, 2-hydroxyethyl methacrylate equivalent to 2 equivalents of tetracarboxylic dianhydride 1, and catalytic amount 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) was dissolved in 4 times the amount of tetracarboxylic dianhydride 1 by weight in N-methyl-2-pyrrolidone.
  • the ester solution 1 was obtained by stirring at room temperature for 48 hours.
  • an acid chloride solution was prepared. Separately, diamine 1 shown in Table 1 and, if necessary, diamine 2 and pyridine equivalent to twice the amount of thionyl chloride were dissolved in N-methyl-2-pyrrolidone 4 times as much as diamine 1 and 2 by mass ratio. A solution was prepared and added dropwise to the previously prepared acid chloride solution while cooling in an ice bath. After completion of the dropping, the reaction solution was dropped into distilled water, and the resulting precipitate was collected by filtration, washed several times with distilled water, and then vacuum dried to obtain a polyamic acid ester.
  • the weight average molecular weight of the obtained polyamic acid ester was calculated
  • the obtained photosensitive resin composition was applied onto a 6-inch silicon wafer by a spin coating method and dried on a hot plate at 100 ° C. for 3 minutes to form a coating film having a thickness of 10 ⁇ m.
  • this coating film is irradiated with a 50 to 500 mJ / cm 2 i-line in increments of 50 mJ / cm 2 to expose the film. went.
  • the development time is set to twice the time until an unexposed coating film having the same thickness is completely dissolved by being immersed in cyclopentanone, and the wafer after exposure is immersed in cyclopentanone for paddle development.
  • rinsing with isopropanol was performed.
  • the minimum exposure amount at which the amount of coating film dissolved in the exposed portion was less than 10% of the initial film thickness was evaluated as sensitivity, and the minimum value of the mask dimension of the square hole-shaped opening was evaluated as resolution.
  • a sample having a sensitivity of 300 mJ / cm 2 or less was rated as “ ⁇ ”, a value greater than 300 mJ / cm 2 and 500 mJ / cm 2 or less as ⁇ , and a value greater than 500 mJ / cm 2 as “x”.
  • a sample having a resolution of 10 ⁇ m or less was evaluated as “ ⁇ ”, a sample having a resolution greater than 10 ⁇ m and 30 ⁇ m or less was evaluated as ⁇ , and a sample having a resolution greater than 30 ⁇ m was evaluated as “X”.
  • the obtained photosensitive resin composition was applied to a 6-inch silicon wafer having a thickness of 625 ⁇ m and spin-coated so that the film thickness after curing was 10 ⁇ m. This was heat-cured at 375 ° C. for 1 hour in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg to obtain a polyimide film (cured film).
  • the residual stress of the cured polyimide film was measured at room temperature using a thin film stress measuring apparatus FLX-2320 manufactured by KLA Tencor. Those having a stress of 30 MPa or less were rated as “ ⁇ ”, those having a stress greater than 30 MPa and 35 MPa or less as ⁇ , and those having a stress greater than 35 MPa as “X”.
  • the cured film-coated silicon wafer prepared for measuring the residual stress is immersed in NMP at 70 ° C. for 20 minutes, washed with pure water, wiped off moisture adhering to the cured film surface, and then air-dried. did.
  • the rate of change of the thickness of the cured film after air drying with respect to the initial film thickness is within ⁇ 10%, ⁇ is greater than ⁇ 10%, ⁇ 20% or less is ⁇ , and ⁇ 20% is greater than ⁇ . .
  • the measurement results are shown in Table 1 or 2.
  • the numerical value in parentheses of the photoinitiator represents the part by mass of the photoinitiator with respect to 100 parts by mass of the polyamic acid ester.
  • Abbreviations in the table indicate the following compounds, and the amount of substances in parentheses is the amount of raw material charged.
  • Examples 1 to 12 using a photoinitiator having an oxime ester structure excellent photosensitivity was exhibited, whereas Comparative Example 1 using a benzophenone type photoinitiator was compared with an acetophenone type photoinitiator.
  • Comparative Example 2 and Comparative Example 3 using a titanocene photoinitiator the photosensitive properties were lowered.
  • Examples 1 to 12 using PMDA, s-BPDA, and MMXDA as tetracarboxylic dianhydrides showed low stress, while Comparative Example 6 using only ODPA showed high stress. It was.
  • Examples 1 to 12 in which DMAP which does not have a fluorine atom and a monovalent organic group having a fluorine atom is used as a diamine a diamine having a trifluoromethyl group is shown in contrast to good chemical resistance.
  • Comparative Examples 4 and 5 using TFDB it was found that the chemical resistance decreased.
  • Example 13 [Preparation and Evaluation of Photosensitive Resin Composition] 100 parts by mass of the same polyamic acid ester [component (a)] as in Examples 5 to 9, 20 parts by mass of tetraethylene glycol dimethacrylate, 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- ( O-benzoyloxime) and 3 parts by weight of benzotriazole were stirred until they were uniformly dissolved in 150 parts by weight of N-methyl-2-pyrrolidone [component (c)], and then filtered under pressure using a 1 ⁇ m filter. Thus, a resin composition was obtained. In addition to the same evaluation as in Examples 1 to 12, the resulting resin composition was evaluated for the residue on the copper substrate by the following method. The results are shown in Table 3.
  • Example 14 [Preparation and Evaluation of Photosensitive Resin Composition] 100 parts by mass of the same polyamic acid ester [component (a)] as in Examples 5 to 9, 20 parts by mass of tetraethylene glycol dimethacrylate, 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- ( Stir until 3 parts by weight of O-benzoyloxime) and 3 parts by weight of tetrazole are uniformly dissolved in 150 parts by weight of N-methyl-2-pyrrolidone [component (c)], and then pressure-filter using a 1 ⁇ m filter. Thus, a resin composition was obtained. In addition to the same evaluation as in Examples 1 to 12, the resulting resin composition was evaluated for the residue on the copper substrate by the following method. The results are shown in Table 3.
  • Example 15 [Preparation and Evaluation of Photosensitive Resin Composition] 100 parts by weight of the same polyamic acid ester as in Examples 5 to 9, 20 parts by weight of tetraethylene glycol dimethacrylate, 2 parts by weight of the compound represented by the above formula (4-2) and 3 parts by weight of benzotriazole were added to N-methyl- The mixture was stirred until it was uniformly dissolved in 150 parts by weight of 2-pyrrolidone, followed by pressure filtration using a 1 ⁇ m filter to obtain a photosensitive resin composition. In addition to the same evaluation as in Examples 1 to 12, the resulting resin composition was evaluated for the residue on the copper substrate by the following method. The results are shown in Table 3.
  • Example 16 [Preparation and Evaluation of Photosensitive Resin Composition] 100 parts by weight of the same polyamic acid ester as in Examples 5 to 9, 20 parts by weight of tetraethylene glycol dimethacrylate, 2 parts by weight of the compound represented by the above formula (4-2) and 3 parts by weight of tetrazole were added to N-methyl-2. A photosensitive resin composition was obtained by stirring until dissolved in 150 parts by weight of pyrrolidone and then filtering under pressure using a 1 ⁇ m filter. In addition to the same evaluation as in Examples 1 to 12, the resulting resin composition was evaluated for the residue on the copper substrate by the following method. The results are shown in Table 3.
  • Ashing with O2 ashing device manufactured by Hyundai Scientific Co., Ltd.
  • immersing in Cu oxide film removal solution Z-200 manufactured by World Metal Co., Ltd.
  • washing with pure water and adhering to the cured film surface
  • the residue at the pattern opening was observed using an SEM manufactured by Hitachi High-Technology Co., Ltd. When the residue could be confirmed, it was set as x.
  • compositions prepared in Examples 1 to 12 were also evaluated for residues on the copper substrate. The results are shown in Table 4.
  • the resin composition of the present invention can be used as a protective film material or pattern film forming material for electronic parts such as semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)

Abstract

下記成分(a)~(c)を含有する、樹脂組成物。(a)下記一般式(1)で表される構造単位を有するポリイミド前駆体(式中、Aは下記式(2a)~(2d)で表わされる4価の有機基のいずれかであり、Bは下記一般式(3)で表わされる2価の有機基である。)(b)オキシムエステル化合物(c)溶剤

Description

感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置
 本発明は、優れた感光特性を示す感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置に関する。
 近年、半導体集積回路の保護膜材料として、ポリイミド樹脂等の高い耐熱性を有する有機材料が広く適用されている。また、半導体集積回路上へのパターン形成においては、工程簡略化の観点から、感光性を付与した材料を用いて、露光・現像することによって必要なパターンを形成する方法が適用されている。
 ポリイミドに感光性を付与する手法としては、ポリイミド前駆体にエステル結合やイオン結合を介してメタクリロイル基を導入する方法、光重合性オレフィンを有する可溶性ポリイミドを用いる方法、ベンゾフェノン骨格を有し、かつ窒素原子が結合する芳香環のオルト位にアルキル基を有する自己増感型ポリイミドを用いる方法等が知られている。中でも、ポリイミド前駆体にエステル結合やイオン結合を介してメタクリロイル基を導入する方法では、モノマ選択の自由度が高く、盛んに検討されている。
 しかしながら、メタクリロイル基を有する3級アミンをポリアミド酸に添加して、ポリアミド酸中のカルボキシル基と4級アンモニウム塩を形成させ、イオン結合を介してメタクリロイル基を導入する方法では、結合力が弱い。そのため、室温で保存した場合、容易にポリアミド酸の解重合が起きて低分子量化して、粘度が低下するという課題がある。また、露光による光重合でメタクリロイル基同士が架橋しても、ポリアミド酸の溶解速度を低下させる効果が弱いために感光特性が低下するという課題がある(例えば、特許文献1参照)。
 一方、半導体集積回路の微細化に伴い、low-k層と呼ばれる層間絶縁膜の誘電率を低減する必要がある。誘電率を低減するために、例えば、空孔構造を有する層間絶縁膜を適用する方法がある。しかしながら、この方法では機械的強度が低下するという課題が生じている。この様な機械的強度の弱い層間絶縁膜を保護するために、層間絶縁膜上に保護膜を設ける方法がある。
 また、バンプと呼ばれる突起状の外部電極が形成される領域において、層間絶縁膜に作用する応力が集中して、層間絶縁膜が破壊されないようにするため、保護膜には、厚膜形成性(例えば5μm以上)や高弾性率化(例えば4GPa以上)といった要求が高まっている。しかし、保護膜を厚膜化及び高弾性率化することによって、保護膜の応力が増大し、半導体ウエハの反りが大きくなって、搬送やウエハ固定の際に不具合が生じる場合がある。そのため、低応力のポリイミド樹脂の開発が望まれている(例えば、特許文献2参照)。
特開2011-174020号公報 特開2012-2917号公報
 ポリイミド樹脂を含有する樹脂組成物を加熱して得られる硬化膜が厚膜である場合、露光工程で用いられているi線(波長365nm)の透過率が低下する。その結果、感光特性(感度及び解像度)が低下するという課題があった。そのため、良好な感光特性と低応力を共に達成することは困難であった。
 本発明は、良好な感光特性を有し、かつ形成される硬化膜の応力が低い樹脂組成物及びそれを用いたパターン硬化膜形成方法を提供することを目的とする。
 本発明によれば、以下の樹脂組成物等が提供される。
1.下記成分(a)~(c)を含有する、樹脂組成物。
 (a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
 (b)オキシムエステル化合物
 (c)溶剤
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Aは下記式(2a)~(2d)で表される4価の有機基のいずれかであり、Bは下記一般式(3)で表される2価の有機基である。
 R及びRは各々独立に水素原子、1価の有機基又は炭素炭素不飽和二重結合を有する基であって、R及びRの少なくとも一方は炭素炭素不飽和二重結合を有する基である。)
Figure JPOXMLDOC01-appb-C000002
(一般式(2d)中、X及びYは、各々独立に各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。)
Figure JPOXMLDOC01-appb-C000003
(一般式(3)中、R~R10は各々独立に水素又は一価の有機基である。但し、R~R10はハロゲン原子及びハロゲン原子を有する一価の有機基ではない。)
2.前記(b)成分が、下記一般式(4)で表される化合物、一般式(5)で表される化合物、又は一般式(6)で表される化合物である1に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(4)中、R11及びR12は、それぞれ炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、又はフェニル基を示す。
 R13は、H、OH、COOH、O(CH)OH、O(CHOH、COO(CH)OH、又はCOO(CHOHを示す。)
Figure JPOXMLDOC01-appb-C000005
(式(5)中、R14は、それぞれ炭素数1~6のアルキル基を示し、R15は、NO又はArCO(ここで、Arはアリール基を示す。)を示し、R16及びR17は、それぞれ炭素数1~12のアルキル基、フェニル基、又はトリル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式(6)中、R18は、炭素数1~6のアルキル基を示し、R19はアセタール結合を有する有機基を示し、R20及びR21は、それぞれ炭素数1~12のアルキル基、フェニル基又はトリル基を示す。)
3.更に、前記(a)成分のポリイミド前駆体が下記一般式(7)で表される構造単位を有する、1又は2に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(一般式(7)中、Dは下記一般式(8)で表される4価の有機基であり、B、R及びRは一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000008
(一般式(8)中、Zはエーテル結合(-O-)又はスルフィド結合(-S-)である。)
4.更に、テトラゾール誘導体又はベンゾトリアゾール誘導体を含有する1~3のいずれかに記載の樹脂組成物。
5.1~4のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、
 前記工程で形成した塗膜に活性光線を照射してパターン状に露光する工程と、
 前記露光部以外の未露光部を現像によって除去する工程と、
 前記工程で得られたパターンを加熱処理してポリイミドパターンとする工程と、を有するパターン硬化膜の製造方法。
6.5に記載のパターン硬化膜の製造方法で得られるパターン硬化膜を有する半導体装置。
 本発明によれば、良好な感光特性を有し、かつ形成される硬化膜の応力が低い樹脂組成物及びそれを用いたパターン硬化膜形成方法を提供することができる。
本発明の一実施形態である再配線構造を有する半導体装置の概略断面図である。
(樹脂組成物)
 本発明の樹脂組成物は、以下の成分(a)~(c)を含有することを特徴とする。
 (a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
 (b)オキシムエステル化合物
 (c)溶剤
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、Aは下記式(2a)~(2d)で表される4価の有機基のいずれかであり、Bは下記一般式(3)で表される2価の有機基である。
 R及びRは各々独立に水素原子、1価の有機基又は炭素炭素不飽和二重結合を有する基であって、R及びRの少なくとも一方は炭素炭素不飽和二重結合を有する基である。)
Figure JPOXMLDOC01-appb-C000010
(一般式(2d)中、X及びYは、各々独立に各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。)
Figure JPOXMLDOC01-appb-C000011
(一般式(3)中、R~R10は各々独立に水素又は一価の有機基である。但し、ハロゲン原子及びハロゲン原子を有する一価の有機基である場合を除く。)
 以下、各成分について説明する。
1.(a)成分:ポリイミド前駆体
 本発明で使用するポリイミド前駆体は、上記一般式(1)で表される構造単位を有する。一般式(1)中のAは、ポリイミド前駆体の原料として用いるテトラカルボン酸二無水物に由来する構造である。
 組成物から得られる硬化膜を低応力化するために、Aは下記式(2a)~(2d)で表される4価の有機基のいずれかである。
Figure JPOXMLDOC01-appb-C000012
(一般式(2d)中、X及びYは、各々独立に各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。)
 式(2a)~(2d)で表される4価の有機基を与えるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4’-ビフェニルテトラカルボン酸二無水物、下記式(9)~(15)で表されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 ポリイミド前駆体の重合時、これらは単独で用いてもよいし、二つ以上のテトラカルボン酸二無水物を組み合わせて用いてもよい。これらの中でも硬化膜の低熱膨張化の観点から、ピロメリット酸二無水物、4,4’-ビフェニルテトラカルボン酸二無水物、式(9)及び式(11)で表されるテトラカルボン酸二無水物を用いることが好ましく、ピロメリット酸二無水物、4,4’-ビフェニルテトラカルボン酸二無水物、式(9)で表されるテトラカルボン酸二無水物を用いることがより好ましく、ピロメリット酸二無水物、4,4’-ビフェニルテトラカルボン酸二無水物を用いることが更に好ましい。
 一般式(1)中のBは、ポリイミド前駆体の原料として用いるジアミンに由来する構造である。低応力およびi線透過率の観点から、Bは下記一般式(3)で表される2価の有機基であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 R~R10は各々独立に水素又は一価の基を表している。但し、ハロゲン原子及びハロゲン原子を有する一価の有機基である場合は除く。ハロゲン原子やハロゲン原子を含む一価の有機基の場合、硬化膜をプラズマ処理した際に、炭素-ハロゲン原子間の結合が解裂して、硬化膜が劣化するおそれがある。
 R~R10が示す一価の基としては、炭素数1~20のアルキル基(メチル基等)、炭素数1~20のアルキル基を有するアルコキシ基(メトキシ基等)が挙げられる。
 原料のジアミンとしては、2,2’-ジメチルベンジジン、2,2’-ジアミノベンジジン、3,3’-ジメチルベンジジン、3,3’-ジアミノベンジジン、2,2’,3,3’-テトラメチルベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジメトキシベンジジン等を用いることができる。
 ポリイミド前駆体の重合時、これらは単独で用いてもよいし、二つ以上のジアミンを組み合わせて用いてもよい。これらの中でも低応力化の観点から、2,2’-ジメチルベンジジン、2,2’-ジアミノベンジジン、3,3’-ジメチルベンジジン、3,3’-ジアミノベンジジンを用いることが好ましく、2,2’-ジメチルベンジジンを用いることが更に好ましい。
 一般式(1)で表されるポリイミド前駆体中のR及びRは、各々独立に、水素原子、1価の有機基又は炭素炭素不飽和二重結合を有する基である。R及びRの少なくとも一方は炭素炭素不飽和二重結合を有する基である。
 1価の有機基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基等が挙げられる。
 炭素炭素不飽和二重結合を有する基としては、アルキル基の炭素数が1~10のアクリロキシアルキル基やメタクリロキシアルキル基等が挙げられる。
 ポリイミド前駆体が、少なくとも一部に炭素炭素不飽和二重結合を有する1価の有機基を有することによって、活性光線照射(例えば、i線露光)でラジカルを発生する化合物と組み合わせて、ラジカル重合による分子鎖間の架橋が可能となり、ネガ型樹脂組成物とすることが容易になる。
 炭素数1~20のアルキル基としては具体的には、メチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、n-ヘキシル基、n-ヘプチル基、n-デシル基、n-ドデシル基等が挙げられる。
 炭素数3~20のシクロアルキル基としては具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
 炭素数が1~10のアルキル基を有するアクリロキシアルキル基としては、アクリロキシエチル基、アクリロキシプロピル基、アクリロキシブチル基等が挙げられる。
 炭素数が1~10のアルキル基を有するメタクリロキシアルキル基としては、メタクリロキシエチル基、メタクリロキシプロピル基、メタクリロキシブチル基等が挙げられる。
 ところで、ポリイミド前駆体に感光性を付与する方法として、対応するポリアミド酸に炭素炭素不飽和二重結合を有する3級アミン化合物を添加する方法が知られている。しかしながら、ポリアミド酸中のカルボキシル基と3級アミンがイオン結合を形成しており、ワニスのpHや水分の影響でイオン結合の状態が変化して、保存安定性が低下する場合がある。従って、R及びRは水素ではなく、エステル結合によって導入される基であることが好ましい。中でも、良好な感光特性の観点から、R及びRは、エステル結合によって導入された、アクリロキシエチル基、アクリロキシブチル基、メタクリロキシエチル基、メタクリロキシブチル基であることが好ましい。
 得られる硬化膜を、より低応力化する観点から、ポリイミド前駆体が一般式(1)で表される構造を全構成単位に対して10mol%以上有することが好ましく、20mol%以上有することがより好ましい。
 本発明の樹脂組成物に用いるポリイミド前駆体は、i線透過率の向上、硬化後の密着性向上及び機械特性の向上の観点から、下記一般式(7)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000015
(一般式(7)中、Dは一般式(8)で表される4価の有機基であり、B、R及びRは、一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000016
(一般式(8)中、Zはエーテル結合(-O-)、又はスルフィド結合(-S-)である。)
 一般式(8)の構造を与えるテトラカルボン酸二無水物としては、4,4’-オキシジフタル酸二無水物、チオエーテルジフタル酸無水物が挙げられる。ポリイミド前駆体の合成時、これらは単独で用いてもよいし、二つを組み合わせて用いてもよい。硬化後の密着性の観点から、4,4’-オキシジフタル酸二無水物を用いることが好ましい。
 ポリイミド前駆体において、一般式(1)で表される構造単位と一般式(7)で表される構造単位とをともに有する場合は、ポリイミド前駆体は共重合となる。共重合体としては、例えば、ブロック共重合体、ランダム共重合体が挙げられるが、特に制限はない。
 一般式(1)で表される構造単位と、一般式(7)で表される構造単位とを有するポリイミド前駆体において、低応力と良好な接着性を両立するという観点から、一般式(1)と一般式(7)のモル比[式(1)/式(7)]が、1/9~9/1であることが好ましく、2/8~8/2であることがより好ましく、2/8~7/3であることが更に好ましい。
 本発明のポリイミド前駆体は、一般式(1)で表される構造単位及び一般式(7)で表される構造単位以外の構造単位を有していても良い。具体的には、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、4,4’-[イソプロピリデンビス[(p-フェニレン)オキシ]]ジフタル酸1,2:1’,2’-二無水物等のテトラカルボン酸二無水物由来の構造単位が挙げられる。
 また、4,4’-オキシジアニリン、4,4’-ジアミノジフェニルメタン、1,4-シクロヘキサンジアミン、1,3’-ビス(3-アミノフェノキシ)ベンゼン等のジアミン由来の構造単位が挙げられる。
 低応力化の観点から、これらのテトラカルボン酸二無水物及びジアミンは、原料として用いるテトラカルボン酸二無水物総量及びジアミンに対して、20mol%以下であることが好ましく、10mol%以下であることがより好ましく、一般式(1)及び式(7)の構造を与えるテトラカルボン酸二無水物及びジアミンのみを用いることが更に好ましい。
 本発明のポリイミド前駆体の分子量は、ポリスチレン換算での重量平均分子量が10000~100000であることが好ましく、15000~100000であることがより好ましく、20000~85000であることが更に好ましい。硬化後の応力を充分に低下させる観点から、重量平均分子量は10000以上であることが好ましい。また、溶剤への溶解性や溶液の取り扱い性の観点から、100000以下であることが好ましい。尚、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
 本発明のポリイミド前駆体を用いて樹脂組成物とする場合、該ポリイミド前駆体は樹脂組成物中に20~60質量%含有することが好ましく、25~55質量%含有することがより好ましく、30~55質量%含有することが更に好ましい。
 本発明のポリイミド前駆体を合成する際に用いられるテトラカルボン酸二無水物とジアミンのモル比は、通常1.0であることが好ましいが、分子量や末端残基を制御する目的で、0.7~1.3の範囲のモル比で行ってもよい。モル比が0.7~1.3であると、得られるポリイミド前駆体の分子量が適度となり、硬化後の応力がより十分に低くなる傾向がある。
 本発明のポリイミド前駆体は、原料であるテトラカルボン酸二無水物を下記一般式(16)で表されるジエステル誘導体に誘導した後、下記一般式(17)で表される酸塩化物に変換し、ジアミンと塩基性化合物存在下で縮合させる酸塩化物法によって合成することができる。
Figure JPOXMLDOC01-appb-C000017
(式(16)中、Eは4価の有機基であって、式(1)のA及び式(7)中のDを含む4価の基の構造を示し、R及びRは式(1)中のR及びRと同じである。)
Figure JPOXMLDOC01-appb-C000018
(式(17)中、Eは4価の有機基であって、式(1)のA及び式(7)中のD含む4価の基の構造を示し、R及びRは式(1)中のR及びRと同じである。)
 式(16)で表されるジエステル誘導体は、原料であるテトラカルボン酸二無水物1モルに対して、少なくとも2モル当量以上のアルコール類を塩基性触媒存在下で反応させることによって合成することができる。但し、式(16)で表されるジエステル誘導体を式(17)で表される酸塩化物に変換する場合、未反応のアルコール類が残っていると、塩素化剤が未反応のアルコール類と反応してしまい、酸塩化物への変換が充分に進行しないことが懸念される。従って、アルコール類の当量としては、テトラカルボン酸二無水物1モルに対して2.0~2.5モル当量であることが好ましく、2.0~2.3モル当量であることがより好ましく、2.0~2.2モル当量であることが更に好ましい。
 アルコール類としては、炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を有するアルコール、アルキル基の炭素数が1~10のアクリロキシアルキル基又は炭素数1~10のメタクリロキシアルキル基を有するアルコールを用いることができる。
 具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、t-ブタノール、n-ヘキサノール、シクロヘキサノール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等が挙げられる。これらは、単独で用いてもよいし、2種類以上を混合して用いてもよい。
 塩基性触媒としては、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等を用いることができる。
 原料として、2種類以上のテトラカルボン酸二無水物を用いる場合、それぞれのテトラカルボン酸二無水物を別々にエステル誘導体に導いたものを混合して用いてもよい。また、あらかじめ、2種類以上のテトラカルボン酸二無水物を混合した後、同時にエステル誘導体に導いてもよい。
 式(16)で表されるジエステル誘導体を式(17)で表される酸塩化物に変換するには、ジエステル誘導体1モルに対して、通常2モル当量の塩素化剤を反応させることによって用いて行うが、合成されるポリイミド前駆体の分子量を制御するために、当量を適宜調整してもよい。
 塩素化剤としては、塩化チオニルやジクロロシュウ酸を用いることができ、その当量としては、形成するポリイミド前駆体の分子量を高くし硬化後の応力を充分に低くする観点から、1.5~2.5モル当量が好ましく、1.6~2.4モル当量がより好ましく、1.7~2.3モル当量が更に好ましい。
 式(17)で表される酸塩化物に、塩基性化合物存在下で、原料であるジアミンを添加することによって、本発明で使用するポリイミド前駆体が得られる。塩基性化合物は、酸塩化物とジアミンが反応した際に発生する塩化水素を捕捉する目的で用いられる。
 塩基性化合物としては、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン等を用いることができる。使用量は、塩素化剤の量に対して、1.5~2.5モル当量用いることが好ましく、1.7~2.4モル当量であることがより好ましく、1.8~2.3モル当量であることが更に好ましい。1.5モル当量より少ないと、ポリイミド前駆体の分子量が低くなって、硬化後の応力が充分低下しないおそれがあり、2.5モル当量より多いと、ポリイミド前駆体が着色するおそれがある。
 尚、上述したポリイミド前駆体は、上記のような酸塩化物法以外にもイソイミド法やDCC法で合成することもできる。イソイミド法では、原料であるテトラカルボン酸二無水物とジアミンを重縮合させてポリアミド酸を合成し、トリフルオロメチル無水酢酸を添加してイソイミドに変換した後、アルコール化合物を添加してエステル結合を有するポリイミド前駆体を合成する。DCC法では、式(16)で表されるジエステル誘導体を2モル当量のDCC(ジシクロヘキシルカルボジイミド)と反応させた後、ジアミンを添加することによって、ポリイミド前駆体を得ることができる。
 用いるアルコール化合物としては、アルキル基の炭素数が1~10のアクリロキシアルキル基又はアルキル基の炭素数が1~10のメタクリロキシアルキル基を有する、アルコールであることが好ましい。具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等が挙げられる。これらは、単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、分子量を制御する目的で、原料であるテトラカルボン酸二無水物の一部をあらかじめ上記アルコール化合物と反応させて式(18)で表されるようなエステル化合物に変換した後、ジアミンとの重縮合を行ってもよい。
Figure JPOXMLDOC01-appb-C000019
(式(18)中、Gは4価の有機基であって、式(1)のA及び式(7)のDを含む4価の構造を示し、R22は式(1)中のR又はRと同じである。)
 上記付加重合及び縮合反応やジエステル誘導体や酸塩化物の合成は、有機溶媒中で行うことが好ましい。使用する有機溶媒としては、合成されるポリイミド前駆体を完全に溶解する極性溶媒が好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン等が挙げられる。
2.(b)成分:オキシムエステル化合物
 (b)成分は光開始剤として用いられる。(b)成分としては、特に制限はないが、良好な感度、残膜率が得られる観点で、下記式(4)で表される化合物、下記式(5)で表される化合物、及び下記式(6)で表される化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(4)中、R11及びR12は、それぞれ炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、又はフェニル基を示し、炭素数1~8のアルキル基、炭素数4~6のシクロアルキル基又はフェニル基であることが好ましく、炭素数1~4のアルキル基、炭素数4~6のシクロアルキル基又はフェニル基であることがより好ましく、メチル基、シクロペンチル基又はフェニル基であることが更に好ましい。
 R13は、H、OH、COOH、O(CH)OH、O(CHOH、COO(CH)OH又はCOO(CHOHを示し、H、O(CH)OH、O(CHOH、COO(CH)OH又はCOO(CHOHであることが好ましく、H、O(CHOH又はCOO(CHOHであることがより好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(5)中、R14は、それぞれ炭素数1~6のアルキル基を示し、プロピル基であることが好ましい。
 R15は、NO又はArCO(ここで、Arはアリール基を示す。)を示し、Arとしては、トリル基が好ましい。
 R16及びR17は、それぞれ炭素数1~12のアルキル基、フェニル基、又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(6)中、R18は、炭素数1~6のアルキル基を示し、エチル基であることが好ましい。
 R19はアセタール結合を有する有機基であり、後述する式(6-1)に示す化合物が有するR19に対応する置換基であることが好ましい。
 R20及びR21は、それぞれ炭素数1~12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましく、メチル基であることがより好ましい。
 上記式(4)で表される化合物としては、例えば、下記式(4-1)で表される化合物及び下記式(4-2)で表される化合物が挙げられる。下記式(4-1)で表される化合物はIRGACURE OXE-01(BASF株式会社製、商品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000023
 上記式(5)で表される化合物としては、例えば、下記式(5-1)で表される化合物が挙げられる。この化合物は、DFI-091(ダイトーケミックス株式会社製、商品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000024
 上記式(6)で表される化合物としては、例えば、下記式(6-1)で表される化合物が挙げられる。アデカオプトマーN-1919(株式会社ADEKA製、商品名)として入手可能である。
Figure JPOXMLDOC01-appb-C000025
 その他のオキシムエステル化合物としては、下記化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 これらオキシムエステル化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、上記(b)成分であるオキシムエステル化合物に加え、光開始剤として、従来公知のものを加えてもよい。
 (b)成分の含有量としては、(a)成分であるポリイミド前駆体100質量部に対して、0.1~20質量部であることが好ましく、0.1~15質量部であることがより好ましく、0.5~10質量部であることが更に好ましく、0.5~5質量部であることが特に好ましく、1~5質量部であることが極めて好ましい。配合量が0.1質量部以上であると、露光部の架橋がより十分に進行し、感光特性(感度、解像度)がより良好となる傾向があり、20質量部以下であると、硬化膜の耐熱性をより良好にすることができる。
 本発明の樹脂組成物は、(a)成分と(b)成分とを組み合わせることで、感光特性に優れ、かつ形成される硬化膜の応力が低くなる。特に(a)成分として一般式(1)で表される構造単位を有するポリイミド前駆体、(b)成分として一般式(4)~(6)で表されるオキシムエステル化合物を組み合わせて用いた場合、一般式(4)~(6)で表されるオキシムエステル化合物が特にi線等の電子線を照射した際に高い活性を示すことから、良好な感光特性を実現することができる。更に、加熱処理することによってポリイミドとなった場合、その剛直な骨格に起因して低い応力を示すという特徴を有する。
3.(c)成分:溶剤
 (c)成分としては、(a)成分であるポリイミド前駆体を完全に溶解する極性溶剤が好ましい。具体的には、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート、プロピレンカーボネート、乳酸エチル、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア等が挙げられる。これらは単独で用いてもよいし、二つ以上を組み合わせて用いてもよい。
 溶剤は、樹脂組成物中に40~80質量%含有することが好ましく、45~75質量%含有することがより好ましく、45~70質量%含有することが更に好ましい。
4.その他の成分
 本発明の感光性樹脂組成物を、銅基板上に使用する場合には、未露光部に現像残渣が生じることを防ぐ観点から、テトラゾール誘導体又はベンゾトリアゾール誘導体を含有することが好ましい。
 テトラゾール誘導体としては、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール、5,5’-ビス-1H-テトラゾール、1-メチル-5-エチル-テトラゾール、1-メチル-5-メルカプト-テトラゾール、1-カルボキシメチル-5-メルカプト-テトラゾール等が挙げられる。これらの中でも、1H-テトラゾール又は5-アミノ-1H-テトラゾールが好ましい。
 ベンゾトリアゾール誘導体としては、ベンゾトリアゾール、1H-ベンゾトリアゾール-1-アセトニトリル、ベンゾトリアゾール-5-カルボン酸、1H-ベンゾトリアゾール-1-メタノール、カルボキシベンゾトリアゾール、メルカプトベンゾオキサゾールが挙げられる。これらの中でも、ベンゾトリアゾールが好ましい。
 テトラゾール誘導体又はベンゾトリアゾール誘導体は、単独で又は2種類以上を組み合わせて使用される。これらは、(A)成分100重量部に対して、通常1種類につき、0.1~10重量部、2種類以上を組み合わせる場合は合計で0.1~10重量部である。より好ましくは0.2~5重量部の範囲である。
 本発明の樹脂組成物には、硬化後のシリコン基板等への密着性を向上させるために、有機シラン化合物を含んでいてもよい。有機シラン化合物としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、トリエトキシシリルプロピルエチルカルバメート、3-(トリエトキシシリル)プロピルコハク酸無水物、フェニルトリエトキシシラン、フェニルトリメトキシシラン、N―フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
 有機シラン化合物を含有する場合の含有量は、硬化後の密着性の観点から、ポリイミド前駆体100質量部に対して、0.1~20質量部とすることが好ましく、0.5~15質量部とすることがより好ましく、0.5~10質量部とすることが更に好ましい。
 本発明の樹脂組成物には、必要に応じて付加重合性化合物を配合してもよい。付加重合性化合物としては、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、スチレン、ジビニルベンゼン、4-ビニルトルエン、4-ビニルピリジン、N-ビニルピロリドン、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、1,3-アクリロイルオキシ-2-ヒドロキシプロパン、1,3-メタクリロイルオキシ-2-ヒドロキシプロパン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド等が挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 付加重合性化合物を含有する場合の含有量は、現像液への溶解性及び得られる硬化膜の耐熱性の観点から、ポリイミド前駆体100質量部に対して、1~100質量部とすることが好ましく、1~75質量部とすることがより好ましく、1~50質量部とすることが更に好ましい。
 また、本発明の樹脂組成物には、良好な保存安定性を確保するために、ラジカル重合禁止剤又はラジカル重合抑制剤を配合してもよい。ラジカル重合禁止剤又はラジカル重合抑制剤としては、p-メトキシフェノール、ジフェニル-p-ベンゾキノン、ベンゾキノン、ハイドロキノン、ピロガロール、フェノチアジン、レゾルシノール、オルトジニトロベンゼン、パラジニトロベンゼン、メタジニトロベンゼン、フェナントラキノン、N-フェニル-2-ナフチルアミン、クペロン、2,5-トルキノン、タンニン酸、パラベンジルアミノフェノール、ニトロソアミン類等が挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ラジカル重合禁止剤又はラジカル重合抑制剤を含有する場合の含有量としては、樹脂組成物の保存安定性及び得られる硬化膜の耐熱性の観点から、ポリイミド前駆体100質量部に対して、0.01~30質量部であることが好ましく、0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましい。
 尚、本発明の樹脂組成物は、上記(a)~(c)成分と、任意に上述したその他の成分の少なくとも1つから実質的になっていてもよく、また、これらの成分のみからなっていてもよい。「実質的になる」とは、上記組成物が、主に上記(a)~(c)成分、及び任意に上述したその他の成分の少なくとも1つからからなること、例えば、これら成分が原料全体に対し、95質量%以上、又は98質量%以上であることを意味する。
(パターン硬化膜、パターン硬化膜の製造方法、半導体装置)
 本発明のパターン硬化膜は、上述した本発明の樹脂組成物を加熱することで得られる。本発明のパターン硬化膜は層間絶縁膜であるLow-k材の保護層として用いられることが好ましい。Low-k材としては、多孔質シリカ、ベンゾシクロブテン、水素シルセスキオキサン、ポリアリルエーテル等が挙げられる。
 本発明のパターン硬化膜の製造方法は、本発明の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記工程で形成した塗膜に活性光線を照射してパターン状に露光する工程と、前記露光部以外の未露光部を現像によって除去する工程と、前記工程で得られたパターンを加熱処理してポリイミドパターンとする工程と、を有する。
 本発明の樹脂組成物を基板上に塗布する方法としては、浸漬法、スプレー法、スクリーン印刷法、スピンコート法等が挙げられる。基板としては、シリコンウエハ、金属基板、セラミック基板等が挙げられる。本発明の樹脂組成物は、低応力の硬化膜を形成可能であるので、特に、12インチ以上の大口径のシリコンウエハへの適用に好適である。
 樹脂組成物を基板上に塗布した後、溶剤を加熱により除去(乾燥)することによって、粘着性の少ない塗膜(樹脂膜)を形成することができる。尚、乾燥する際の加熱温度は80~130℃であることが好ましく、乾燥時間は30~300秒であることが好ましい。乾燥はホットプレート等の装置を用いて行なうことが好ましい。
 次に、上記の方法で得られた塗膜を、所望のパターンが描かれたマスクを通して活性光線を照射して、パターン状に露光する。本発明の樹脂組成物はi線露光用に好適であるが、照射する活性光線としては、紫外線、遠紫外線、可視光線、電子線、X線等を用いることができる。
 次に未露光部を適当な現像液で溶解除去することによって、所望のパターン樹脂膜を得ることができる。現像液としては、特に制限はないが、1,1,1-トリクロロエタン等の難燃性溶媒、炭酸ナトリウム水溶液、テトラメチルアンモニウムハイドロオキサイド水溶液等のアルカリ水溶液、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、シクロペンタノン、γ-ブチロラクトン、酢酸エステル類等の良溶媒、これら良溶媒と低級アルコール、水、芳香族炭化水素等の貧溶媒との混合溶媒などが用いられる。現像後は必要に応じて貧溶媒(例えば、水、エタノール、2-プロパノール)等でリンス洗浄を行う。
 上記のようにして得られたパターンを例えば80~400℃で5~300分間加熱することによって、樹脂組成物に含まれるポリイミド前駆体のイミド化を進行させてパターン硬化膜を得ることができる。この加熱処理する工程は、加熱時のポリイミドの酸化劣化を抑制するために、100ppm以下の低酸素濃度で硬化できる硬化炉を用いることが好ましく、例えばイナートガスオーブンや縦型拡散炉を用いて行うことができる。
[硬化膜又はパターン硬化膜の使用例]
 このようにして得られた本発明の硬化膜又はパターン硬化膜は、半導体装置の表面保護層、層間絶縁層、再配線層等として用いることができる。
 図1は本発明の一実施形態である再配線構造を有する半導体装置の概略断面図である。本実施形態の半導体装置は多層配線構造を有している。層間絶縁層(層間絶縁膜)1の上にはAl配線層2が形成され、その上部には更に絶縁層(絶縁膜)3(例えばP-SiN層)が形成され、更に素子の表面保護層(表面保護膜)4が形成されている。配線層2のパット部5からは再配線層6が形成され、外部接続端子であるハンダ、金等で形成された導電性ボール7との接続部分である、コア8の上部まで伸びている。更に表面保護層4の上には、カバーコート層9が形成されている。再配線層6は、バリアメタル10を介して導電性ボール7に接続されているが、この導電性ボール7を保持するために、カラー11が設けられている。このような構造のパッケージを実装する際には、更に応力を緩和するために、アンダーフィル12を介することもある。
 上記再配線層6に銅を用いた半導体装置を製造する場合において、IRGACURE OXE-01(BASF株式会社製、商品名)を用いた感光性組成物では、パターン硬化膜を形成する際に開口部にポリイミド残渣が生じる場合がある。これは、銅上では、特定のオキシムエステル化合物がプリベーク時にラジカルを生じ、未露光部も硬化するために生じる場合があると推察される。これは、感光性樹脂組成物にテトラゾール誘導体又はベンゾトリアゾール誘導体を含有させることで抑止できる。
 感光性樹脂組成物がテトラゾール誘導体又はベンゾトリアゾール誘導体を含有することで、銅上にテトラゾール誘導体又はベンゾトリアゾール誘導体が薄膜を形成して活性な金属面と樹脂組成物が直接触れることを防ぐことで、未露光部での不必要な光開始剤の分解やラジカル重合反応を抑制し、銅基板上での感光特性を確保することが可能になると推察される。
 本発明の硬化膜又はパターン硬化膜は、上記実施形態のカバーコート材、再配線用コア材、半田等のボール用カラー材、アンダーフィル材等、いわゆるパッケージ用途に使用することができる。
 本発明の硬化膜又はパターン硬化膜は、メタル層や封止剤等との接着性に優れるとともに耐銅マイグレーション性に優れ、応力緩和効果も高いため、本発明の硬化膜又はパターン硬化膜を有する半導体素子は、極めて信頼性に優れるものとなる。
 本発明の半導体装置は、本発明の製造方法により得られるパターン硬化膜を有する。半導体装置としては、MPU等のLogic系半導体装置やDRAMやNANDフラッシュ等のメモリー系半導体装置などが挙げられる。
 以下、実施例及び比較例を用いて、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1-12、比較例1-6
(1)ポリアミド酸エステル(ポリイミド前駆体)の合成
 表1又は2に示したテトラカルボン酸二無水物1、テトラカルボン酸二無水物1に対して2当量の2-ヒドロキシエチルメタクリレート、及び触媒量の1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)を、質量比でテトラカルボン酸二無水物1の4倍量のN-メチル-2-ピロリドン中に溶解して、室温で48時間撹拌してエステル溶液1を得た。
 更に、必要に応じて、表1に示したテトラカルボン酸二無水物成分2、テトラカルボン酸二無水物2に対して2当量の2-ヒドロキシエチルメタクリレート、及び触媒量のDBUを、質量比でテトラカルボン酸二無水物2の4倍量のN-メチル-2-ピロリドン中に溶解して、室温で48時間撹拌してエステル溶液2を得た。
 エステル溶液1とエステル溶液2を混合した後、氷浴中で冷却しながら、テトラカルボン酸二無水物1及び2の総量に対して、2.2当量の塩化チオニルを滴下した後、1時間撹拌して、酸塩化物溶液を調製した。
 別途、表1に示したジアミン1及び必要に応じてジアミン2、塩化チオニルの2倍当量のピリジンを、質量比でジアミン1及び2の4倍量のN-メチル-2-ピロリドンに溶解させた溶液を準備し、先に調製した酸塩化物溶液に、氷浴中で冷却しながら滴下した。滴下終了後、反応液を蒸留水に滴下して生じた沈殿物をろ別して集め、蒸留水で数回洗浄した後、真空乾燥してポリアミド酸エステルを得た。
(2)感光性樹脂組成物の調製
 ポリアミド酸エステル[(a)成分]100質量部、テトラエチレングリコールジメタクリレート20質量部、表1又は2に示す活性光線照射によってラジカルを発生する光開始剤[(b)成分]を所定量、N-メチル-2-ピロリドン[(c)成分]150質量部に均一に溶解するまで撹拌した後、1μmフィルタを用いて加圧ろ過することによって樹脂組成物を得た。
(重量平均分子量の測定)
 得られたポリアミド酸エステルの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によって、標準ポリスチレン換算により求めた。尚、GPC法による重量平均分子量の測定条件は以下のとおりである。
 ポリマー0.5mgに対して溶媒[THF/DMF=1/1(容積比)]1mlの溶液を用いて測定した。
測定装置:検出器 株式会社日立製作所社製L4000UV
ポンプ :株式会社日立製作所社製L6000
     株式会社島津製作所社製C-R4A Chromatopac
測定条件:カラム Gelpack GL-S300MDT-5×2本
溶離液 :THF/DMF=1/1(容積比)
     LiBr(0.03mol/l)、HPO(0.06mol/l)
流速  :1.0ml/min、検出器:UV270nm
(i線透過率の測定)
 得られたポリアミド酸エステル100質量部を、N-メチル-2-ピロリドン150質量部に溶解した、ポリアミド酸エステル溶液を、ガラス板にスピンコートして、ホットプレート上で100℃で3分間加熱処理して、膜厚20μmの塗膜を形成したものを準備し、365nmの透過率を測定した。i線透過率の測定は日立ハイテクノロジーズ社製可視紫外分光光度計U-3310を用いて、キャストフィルム法により測定した。透過率が20%以上のものをH、10%以上20%未満のものをM、10%未満のものをLとした。
(感光特性の評価)
 得られた感光性樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃で3分間ホットプレート上で乾燥させて、膜厚10μmの塗膜を形成した。この塗膜にフォトマスクを介して、キヤノン株式会社製i線ステッパーFPA-3000iWを用いて、50~500mJ/cmのi線を50mJ/cm刻みで所定のパターンに照射して、露光を行った。また、同じ厚みの未露光の塗膜をシクロペンタノンに浸漬して完全に溶解するまでの時間の2倍を現像時間として設定し、露光後のウエハをシクロペンタノンに浸漬してパドル現像した後、イソプロパノールでリンス洗浄を行った。この時の、露光部の塗膜の溶解量が初期膜厚の10%未満となる最小露光量を感度とし、スクエアホール状の開口部のマスク寸法の最小値を解像度として評価した。
 感度が300mJ/cm以下のものを○、300mJ/cmより大きく500mJ/cm以下のものを△、500mJ/cmより大きいものを×とした。解像度が10μm以下のものを○、10μmより大きく30μm以下のものを△、30μmより大きいものを×とした。
(残留応力の測定)
 得られた感光性樹脂組成物を厚さ625μmの6インチシリコンウエハに塗布して、硬化後膜厚が10μmとなるようにスピンコートした。これを、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、375℃で1時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力はKLATencor社製薄膜ストレス測定装置FLX-2320を用いて室温において測定した。応力が30MPa以下のものを○、30MPaより大きく35MPa以下のものを△、35MPaより大きいものを×とした。
(薬液耐性の評価)
 上記残留応力を測定するために準備した硬化膜付きシリコンウエハを、70℃のNMP中に20分間浸漬した後、純水で洗浄し、硬化膜表面に付着している水分をふき取った後、風乾した。風乾後の硬化膜の膜厚の初期膜厚に対する変化率が±10%以内のものを○、±10%より大きく、±20%以下のものを△、±20%より大きいものを×とした。
 測定結果を表1又は2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2中、光開始剤の括弧内の数値はポリアミド酸エステル100質量部に対する光開始剤の質量部を表す。
 また、表中の略称は、以下の化合物を示し、括弧内の物質量は原料の仕込み量である。
・ポリイミド前駆体原料
 PMDA:ピロメリット酸二無水物
 s-BPDA:4,4’-ビフェニルテトラカルボン酸二無水物
 MMXDA:9,9’-ジメチル-2,3,6,7-キサンテンテトラカルボン酸二無水物
 ODPA:4,4’-オキシジフタル酸二無水物
 TFDB:2,2’-ビス(トリフルオロメチル)ベンジジン
 DMAP:2,2’-ジメチルベンジジン
・光開始剤
 化合物1:BASF社製 IRGACURE OXE-01、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)
 化合物2:BASF社製 IRGACURE OXE-02、1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル]エタノンO-アセチルオキシム
 化合物3:4,4’-ビス(ジエチルアミノ)ベンゾフェノン
 化合物4:ビス[4-(2-ヒドロキシ-2-メチルプロピオニル)フェニル]メタン
 化合物5:ビス(η-シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(1H-ピル-1-イル)]フェニルチタニウム
 オキシムエステル構造を有している光開始剤を用いた実施例1~12では、優れた感光特性を示すのに対して、ベンゾフェノン型光開始剤を用いた比較例1、アセトフェノン型光開始剤を用いた比較例2、チタノセン型光開始剤を用いた比較例3では感光特性が低下した。また、テトラカルボン酸二無水物として、PMDA、s-BPDA、MMXDAを用いている実施例1~12では低い応力を示すのに対して、ODPAのみを用いている比較例6では高い応力を示していた。更に、ジアミンとして、フッ素原子及びフッ素原子を有する一価の有機基を有さないDMAPを用いた実施例1~12では、良好な薬液耐性を示すのに対して、トリフルオロメチル基を有するジアミンTFDBを用いた比較例4及び5では、薬液耐性が低下することが分かった。
実施例13
[感光性樹脂組成物の調製及び評価]
 実施例5~9と同一のポリアミド酸エステル[(a)成分]100質量部、テトラエチレングリコールジメタクリレート20質量部、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)3重量部及びベンゾトリアゾール3重量部をN-メチル-2-ピロリドン[(c)成分]150質量部に均一に溶解するまで撹拌した後、1μmフィルタを用いて加圧ろ過することによって樹脂組成物を得た。得られた樹脂組成物について、実施例1~12と同じ評価に加え、銅基板上の残渣評価を下記方法で評価した。結果を表3に示す。
実施例14
[感光性樹脂組成物の調製及び評価]
 実施例5~9と同一のポリアミド酸エステル[(a)成分]100質量部、テトラエチレングリコールジメタクリレート20質量部、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)3重量部及びテトラゾール3重量部をN-メチル-2-ピロリドン[(c)成分]150質量部に均一に溶解するまで撹拌した後、1μmフィルタを用いて加圧ろ過することによって樹脂組成物を得た。得られた樹脂組成物について、実施例1~12と同じ評価に加え、銅基板上の残渣評価を下記方法で評価した。結果を表3に示す。
実施例15
[感光性樹脂組成物の調製及び評価]
 実施例5~9と同一のポリアミド酸エステル100重量部、テトラエチレングリコールジメタクリレート20重量部、上記式(4-2)で表される化合物2重量部及びベンゾトリアゾール3重量部をN-メチル-2-ピロリドン150重量部に均一に溶解するまで撹拌した後、1μmフィルタを用いて加圧ろ過することによって感光性樹脂組成物を得た。得られた樹脂組成物について、実施例1~12と同じ評価に加え、銅基板上の残渣評価を下記方法で評価した。結果を表3に示す
実施例16
[感光性樹脂組成物の調製及び評価]
 実施例5~9と同一のポリアミド酸エステル100重量部、テトラエチレングリコールジメタクリレート20重量部、上記式(4-2)で表される化合物2重量部及びテトラゾール3重量部をN-メチル-2-ピロリドン150重量部に均一に溶解するまで撹拌した後、1μmフィルタを用いて加圧ろ過することによって感光性樹脂組成物を得た。得られた樹脂組成物について、実施例1~12と同じ評価に加え、銅基板上の残渣評価を下記方法で評価した。結果を表3に示す
(銅基板上の残渣評価)
 銅基板上残渣を測定するために準備した銅基板(上記(a)感光特性の評価と同様の方法で銅基板上にパターン硬化膜を形成)を光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、375℃と300℃で1時間、加熱硬化して、パターン付ポリイミド膜(硬化膜)を得た。O2アッシング装置(ヤマハ科学株式会社製)で2分間アッシングし、Cu酸化膜除去溶液Z-200(株式会社ワールドメタル社製)に5分間浸漬した後、純水で洗浄し、硬化膜表面に付着している水分をふき取った後、風乾した。パターン開口部の残渣を日立ハイテクノロジー社製SEMを用いて観察し、開口部にポリイミド残渣がないものを○とした。残渣が確認できる場合を×とした。
Figure JPOXMLDOC01-appb-T000003
 実施例1~12で調製した組成物についても、銅基板上の残渣評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4中から、本発明の樹脂組成物にベンゾトリアゾール又はテトラゾールを添加すると、銅基板上に現像残渣が発生しないことがわかる。
 本発明の樹脂組成物は、半導体装置等の電子部品の保護膜材料やパターン膜形成材料に使用することができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (6)

  1.  下記成分(a)~(c)を含有する、樹脂組成物。
     (a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
     (b)オキシムエステル化合物
     (c)溶剤
    Figure JPOXMLDOC01-appb-C000027
    (一般式(1)中、Aは下記式(2a)~(2d)で表される4価の有機基のいずれかであり、Bは下記一般式(3)で表される2価の有機基である。
     R及びRは各々独立に水素原子、1価の有機基又は炭素炭素不飽和二重結合を有する基であって、R及びRの少なくとも一方は炭素炭素不飽和二重結合を有する基である。)
    Figure JPOXMLDOC01-appb-C000028
    (一般式(2d)中、X及びYは、各々独立に各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。)
    Figure JPOXMLDOC01-appb-C000029
    (一般式(3)中、R~R10は各々独立に水素又は一価の有機基である。但し、R~R10はハロゲン原子及びハロゲン原子を有する一価の有機基ではない。)
  2.  前記(b)成分が、下記一般式(4)で表される化合物、一般式(5)で表される化合物、又は一般式(6)で表される化合物である請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000030
    (式(4)中、R11及びR12は、それぞれ炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、又はフェニル基を示す。
     R13は、H、OH、COOH、O(CH)OH、O(CHOH、COO(CH)OH、又はCOO(CHOHを示す。)
    Figure JPOXMLDOC01-appb-C000031
    (式(5)中、R14は、それぞれ炭素数1~6のアルキル基を示し、R15は、NO又はArCO(ここで、Arはアリール基を示す。)を示し、R16及びR17は、それぞれ炭素数1~12のアルキル基、フェニル基、又はトリル基を示す。)
    Figure JPOXMLDOC01-appb-C000032
    (式(6)中、R18は、炭素数1~6のアルキル基を示し、R19はアセタール結合を有する有機基を示し、R20及びR21は、それぞれ炭素数1~12のアルキル基、フェニル基又はトリル基を示す。)
  3.  更に、前記(a)成分のポリイミド前駆体が下記一般式(7)で表される構造単位を有する、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000033
    (一般式(7)中、Dは下記一般式(8)で表される4価の有機基であり、B、R及びRは一般式(1)と同じである。)
    Figure JPOXMLDOC01-appb-C000034
    (一般式(8)中、Zはエーテル結合(-O-)又はスルフィド結合(-S-)である。)
  4.  更に、テトラゾール誘導体又はベンゾトリアゾール誘導体を含有する請求項1~3のいずれかに記載の樹脂組成物。
  5.  請求項1~4のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、
     前記工程で形成した塗膜に活性光線を照射してパターン状に露光する工程と、
     前記露光部以外の未露光部を現像によって除去する工程と、
     前記工程で得られたパターンを加熱処理してポリイミドパターンとする工程と、を有するパターン硬化膜の製造方法。
  6.  請求項5に記載のパターン硬化膜の製造方法で得られるパターン硬化膜を有する半導体装置。
PCT/JP2013/007347 2012-12-21 2013-12-13 感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置 WO2014097595A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157010929A KR102215890B1 (ko) 2012-12-21 2013-12-13 감광성 수지 조성물, 그것을 사용한 패턴 경화막의 제조 방법 및 반도체 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-279343 2012-12-21
JP2012279343 2012-12-21
JP2013011804 2013-01-25
JP2013-011804 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014097595A1 true WO2014097595A1 (ja) 2014-06-26

Family

ID=50977957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007347 WO2014097595A1 (ja) 2012-12-21 2013-12-13 感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置

Country Status (3)

Country Link
KR (1) KR102215890B1 (ja)
TW (2) TWI625361B (ja)
WO (1) WO2014097595A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170600A1 (ja) * 2016-03-31 2017-10-05 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2020070924A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2020056956A (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102667025B1 (ko) * 2016-08-22 2024-05-17 아사히 가세이 가부시키가이샤 감광성 수지 조성물 및 경화 릴리프 패턴의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304871A (ja) * 1994-05-12 1995-11-21 Hitachi Ltd ポリイミド前駆体と感光性樹脂組成物及びそれを用いた電子装置
JP2001305749A (ja) * 2000-04-18 2001-11-02 Toray Ind Inc 感光性耐熱樹脂前駆体のパターン形成方法
JP2002037886A (ja) * 2000-07-27 2002-02-06 Hitachi Chemical Dupont Microsystems Ltd ポリイミド及びその前駆体、感光性樹脂組成物、パターンの製造法並びに電子部品
JP2003209104A (ja) * 2002-01-15 2003-07-25 Hitachi Chemical Dupont Microsystems Ltd 半導体装置及びその材料
JP2003255535A (ja) * 2002-03-06 2003-09-10 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、パターン製造法及びこれを用いた電子部品
JP2003345012A (ja) * 2002-05-28 2003-12-03 Hitachi Chemical Dupont Microsystems Ltd 感光性組成物、及びこれを用いた電子部品
JP2008076583A (ja) * 2006-09-20 2008-04-03 Asahi Kasei Electronics Co Ltd 硬化レリーフパターンの製造方法
JP2010266843A (ja) * 2009-04-14 2010-11-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物及びこれを用いた回路形成用基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135684A (ja) * 1997-07-24 1999-02-09 Hitachi Chem Co Ltd ポリイミド前駆体、ポリイミド及びその製造法
JP2001254014A (ja) * 2000-01-05 2001-09-18 Toray Ind Inc 感光性ポリイミド前駆体組成物および金属箔−ポリイミド複合体
JP5566378B2 (ja) 2008-06-06 2014-08-06 ビーエーエスエフ ソシエタス・ヨーロピア オキシムエステル光開始剤
JP5577728B2 (ja) * 2010-02-12 2014-08-27 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物及びこれを用いた回路形成用基板
JP2011174020A (ja) 2010-02-25 2011-09-08 Nissan Chem Ind Ltd ポリアミド酸エステルの製造方法
JP5715440B2 (ja) 2011-02-24 2015-05-07 旭化成イーマテリアルズ株式会社 アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途
KR20120002917A (ko) 2011-06-13 2012-01-09 오정표 액세서리용 보석의 흡착장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304871A (ja) * 1994-05-12 1995-11-21 Hitachi Ltd ポリイミド前駆体と感光性樹脂組成物及びそれを用いた電子装置
JP2001305749A (ja) * 2000-04-18 2001-11-02 Toray Ind Inc 感光性耐熱樹脂前駆体のパターン形成方法
JP2002037886A (ja) * 2000-07-27 2002-02-06 Hitachi Chemical Dupont Microsystems Ltd ポリイミド及びその前駆体、感光性樹脂組成物、パターンの製造法並びに電子部品
JP2003209104A (ja) * 2002-01-15 2003-07-25 Hitachi Chemical Dupont Microsystems Ltd 半導体装置及びその材料
JP2003255535A (ja) * 2002-03-06 2003-09-10 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、パターン製造法及びこれを用いた電子部品
JP2003345012A (ja) * 2002-05-28 2003-12-03 Hitachi Chemical Dupont Microsystems Ltd 感光性組成物、及びこれを用いた電子部品
JP2008076583A (ja) * 2006-09-20 2008-04-03 Asahi Kasei Electronics Co Ltd 硬化レリーフパターンの製造方法
JP2010266843A (ja) * 2009-04-14 2010-11-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物及びこれを用いた回路形成用基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170600A1 (ja) * 2016-03-31 2017-10-05 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP6271105B1 (ja) * 2016-03-31 2018-01-31 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2018101138A (ja) * 2016-03-31 2018-06-28 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2019197227A (ja) * 2016-03-31 2019-11-14 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
US10831101B2 (en) 2016-03-31 2020-11-10 Asahi Kasei Kabushiki Kaisha Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor apparatus
CN113820920A (zh) * 2016-03-31 2021-12-21 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法和半导体装置
WO2020070924A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2020056956A (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2020070924A1 (ja) * 2018-10-03 2021-09-24 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Also Published As

Publication number Publication date
KR102215890B1 (ko) 2021-02-15
TWI625361B (zh) 2018-06-01
KR20150100622A (ko) 2015-09-02
TW201803936A (zh) 2018-02-01
TW201425474A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
JP6879328B2 (ja) ポリイミド前駆体、該ポリイミド前駆体を含む感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置
JP6610643B2 (ja) ポリイミド前駆体樹脂組成物
JP6888660B2 (ja) ポリイミド前駆体を含む樹脂組成物、硬化膜の製造方法及び電子部品
JP6414060B2 (ja) 樹脂組成物、それを用いたパターン形成方法及び電子部品
JP6164070B2 (ja) ポリイミド前駆体、該ポリイミド前駆体を含む樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置
JP2015151405A (ja) ポリイミド前駆体を含む樹脂組成物、硬化膜の製造方法及び電子部品
JP6146005B2 (ja) ポリイミド前駆体組成物、該組成物を用いた硬化膜
JP6390165B2 (ja) ポリイミド前駆体、該ポリイミド前駆体を含む感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置
JP6244871B2 (ja) ポリイミド前駆体樹脂組成物
WO2014097595A1 (ja) 感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置
JP2014201696A (ja) ポリイミド前駆体、該ポリイミド前駆体を含む感光性樹脂組成物、及びそれを用いたパターン硬化膜の製造方法
WO2018155547A1 (ja) 感光性樹脂組成物、硬化パターンの製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜、及び電子部品
JP6044324B2 (ja) ポリイミド前駆体樹脂組成物
JP2015224261A (ja) ポリイミド前駆体を含む樹脂組成物、硬化膜、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010929

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP