WO2014092016A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2014092016A1
WO2014092016A1 PCT/JP2013/082816 JP2013082816W WO2014092016A1 WO 2014092016 A1 WO2014092016 A1 WO 2014092016A1 JP 2013082816 W JP2013082816 W JP 2013082816W WO 2014092016 A1 WO2014092016 A1 WO 2014092016A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
negative electrode
electricity storage
film
nitroxyl
Prior art date
Application number
PCT/JP2013/082816
Other languages
English (en)
French (fr)
Inventor
基陽 安井
岩佐 繁之
教徳 西
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014552020A priority Critical patent/JPWO2014092016A1/ja
Publication of WO2014092016A1 publication Critical patent/WO2014092016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device, and more particularly to an organic radical battery having improved battery characteristics during high-temperature storage.
  • Patent Documents 1 and 2 propose a power storage device containing a nitroxyl compound in a positive electrode as a high-power power storage device (hereinafter referred to as “organic radical battery”). Called).
  • This nitroxyl compound takes an oxoammonium cation partial structure in an oxidized state, takes a nitroxyl radical partial structure in a reduced state, and transfers electrons between the two states, and this reaction is used as an electrode reaction of a positive electrode. . Since this electrode reaction proceeds relatively quickly, a battery with high output can be obtained.
  • Patent Document 3 as a method for providing a lithium secondary battery having excellent cycle characteristics and excellent battery characteristics such as electric capacity and storage characteristics in a charged state, a non-carbon carbonate and chain carbonate as a main component are provided.
  • a lithium secondary battery including a non-aqueous electrolyte for a lithium secondary battery in which 1,3-propane sultone (hereinafter referred to as PS) or 1,4-butane sultone is contained in an aqueous solvent is proposed.
  • 1,3-propane sultone or 1,4-butane sultone contained in an electrolyte solution contributes to film formation on the negative electrode surface and has an effect of suppressing decomposition of the electrolyte solution. It is considered.
  • Patent Document 4 discloses a non-aqueous electrolyte containing vinylene carbonate in a non-aqueous electrolyte battery including a negative electrode having a negative electrode active material such as lithium titanate. It is described that an initial charge / discharge is performed using an electrolyte under conditions where the negative electrode potential at the end of charging exceeds 0.8 V with respect to the lithium potential.
  • An object of the present invention is to solve this problem and to provide a high-output power storage device that suppresses an increase in internal resistance during high-temperature storage.
  • One embodiment of the present invention takes a nitroxyl cation partial structure represented by the following formula (1) in the oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in the reduced state, and between the two states
  • An electrical storage device having a positive electrode including a nitroxyl compound that performs a reaction represented by the following reaction formula (A) that performs transfer of electrons, a negative electrode, and an electrolytic solution that includes an electrolyte salt and an organic solvent
  • the present invention relates to an electricity storage device, wherein the negative electrode has a film formed beforehand by decomposition of at least one of 1,3-propane sultone and vinylene carbonate before assembly of the electricity storage device.
  • one embodiment of the present invention has a nitroxyl cation partial structure represented by the following formula (1) in an oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in a reduced state,
  • a method for producing an electricity storage device comprising a positive electrode containing a nitroxyl compound that performs the reaction represented by: a negative electrode; and an electrolyte solution containing an electrolyte salt and an organic solvent
  • the present invention relates to a method for producing an electricity storage device, characterized in that a film formation treatment by decomposition of at least one of 1,3-propane sultone and vinylene carbonate is performed on a negative electrode before film formation in advance before assembling the electricity storage device.
  • FIG. 1 is a perspective view of a laminate type electricity storage device according to an embodiment of the present invention. It is sectional drawing of the lamination type electrical storage device by embodiment of this invention. It is sectional drawing of the cell for Li pre dope by embodiment of this invention.
  • the “negative electrode” in the present invention is a “negative electrode after film formation treatment” having a film formed by decomposition of at least one of PS and VC after the film formation treatment. It may mean “negative electrode before forming treatment” or “negative electrode without film forming treatment”. These are understood from the context in which the term “negative electrode” is used.
  • An electricity storage device includes a positive electrode including the nitroxyl compound as a positive electrode active material, a negative electrode, and an electrolytic solution including an electrolyte salt and an organic solvent.
  • a film formation process is performed on the negative electrode in advance by decomposing PS and / or VC.
  • an electrolytic solution to which PS and / or VC is added is used.
  • the negative electrode can include a material capable of reversibly occluding and releasing lithium ions as a negative electrode active material, a lithium salt can be used as an electrolyte salt, and an aprotic solvent can be used as an organic solvent.
  • an electric storage device is assembled using an electrolytic solution to which PS or the like is added, and then a charge and discharge are performed to form a film by decomposition of PS or the like.
  • the film formation by the decomposition of VC is performed in advance before assembly of the electricity storage device, so that the high temperature storage characteristics are improved. This has the effect of suppressing the growth of the film during high-temperature storage by reducing or eliminating the remaining amount of unreacted PS and / or VC contained in the electrolyte in the electricity storage device by forming the film in advance. it is conceivable that.
  • the electricity storage device can extract electrochemically stored energy in the form of electric power, and can be applied to an electric capacity device such as a primary battery, a secondary battery, a capacitor and a capacitor.
  • Electrode Material [1-1] Positive Electrode Active Material
  • the nitroxyl cation partial structure N-oxo-ammonium represented by the formula (1) in the oxidized state is used.
  • This nitroxyl compound can perform an oxidation-reduction reaction represented by the reaction formula (A) in which electrons are transferred between these two states.
  • the electricity storage device according to the present embodiment uses this oxidation-reduction reaction as the electrode reaction of the positive electrode.
  • the structure of the nitroxyl compound is not particularly limited, but is preferably a nitroxyl polymer compound from the viewpoint of solubility in the electrolytic solution.
  • the nitroxyl polymer compound is preferably a polymer containing a cyclic nitroxyl structure represented by the following formula (Ia) in the side chain in an oxidized state.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, and X represents a divalent group forming a 5- to 7-membered ring, provided that X represents a side chain of the polymer.
  • the cyclic nitroxyl structure represented by the formula (Ia) becomes a part of the polymer.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, preferably an ethyl group or a methyl group, and particularly preferably a methyl group in terms of radical stability.
  • the hydrogen atom bonded to the atoms constituting the ring may be substituted with an alkyl group, a halogen atom, ⁇ O, an ether group, an ester group, a cyano group, an amide group, or the like.
  • Particularly preferred cyclic nitroxyl structures are 2,2,6,6-tetramethylpiperidinoxyl radical (or cation), 2,2,5,5-tetramethylpyrrolidinoxyl radical (or cation), 2,2 , 5,5-tetramethylpyrrolinoxyl radical (cation), 2,2,6,6-tetramethylpiperidinoxyl radical (or cation), 2,2,5,5-tetra A methylpyrrolidinoxyl radical (or cation) is more preferred.
  • the cyclic nitroxyl structure represented by formula (Ia) has a residue X ′ obtained by removing hydrogen from —CH 2 —, —CH ⁇ or —NH— constituting the ring member in X. Can be attached to the polymer.
  • the polymer used as the main chain of the nitroxyl polymer compound is not particularly limited as long as the cyclic nitroxyl structure represented by the formula (Ia) can be present in the side chain.
  • nitroxyl polymer compound examples include those obtained by adding a group of the formula (Ib) to a normal polymer, or those in which some atoms or groups of the polymer are substituted by the group of the formula (Ib).
  • the atoms constituting the cyclic structure of the formula (Ib) may be bonded to the polymer (main chain) via an appropriate divalent group in the middle instead of directly.
  • X ′ and atoms in the main chain of the polymer can be bonded via a divalent group such as an ester bond (—COO—) or an ether bond (—O—).
  • polyalkylene polymers such as polyethylene and polypropylene; poly (meth) acrylic acid; poly (meth) acrylamide polymers are excellent in electrochemical resistance.
  • Poly (meth) acrylate polymer; polystyrene polymer is preferred.
  • nitroxyl polymer compounds those having high stability and those represented by any of the following formulas (3) to (7) are preferable.
  • n is an integer of 1 or more.
  • the nitroxyl polymer compound represented by the formulas (3) to (5) has a 2,2,6,6-tetramethylpiperidinoxyl radical (or cation) in the side chain, and the formulas (6), (7
  • the nitroxyl polymer compound shown in (2) is a polymer compound having a 2,2,5,5-tetramethylpyrrolidinoxyl radical (or cation) in the side chain.
  • These nitroxyl polymer compounds are compounds having a sterically hindered stable radical in the side chain of the polymer.
  • the molecular weight of the nitroxyl polymer compound is preferably 1000 or more, more preferably 10,000 or more, from the viewpoint of solubility in the electrolytic solution. A higher molecular weight is preferred, but one having an average molecular weight of 5 million or less can be used.
  • the skeleton structure of the nitroxyl polymer compound may be any of a chain, a branch, and a network, and may be a structure crosslinked with a crosslinking agent.
  • nitroxyl polymer compound can be used alone, but two or more kinds may be mixed and used.
  • the positive electrode in the present embodiment may contain other positive electrode active materials.
  • Other positive electrode active materials include, for example, lithium manganese oxides such as LiMnO 2 , lithium cobalt oxides such as LiCoO 2 , lithium nickel oxides such as LiNiO 2 , lithium iron oxides such as LiFePO 4 , Li x V 2 O 5 (0 ⁇ x ⁇ 2) lithium vanadium-based oxide and the like.
  • the content of the nitroxyl polymer compound in the positive electrode active material is preferably 50% by mass or more, and more preferably 80% by mass or more.
  • Negative electrode active material As the negative electrode active material in the electricity storage device according to the present embodiment, a material capable of reversibly occluding and releasing lithium ions (a material capable of occluding and releasing lithium ions during charging and discharging during discharging) is used. Can do. As such a negative electrode active material, carbon materials such as metal oxides and graphite can be used. The shape of these materials is not particularly limited, and examples thereof include a thin film, a powdered product, a fiber, and a flake. These negative electrode active materials can be used alone or in combination.
  • Conductivity imparting agent When forming the positive electrode and the negative electrode, a conductivity imparting agent may be added for the purpose of reducing impedance.
  • Conductivity imparting agents include carbonaceous fine particles such as graphite, carbon black and acetylene black, carbon materials such as activated carbon, carbon fibers such as carbon nanotubes, conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene and polyphenylene. Is mentioned.
  • Binder A binder can also be used when forming the positive electrode and the negative electrode. By using the binder, it is possible to strengthen the connection between the active materials, between the active material and the conductivity imparting agent, and between the active material or the conductivity imparting agent and the current collector.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, Examples thereof include resin binders such as polypropylene, polyethylene, polyimide, partially carboxylated cellulose, and various polyurethanes.
  • PTFE polytetrafluoroethylene
  • resin binders such as polypropylene, polyethylene, polyimide, partially carboxylated cellulose, and various polyurethanes.
  • the electrode material containing the positive electrode active material or the negative electrode active material can be provided on the current collector.
  • a foil, a sheet, a flat plate, or the like made of nickel, aluminum, copper, aluminum alloy, stainless steel, carbon, or the like can be used as the current collector.
  • FIG. 1 is a perspective view of an example of a laminate type power storage device according to the present embodiment, and FIG.
  • the electricity storage device 107 has a laminated structure including a positive electrode 101, a negative electrode 110 (a negative electrode subjected to film formation treatment) facing the positive electrode, and a separator 105 sandwiched between the positive electrode and the negative electrode.
  • the laminated structure is covered with an exterior film 106, and the electrode leads 104 are drawn out of the exterior film 106.
  • An electrolytic solution is injected into the electricity storage device.
  • the positive electrode 101 includes a positive electrode active material, and further includes a conductivity imparting agent and a binder as necessary, and is formed on one current collector 103.
  • the negative electrode includes a negative electrode active material, and further includes a conductivity-imparting agent and a binder as necessary, and is formed on the other current collector 103.
  • the negative electrode 110 of this embodiment is subjected to a film formation process.
  • An insulating porous separator 105 is provided between the positive electrode 101 and the negative electrode 110 to insulate and separate them.
  • a porous resin film made of polyethylene, polypropylene, or the like, a cellulose film, a non-woven cloth, or the like can be used.
  • Electrolytic Solution transports charge carriers between the positive electrode and the negative electrode, and is impregnated in the positive electrode 101, the negative electrode 110, and the separator 105.
  • the electrolytic solution one having an ion conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at 20 ° C. can be used, and a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used. it can.
  • an aprotic organic solvent can be used as the solvent for the electrolytic solution.
  • electrolyte salt examples include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 (hereinafter “LiTFSI”), LiN (C 2 F 5 SO 2 ) 2 (hereinafter “LiBETI”). ), Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or other ordinary electrolyte materials can be used.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; ⁇ -lactones such as ⁇ -butyrolactone; cyclic rings such as tetrahydrofuran and dioxolane. Ethers; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • Exterior Film As the exterior film 106, an aluminum laminate film or the like can be used. Examples of the exterior body other than the exterior film include a metal case and a resin case. Examples of the outer shape of the electricity storage device include a cylindrical shape, a square shape, a coin shape, and a sheet shape.
  • FIG. 3 shows a cross-sectional view of the Li pre-doping cell according to the present embodiment.
  • a pair of exterior films are prepared, and the obtained negative electrode (before film formation treatment) 102 is placed on one exterior film 106 and overlapped with the lithium foil 108 via the separator 105, whereby the exterior film An electrode laminate can be obtained.
  • the obtained electrode laminate can be covered with the other exterior film 106, and the three sides including the electrode lead portions can be heat-sealed.
  • An electrolyte containing at least one of 1,3-propane sultone and vinylene carbonate can be injected and vacuum impregnated. After the electrolyte solution is sufficiently impregnated in the gap between the electrode and the separator, the remaining fourth side can be heat-sealed under reduced pressure. As a result, a laminate-type Li pre-doping cell 109 can be obtained.
  • the electrolytic solution used in the cell used for the film formation treatment is the same as the electrolytic solution described in the above section [2-4] Electrolytic Solution, 1,3-propane sultone (PS) and vinylene carbonate. At least one of (VC) is added. Either PS or VC may be added, but both may be added. If the addition amount of PS and VC is small, a film having a sufficient thickness cannot be formed, and the effect of film formation cannot be sufficiently obtained. Moreover, since the film grows thick when the amount added is large, the resistance of the film itself increases the internal resistance of the cell.
  • the addition amount of PS and VC (however, in the case where only one of 1,3-propane sultone and vinylene carbonate is present), the addition amount of only one of them is usually relative to the weight of the entire electrolyte. It is 0.5 to 15% by weight, preferably 1 to 10% by weight, more preferably 2 to 8% by weight, and further preferably 2 to 6% by weight.
  • Example of film formation treatment By discharging until the cell voltage of the Li pre-doping cell 109 becomes 0 V, Li is occluded in the negative electrode, and at the same time, a film formed by decomposition of PS and / or VC is formed on the negative electrode surface. Can be formed. Thereby, the negative electrode 110 (corresponding to the portion indicated by the negative electrode 102 in FIG. 3) having been subjected to the film formation treatment can be obtained.
  • discharge is performed using metal Li as a counter electrode as long as the film is formed on the negative electrode surface by passing an electric current through the electrochemical cell. It is not limited to the method.
  • a pair of exterior films are prepared, and the obtained positive electrode 101 is placed on one exterior film 106 and overlapped with the film-forming treated negative electrode 110 via the separator 105, whereby an electrode laminate on the exterior film. Can be obtained.
  • the obtained electrode laminate can be covered with the other exterior film 106, and the three sides including the electrode lead portions can be heat-sealed.
  • PTMA positive electrode active material
  • CMC carboxymethylcellulose
  • PTFE polytetrafluoroethylene
  • the slurry was applied on an aluminum foil as a current collector and then dried at 80 ° C. for 5 minutes. Furthermore, the thickness was adjusted with a roll press. This was cut into a 22 ⁇ 24 mm rectangle, and an aluminum electrode lead was ultrasonically bonded. The thickness of the positive electrode obtained was 140 to 150 ⁇ m.
  • the slurry was applied on a copper mesh as a current collector and then dried at 120 ° C. for 5 minutes. Furthermore, the thickness was adjusted with a roll press. This was cut into a 22 ⁇ 24 mm rectangle, and a nickel electrode lead was ultrasonically bonded. The thickness of the obtained negative electrode (before film formation treatment) was 50 to 60 ⁇ m.
  • Example 1 A pair of exterior films were prepared, and the obtained negative electrode was placed on one exterior film and overlapped with a lithium foil via a separator to obtain an electrode laminate on the exterior film.
  • the obtained electrode laminate was covered with the other exterior film, and three sides including the electrode lead part were heat-sealed.
  • a pair of aluminum laminate films were prepared, and a positive electrode, a polypropylene porous film separator, and a film-formed negative electrode were laminated in this order on one aluminum laminate film to obtain an electrode laminate.
  • This electrode laminate was covered with the other aluminum laminate film, and three sides including the electrode lead portion were heat-sealed.
  • An electrolytic solution was injected into this, and the electrode was well impregnated. Next, the remaining four sides were heat-sealed under reduced pressure.
  • Example 2 An electricity storage device was produced in the same manner as in Example 1 except that 4% by weight of PS was added to the electrolytic solution used in the Li pre-doping cell.
  • Example 3 An electricity storage device was produced in the same manner as in Example 1 except that 8% by weight of PS was added to the electrolytic solution used in the Li pre-doping cell.
  • Example 4 An electricity storage device was produced in the same manner as in Example 1 except that 2% by weight of VC was added to the electrolytic solution used in the Li pre-doping cell.
  • Example 5 An electricity storage device was produced in the same manner as in Example 1 except that 4% by weight of VC was added to the electrolytic solution used in the Li pre-doping cell.
  • Example 6 An electricity storage device was produced in the same manner as in Example 1 except that 8% by weight of VC was added to the electrolytic solution used in the Li pre-doping cell.
  • Example 1 Electricity storage was carried out in the same manner as in Example 1 except that neither PS nor VC was added to the electrolyte used for the Li pre-doping cell, and no film was formed on the negative electrode by decomposition of PS and / or VC. A device was fabricated.
  • Li was occluded in the negative electrode (those not subjected to film formation treatment) by discharging until the cell voltage of the Li pre-doping cell became 0V.
  • a pair of aluminum laminate films were prepared, and a positive electrode, a polypropylene porous film separator, and a negative electrode (those not subjected to film formation treatment) were laminated in this order on one aluminum laminate film to obtain an electrode laminate.
  • This electrode laminate was covered with the other aluminum laminate film, and three sides including the electrode lead portion were heat-sealed. An electrolytic solution was injected into this, and the electrode was well impregnated. Next, the remaining four sides were heat-sealed under reduced pressure. As a result, a laminate-type electricity storage device was obtained.
  • Table 1 shows the results of measuring the internal resistance.
  • Example 1 Example 2, Example 3, Example 4, Example 5, Example 6, Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 4, Comparative Example 5, Comparative Example 6, Comparative Example 7 after 6 weeks, the internal resistance is 2.30 ⁇ , 2.07 ⁇ , 2.06 ⁇ , 2.35 ⁇ , 2.09 ⁇ , 2.10 ⁇ , 2.44 ⁇ , 2.33 ⁇ , 2.11 ⁇ , 2.10 ⁇ , respectively. 2.39 ⁇ , 2.12 ⁇ , and 2.14 ⁇ . From this result, it was possible to suppress an increase in internal resistance of the electricity storage device during high-temperature storage by performing a film formation process by decomposing PS or VC on the negative electrode in advance before producing the electricity storage device. Further, when the addition amount of PS or VC is 2 to 4% by weight of the total electrolyte, it is more desirable because it can suppress an increase in internal resistance during high temperature storage while suppressing initial internal resistance. Conceivable.
  • the power storage device is a power storage device for driving or auxiliary such as an electric vehicle or a hybrid electric vehicle, a power source for various portable electronic devices, a power storage device for various energy such as solar energy or wind power generation, or It can be applied to a storage power source for household appliances.

Abstract

 酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A)で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する蓄電デバイスであって、蓄電デバイス組立て前にあらかじめ1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つの分解によって形成された皮膜を有することを特徴とする蓄電デバイスが開示される。本発明に係る蓄電デバイスは、高出力でかつ高温信頼性に優れる。

Description

蓄電デバイス
 本発明は、蓄電デバイスに関し、詳細には高温保管時における電池特性を改善した有機ラジカル電池に関する。
 近年、ノート型パソコンや携帯電話などの携帯電子機器は、通信機能をはじめ、動画再生機能やカメラ機能など多機能化している。それに伴い、消費電力は増加し、その電源である蓄電デバイスには高い出力が求められている。また、携帯電子機器は様々な場所で使われることが想定されるため、蓄電デバイスには高温環境下における、高い信頼性も求められている。
 このような要求に対するものとして、特許文献1及び2には、高出力な蓄電デバイスとして、ニトロキシル化合物を正極中に含有した蓄電デバイスが提案されている(以下、この蓄電デバイスを「有機ラジカル電池」と呼ぶ)。このニトロキシル化合物は、酸化状態においてオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとり、その2つの状態間で電子の授受が行われ、この反応が正極の電極反応として用いられる。この電極反応は、比較的速く反応が進むため、高出力な電池を得ることができる。
 しかしながら、長期保管した有機ラジカル電池は初期の状態に比べ、内部抵抗が増加するといった課題がある。特許文献3では、サイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を提供する方法として、環状カーボネートおよび鎖状カーボネートを主成分とした非水溶媒中に1,3-プロパンスルトン(以下、PS)または1,4-ブタンスルトンが含有されたリチウム二次電池用非水電解液を含むリチウム二次電池を提案している。特許文献3によれば、電解液中に含有される1,3-プロパンスルトンや1,4-ブタンスルトンが負極表面上での皮膜形成に寄与し、電解液の分解を抑制する効果を有するものと考えられている。
 また、非水電解質電池の負極表面に被膜を形成させる方法としては、特許文献4に、チタン酸リチウム等の負極活物質を有する負極を備えた非水電解質電池において、ビニレンカーボネートを含有する非水電解質を用い、初期充放電を、充電末の負極電位がリチウム電位に対して0.8Vを超える条件で行うことが記載されている。
特開2002-304996号公報 特開2009-238612号公報 特開2000-003724号公報 特開2008-091327号公報
 しかしながら、発明者による検討によれば、特許文献3および特許文献4に記載されるように、有機ラジカル電池の電解液に1,3-プロパンスルトンやビニレンカーボネートを添加しただけでは、高温保管時に内部抵抗が増加するといった課題があった。
 本発明の目的は、この課題を解決し、高温保管時における内部抵抗増加を抑制した高出力の蓄電デバイスを提供することにある。
 本発明の一態様は、酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A)で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する蓄電デバイスであって、
 前記負極が、蓄電デバイス組立て前に、あらかじめ1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つの分解によって形成された皮膜を有することを特徴とする蓄電デバイスに関する。
Figure JPOXMLDOC01-appb-C000003
 さらに本発明の一態様は、酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A):
Figure JPOXMLDOC01-appb-C000004
で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する蓄電デバイスの製造方法であって、
 蓄電デバイス組立て前にあらかじめ、皮膜形成前の負極に1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つの分解による皮膜形成処理を行うことを特徴とする蓄電デバイスの製造方法に関する。
 本発明の実施形態によれば、高出力でかつ高温信頼性に優れた蓄電デバイスを提供することができる。
本発明の実施形態によるラミネート型蓄電デバイスの斜視図である。 本発明の実施形態によるラミネート型蓄電デバイスの断面図である。 本発明の実施形態によるLiプレドープ用セルの断面図である。
 次に、本発明の好適な実施形態について説明する。尚、以下の説明において、1,3-プロパンスルトンを「PS」、ビニレンカーボネートを「VC」と略称することがある。本発明における「負極」は、皮膜形成処理された後の、PSおよびVCの少なくとも1つの分解によって形成された皮膜を有する「皮膜形成処理済の負極」であるが、用語「負極」が「皮膜形成処理前の負極」または「皮膜形成処理をしない負極」を意味する場合もある。これらは、用語「負極」が使用される文脈から理解される。
 本発明の実施形態による蓄電デバイスは、上記ニトロキシル化合物を正極活物質として含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する。蓄電デバイス組立て前にあらかじめ負極にPSおよび/またはVCの分解による皮膜形成処理を行う。皮膜形成処理を行うにはPSおよび/またはVCを添加した電解液を用いる。負極は、リチウムイオンを可逆的に吸蔵放出可能な材料を負極活物質として含むことができ、電解質塩としてリチウム塩を用いることができ、有機溶媒として非プロトン性溶媒を用いることができる。
 蓄電デバイスの通常保管時の最高温度を例えば40℃と想定すると、40℃での長時間保存における内部抵抗の増加を抑制することができる。
 発明者の検討によれば、従来技術ではPS等を添加した電解液を用いて蓄電デバイスを組立てた後に充放電を行ってPS等の分解による皮膜を形成しているのに対し、PSおよび/またはVCの分解による皮膜形成を蓄電デバイス組立て前にあらかじめ行うことにより、高温保管特性が向上する。これは、皮膜形成をあらかじめ行うことで、蓄電デバイス中の電解液に含まれる未反応のPSおよび/またはVCの残存量を少なく、または無くし、高温保管時における皮膜の成長を抑える効果があるものと考えられる。
 本実施形態による蓄電デバイスは、電気化学的に蓄えられたエネルギーを電力の形で取り出すことができるものであり、一次電池、二次電池、キャパシタやコンデンサ等の電気容量デバイス等に適用できる。
 まず、電極の作製に用いる材料について説明する。
 [1]電極の材料
 [1-1]正極活物質
 本発明の実施形態による蓄電デバイスにおける正極活物質としては、酸化状態において式(1)で示されるニトロキシルカチオン部分構造(N-オキソ-アンモニウムカチオン部分構造)をとり、還元状態において式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を用いる。このニトロキシル化合物は、これらの2つの状態間で電子の授受を行う反応式(A)で示される酸化還元反応を行うことができる。本実施形態による蓄電デバイスは、この酸化還元反応を正極の電極反応として用いる。
Figure JPOXMLDOC01-appb-C000005
 このニトロキシル化合物の構造としては特に限定されないが、電解液に対する溶解性の観点から、ニトロキシル高分子化合物であることが好ましい。
 このニトロキシル高分子化合物としては、酸化状態において下記式(Ia)で示される環状ニトロキシル構造を側鎖に含むポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rはそれぞれ独立に炭素数1~4のアルキル基を表し、Xは5~7員環を形成する2価の基を表す。但し、Xがポリマーの側鎖の一部を構成することにより、式(Ia)で示される環状ニトロキシル構造がポリマーの一部となっている。)
 R~Rは、それぞれ独立に炭素数1~4のアルキル基を表し、エチル基、メチル基が好ましく、ラジカルの安定性の点でメチル基が特に好ましい。
 Xは、具体的には、-CHCH-、-CHCHCH-、-CHCHCHCH-、-CH=CH-、-CH=CHCH-、-CH=CHCHCH-、-CHCH=CHCH-が挙げられ、その中で、隣接しない-CH-は、-O-、-NH-または-S-によって置き換えられていてもよく、-CH=は-N=によって置き換えられていてもよい。また、環を構成する原子に結合した水素原子は、アルキル基、ハロゲン原子、=O、エーテル基、エステル基、シアノ基、アミド基等により置換されていてもよい。
 特に、好ましい環状ニトロキシル構造は、2,2,6,6-テトラメチルピペリジノキシルラジカル(又はカチオン)、2,2,5,5-テトラメチルピロリジノキシルラジカル(又はカチオン)、2,2,5,5-テトラメチルピロリノキシルラジカル(カチオン)から選ばれるものであり、2,2,6,6-テトラメチルピペリジノキシルラジカル(又はカチオン)、2,2,5,5-テトラメチルピロリジノキシルラジカル(又はカチオン)がより好ましい。
 式(Ia)で示される環状ニトロキシル構造は、式(Ib)に示すように、X中の環員を構成する-CH-、-CH=または-NH-から水素を取った残基X’によってポリマーに結合することができる。
Figure JPOXMLDOC01-appb-C000007
 ニトロキシル高分子化合物の主鎖として用いられるポリマーとしては特に制限はなく、式(Ia)で示される環状ニトロキシル構造が側鎖に存在できるものであればよい。
 ニトロキシル高分子化合物は、通常のポリマーに、式(Ib)の基が付加したもの、またはポリマーの一部の原子または基が式(Ib)の基によって置換されたものを挙げることができる。式(Ib)の環状構造を構成する原子が直接ではなく、適当な2価の基を中間に介してポリマー(主鎖)に結合していてもよい。例えば、X’とポリマーの主鎖の原子とが、エステル結合(-COO-)やエーテル結合(-O-)等の2価基を介して結合することができる。
 ニトロキシル高分子化合物の主鎖として用いられるポリマーとしては、電気化学的な耐性に優れている点で、ポリエチレン、ポリプロピレン等のポリアルキレン系ポリマー;ポリ(メタ)アクリル酸;ポリ(メタ)アクリルアミド系ポリマー;ポリ(メタ)アクリレート系ポリマー;ポリスチレン系ポリマーが好ましい。
 このようなニトロキシル高分子化合物のなかでも、特に安定性の高い、下記式(3)~(7)のいずれかで示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、nは1以上の整数である。)
 式(3)~(5)に示したニトロキシル高分子化合物は、2,2,6,6-テトラメチルピペリジノキシルラジカル(又はカチオン)を側鎖に有し、式(6)、(7)に示したニトロキシル高分子化合物は、2,2,5,5-テトラメチルピロリジノキシルラジカル(又はカチオン)を側鎖に有する高分子化合物である。これらのニトロキシル高分子化合物は、高分子の側鎖に立体障害性の安定ラジカルを持つ化合物である。
 ニトロキシル高分子化合物の分子量は、電解液に対する溶解性の観点から、1000以上であることが好ましく、さらには10000以上であることがより好ましい。分子量は大きいほうが好ましいが、平均分子量が500万以下のものを用いることができる。ニトロキシル高分子化合物の骨格構造としては、鎖状、分岐状、網目状のいずれでもよく、架橋剤で架橋した構造でもよい。
 また、ニトロキシル高分子化合物は、単独で用いることができるが、二種類以上を混合して用いてもよい。
 また、本実施形態における正極中には、その他の正極活物質を含んでもよい。その他の正極活物質としては、例えばLiMnO等のリチウムマンガン系酸化物、LiCoO等のリチウムコバルト系酸化物、LiNiO等のリチウムニッケル系酸化物、LiFePO等のリチウム鉄系酸化物、Li(0<x<2)等のリチウムバナジウム系酸化物が挙げられる。
 ニトロキシル高分子化合物の添加効果を十分に得る点から、正極活物質中のニトロキシル高分子化合物の含有量は、50質量%以上が好ましく、80質量%以上がより好ましい。
 [1-2]負極活物質
 本実施形態による蓄電デバイスにおける負極活物質としては、リチウムイオンを可逆的に吸蔵放出可能な材料(リチウムイオンを充電時に吸蔵し、放電時に放出できる材料)を用いることができる。このような負極活物質としては、金属酸化物、グラファイト等の炭素材料等を用いることができる。これらの材料の形状としては特に限定されるものではなく、例えば、薄膜状のもの、粉末を固めたもの、繊維状のもの、フレーク状のものが挙げられる。また、これらの負極活物質は、単独、もしくは組み合わせて使用できる。
 [1-3]導電性付与剤
 正極および負極を形成する際に、インピーダンスを低下させる目的で、導電性付与剤を添加してもよい。導電性付与剤としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子や活性炭等の炭素材料、カーボンナノチューブ等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン、ポリフェニレン等の導電性高分子が挙げられる。
 [1-4]結着剤
 正極および負極を形成する際に、結着剤を用いることもできる。結着剤を用いることにより、活物質同士、活物質と導電性付与剤との間、活物質や導電付与剤と集電体との間の結びつきを強めることができる。このような結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、部分カルボキシ化セルロース、各種ポリウレタン等の樹脂バインダーが挙げられる。
 [1-5]集電体
 正極活物質又は負極活物質を含む電極材料は、集電体上に設けることができる。集電体としては、ニッケルやアルミニウム、銅、アルミニウム合金、ステンレス、炭素等からなる箔、シート、平板等を用いることができる。
 [2]蓄電デバイスの基本構造、構成部材および蓄電デバイスの製造方法
 図1に本実施形態によるラミネート型蓄電デバイスの一例の斜視図を示し、図2に断面図を示す。これらの図に示されるように、蓄電デバイス107は、正極101、この正極に対向する負極110(皮膜形成処理済の負極)、正極と負極との間に挟まれたセパレータ105を含む積層構造を有し、この積層構造は外装用フィルム106で覆われ、外装用フィルム106の外部へ、電極リード104が引き出されている。この蓄電デバイス内へは電解液が注入されている。以下に、蓄電デバイスの構成部材と製造方法についてさらに詳細に説明する。
 [2-1]正極
 正極101は、正極活物質を含み、必要に応じてさらに導電性付与剤、結着剤を含み、一方の集電体103上に形成されている。
 [2-2]負極
 負極は、負極活物質を含み、必要に応じてさらに導電性付与剤、結着剤を含み、他方の集電体103上に形成されている。本実施形態の負極110は、皮膜形成処理がされている。
 [2-3]セパレータ
 正極101と負極110との間には、これらを絶縁分離する絶縁性の多孔質セパレータ105が設けられる。セパレータ105としては、ポリエチレン、ポリプロピレン等からなる多孔質樹脂フィルム、セルロース膜、不繊布等を用いることができる。
 [2-4]電解液
 電解液は、正極と負極との間で荷電担体の輸送を行うものであり、正極101、負極110及びセパレータ105に含浸している。電解液としては、20℃で10-5~10-1S/cmのイオン伝導性を有しているものを用いることができ、電解質塩を有機溶媒に溶解した非水電解液を用いることができる。電解液の溶媒としては、非プロトン性有機溶媒を用いることができる。
 電解質塩としては、例えばLiPF、LiClO、LiBF、LiCFSO、LiN(CFSO(以下「LiTFSI」)、LiN(CSO(以下「LiBETI」)、Li(CFSOC、Li(CSOC等の通常の電解質材料を用いることができる。
 有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;γ-ブチロラクトン等のγ-ラクトン類;テトラヒドロフラン、ジオキソラン等の環状エーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類が挙げられる。他の有機溶媒としては、環状カーボネート及び鎖状カーボネートの少なくとも一方を混合することが好ましい。
 [2-5]外装用フィルム
 外装用フィルム106としてはアルミラミネートフィルム等を用いることができる。外装用フィルム以外の外装体としては、金属ケースや樹脂ケースが挙げられる。蓄電デバイスの外形としては、円筒型、角型、コイン型、シート型が挙げられる。
 [2-6]Liプレドープ用セルの作製例
 電極活物質および結着剤を含む電極材料と溶媒からなるスラリーを調製し、このスラリーを集電体上に塗布し、乾燥し、プレスして、負極(皮膜形成処理前)を得ることができる。
 図3に本実施形態によるLiプレドープ用セルの断面図を示す。
 一対の外装用フィルムを用意し、得られた負極(皮膜形成処理前)102を一方の外装用フィルム106上に置き、セパレータ105を介してリチウム箔108と重ね合わせることで、外装用フィルム上の電極積層体を得ることができる。
 得られた電極積層体を他方の外装用フィルム106で覆い、電極リード部を含む3辺を熱融着することができる。
 これに1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つを添加した電解液を注入し、真空含浸させることができる。電解液を電極およびセパレータの空隙に十分に含浸させた後、残りの4辺目を減圧下で熱融着することができる。結果、ラミネート型のLiプレドープ用セル109を得ることができる。
 ここで、皮膜形成処理を行う際に用いるセルに使用される電解液は、前述の[2-4]電解液の項で説明した電解液に、1,3-プロパンスルトン(PS)およびビニレンカーボネート(VC)の少なくとも1つを添加したものである。PSおよびVCは、どちらか1種を添加すればよいが、両方を添加してもよい。PSおよびVCの添加量が少ないと十分な厚みの皮膜を形成することができず、皮膜形成による効果を十分に得ることができない。また、添加量が多いと皮膜が厚く成長するために、皮膜自体の抵抗がセルの内部抵抗を大きくしてしまう。よって、PSおよびVCの添加量(但し、1,3-プロパンスルトンおよびビニレンカーボネートのどちらか1つのみが存在する場合は、その1つのみの添加量)は電解液全体の重量に対して通常0.5~15重量%、好ましくは1~10重量%、より好ましくは2~8重量%、さらに好ましくは2~6重量%である。
 [2-7]皮膜形成処理の例
 Liプレドープ用セル109のセル電圧が0Vになるまで放電することにより、負極にLiを吸蔵させると同時に、負極表面にPSおよび/またはVCの分解による皮膜を形成させることができる。これにより、皮膜形成処理済の負極110(図3において、負極102が示す部位に該当する)を得ることができる。
 なお、負極表面にPSおよび/またはVCの分解による皮膜を形成させる方法としては、電気化学セル内に電流を流すことにより負極表面に皮膜を形成する方法であれば、金属Liを対極として放電する方法に限られない。
 [2-8]蓄電デバイスの作製例
 電極活物質および結着剤を含む電極材料と溶媒からなるスラリーを調製し、このスラリーを集電体上に塗布し、乾燥し、プレスして、正極を得ることができる。
 一対の外装用フィルムを用意し、得られた正極101を一方の外装用フィルム106上に置き、セパレータ105を介して皮膜形成処理済負極110と重ね合わせることで、外装用フィルム上の電極積層体を得ることができる。
 得られた電極積層体を他方の外装用フィルム106で覆い、電極リード部を含む3辺を熱融着することができる。
 これに電解液を注入し、真空含浸させることができる。電解液を電極およびセパレータの空隙に十分に含浸させた後、残りの4辺目を減圧下で熱融着することができる。結果、ラミネート型の蓄電デバイス107を得ることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (正極の作製)
 本実施例で用いたニトロキシル高分子であるポリ(2,2,6,6-テトラメチルピペリジノキシルメタクリレート(PTMA)は、特開2009-238612号公報に記載の方法に従って合成した。
 すなわち、下記記載に従って合成した。
 還流管を付けた100mlナスフラスコ中に、2,2,6,6-テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN=50/1)を加え、アルゴン雰囲気下75~80℃で攪拌した。6時間反応後、室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6-テトラメチルピペリジンメタクリレート)を得た。次に、得られたポリ(2,2,6,6-テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm-クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温にて攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm-クロロ安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させて、ポリ(2,2,6,6-テトラメチルピペリジノキシルメタクリレート)(PTMA)を得た。
 次に、正極活物質としてPTMA2.1g、導電付与剤として炭素材料0.63g、結着剤としてカルボキシメチルセルロース(CMC)0.24g及びポリテトラフルオロエチレン(PTFE)0.03g、並びに水15mlを混合し、ホモジェナイザーで撹拌し、均一なスラリーを調製した。
 このスラリーを集電体であるアルミ箔上に塗布し、次いで80℃で5分間乾燥した。さらにロールプレス機により厚さを調整した。これを22×24mmの長方形に切り抜き、アルミ電極リードを超音波圧着した。得られた正極の厚さは140~150μmであった。
 (負極(皮膜形成処理前)の作製)
 グラファイト粉末(粒径6μm)13.5g、ポリフッ化ビニリデン1.35g、カーボンブラック0.15g、及びN-メチルピロリドン30gを混合し、ホモジェナイザーで撹拌し、均一なスラリーを調製した。
 このスラリーを集電体である銅メッシュ上に塗布し、次いで120℃で5分間乾燥した。さらにロールプレス機により厚さを調整した。これを22×24mmの長方形に切り抜き、ニッケル電極リードを超音波圧着した。得られた負極(皮膜形成処理前)の厚さは50~60μmであった。
 (実施例1)
 一対の外装用フィルムを用意し、得られた負極を一方の外装用フィルム上に置き、セパレータを介してリチウム箔と重ね合わせることで、外装用フィルム上の電極積層体を得た。得られた電極積層体を他方の外装用フィルムで覆い、電極リード部を含む3辺を熱融着した。これにPSを2重量%添加した濃度1mol/lのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=3/7(v/v)の混合電解液を注入し、電極中によく含浸させた。電解液を電極およびセパレータの空隙に十分に含浸させた後、残りの4辺目を減圧下で熱融着した。結果、ラミネート型のLiプレドープ用セルを得た。
 Liプレドープ用セルのセル電圧が0Vになるまで放電することにより、負極にLiを吸蔵させると同時に、負極表面にPSの分解による皮膜を形成させた。これにより、皮膜形成処理済負極を得た。
 一対のアルミラミネートフィルムを用意し、一方のアルミラミネートフィルム上に、正極、ポリプロピレン多孔質フィルムセパレータ、皮膜形成処理済負極の順で積層し、電極積層体を得た。この電極積層体を他方のアルミラミネートフィルムで覆い、電極リード部を含む3辺を熱融着した。これに電解液を注入し、電極中によく含浸させた。次に、残りの4辺目を減圧下にて熱融着した。結果、ラミネート型の蓄電デバイスを得た。蓄電デバイスに用いた電解液は、濃度1mol/lのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=3/7(v/v)の混合電解液である。
 (実施例2)
 Liプレドープ用セルに用いた電解液中にPSを4重量%添加したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (実施例3)
 Liプレドープ用セルに用いた電解液中にPSを8重量%添加したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (実施例4)
 Liプレドープ用セルに用いた電解液中にVCを2重量%添加したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (実施例5)
 Liプレドープ用セルに用いた電解液中にVCを4重量%添加したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (実施例6)
 Liプレドープ用セルに用いた電解液中にVCを8重量%添加したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例1)
 Liプレドープ用セルに用いた電解液中にPSおよびVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例2)
 一対の外装用フィルムを用意し、得られた負極(皮膜形成処理前)を一方の外装用フィルム上に置き、セパレータを介してリチウム箔と重ね合わせることで、外装用フィルム上の電極積層体を得た。得られた電極積層体を他方の外装用フィルムで覆い、電極リード部を含む3辺を熱融着した。これに濃度1mol/lのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=3/7(v/v)の混合電解液を注入し、電極中によく含浸させた。電解液を電極およびセパレータの空隙に十分に含浸させた後、残りの4辺目を減圧下で熱融着した。結果、ラミネート型のLiプレドープ用セルを得た。
 Liプレドープ用セルのセル電圧が0Vになるまで放電することにより、負極(皮膜形成処理をしていないもの)にLiを吸蔵させた。
 一対のアルミラミネートフィルムを用意し、一方のアルミラミネートフィルム上に、正極、ポリプロピレン多孔質フィルムセパレータ、負極(皮膜形成処理をしていないもの)の順で積層し、電極積層体を得た。この電極積層体を他方のアルミラミネートフィルムで覆い、電極リード部を含む3辺を熱融着した。これに電解液を注入し、電極中によく含浸させた。次に、残りの4辺目を減圧下にて熱融着した。結果、ラミネート型の蓄電デバイスを得た。蓄電デバイスに用いた電解液は、PSを2重量%添加した濃度1mol/lのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=3/7(v/v)の混合電解液である。
 (比較例3)
 Liプレドープ用セルに用いた電解液中にPSおよびVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと、かつ、蓄電デバイスに用いた電解液中にPSを4重量%添加することにより、蓄電デバイス作製後にPSの分解による皮膜形成を行っていること以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例4)
 Liプレドープ用セルに用いた電解液中にPSおよびVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと、かつ、蓄電デバイスに用いた電解液中にPSを8重量%添加することにより、蓄電デバイス作製後にPSの分解による皮膜形成を行っていること以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例5)
 Liプレドープ用セルに用いた電解液中にPSおよびVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと、かつ、蓄電デバイスに用いた電解液中にVCを2重量%添加することにより、蓄電デバイス作製後にVCの分解による皮膜形成を行っていること以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例6)
 Liプレドープ用セルに用いた電解液中にPSおよびはVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと、かつ、蓄電デバイスに用いた電解液中にVCを4重量%添加することにより、蓄電デバイス作製後にVCの分解による皮膜形成を行っていること以外は、実施例1と同様にして蓄電デバイスを作製した。
 (比較例7)
 Liプレドープ用セルに用いた電解液中にPSおよびVCのどちらも添加しないことにより、負極にPSおよび/またはVCの分解による皮膜形成を行っていないこと、かつ、蓄電デバイスに用いた電解液中にVCを8重量%添加することにより、蓄電デバイス作製後にVCの分解による皮膜形成を行っていること以外は、実施例1と同様にして蓄電デバイスを作製した。
 (内部抵抗の測定とその結果)
 実施例1~6及び比較例1~7の蓄電デバイスを、40℃にて、0.5mAの定電流で電圧が4Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、100mAと変えながら行った。放電直後の電圧を測定し、電流と電圧の関係から内部抵抗を求めた。測定後、0.5mAの定電流で電圧が4Vになるまで充電した後、40℃の恒温槽の中で保管した。1週間後と6週間後に再度、内部抵抗を測定した。
 表1に内部抵抗を測定した結果を示す。実施例1、実施例2、実施例3、実施例4、実施例5、実施例6、比較例1、比較例2、比較例3、比較例4、比較例5、比較例6、比較例7の6週間後の内部抵抗はそれぞれ、2.30Ω、2.07Ω、2.06Ω、2.35Ω、2.09Ω、2.10Ω、2.44Ω、2.33Ω、2.11Ω、2.10Ω、2.39Ω、2.12Ω、2.14Ωであった。この結果から、蓄電デバイス作製前にあらかじめPSもしくはVCの分解による皮膜形成処理を負極に対して行うことで、高温保管時における蓄電デバイスの内部抵抗の増加を抑えることができた。また、PSもしくはVCの添加量が電解液全体の重量の2重量%から4重量%のときは、初期の内部抵抗を抑えつつ高温保管時における内部抵抗の増加を抑えることができ、より望ましいと考えられる。
Figure JPOXMLDOC01-appb-T000009
 本発明の実施形態によれば、十分な出力と高温信頼性をもつ蓄電デバイスを提供することができる。そのため、本発明の実施形態による蓄電デバイスは、電気自動車、ハイブリッド電気自動車などの駆動用又は補助用の蓄電源、各種携帯電子機器の電源、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源等に適用できる。
 101 正極
 102 負極(皮膜形成処理前)
 103 集電体
 104 電極リード
 105 セパレータ
 106 外装用フィルム
 107 ラミネート型蓄電デバイス
 108 リチウム箔
 109 Liプレドープ用セル
 110 皮膜形成処理済負極

Claims (7)

  1.  酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A)で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する蓄電デバイスであって、
     前記負極が、蓄電デバイス組立て前に、あらかじめ1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つの分解によって形成された皮膜を有することを特徴とする蓄電デバイス。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記皮膜は、前記負極が前記蓄電デバイスに組み込まれる前に、1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つを添加した電解液を有する電気化学セルに電流を流すことにより形成されたことを特徴とする、請求項1に記載の蓄電デバイス。
  3.  前記皮膜は、前記負極が前記蓄電デバイスに組み込まれる前に、1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つを添加した電解液を有する電気化学セルに、金属Liを対極として用いて放電することにより形成されたことを特徴とする、請求項1に記載の蓄電デバイス。
  4.  酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A):
    Figure JPOXMLDOC01-appb-C000002
    で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する蓄電デバイスの製造方法であって、
     蓄電デバイス組立て前にあらかじめ、皮膜形成前の負極に1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つの分解による皮膜形成処理を行うことを特徴とする蓄電デバイスの製造方法。
  5.  前記皮膜形成前の負極と1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つを添加した電解液を有する電気化学セルに電流を流すことにより、前記皮膜形成処理を行うことを特徴とする、請求項4に記載の蓄電デバイスの製造方法。
  6.  前記皮膜形成前の負極と1,3-プロパンスルトンおよびビニレンカーボネートの少なくとも1つを添加した電解液を有する電気化学セルに、金属Liを対極として用いて放電することにより、前記皮膜形成前の負極に皮膜形成処理を行うこと特徴とする、請求項4に記載の蓄電デバイスの製造方法。
  7.  前記電解液に含まれる1,3-プロパンスルトンおよびビニレンカーボネートの重量(但し、1,3-プロパンスルトンおよびビニレンカーボネートのどちらか1つのみが存在する場合は、その1つのみの重量)が電解液全体の重量に対して1~10重量%であることを特徴とする、請求項4~6のいずれか1項に記載の蓄電デバイスの製造方法。
PCT/JP2013/082816 2012-12-11 2013-12-06 蓄電デバイス WO2014092016A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014552020A JPWO2014092016A1 (ja) 2012-12-11 2013-12-06 蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270789 2012-12-11
JP2012270789 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014092016A1 true WO2014092016A1 (ja) 2014-06-19

Family

ID=50934307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082816 WO2014092016A1 (ja) 2012-12-11 2013-12-06 蓄電デバイス

Country Status (2)

Country Link
JP (1) JPWO2014092016A1 (ja)
WO (1) WO2014092016A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139624A (ja) * 2015-01-26 2016-08-04 イビデン株式会社 電極積層体及び蓄電デバイスの製造方法
WO2016147811A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 蓄電デバイス
JP2016539487A (ja) * 2014-09-30 2016-12-15 エルジー・ケム・リミテッド リチウム二次電池の製造方法
WO2020004398A1 (ja) * 2018-06-26 2020-01-02 日東電工株式会社 正極用活物質、正極、蓄電デバイス、及び正極用活物質の製造方法
JP2021158119A (ja) * 2014-11-03 2021-10-07 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. 半固体電極中の電極材料のプレリチオ化

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201873A (zh) * 2020-11-11 2021-01-08 江苏卫健信息科技有限公司 一种动力锂离子电池的注液化成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2006024417A (ja) * 2004-07-07 2006-01-26 Sony Corp 電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2006024417A (ja) * 2004-07-07 2006-01-26 Sony Corp 電池の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539487A (ja) * 2014-09-30 2016-12-15 エルジー・ケム・リミテッド リチウム二次電池の製造方法
US10263293B2 (en) 2014-09-30 2019-04-16 Lg Chem, Ltd. Manufacturing method of lithium secondary battery
JP2021158119A (ja) * 2014-11-03 2021-10-07 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. 半固体電極中の電極材料のプレリチオ化
US11804595B2 (en) 2014-11-03 2023-10-31 24M Technologies, Inc. Pre-lithiation of electrode materials in a semi-solid electrode
JP2016139624A (ja) * 2015-01-26 2016-08-04 イビデン株式会社 電極積層体及び蓄電デバイスの製造方法
WO2016147811A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 蓄電デバイス
JPWO2016147811A1 (ja) * 2015-03-16 2018-01-11 日本電気株式会社 蓄電デバイス
US10497978B2 (en) 2015-03-16 2019-12-03 Nec Corporation Power storage device
WO2020004398A1 (ja) * 2018-06-26 2020-01-02 日東電工株式会社 正極用活物質、正極、蓄電デバイス、及び正極用活物質の製造方法
JP2020004551A (ja) * 2018-06-26 2020-01-09 日東電工株式会社 正極用活物質、正極、蓄電デバイス、及び正極用活物質の製造方法

Also Published As

Publication number Publication date
JPWO2014092016A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP2021048142A (ja) 二次電池用負極
JP5516578B2 (ja) 蓄電デバイス
KR102425511B1 (ko) 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
JP5146049B2 (ja) 蓄電デバイス
JP5076560B2 (ja) 蓄電デバイス
WO2007088677A1 (ja) イオン性液体を用いたリチウム二次電池
CN102088111A (zh) 非水电解质电池
WO2014092016A1 (ja) 蓄電デバイス
JP6153124B2 (ja) 非水電解液二次電池およびその製造方法
WO2012161184A1 (ja) 非水二次電池用電解液及び二次電池
JP5160159B2 (ja) リチウム二次電池
JP5652029B2 (ja) 電極及びその製造方法、並びに電極を備えた蓄電デバイス及びその製造方法
JP7115318B2 (ja) ラジカルポリマーを用いた電極及び二次電池
JP6895085B2 (ja) 蓄電デバイス
WO2014006973A1 (ja) 蓄電デバイス用電極、それを用いた蓄電デバイスおよびその製法
JP2019061826A (ja) リチウムイオン二次電池
JP6447050B2 (ja) 蓄電デバイスの製造方法
JP2014072129A (ja) 蓄電デバイス用電極およびそれを用いた蓄電デバイス
JP6933260B2 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2013239305A (ja) 蓄電デバイス、それに用いる正極並びに多孔質シート、およびドープ率向上方法
WO2013114785A1 (ja) 蓄電デバイス
WO2014136729A1 (ja) 蓄電デバイス
WO2014092128A1 (ja) 蓄電デバイス
JP6315775B2 (ja) リチウムイオン二次電池
JP2019061828A (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862604

Country of ref document: EP

Kind code of ref document: A1