WO2014097569A1 - リチウム二次電池用正極材料 - Google Patents

リチウム二次電池用正極材料 Download PDF

Info

Publication number
WO2014097569A1
WO2014097569A1 PCT/JP2013/007223 JP2013007223W WO2014097569A1 WO 2014097569 A1 WO2014097569 A1 WO 2014097569A1 JP 2013007223 W JP2013007223 W JP 2013007223W WO 2014097569 A1 WO2014097569 A1 WO 2014097569A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium secondary
secondary battery
electrode material
composite oxide
Prior art date
Application number
PCT/JP2013/007223
Other languages
English (en)
French (fr)
Inventor
嘉昭 浜野
岩崎 洋介
Original Assignee
Jfeミネラル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeミネラル株式会社 filed Critical Jfeミネラル株式会社
Priority to KR1020157018009A priority Critical patent/KR101678332B1/ko
Priority to EP13865386.0A priority patent/EP2937917B1/en
Priority to CN201380067303.9A priority patent/CN104885266B/zh
Priority to US14/652,894 priority patent/US20150340683A1/en
Priority to CA2893716A priority patent/CA2893716C/en
Publication of WO2014097569A1 publication Critical patent/WO2014097569A1/ja
Priority to US16/683,611 priority patent/US20200083523A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel positive electrode material for lithium secondary battery (positive electrode material for lithium lithium secondary battery) and a manufacturing method thereof.
  • Lithium and transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 , and LiMnO 2 are known as positive electrode materials for lithium secondary batteries.
  • a lithium secondary battery using a composite oxide having a layered rock salt structure in which cobalt or nickel is dissolved, such as LiNi 0.8 Co 0.2 O 2 , as a positive electrode active material is 180 to 200 mAh / g.
  • a relatively high capacity density can be achieved. Also, it exhibits good reversibility in a high voltage range of 2.5 to 4.5V.
  • lithium-nickel-cobalt composite oxide represented by LiNi 0.8 Co 0.2 O 2
  • commercialization of lithium secondary batteries with high voltage and high energy density has been promoted by using these as positive electrode materials and using carbon materials or the like capable of inserting and extracting lithium as negative electrode materials.
  • the positive electrode material is a substance that plays the most important role in the battery characteristics and safety of the lithium secondary battery.
  • composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x O 2 , and LiMnO 2 have been studied.
  • Mn-based positive electrode materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize and relatively inexpensive, but have a drawback of low discharge capacity.
  • Co-based positive electrode materials such as LiCoO 2 have good electrical conductivity, high battery voltage, and excellent electrode characteristics, but there is a problem that Co metal as a main raw material is rare and expensive.
  • the Ni-based positive electrode material such as LiNiO 2 uses relatively inexpensive Ni metal as the main raw material among the above-described positive electrode materials, and the theoretical discharge amount is not much different from LiCoO 2 , but when a battery is configured. It is excellent in the capacity that can be actually taken out. However, there is a drawback that synthesis is difficult.
  • This electrode active material is a powder having a particle size distribution, and is a technique for changing the composition M according to the particle size.
  • the present invention has a high safety, a large capacity, excellent rate characteristics, and does not deteriorate, such as Li—Ni—Co—O, Li—Ni—Mn—O, or Li—Ni—Mn—Co—O.
  • a material hereinafter referred to as a positive electrode material used for a positive electrode active material of a novel lithium secondary battery having a composition.
  • the present invention provides a positive electrode material for a lithium secondary battery comprising a composite oxide composition having two or more other element components in addition to a Li—Ni—Co (or Mn) —O material, A manufacturing method thereof and a lithium secondary battery using the novel material are provided.
  • a positive electrode material for a lithium secondary battery wherein the overall composition is a composite oxide represented by Li a Ni b Mc N d Le O x
  • M one or two elements selected from Mn and Co
  • N one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe
  • L one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba
  • a / (b + c + d): 0.80 to 1.30 b / (b + c + d): 0.30 to 0.95 c / (b + c + d): 0.05 to 0.60 d / (b + c + d): 0.005 to 0.10 e / (b + c + d): 0.0005 to 0.010 b + c + d 1, x: 1.5 to 2.5 It is.
  • the positive electrode material for a lithium secondary battery according to (1) wherein a mass change after 240 hours is 0.60% by mass or less in an atmosphere of air, 25 ° C., and humidity 60%.
  • a positive electrode having a positive electrode active material including the positive electrode material for a lithium secondary battery according to any one of (1) to (5), a negative electrode having a negative electrode active material, the positive electrode, and the negative electrode
  • a lithium secondary battery comprising an ion conduction medium that is interposed between the two and conducts lithium ions.
  • the composite oxide includes a Li compound, a hydroxide obtained by coprecipitation of one or more elements selected from Mn and Co together with a Ni element, an oxide of an element other than the above, Any one of (1) to (5), which is a composite oxide produced by mixing and baking one or more compounds selected from nitrates, sulfates, carbonates, acetates, and phosphates
  • the positive electrode material for lithium secondary batteries as described in any one.
  • the positive electrode material for a lithium secondary battery of the present invention is an excellent positive electrode material with high safety, large capacity, excellent rate characteristics, and good balance without deterioration.
  • the positive electrode material of the present invention is a composite oxide whose overall composition is represented by Li a Ni b Mc N d Le O x .
  • Li lithium, Ni (nickel), Mn (manganese), Co (cobalt), Mg (magnesium), Al (aluminum), Ti (titanium), Cr (chromium), Fe (iron), B ( Boron), C (carbon), Na (sodium), Si (silicon), P (phosphorus), S (sulfur), K (potassium), Ca (calcium), Ba (barium), and O (oxygen).
  • the Li component is 0.80 to 1.30 mol. When there is little Li, it will become a crystal structure with many lithium vacancies, and when it uses for the positive electrode for lithium secondary batteries, the capacity
  • the Ni component is 0.30 to 0.95 mol.
  • the range is preferably from 0.50 to 0.95 mol, more preferably from 0.60 to 0.95 mol.
  • M components Mn and Co increase the thermal stability, but if they are too much, the discharge capacity is lowered, so the range is 0.05 to 0.60 mol.
  • the amount is preferably 0.05 to 0.40 mol.
  • the M component and the N component can generate Ni and a coprecipitation hydrate in advance to be used as a raw material for the positive electrode material.
  • One or more components selected from the group consisting of N, Mg, Al, Ti, Cr, and Fe are in the range of 0.005 to 0.10 mol.
  • the amount is preferably 0.005 to 0.07 mol. Within this range, there is an effect that the crystallinity is appropriately lowered and Li ion diffusion can be improved. Allocation exceeding 0.10 mol causes a reduction in battery capacity.
  • the resulting positive electrode material has an air atmosphere and room temperature environment. Below, there is little mass change with time.
  • the L component, C, S, and Ba are preferable.
  • the L component is contained in the range of 0.0005 to 0.010 mol in order to improve the thermal stability. When the amount is too small, it is difficult for the positive electrode of the manufactured secondary battery to obtain appropriate thermal stability, and mass change with time increases in an air atmosphere and a normal temperature environment. Moreover, when it distributes exceeding 0.010 mol, a capacity
  • the range is preferably 0.001 to 0.008 mol.
  • the positive electrode material for a lithium secondary battery of the present invention is selected from the group consisting of Mg, Al, Ti, Cr and Fe as an N component in an oxide composition based on Li, Ni, Mn and / or Co. It is characterized by adding one or two or more elements selected from the group consisting of seeds or two or more elements and B, C, Na, Si, P, S, K, Ca and Ba as L components. is there.
  • the effect of adding the N component and the L component is not necessarily clear, but the addition of the N component is preferable because a particularly remarkable effect is obtained on the high rate discharge performance. However, depending on the combination of components and their ratio, the balance of battery performance and safety may be impaired. In such a case, the discharge performance may not be improved by addition of the N component.
  • the N component element By adding the N component element, it is considered that the crystallinity of the positive electrode material is moderately lowered, affects the Li ion migration path, and improves Li ion conductivity.
  • the L component element is considered to have an effect of immobilizing Li existing in excess and a bonding state of each main element in the positive electrode material crystal system, and preventing Li from falling off in the positive electrode material crystal. As a result, it is presumed that the mass change with time is reduced in the air atmosphere and the room temperature environment to prevent the deterioration of the positive electrode material in the air.
  • the positive electrode material for a lithium secondary battery of the present invention contains a small amount of N component when a part of Ni is substituted with Co and / or Mn, and further contains a combination of a smaller amount of L component than N component. It is characterized by the resulting composite oxide.
  • Co, Mn, and Ba contribute to high safety as a lithium secondary battery.
  • Al and Mg are added to the system of the present invention, there is an effect of improving cycle characteristics, and Al, Ti, Cr, and Fe are considered to have an effect of improving rate characteristics.
  • the mass change after 240 hours is preferably 0.60 mass% or less in an atmosphere of air, 25 ° C., and humidity of 60%. More preferably, it is 0.50 mass% or less, More preferably, it is 0.45 mass% or less.
  • the measurement is performed by measuring a change in mass before and after 240 hours in an atmosphere controlled in an air atmosphere, a temperature of 25 ⁇ 3 ° C., and a humidity of 60 ⁇ 5%.
  • the positive electrode material for lithium secondary batteries containing nickel is easy to absorb water and carbon dioxide. When moisture in the atmosphere is absorbed, lithium hydrate is generated, and after the generated lithium hydrate absorbs carbon dioxide, lithium hydrogen carbonate and lithium carbonate are generated.
  • the mass change rate can be suppressed by adding at least one of the L component elements Ba, Ca, K, Na, S, C, Si, P, and B.
  • the positive electrode material for a lithium secondary battery of the present invention it is preferable that primary particles having an average particle diameter of 0.1 ⁇ m or more aggregate to form secondary particles. Since the thermal stability is lowered due to the presence of particles of less than 0.1 ⁇ m, a positive electrode material in which primary particles having an average particle diameter of 0.1 ⁇ m or more aggregate to form secondary particles is preferable.
  • secondary particles in which polyhedral primary particles are aggregated in a substantially spherical shape are observed with an electron microscope at a magnification of 3000 times.
  • the present invention provides a positive electrode material for a lithium secondary battery that increases the density of the entire mixture used for the positive electrode, increases the capacity per volume of the positive electrode, and satisfies the battery characteristics to the maximum. For this purpose, it is effective to increase the filling rate between the particles of the positive electrode material, and it is preferable that there is an appropriate particle size distribution between the particles.
  • the average particle diameter of the primary particles of the positive electrode material is 0.1 ⁇ m or more to form secondary particles in which the primary particles are aggregated, and the secondary particles have a
  • the density of the molded body when a load of 95.5 MPa is applied is preferably 3.20 g / cc or more. A higher upper limit is better, but it is not practical to exceed 4.50 g / cc.
  • the press density is within this range, the capacity per volume of the electrode increases. More preferably, the press density is 3.40 g / cc or more.
  • the density of the press-molded body is also called a press density, a pressure density, or a pellet density (when tableted), and the lithium secondary battery positive electrode material exhibits characteristics closer to the product than the tap density.
  • the positive electrode material of the present invention compared with the tap density, two products having a large tap density and a small tap density may be reversed to a small press density and a large press density. This is presumably because the press density shows the overall characteristics of the surface state and the particle size distribution.
  • the addition of Mg, Ba, Ca, K, Na improves the press density, and the mass increase rate can be suppressed by adding Ba, Ca, K, Na, S, C, Si, P, B. Conceivable.
  • the positive electrode material for a lithium secondary battery of the present invention can adjust the particle size distribution of secondary particles so that the press density becomes high.
  • a positive electrode material having a high press density is used, the electrode density of the positive electrode increases and the discharge capacity per volume increases.
  • the proportion of secondary particles of less than 3 ⁇ m increases, the coatability of the electrode deteriorates. Therefore, it is desirable that the average particle diameter of the secondary particles is 3 ⁇ m or more because the coatability of the electrode is excellent.
  • the distribution of the entire particle size range is obtained by a laser diffraction scattering measurement method.
  • D 10 , D 90 means the particle size at an integrated value of 10% and 90% in the number-based particle size distribution, and is determined by a laser diffraction scattering measurement method.
  • D 90 -D 10 is more preferably 5.0 ⁇ m or more. Within this range, the press density increases, the capacity per volume of the positive electrode material increases, and the resulting battery capacity increases. More preferably, D 90 -D 10 is 7.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the method to adjust the particle size distribution to an appropriate range is to adjust the particle size range before firing appropriately, or crush it if necessary after sintering, and classify it with a filter to adjust the particle size distribution. May be.
  • the press density of the positive electrode material When the press density of the positive electrode material is high, the capacity per volume of the positive electrode increases, which can contribute to an increase in battery capacity. However, depending on the particle size and type of the positive electrode material during the rolling process, breakage, peeling off, etc. may occur and the density cannot be increased. If necessary, two or more kinds of powders having different average particle diameters may be produced by changing the production conditions, and may be mixed within an appropriate range.
  • a positive electrode material having a high press density can be obtained by adjusting the firing temperature and pulverization conditions in the production conditions.
  • the manufacturing method of the positive electrode material of this invention is demonstrated below, it is not limited to the following description.
  • a raw material used for producing the composite oxide that is the positive electrode material of the present invention an oxide or a material that becomes an oxide by a firing reaction during synthesis in the production process can be used.
  • the raw material used for producing the composite oxide which is the positive electrode material of the present invention comprises one or two elements selected from Li and Ni, Mn and Co, and Mg, Al, Ti, Cr and Fe.
  • the positive electrode material for lithium secondary batteries can be manufactured.
  • the method for synthesizing the composite oxide of the present invention is not particularly limited, and is synthesized by various methods such as a solid-phase reaction method, a method of firing it through precipitation from a solution, a spray combustion method, a molten salt method, and the like. be able to.
  • the firing temperature is appropriately selected depending on the type of composite oxide to be formed by mixing a lithium source, a nickel source, etc. at a ratio corresponding to the composition of the target lithium nickel composite oxide. It can be synthesized by firing at a temperature of about 700 to 950 ° C. in an atmosphere of one or more gases selected from the group consisting of oxygen, nitrogen, argon and helium.
  • the calcination is pre-baking for 2 to 6 hours at 300 to 500 ° C. in an oxygen atmosphere, a temperature raising step for raising the temperature at 5 to 30 ° C./min after the pre-baking, and 700 to 950 following the temperature raising step.
  • Ni source As the Ni source, Co source, and Mn source, oxides, hydroxides, nitrates, and the like can be used. When Ni, Co, and Mn are included, uniform mixing is important. Ni—Co— (OH) 2 , Ni—Mn— (OH) 2 , and Ni—Co—Mn— (OH) 2 are particularly preferred as raw materials. In Ni—Co— (OH) 2 , Ni—Mn— (OH) 2 , and Ni—Co—Mn— (OH) 2 , the ratio of Co and Mn to the total amount of Ni, Co, and Mn is 0. Prepare to 05-0.60.
  • Ni-Co- (OH) 2 fine Ni-Co- (OH) 2 , Ni-Mn- (OH) 2 , Ni-Co-Mn- (OH) 2 secondary powdery powder by wet synthesis method. It is desirable to adjust the product so that the average particle size is 5 to 20 ⁇ m and the tap density is 1.8 g / cc or more.
  • Li source hydroxide, nitrate, carbonate and the like are preferable.
  • a compound of one or more elements selected from Mg, Al, Ti, Cr, and Fe of N component, and B, C, Na, Si, P, S, K, Ca, and Ba of L component Elemental oxides, hydroxides, carbonates, nitrates and organic acid salts are used.
  • a preferable production method includes a Li compound, a hydroxide obtained by coprecipitation of M element (one or two elements selected from Mn and Co) together with Ni, an oxide of a raw material of other elements, a nitrate,
  • a composite oxide can be produced by mixing and firing compounds of one or more components selected from sulfates, carbonates, acetates, and phosphates.
  • N element one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe
  • L element B, C, Na, Si, P, S, K, Ca
  • elements selected from the group consisting of Ba and oxides, nitrates, sulfates, carbonates, acetates, phosphoric acids as raw materials of other elements
  • a compound oxide may be produced by mixing compounds of one kind or two or more kinds of components selected from salts and baking them.
  • the positive electrode mixture is formed by mixing the positive electrode active material powder of the present invention with a carbon-based conductive material such as acetylene black, graphite, or ketjen black and a binder.
  • a carbon-based conductive material such as acetylene black, graphite, or ketjen black
  • a binder polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used.
  • a slurry in which the above-mentioned positive electrode mixture is dispersed in a dispersion medium such as N-methylpyrrolidone is applied to a positive electrode current collector such as an aluminum foil, dried and press-rolled to form a positive electrode active material layer on the positive electrode current collector Form.
  • the solute of the electrolyte solution ClO 4 -, CF 3 SO 3 -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, It is preferable to use at least one lithium salt having CF 3 CO 2 —, (CF 3 SO 2 ) 2 N— or the like as an anion.
  • the carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate (EC).
  • chain carbonate examples include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
  • DEC diethyl carbonate
  • ethyl methyl carbonate examples include methyl propyl carbonate, methyl isopropyl carbonate and the like.
  • a porous polyethylene, a porous polypropylene film, etc. are used for a separator.
  • the negative electrode active material of a lithium battery using the positive electrode material of the present invention for the positive electrode is a material that can occlude and release lithium ions.
  • the material for forming the negative electrode active material is not particularly limited.
  • lithium metal, lithium alloy, carbon material, carbon compound, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, periodic table 14, and group 15 metal are used.
  • the main oxides are listed.
  • the soft package battery or the like is selected according to the application.
  • Ni—Co— (OH) 2 obtained by adjusting the molar ratio of Ni and Co as a raw material
  • Ni source and Co source was prepared by a wet solution synthesis method.
  • Commercially available reagents were used as other starting materials.
  • the lithium hydrate, Al source in Li source in Al 2 O 3, Ba source was used Ba (NO 3) 2.
  • These starting materials were weighed so as to have the desired composition and then mixed thoroughly to obtain a raw material for firing. Firing is performed in an oxygen atmosphere, and is first held at 400 ° C. for 4 hours. After mainly removing moisture in the raw material, the temperature is increased at a rate of temperature increase of 5 ° C./minute, and a firing temperature of 800 ° C. and a holding time of 4 hours are performed.
  • the fired product was taken out from the furnace after cooling.
  • the taken out fired product was crushed to obtain a positive electrode material powder.
  • the obtained powder and water were mixed, stirred, dehydrated and dried. Under the conditions described later, particle size distribution measurement, chemical composition analysis, and other evaluation measurements were performed. The evaluation results are shown in Table 1. "-" In the table indicates that the item has not been implemented and has not been measured.
  • Examples 2 to 22, Comparative Examples 1 to 9 The same raw materials as in Example 1 were used for the Ni source, Co source, Li source, Al source, and Ba source.
  • Mn sources of Examples 11, 12, 13, 22 and Comparative Example 7 Ni—Co—Mn— (OH) 2 obtained by adjusting the molar ratio of Ni, Co and Mn was prepared by a wet solution synthesis method. The raw material produced by was used. Further, Ni— (OH) 2 was used for the Ni source of Comparative Example 5, Ni source of Comparative Example 6, and Ni—Mn— (OH) 2 obtained by adjusting the molar ratio of Ni and Mn was wet for the Mn source. The raw material produced by the solution synthesis method was used. Commercially available reagents were used as other starting materials.
  • S source is sulfur powder
  • C source is carbon black
  • Si source is SiO 2
  • K source is KNO 3
  • Mn source is Mn 3 O 4
  • Mg source is MgO
  • Ti source is TiO 2
  • Fe 2 O 3 for Fe source P 2 O 5 for P source
  • Ca (NO 3 ) 2 .4H 2 O for Ca source Cr 2 O 3 for Cr source, NaNO 3 for B source, B H 3 BO 3 was used as the source.
  • the firing step and the water washing step were performed in the same manner as in Example 1 to produce a positive electrode material powder.
  • Example 13, Example 22, and Comparative Example 9 did not perform the water washing process.
  • N-methyl-2-pyrrolidone was added to 90% by mass of the positive electrode material powder for lithium secondary batteries of Examples and Comparative Examples, 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, kneaded sufficiently, and then mixed with aluminum.
  • An electrode was applied to a thickness of about 150 ⁇ m, pressed at about 200 kg / cm 2 , and punched out into a disk with a diameter of 14 mm, and vacuum dried at 150 ° C. for 15 hours to obtain a positive electrode.
  • a lithium metal sheet was used for the negative electrode, and a polypropylene porous membrane (trade name Celgard # 2400) was used for the separator. Further, 1 mol of LiClO 4 was dissolved in 1 L of a mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) at a volume ratio of 1: 1 to obtain a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DMC dimethyl
  • test cell was assembled in a glove box substituted with argon, the current density was set to a constant value of 0.5 mA / cm 2 , and the voltage was charged / discharged in the range of 2.75 to 4.25 V. The discharge capacity was measured. Further, the initial charge / discharge efficiency was calculated by the following formula.
  • Rate characteristic (%) [(Discharge capacity value at 2.0 mA / cm 2 ) / (Discharge capacity value at 0.5 mA / cm 2 )] ⁇ 100
  • Powder characteristics 1) Average particle diameter of primary particles: The obtained positive electrode material is observed with an electron microscope, and the particle diameter is measured. 2) Particle size distribution of secondary particles The distribution of the entire particle size range is determined by a laser diffraction / scattering type measuring device. “D 10 , D 90 ” means the particle size at an integrated value of 10% and 90% in the number-based particle size distribution. 3) When a certain amount of sample was put into a mold having a press density diameter of 20 mm and a pressure of 95.5 MPa was applied, the density was calculated from the measured value of the sample height and the sample mass. The tap density indicates a characteristic that a powder in which coarse and fine particles are naturally mixed without being pressurized is filled. The press density indicates the characteristic of how coarse and fine particles are filled under pressure.
  • a battery for a nail holder test was manufactured as follows. After mixing 89% by mass of the synthesized positive electrode material powder for lithium secondary battery, 6% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, adding N-methyl-2-pyrrolidone and kneading sufficiently, A positive electrode was prepared by applying, drying and pressing an aluminum current collector. For the negative electrode, N-methyl-2-pyrrolidone was added to 92% by mass of carbon black, 3% by mass of acetylene black, and 5% by mass of polyvinylidene fluoride, kneaded, and then applied to a 14 ⁇ m thick copper current collector, dried and pressed. Made.
  • the electrode thicknesses of the positive electrode and the negative electrode were 75 ⁇ m and 100 ⁇ m, respectively.
  • the electrolyte is a solution of 1 mol of LiPF 6 in 1 liter of a 1: 1 mixed solution of ethylene carbonate (EC) / methyl ethyl carbonate (MEC).
  • the separator is a polypropylene porous membrane and an aluminum laminate.
  • a square battery having dimensions of 60 mm ⁇ 35 mm ⁇ thickness 4 mm was made as a prototype. As a result of charging to 4.2 V at a current value of 160 mA and measuring the discharge capacity to 3.0 V at the same current value, it was 800 mA.
  • Example 1 of the present invention in which Al as an N component and Ba as an L component were added to the Li—Ni—Co—O system of Comparative Example 2, the initial discharge capacity and the initial charge / discharge efficiency were slightly reduced, A positive electrode material with improved properties and press density, a low mass increase rate, and an excellent property balance that passed the nail penetration test was obtained. Further, in Example 5 in which Mn was additionally added as the M component and Mg was additionally added as the N component, each characteristic was further improved. Comparative Examples 1, 2 and 8 without the addition of the L component and Comparative Example 9 in which the water washing step is omitted with respect to the example in which the L component effective for reducing the mass increase rate is added.
  • Examples 1, 3, 11, 20, and 22 the distribution of secondary particles is sufficiently wide.
  • Examples 3, 4, 8, 9, and 18 have a high press density.
  • Examples 6, 7, 11, 12, and 13 have a low mass increase rate.
  • Examples 5 and 7 to 10 have a high initial discharge capacity.
  • Examples 1, 5 to 11, 16, and 22 have high initial charge / discharge efficiency.
  • Examples 8, 11, 13, 15 to 17, and 20 have high rate characteristics.
  • the positive electrode using the positive electrode material for a lithium secondary battery of the present invention has high safety, large capacity, excellent rate characteristics, and small mass increase rate under a specific atmosphere.
  • a lithium secondary battery using such a positive electrode is widely used as a small, light and high energy density power source in information-related equipment, communication equipment, vehicles and the like.
  • the secondary battery manufactured using the positive electrode material for a lithium secondary battery of the present invention includes a cylindrical battery using a cylindrical (cylindrical or rectangular) outer can, a flat battery (circular in plan view, The present invention can be similarly applied to a flat battery using a rectangular flat-shaped outer can and a soft package battery using a laminate film as an outer casing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

全体組成がLiNiで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料:但し、M:MnおよびCoから選ばれる1種又は2種の元素、N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、a/(b+c+d) : 0.80~1.30、b/(b+c+d) : 0.30~0.95、c/(b+c+d) : 0.05~0.60、d/(b+c+d) : 0.005~0.10、e/(b+c+d) : 0.0005~0.010、b+c+d=1、x : 1.5~2.5である。

Description

リチウム二次電池用正極材料
 本発明は、リチウム含有複合酸化物からなる新規なリチウム二次電池用正極材料(positive electrode material for a lithium secondary battery)およびその製造方法に関する。
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する二次電池、特にリチウム二次電池に対する期待が高まっている。リチウム二次電池用の正極活物質(positive electrode material)には、LiCoO2、LiNiO2、LiNi0.8Co0.22、LiMn24、LiMnO2などのリチウムと遷移金属の複合酸化物が知られている。LiNi0.8Co0.22のようにコバルトやニッケルを固溶させた岩塩層状複合酸化物(composite oxide having a layered rock salt structure)を正極活物質に用いたリチウム二次電池は、180~200mAh/gと比較的高い容量密度を達成できる。また、2.5~4.5Vといった高い電圧域で良好な可逆性を示す。
特に最近では、高容量を発現できる材料として、LiNi0.8Co0.22に代表されるリチウム-ニッケル-コバルト複合酸化物の採用が始まっている。これらを正極材料に用い、リチウムを吸蔵、放出することができる炭素材料等を負極材料として使用することによる、高電圧、高エネルギー密度のリチウム二次電池の商品化が進められている。
正極材料は、リチウム二次電池の電池特性および安全性に最も重要な役割を果たす物質である。近年 LiCoO2、LiMn24、LiNiO2、LiNi1-xCo、LiMnO2等の複合金属酸化物が研究されている。
これらの正極材料のうちLiMn24、LiMnO2等のMn系正極材料は合成が容易であり、比較的安価であるが、放電容量(discharge capacity)が小さいという欠点を持っている。LiCoO2、等のCo系正極材料は、良好な電気伝導度と高い電池電圧、さらに優れた電極特性を持つが、主原料であるCo金属が希少であり、高価であるという問題がある。LiNiO2、等のNi系正極材料は、上述した正極材料のうちでは比較的安価なNi金属を主原料として使用し、理論放電量においてはLiCoO2と大差がないが、電池を構成した場合に実際に取り出すことのできる容量において優れる。しかし合成が困難であるという欠点がある。
特許文献1には、Liよりなる電極活物質で、M = AzA’z’M’1- z - z’であり、
M’は、Mn,Ni,Coであり、Aは、Al、Mg、Ti、Crから選ばれた金属であり、A’ は、F、Cl、S、Zr、Ba、Y、Ca、B、Be、Sn、Sb、Na、Znから選ばれた元素である電極活物質が記載されている(請求項3)。この電極活物質は粒度分布を有する粉体であり、粒度に応じて組成Mを変化させる(請求項5)技術である。
従来技術では、成分の異なる種々の正極材料が検討されている、しかし、従来技術の正極材料で得られるリチウム二次電池では、放電容量、充放電効率、レート特性(rate performance)および安全性について、さらなる改良が求められている。特に正極材料が大気雰囲気下で経時の質量変化が大きい組成物であるとそれを使用したリチウム二次電池の品質に影響するという問題がある。
特表2007-517368号公報
 本発明は、安全性が高く容量が大きく、レート特性に優れ、劣化しない、Li-Ni-Co-O系、Li-Ni-Mn-O系、またはLi-Ni-Mn-Co-O系の組成を有する新規なリチウム二次電池の正極活物質に用いられる材料(以下、正極材料という)を提供する。
上記課題を解決するために、本発明は、Li-Ni-Co(またはMn)-O材料に、さらに2種以上の他元素成分を有する複合酸化物組成よりなるリチウム二次電池用正極材料、その製造方法、及びこの新規な材料を用いたリチウム二次電池を提供する。
 (1)全体組成がLiNiで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料:
但し、
M:MnおよびCoから選ばれる1種又は2種の元素、
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、
a/(b+c+d) : 0.80~1.30
b/(b+c+d) : 0.30~0.95
c/(b+c+d) : 0.05~0.60
d/(b+c+d) : 0.005~0.10
e/(b+c+d) : 0.0005~0.010
b+c+d=1、
x : 1.5~2.5
である。
(2)大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が0.60質量%以下である、(1)に記載のリチウム二次電池用正極材料。
(3)荷重を95.5MPa与えた時の成型体の密度が3.20g/cc以上である、(1)または(2)に記載のリチウム二次電池用正極材料。
(4)平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している、(1)~(3)のいずれか1つに記載のリチウム二次電池用正極材料。
(5)前記複合酸化物の二次粒子の粒度分布において、個数基準のD90とD10との差が5.0μm以上である(4)に記載のリチウム二次電池用正極材料。
(6)上記(1)に記載のリチウム二次電池用正極材料の製造方法であって、原料元素または原料元素を含む化合物を混合し、700~950℃で焼成する焼成工程の後に水洗工程を含むリチウム二次電池用正極材料の製造方法。
(7)上記(1)~(5)のいずれか1つに記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。
(8)前記複合酸化物が、Li化合物と、Ni元素と共に、MnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である(1)~(5)のいずれか1つに記載のリチウム二次電池用正極材料。
 本発明のリチウム二次電池用正極材料は、安全性が高く、容量が大きく、レート特性に優れ、劣化しないバランスの良い優れた正極材料である。
以下に本発明を説明する。
〔リチウム二次電池用正極材料〕
本発明の正極材料は、全体組成がLiNiで表される複合酸化物である。ここで、
M:MnおよびCoから選ばれた1種又は2種の元素
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素であり、
a/(b+c+d) : 0.80~1.30
b/(b+c+d) : 0.30~0.95
c/(b+c+d) : 0.05~0.60
d/(b+c+d) : 0.005~0.10
e/(b+c+d) : 0.0005~0.010
b+c+d=1、および x : 1.5~2.5である。
ここで、Li(リチウム)、Ni(ニッケル)、Mn(マンガン)、Co(コバルト)、Mg(マグネシウム)、Al(アルミニウム)、Ti(チタン)、Cr(クロム)、Fe(鉄)、B(ホウ素)、C(炭素)、Na(ナトリウム)、Si(ケイ素)、P(リン)、S(硫黄)、K(カリウム)、Ca(カルシウム)、Ba(バリウム)、O(酸素)である。
上記成分は、NiとMとNの合計が1モル(すなわちb+c+d=1)とした時の成分のモル数を表す。
 Li成分は、0.80~1.30モルとする。Liが少ないとリチウム欠損が多い結晶構造となり、リチウム二次電池用正極に用いたときに電池の容量が低下する。多すぎると水酸化リチウムや炭酸リチウム等の水和物や炭酸化物を生成し、電極製造時にゲル化状態となるため、0.80~1.30モルの範囲とする。好ましくは0.85~1.20モルの範囲とする。
 Ni成分は、0.30~0.95モルとする。少なすぎると電池の容量が低下し、多すぎると安定性が劣る。好ましくは0.50~0.95モルの範囲、より好ましくは0.60~0.95モルの範囲とする。
 M成分のMnおよびCoは、熱安定性を高めるが、多すぎると放電容量を低下させるため、0.05~0.60モルの範囲とする。好ましくは0.05~0.40モルである。M成分とN成分とは、予めNiと共沈水和物を生成し、正極材料用原料とすることもできる。
 N成分のMg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の成分は、0.005~0.10モルの範囲とする。好ましくは0.005~0.07モルである。この範囲であると結晶性が適度に低下しLiイオン拡散を良好にできる効果がある。0.10モルを超えて配分すると電池の容量低下を招く。
 L成分のB、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素を含むと、得られる正極材料が、大気雰囲気、常温環境下において、経時の質量変化が少ない。L成分としてC、S、Baが好ましい。L成分は熱安定性を向上させるために、0.0005~0.010モルの範囲で含有させる。少な過ぎると、製造される二次電池の正極が適正な熱安定性を得ることが困難であり、大気雰囲気、常温環境下において、経時の質量変化が大きくなる。また、0.010モルを超えて配分すると容量が極度に低下する。好ましくは0.001~0.008モルの範囲とする。
本発明のリチウム二次電池用正極材料は、Li、Ni、Mnおよび・またはCoを基本とする酸化物組成に、N成分として、Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素と、L成分としてのB、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種または2種以上の元素を加えることが特徴である。N成分とL成分とを加えることによる作用効果については必ずしも明らかではないが、N成分の添加によって高率放電性能に特に顕著な効果が得られるため、好ましい。しかし、成分の組合せとそれらの量比によっては電池の性能のバランスや安全性を損なう場合があり、そのような場合はN成分の添加によっても放電性能が上がらない場合がある。このためN成分とL成分とを組み合わせることが有効である。
N成分元素を添加することで、正極材料の結晶性が適度に低下して、Liイオンの移動経路へ影響し、Liイオン伝導性が向上するのではないかと考えられる。L成分元素は、余剰に存在するLiを固定化する効果と正極材料結晶系における各主要元素の結合状態に影響を及ぼし、正極材料結晶中のLiの脱落を防ぐ効果があると考えられ、その結果、大気雰囲気、常温環境下において経時の質量変化を少なくして大気中における正極材料の劣化を防止するものと推定している。
本発明のリチウム二次電池用正極材料は、Niの一部をCoおよび・またはMnで置換する際に、少量のN成分を含有させ、さらにN成分より少量のL成分を組み合わせて含有させて得られる複合酸化物とするのが特徴である。本発明では、Co,Mn,Baは、リチウム二次電池として高い安全性に寄与している。Al,Mgは、本発明の系に添加するとサイクル特性を向上させる効果があり、Al、Ti,Cr,Feは、レート特性を上げる効果があると考えられる。
本発明のリチウム二次電池用正極材料は、大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が、好ましくは0.60質量%以下である。より好ましくは0.50質量%以下、さらに好ましくは0.45質量%以下である。測定は、大気雰囲気、温度25±3℃、湿度60±5%に制御した環境下に、240時間経過前後の質量変化を測定する。
一般にニッケルを含むリチウム二次電池用正極材料は、水と二酸化炭素を吸収し易いと言われる。大気中の水分を吸収すると、リチウム水和物が生成し、生成したリチウム水和物が炭酸ガスを吸収した後、炭酸水素リチウムや炭酸リチウムが生成する。
ニッケルを含むリチウム二次電池用正極材料を使用した二次電池において、正極材料が水分を吸収すると一般に用いられる電解質塩であるLiPFの加水分解が発生し、加水分解によりフッ酸やリン酸などの酸が生成する。生成した酸は、電池の構成材料の一部を分解し種々のガスを放出する。そのため、発生したガスの影響で二次電池に膨れが発生し、安全性の低下を招くことがある。
大気雰囲気、25℃、湿度60%の一定の環境下において、240時間後の質量変化が0.60質量%以下であれば、上記の現象が起因となる正極合剤ペースト(塗料)のゲル化および電池の膨れが低減する。本発明の系では、L成分元素である、Ba、Ca、K、Na、S、C、Si、P、Bの少なくとも1つの添加によって、質量変化率を抑えることができる。
本発明のリチウム二次電池用正極材料は、平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成しているのが好ましい。0.1μm未満の粒子の存在により、熱安定性が低下することから、平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している正極材料が好ましい。本発明の正極材料では、電子顕微鏡で3000倍で観察して多面体の1次粒子が略球状に凝集している2次粒子が観察される。
本発明は正極に用いる合剤全体の密度を増加させて正極電極の体積当たりの容量を高め、電池特性を最大限に満足できるリチウム二次電池用正極材料を提供する。
このためには正極材料の粒子間の充填率を増大させることが有効であり、粒子間に適切な粒度分布があることが好ましい。
本発明では、全体組成がLiNiで表される複合酸化物で、
M:MnおよびCoから選ばれた1種又は2種の元素
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素であり、
a/(b+c+d) : 0.80~1.30
b/(b+c+d) : 0.30~0.95
c/(b+c+d) : 0.05~0.60
d/(b+c+d) : 0.005~0.10
e/(b+c+d) : 0.0005~0.010
b+c+d=1、および x : 1.5~2.5
である正極材料の1次粒子の平均粒径を0.1μm以上として、1次粒子が凝集した2次粒子を形成させ、その2次粒子が比較的広い粒度分布を持つと粒子の充填率が高い。粒子の充填率は粉末をプレスしてペレットに製造した後、ペレットの密度を測定したプレス密度として測定することができる。1次粒子の平均粒径の上限は特に限定されないが、5μm以下とするのが実際的である。
本発明のリチウム二次電池用正極材料は、荷重を95.5MPa与えた時の成型体の密度が好ましくは3.20g/cc以上である。上限は高いほどよいが4.50g/ccを越えるのは実際的ではない。プレス密度がこの範囲であると、電極の容積当たりの容量が増加する。より好ましくは、プレス密度は3.40g/cc以上である。
加圧成形体の密度は、プレス密度、加圧密度、またはペレット密度(錠剤形としたとき)とも呼ばれるもので、リチウム二次電池正極用材料ではタップ密度より製品に近い特性を示す。本発明の正極材料では、タップ密度と比較するとタップ密度大、小の2つの製品がプレス密度小、大と逆転する場合がある。これは表面状態と粒度分布との総合的な特性をプレス密度が示しているからであると考えられる。本発明の系ではMg、Ba,Ca,K,Naの添加がプレス密度を向上させ、Ba、Ca、K,Na,S,C,Si,P,Bの添加で質量増加率を抑えられると考えられる。
本発明のリチウム二次電池用正極材料は、プレス密度が高くなるように二次粒子の粒度分布を調製することができる。プレス密度が高い正極材料を用いると、正極の電極密度が高くなり、体積当たりの放電容量が高くなる。3μm未満の二次粒子の割合が多くなると、電極の塗工性が悪くなるので、二次粒子の平均粒子径が3μm以上である方が電極の塗工性に優れているため望ましい。
粒度分布の測定は、レーザー回折散乱式測定方法によって全粒度範囲の分布を求める。「D10,D90」は、個数基準の粒度分布における積算値10%および90%での粒径を意味し、レーザー回折散乱式測定方法によって求める。本発明の正極材料では、D90-D10が5.0μm以上であるのがより好ましい。この範囲であるとプレス密度が高くなり、正極材料の体積当たりの容量が増加し、得られる電池容量が高くなる。D90-D10が7.0μm以上20.0μm以下であるのがさらに好ましい。
粒径分布を適切な範囲に調製する方法は、焼成前の粒径範囲を適切に調整したり、焼結後に必要な場合は解砕し、フィルター等で分級して粒径分布の調整を行ってもよい。
正極材料のプレス密度が高いと、正極の体積当たりの容量が増加して電池容量の増大に寄与できる。しかし圧延工程時に正極材料の粒径および種類によっては、破壊、剥離脱落などが起こり密度を上げられないことがある。必要な場合は製造条件を変えて異なった平均粒径を有する2種以上の粉体を製造し、それを適性範囲で混合してもよい。製造条件における焼成温度、粉砕条件を調製してプレス密度の高い正極材料を得ることができる。
〔リチウム二次電池用正極材料の製造方法〕
本発明の正極材料の製造方法を以下に説明するが、以下の説明に限定されるものではない。
本発明の正極材料である複合酸化物を製造するのに用いる原料としては、酸化物又は製造工程における合成時の焼成反応により酸化物となるものを用いることができる。
 本発明の正極材料である複合酸化物を製造するのに用いる原料に、LiおよびNi、MnおよびCoから選ばれた1種又は2種の元素および、Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素および、B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素からなる成分を混合し、これを焼成する。これにより、リチウム二次電池用正極材料を製造することができる。
本発明の複合酸化物の合成方法は、特に限定されるものでなく、固相反応法、溶液からの析出を経てそれを焼成する方法、噴霧燃焼法、溶融塩法等種々の方法によって合成することができる。
 その一例を示せば、リチウム源、ニッケル源等を、目的とするリチウムニッケル複合酸化物の組成に応じた割合でそれぞれ混合し、形成させる複合酸化物の種類により、焼成温度は適宜選択するが、酸素、窒素、アルゴンおよびヘリウムからなる群から選ばれた1種または2種以上の気体の雰囲気下で700~950℃程度の温度で焼成することによって合成することができる。上記焼成は酸素雰囲気において300~500℃で2~6時間の保持を行う予備焼成と、予備焼成後5~30℃/minで昇温する昇温段階と、該昇温段階に引き続き700~950℃で2~30時間の保持を行う最終焼成段階を順次行う焼成工程であって、焼成した複合酸化物と水とを混合し攪拌する水洗工程と脱水工程および乾燥工程を含む製造方法で複合酸化物を製造することも好ましい。
 Ni系正極材料は水分を吸収しやすいので、通常水で洗浄しない。しかし、本工程では水洗工程で未反応のLiを除去すると、この正極材料を用いて得られるリチウム二次電池の合剤ペースト(塗料)のゲル化および電池の膨れが低減する。
 Ni源、Co源、Mn源としては酸化物、水酸化物、硝酸塩等を利用することができ、Ni、Co、Mnを含む場合は、均一な混合が重要となるため、例えば、湿式合成法によるNi-Co-(OH)2、Ni-Mn-(OH)2、Ni-Co-Mn-(OH)2、が原料として特に好ましい。Ni-Co-(OH)2、Ni-Mn-(OH)2、Ni-Co-Mn-(OH)2 は、Ni、CoおよびMnの合計量に対するCoおよびMnの割合がモル比で0.05~0.60に調製する。その製造に当っては、例えば湿式合成法によって緻密なNi-Co-(OH)2、Ni-Mn-(OH)2、Ni-Co-Mn-(OH)2 の二次粒子状の粉状物を製造し、その際平均粒径が5~20μm、かつタップ密度が1.8g/cc以上となるように調整することが望ましい。
 Li源としては、水酸化物、硝酸塩、炭酸塩等が好ましい。N成分のMg、Al、Ti、CrおよびFe、およびL成分のB、C、Na、Si、P、S、K、CaおよびBaから選択される一つ以上の元素の化合物としては、それぞれの元素の酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩などが用いられる。
 好ましい製造方法は、Li化合物と、Niと共にM元素(MnおよびCoから選ばれた1種又は2種の元素)を共沈させた水酸化物と、その他の元素の原料の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩から選ばれた1種又は2種以上の各成分の化合物を混合、焼成して複合酸化物を製造することができる。
更に、N元素(Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素)あるいは、L元素(B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素)を共沈させた水酸化物と、その他の元素の原料の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩から選ばれた1種又は2種以上の各成分の化合物を混合し、焼成して複合酸化物を製造してもよい。
〔リチウム二次電池〕
 本発明の正極材料を用いて、リチウム二次電池用の正極を得る方法は、常法に従って実施できる。例えば、本発明の正極活物質の粉末に、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材と、結合材とを混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。
 上記の正極合剤を、N-メチルピロリドンなどの分散媒に分散させたスラリーをアルミニウム箔等の正極集電体に塗工・乾燥及びプレス圧延して正極活物質層を正極集電体上に形成する。
 本発明の正極活物質を正極に使用するリチウム二次電池において、電解質溶液の溶質と
しては、ClO4-、CF3SO3-、BF4-、PF6-、AsF6-、SbF6-、CF3CO2-、(CF3SO22N-等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムなどが使用される。
 本発明の正極材料を正極に使用するリチウム電池の負極活物質は、リチウムイオンを吸蔵、放出可能な材料である。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物、周期表14、15族の金属を主体とした酸化物等が挙げられる。
 本発明における正極材料を使用するリチウム二次電池の形状には、特に制約はない。
筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、ラミネートフィルムを外装体としたソフトパッケージ電池等が用途に応じて選択される。
(実施例1)
 原料のNi源とCo源としてNiおよびCoのモル比を調整して得たNi-Co-(OH)を湿式溶液合成法によって作製した。その他の出発原料には市販の試薬を使用した。Li源にはリチウム水和物、Al源にはAl、Ba源にはBa(NOを用いた。
これらの出発原料を目的の配合組成になるように秤量後、十分に混合し、焼成用の原料とした。焼成は酸素雰囲気で行い、まず400℃で4時間保持し、主に原料中の水分を除去した後、5℃/分の昇温速度で昇温し、800℃の焼成温度および保持時間4時間で保持し、冷却後炉内から焼成物を取り出した。取り出した焼成物を解砕して正極材料粉末を得た。得られた粉末と水とを混合し攪拌後、脱水、乾燥した。後に記載する条件で、粒度分布測定、化学組成分析、およびその他の評価測定を行った。評価結果を表1に示す。表における「―」は、その項目が未実施であり、測定されていないことを示している。
(実施例2~22、比較例1~9)
 原料のNi源、Co源、Li源、Al源、Ba源については、実施例1と同様の原料を用いた。なお、実施例11、12、13、22および比較例7のMn源には、Ni、CoおよびMnのモル比を調整して得たNi-Co-Mn-(OH)を湿式溶液合成法によって作製した原料を用いた。また、比較例5のNi源にはNi-(OH)、比較例6のNi源、Mn源にはNiおよびMnのモル比を調整して得たNi-Mn-(OH)を湿式溶液合成法によって作製した原料を用いた。その他の出発原料は市販の試薬を使用した。S源には硫黄粉末、C源にはカーボンブラック、Si源にはSiO、K源にはKNO、Mn源にはMn、Mg源にはMgO、Ti源にはTiO、Fe源にはFe、P源にはP、Ca源にはCa(NO・4HO、Cr源にはCr、Na源にはNaNO、B源にはHBOを用いた。配合組成の変更以外は、焼成工程、水洗工程は実施例1と同様に行って正極材料粉末を製造した。また、実施例1と同様の条件で評価し、結果を表1に示す。なお、実施例13、実施例22および比較例9は水洗工程を行わなかった。
 次に、これらからリチウム二次電池用正極を製作し、後述のように電池特性を評価し、表1に示す。
実施例、比較例のリチウム二次電池用正極材料粉末90質量%、アセチレンブラック5質量%及びポリ弗化ビニリデン5質量%にN-メチル-2-ピロリドンを添加し、十分混練した後、アルミニウム集電体に約150μmの厚さに塗布し、200kg/cm程度で加圧後、直径14mmの円板に打ち抜いたものを150℃ にて15時間の真空乾燥し正極とした。負極にはリチウム金属シートを用い、セパレータにはポリプロピレン製多孔質膜(商品名セルガード#2400)を用いた。また、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)を体積比で1:1の混合溶液1LにLiClOを1モル溶解させ非水電解液とした。
これらを用いてアルゴンで置換したグローブボックス内で試験セルに組み立て、電流密度を0.5mA/cmの一定値とし、かつ電圧を2.75~4.25Vの範囲で充放電を行い、初回放電容量を測定した。さらに次式により初回充放電効率を算出した。
 初回充放電効率=[(初回の放電容量)/(初回の充電容量)]×100
 レート特性の測定では、さらに2.0mA/cm2の定電流密度にて2.75~4.25Vで充放電測定を行い次式により算出した。
  レート特性(%)=[(2.0mA/cm2での放電容量値)
           /(0.5mA/cm2での放電容量値)]×100
<評価方法>
(1)粉体特性
1)一次粒子の平均粒子径:得られた正極用材料を、電子顕微鏡で観察し、粒子径を測定する。
2)二次粒子の粒度分布
レーザー回折散乱式測定装置によって全粒度範囲の分布を求める。「D10,D90」は、個数基準の粒度分布における積算値10%および90%での粒径を意味する。
3)プレス密度
直径20mm の金型に一定量の試料を入れて、95.5MPaの圧力を加えた時、試料の高さの測定値と試料質量から密度を算出した。
タップ密度は、特に加圧することなく自然に粗粒と微粒が混合している粉体が充填する特性を示す。プレス密度は、加圧下で粗粒と微粒がどのように充填するかの特性を示す。
(2)化学組成
 得られた粉末を定量組成分析し、Ni+M成分+N成分=1モルに対する各元素のモル比を求め表1に全体組成を示した。
(3)質量増加
 得られた正極材料をサンプル瓶に所定量秤量し、大気雰囲気、25±3℃、湿度60±5%で一定とした環境に保持した恒温恒湿槽に保管し、240時間後の質量の増加率を測定する。複数の試料の測定値の平均値からの計算値を質量増加率とする。
(4)釘さし試験
 釘さし試験用電池は、以下のように試作を行った。合成したリチウム二次電池用正極材料粉末89質量%とアセチレンブラック6質量%およびポリフッ化ビニリデン5質量%の割合で混合し、N-メチル-2-ピロリドンを添加し十分混練した後、20μm厚みのアルミニウム集電体に塗布・乾燥・加圧して正極を作製した。負極はカーボンブラック92質量%、アセチレンブラック3質量%およびポリフッ化ビニリデン5質量%にN-メチル-2-ピロリドンを添加し十分混練した後、14μm厚みの銅集電体に塗布・乾燥・加圧して作製した。正極および負極のそれぞれの電極厚みは75μmおよび100μmであった。電解液はエチレンカーボネート(EC)/メチルエチルカーボネート(MEC)との体積比1:1の混合溶液1リットルにLiPFを1mol溶解したもので、セパレータはポリプロピレン製多孔質膜、アルミニウムラミネートを用いて60mm×35mm×厚み4mm寸法の角型電池を試作した。160mAの電流値で4.2Vまで充電し、同じ電流値にて3.0Vまで放電容量を測定した結果、800mAであった。
電池を定電圧にて8時間充電した後、電池の中央部に直径2.5mmの釘を貫通させ、この時の電池の状態を観察した。発火がない場合は合格とし、発火が認められたときは不合格とした。
Figure JPOXMLDOC01-appb-T000001
<実施例・比較例の説明>
比較例2のLi-Ni-Co-O系に対してN成分としてAl、L成分としてBaを添加した本発明の実施例1は、初回放電容量および初回充放電効率は若干低下したものの、レート特性、プレス密度が向上し、質量増加率が低く、釘刺し試験でも合格した特性バランスの優れた正極材料が得られた。さらにM成分としてMn、N成分としてMgを追加添加した実施例5は、各々の特性がさらに向上している。
質量増加率の低減に効果のあるL成分を添加している実施例に対してL成分の添加のない比較例1、2、8および水洗工程を省略している比較例9は、質量増加率が非常に大きな値を示しており、比較例1、2、8および9を正極材料に使用した場合に、正極電極の製造工程におけるゲル化発生や電池における膨れなどの懸念がある。
個数基準の粒度分布であるD90-D10が5.0μm以上である実施例1、3、4、5、17と5.0μm未満である比較例3、4、9でプレス密度の測定結果を比較するとその差は顕著であり、例え、質量当りの放電容量が高くても容積当りの容量の向上は困難であり、実施例1、3、4、5、17は優れた容量特性であると言える。
比較例1、2、8の複合酸化物は、L成分元素を含まない正極材料であり、熱安定性が低く釘刺し試験が不合格で得られる電池の安全性に問題がある。
実施例1、3、11,20,22は、二次粒子の分布が十分広い。実施例3,4,8,9,18はプレス密度が高い。実施例6,7,11,12,13は、質量増加率が低い。実施例5,7~10は初回放電容量が高い。実施例1,5~11、16,22は初回充放電効率が高い。実施例8,11,13,15~17,20はレート特性が高い。
 本発明のリチウム二次電池用正極材料を用いる正極は、安全性が高く容量が大きく、レート特性に優れ、特定雰囲気下での質量増加率が小さい。かかる正極を使用したリチウム二次電池は、情報関連機器、通信機器、車輌などにおける小型、軽量でかつ高エネルギー密度の電源として広く使用される。本発明のリチウム二次電池用正極材料を用いて製造される二次電池は、筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、ラミネートフィルムを外装体としたソフトパッケージ電池についても同様に適用することができる。

Claims (13)

  1.  全体組成がLiNiで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料:
    但し、
    M:MnおよびCoから選ばれる1種又は2種の元素、
    N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、
    L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、
    a/(b+c+d) : 0.80~1.30
    b/(b+c+d) : 0.30~0.95
    c/(b+c+d) : 0.05~0.60
    d/(b+c+d) : 0.005~0.10
    e/(b+c+d) : 0.0005~0.010
    b+c+d=1、
    x : 1.5~2.5
    である。
  2. 大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が0.60質量%以下である、請求項1に記載のリチウム二次電池用正極材料。
  3. 荷重を95.5MPa与えた時の成型体の密度が3.20g/cc以上である、請求項1に記載のリチウム二次電池用正極材料。
  4. 荷重を95.5MPa与えた時の成型体の密度が3.20g/cc以上である、請求項2に記載のリチウム二次電池用正極材料。
  5. 前記複合酸化物の平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している、請求項1~4のいずれか1項に記載のリチウム二次電池用正極材料。
  6. 前記複合酸化物の二次粒子の粒度分布において、個数基準のD90とD10との差が5.0μm以上である請求項5に記載のリチウム二次電池用正極材料。
  7. 請求項1に記載のリチウム二次電池用正極材料の製造方法であって、原料元素または原料元素を含む化合物を混合し、700~950℃で焼成する焼成工程の後に水洗工程を含むリチウム二次電池用正極材料の製造方法。
  8. 請求項1~4のいずれか1項に記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。
  9. 請求項5に記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。
  10. 請求項6に記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。
  11. 前記複合酸化物が、Li化合物と、Ni元素と共にMnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である請求項1~4のいずれか1項に記載のリチウム二次電池用正極材料。
  12. 前記複合酸化物が、Li化合物と、Ni元素と共にMnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である請求項5に記載のリチウム二次電池用正極材料。
  13. 前記複合酸化物が、Li化合物と、Ni元素と共にMnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である請求項6に記載のリチウム二次電池用正極材料。
     
PCT/JP2013/007223 2012-12-21 2013-12-09 リチウム二次電池用正極材料 WO2014097569A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157018009A KR101678332B1 (ko) 2012-12-21 2013-12-09 리튬 2차 전지용 정극 재료
EP13865386.0A EP2937917B1 (en) 2012-12-21 2013-12-09 Positive electrode material for lithium secondary batteries
CN201380067303.9A CN104885266B (zh) 2012-12-21 2013-12-09 锂二次电池用正极材料
US14/652,894 US20150340683A1 (en) 2012-12-21 2013-12-09 Positive electrode material for lithium secondary battery
CA2893716A CA2893716C (en) 2012-12-21 2013-12-09 Positive electrode material for lithium secondary battery
US16/683,611 US20200083523A1 (en) 2012-12-21 2019-11-14 Method of manufacturing positive electrode material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280170 2012-12-21
JP2012280170A JP2014123529A (ja) 2012-12-21 2012-12-21 リチウム二次電池用正極材料

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/652,894 A-371-Of-International US20150340683A1 (en) 2012-12-21 2013-12-09 Positive electrode material for lithium secondary battery
US16/683,611 Division US20200083523A1 (en) 2012-12-21 2019-11-14 Method of manufacturing positive electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2014097569A1 true WO2014097569A1 (ja) 2014-06-26

Family

ID=50977932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007223 WO2014097569A1 (ja) 2012-12-21 2013-12-09 リチウム二次電池用正極材料

Country Status (8)

Country Link
US (2) US20150340683A1 (ja)
EP (1) EP2937917B1 (ja)
JP (1) JP2014123529A (ja)
KR (1) KR101678332B1 (ja)
CN (1) CN104885266B (ja)
CA (1) CA2893716C (ja)
TW (1) TWI511360B (ja)
WO (1) WO2014097569A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723427A (zh) * 2021-01-06 2021-04-30 上海卡耐新能源有限公司 一种三元正极前驱体及其制备方法和用途
US11094924B2 (en) 2015-08-06 2021-08-17 Panasonic Intellectual Property Management Co, Ltd. Nonaqueous electrolyte secondary batteries

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133720B2 (ja) * 2013-07-24 2017-05-24 住友金属鉱山株式会社 非水電解質二次電池用正極活物質とその製造方法、並びに、非水電解質二次電池
JP6484944B2 (ja) * 2014-07-22 2019-03-20 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP6318956B2 (ja) * 2014-07-31 2018-05-09 住友金属鉱山株式会社 非水系電解質二次電池用の正極活物質及びその製造方法、並びに非水系電解質二次電池
JP6796272B2 (ja) * 2015-03-31 2020-12-09 株式会社Gsユアサ 蓄電素子
JP6806302B2 (ja) * 2016-02-05 2021-01-06 国立大学法人大阪大学 燃料電池用正極触媒
CN109643795B (zh) * 2016-07-22 2022-01-04 尤米科尔公司 锂金属复合氧化物粉末
JP6988084B2 (ja) * 2016-12-21 2022-01-05 住友金属鉱山株式会社 非水系電解質二次電池用正極材料の容量評価方法
KR101853836B1 (ko) * 2017-07-18 2018-06-08 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN107591534B (zh) * 2017-09-05 2022-04-29 国联汽车动力电池研究院有限责任公司 一种磷镁协同掺杂改性的富锂锰基正极材料及其制备方法和锂离子电池
KR102178876B1 (ko) * 2017-10-20 2020-11-13 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
KR102013310B1 (ko) * 2017-12-22 2019-08-23 주식회사 포스코 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
KR20210090204A (ko) * 2018-11-09 2021-07-19 바스프 코포레이션 리튬화 전이 금속 산화물 입자의 제조 방법, 및 상기 방법에 따라서 제조된 입자
KR102453274B1 (ko) * 2018-12-10 2022-10-11 주식회사 엘지에너지솔루션 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
WO2020170763A1 (ja) * 2019-02-19 2020-08-27 Jfeスチール株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP7235650B2 (ja) * 2019-12-25 2023-03-08 住友化学株式会社 リチウム遷移金属複合酸化物粉末、ニッケル含有遷移金属複合水酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102310250B1 (ko) * 2021-03-25 2021-10-08 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN113809294A (zh) * 2021-08-27 2021-12-17 西安理工大学 无钴高镍三元正极材料、制法和用于制备电池正极的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200160A (ja) * 2002-12-06 2004-07-15 Kawatetsu Mining Co Ltd リチウム二次電池用正極材料、その製造方法及びリチウム二次電池
JP2006054159A (ja) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP2006310181A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007517368A (ja) 2003-12-31 2007-06-28 エルジー・ケム・リミテッド 粒度依存性の組成を有する電極活物質粉体とその製造方法
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029331A1 (en) * 1998-11-13 2000-05-25 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6855461B2 (en) * 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP2003109592A (ja) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd リチウム二次電池およびその製造方法
JP4025094B2 (ja) * 2002-03-04 2007-12-19 三菱電線工業株式会社 リチウムイオン二次電池用正極および該正極を用いたリチウムイオン二次電池
CN100359725C (zh) * 2002-03-28 2008-01-02 三菱化学株式会社 锂二次电池的正极材料、采用它的锂二次电池及制备锂二次电池正极材料的方法
US7749657B2 (en) * 2002-12-06 2010-07-06 Jfe Mineral Company Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN100334758C (zh) * 2003-08-21 2007-08-29 清美化学股份有限公司 锂二次电池用的正极活性物质粉末
JP5105765B2 (ja) * 2006-04-20 2012-12-26 Necエナジーデバイス株式会社 リチウムイオン二次電池
EP2172996A4 (en) * 2007-07-19 2013-07-31 Jx Nippon Mining & Metals Corp LITHIUM MANGANE DOUBLE OXIDE FOR LITHIUM-ION BATTERIES AND METHOD FOR THE PRODUCTION OF THE DOUBLE OXIDE
US8673170B2 (en) * 2009-02-20 2014-03-18 Umicore Non-homogenous positive electrode materials combining high safety and high power in a Li rechargeable battery
CN102414879B (zh) * 2009-04-27 2015-04-15 加拿大巴斯姆有限公司 用于锂电化学电池的电极和电极材料
US20120292561A1 (en) * 2010-01-21 2012-11-22 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same and non-aqueous electrolyte secondary battery using same
JP2011243558A (ja) * 2010-04-22 2011-12-01 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP5419093B2 (ja) * 2010-04-27 2014-02-19 日立マクセル株式会社 非水二次電池
EP2421077B1 (en) * 2010-08-17 2013-10-23 Umicore Positive electrode materials combining high safety and high power in a Li rechargeable battery
JP2012221855A (ja) * 2011-04-12 2012-11-12 Sony Corp 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池、ならびに非水電解質電池を用いた電池パック、電子機器、電動車両、蓄電装置および電力システム
JP4894969B1 (ja) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP5861992B2 (ja) * 2011-11-09 2016-02-16 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200160A (ja) * 2002-12-06 2004-07-15 Kawatetsu Mining Co Ltd リチウム二次電池用正極材料、その製造方法及びリチウム二次電池
JP2007517368A (ja) 2003-12-31 2007-06-28 エルジー・ケム・リミテッド 粒度依存性の組成を有する電極活物質粉体とその製造方法
JP2006054159A (ja) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP2006310181A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094924B2 (en) 2015-08-06 2021-08-17 Panasonic Intellectual Property Management Co, Ltd. Nonaqueous electrolyte secondary batteries
CN112723427A (zh) * 2021-01-06 2021-04-30 上海卡耐新能源有限公司 一种三元正极前驱体及其制备方法和用途

Also Published As

Publication number Publication date
CN104885266A (zh) 2015-09-02
EP2937917A1 (en) 2015-10-28
CN104885266B (zh) 2019-06-11
US20200083523A1 (en) 2020-03-12
EP2937917A4 (en) 2015-12-09
TW201440304A (zh) 2014-10-16
TWI511360B (zh) 2015-12-01
EP2937917B1 (en) 2018-09-12
JP2014123529A (ja) 2014-07-03
KR101678332B1 (ko) 2016-11-21
CA2893716A1 (en) 2014-06-26
US20150340683A1 (en) 2015-11-26
CA2893716C (en) 2019-07-09
KR20150092291A (ko) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2014097569A1 (ja) リチウム二次電池用正極材料
CN109155412B (zh) 非水系电解质二次电池用正极活性物质、非水系电解质二次电池
JP5618116B2 (ja) リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池
JP4766840B2 (ja) 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP4998753B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN108352526B (zh) 非水系电解质二次电池用正极活性物质和其制造方法、非水系电解质二次电池用正极复合材料糊剂和非水系电解质二次电池
JP6003157B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6631320B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP4951638B2 (ja) リチウムイオン二次電池用正極材料及びそれを用いたリチウムイオン二次電池
JP2010064944A5 (ja)
CN109155413B (zh) 正极活性物质和其制造方法、糊剂和二次电池
JP2006286511A (ja) リチウム二次電池正極活物質、その製造方法及びリチウム二次電池
JP4997700B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR20200014299A (ko) 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 합재 페이스트 및 비수계 전해질 이차 전지
US20220109139A1 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
JP4581333B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
JP2008257992A (ja) 非水系電解質二次電池用正極活物質およびその製造方法、並びに非水系電解質二次電池
JP6749884B2 (ja) リチウム二次電池用正極材料
JP2006196293A (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2004335152A (ja) 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP4305613B2 (ja) 非水電解質二次電池用正極活物質並びに非水電解質二次電池
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質
JP2003187795A (ja) 非水電解質二次電池用の正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2893716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14652894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013865386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157018009

Country of ref document: KR

Kind code of ref document: A