WO2014091891A1 - ぜんまいばねの製造方法 - Google Patents

ぜんまいばねの製造方法 Download PDF

Info

Publication number
WO2014091891A1
WO2014091891A1 PCT/JP2013/081239 JP2013081239W WO2014091891A1 WO 2014091891 A1 WO2014091891 A1 WO 2014091891A1 JP 2013081239 W JP2013081239 W JP 2013081239W WO 2014091891 A1 WO2014091891 A1 WO 2014091891A1
Authority
WO
WIPO (PCT)
Prior art keywords
mainspring spring
winding portion
spiral
pair
end side
Prior art date
Application number
PCT/JP2013/081239
Other languages
English (en)
French (fr)
Inventor
岸原 竜二
和田 直也
寺床 圭一郎
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to CN201380061198.8A priority Critical patent/CN104822473B/zh
Priority to US14/436,794 priority patent/US9782819B2/en
Priority to EP13863522.2A priority patent/EP2933036B1/en
Publication of WO2014091891A1 publication Critical patent/WO2014091891A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/08Coiling wire into particular forms to flat spiral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/06Bending into helical or spiral form; Forming a succession of return bends, e.g. serpentine form
    • B21D11/07Making serpentine-shaped articles by bending essentially in one plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F23/00Feeding wire in wire-working machines or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • B21F35/02Bending or deforming ends of coil springs to special shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/10Spiral springs with turns lying substantially in plane surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/026Springs wound- or coil-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49609Spring making
    • Y10T29/49611Spring making for vehicle or clutch

Definitions

  • the present invention relates to a method for manufacturing a mainspring spring.
  • the mainspring spring is widely used in various applications such as a valve timing adjusting device for rotating the camshaft by receiving rotational power from a crankshaft in an internal combustion engine.
  • the valve timing adjusting device includes a housing operatively connected to a crankshaft and a vane rotor operatively connected to a camshaft, and an internal space of the housing is partitioned into a retard chamber and an advance chamber by vanes in the vane rotor.
  • the rotational phase of the vane rotor with respect to the housing can be changed by supplying hydraulic oil to one of the retard chamber and the advance chamber and discharging the hydraulic oil from the other.
  • valve timing adjusting device further holds the rotational phase of the vane rotor relative to the housing at an intermediate phase between the most retarded position and the most advanced position to start the internal combustion engine.
  • a mainspring spring is provided.
  • the mainspring spring is inserted between the housing and the vane rotor so that the vane rotor can be biased toward the advance side toward the intermediate phase when the vane rotor is positioned at the retard side relative to the intermediate phase.
  • the mainspring spring is a member in which a long wire is wound spirally in substantially the same plane, and the inner end portion and the outer end portion are relatively moved in the circumferential direction in the direction of diameter reduction, so It will be in the state which has.
  • FIG. 9 shows a plan view of a conventional mainspring spring.
  • 9 (a) to 9 (c) respectively show the free spring state of the mainspring spring and the initial torque generation state (the mainspring spring is elastically deformed from the free length state in the diameter reducing direction so as to generate a predetermined initial torque).
  • a maximum torque generation state (a state in which the mainspring spring is elastically deformed in the diameter reducing direction from the initial torque generation state so as to generate the maximum torque).
  • the conventional mainspring spring has a substantially constant curvature radius from the inner end located radially inward to the outer end located radially outward in the free length state. It is configured to increase in proportion (the radius increases at a substantially constant rate).
  • the innermost spring when it is placed in a state having retained elasticity such as an initial torque generation state or a maximum torque generation state, the innermost spring is obtained.
  • All the winding parts from the first winding part located in the direction to the nth winding part (the third winding part in the illustrated embodiment) located radially outward are substantially the same position in the circumferential direction (hereinafter referred to as the circumferential direction). Only one place (referred to as the first position) comes into contact with another winding portion that is adjacent in the radial direction.
  • the winding portion located in the center with respect to the radial direction will be narrowed in contact with the winding portion located radially inward and the winding portion located radially outward at the first circumferential position, During the elastic deformation operation, stress concentrates on the first circumferential position, and this portion may be damaged. Therefore, a mainspring spring that can increase the natural frequency and prevent or reduce local stress concentration during the elastic deformation operation is desired.
  • the present invention has been made in view of the above prior art, and is capable of efficiently manufacturing a mainspring spring that can increase the natural frequency and can prevent or reduce local stress concentration during the elastic deformation operation.
  • the purpose is to provide a method.
  • the present invention provides a fixed winding portion acting as a counter winding portion and a plurality of movable winding portions continuing from a terminal end portion of the fixed winding portion in a spiral manner in substantially the same plane.
  • the mainspring spring wherein the first movable winding portion located at least radially inward of the plurality of movable winding portions is elastically deformed in a direction in which the mainspring spring is reduced in diameter from a free length state.
  • the fixed winding portion adjacent to the radially inner side and the second movable winding portion adjacent to the radially outer side do not contact at the same position in the circumferential direction and are displaced in the circumferential direction.
  • a substantially linear long member is moved in the longitudinal direction by at least a pair of transport rollers. First along Work in one direction in the first direction with respect to the pair of transport rollers and movable in a second direction perpendicular to both the first direction and the rotation axis direction of the transport rollers. By engaging one side of the long member in the second direction with the pressing member disposed in the region, the fixed winding portion, the first movable winding portion, and the second movable portion are moved from the linear long member.
  • a spiral forming step of forming a spiral body including a winding portion wherein the spiral forming step engages with the pressing member based on a signal from a rotational speed sensor that detects the rotational speed of at least one of the pair of transport rollers.
  • a mainspring spring configured to control the second direction position of the pressing member while recognizing the relationship between the longitudinal position of the elongated member and the circumferential position after being formed on the spiral body Proposed manufacturing method To.
  • the first movable winding portion in the retained elastic state, is fixed to the stationary winding portion adjacent to the radially inner side and the second movable winding portion adjacent to the radially outer side.
  • a mainspring spring that does not come into contact with both at the same position in the circumferential direction, and that only comes into contact with either the fixed winding portion or the second movable winding portion at a plurality of positions displaced in the circumferential direction. Can be manufactured.
  • the spiral forming step forms small curvature portions at a plurality of circumferential positions in the first movable winding portion, and the second movable winding portion corresponds to the plurality of small curvature portions.
  • a large curvature portion is formed at a circumferential position, and the plurality of small curvature portions are in contact with the corresponding large curvature portion without being in contact with the fixed winding portion.
  • the method of manufacturing the mainspring spring according to the present invention further includes a starting end side cutting step executed before the spiral forming step, such that a distal end side of the elongate member reaches the working area.
  • the long member is cut by the cutting member disposed in the work area in a state where the long member is conveyed by the pair of conveying rollers to form the start end portion of the mainspring spring, and at this time, the A start-end-side cutting step for recognizing an initial position corresponding to the start-end portion based on a signal from a rotation speed sensor; and a termination-side cutting step that is performed after the spiral forming step, and is arranged in the work area And a terminal-side cutting step of obtaining the mainspring spring by cutting the spiral body from the elongated member by a cutting member.
  • the method of manufacturing the mainspring spring according to the present invention further includes an inner end side attaching hook forming step executed between the starting end side cutting step and the spiral forming step, An inner end side attaching hook forming step of forming an inner end side attaching hook by applying an inner end side attaching hook forming member arranged in the work area to a predetermined portion continuing from the starting end, and the spiral formation An outer end side attachment hook forming step executed between the step and the terminal side cutting step, wherein the outer end portion of the spiral body formed by the spiral forming step is disposed outside the work area. And an outer end side attaching hook forming step of forming an outer end side attaching hook by causing the end side attaching hook forming member to act.
  • the termination side cutting step is to cut the downstream side in the transport direction of the outer end side attachment hook.
  • the long member may have a rectangular shape having a pair of first sides facing each other and a pair of second sides facing each other.
  • the pressing member is engaged with one of the pair of first sides of the elongated member, and the pressing member is one of the pair of first sides along the second direction.
  • the radius of curvature of the portion spirally formed by the pressing member decreases as it moves from the side toward the other side, and the pressing member is the other of the pair of first sides along the second direction.
  • the radius of curvature of the portion formed in a spiral shape by the pressing member can be increased as it is moved from one side to the other side.
  • the other of the pair of first sides is a straight line connecting corresponding ends of the pair of second sides.
  • One of the pair of first sides may have a convex shape bulging outward as compared to a straight line connecting corresponding ends of the pair of second sides.
  • FIGS. 1 (a) to 1 (c) are plan views of a mainspring spring manufactured by the method of manufacturing a mainspring spring according to one embodiment of the present invention, and FIGS. 1 (a) to (c) are respectively A free length state, an initial torque generation state, and a maximum torque generation state are shown.
  • FIG. 2 is a graph showing the relationship between the number of turns and the curvature when the mainspring spring shown in FIG. 1 is in an initial torque generating state.
  • FIG. 3 is a graph showing the relationship between the number of turns and the curvature when the mainspring spring shown in FIG. 1 is in the maximum torque generating state.
  • 4 (a) and 4 (b) are process schematic diagrams in the method for manufacturing the mainspring spring according to the embodiment of the present invention, and each is a state in which a long member serving as a material of the mainspring spring is being conveyed. And the start end side cutting process is shown.
  • 5 (a) and 5 (b) are process schematic diagrams in the method of manufacturing the mainspring spring according to the embodiment of the present invention, and are a part of the inner end side attaching hook forming process and the spiral forming process, respectively.
  • 6 (a) and 6 (b) are process schematic diagrams in the method of manufacturing the mainspring spring according to the embodiment of the present invention, and a part of the spiral forming process and the outer end side attaching hook forming process, respectively.
  • 7 (a) and 7 (b) are process schematic diagrams in the method for manufacturing the mainspring spring according to the embodiment of the present invention, and are a part of the outer end side attaching hook forming step and the end side cutting, respectively.
  • the process is shown.
  • 8A and 8B are cross-sectional views taken along lines VIII (a) -VIII (a) and VIII (b) -VIII (b) in FIG. 6A, respectively.
  • 8 (c) and 8 (d) are cross-sectional views corresponding to FIGS. 8 (a) and 8 (b), respectively, of a conventional mainspring spring.
  • 9 (a) to 9 (c) are plan views of a conventional mainspring, and FIGS.
  • FIG. 10 is a graph showing the relationship between the number of turns and the curvature when the conventional mainspring spring shown in FIG. 9 is in the initial torque generation state.
  • FIG. 11 is a graph showing the relationship between the number of turns and the curvature when the mainspring spring shown in FIG. 9 is in the maximum torque generating state.
  • FIG. 1 shows a plan view of the mainspring 1.
  • 1 (a) to 1 (c) respectively show a free length state and an initial torque generation state of the mainspring spring 1 (a state in which the mainspring spring 1 is elastically deformed from the free length state to the reduced diameter direction so as to generate a predetermined initial torque).
  • a maximum torque generation state (a state in which the initial torque generation state is elastically deformed in the diameter reducing direction so as to generate the maximum torque).
  • the mainspring 1 is located at the radially innermost side by the long member 100 being spirally wound in substantially the same plane.
  • the fixed winding portion 10 acting as a counter winding portion and a plurality of movable winding portions 20 continuing from the terminal portion of the fixed winding portion 10 are provided.
  • one end portion 10a on the start end side forms an inner end portion of the mainspring spring 1, and the other end portion 10b extends spirally from the one end portion 10a and is connected to the movable winding portion 20.
  • a terminal portion is formed.
  • an approximately 1.25 winding region from the inner end portion of the mainspring spring 1 acts as the fixed winding portion 10. Further, an inner end side attaching hook 2a is formed at an inner end portion of the mainspring spring 1 (a start end portion of the fixed winding portion).
  • the plurality of movable winding portions 20 include a first movable winding portion 20 (1) extending from a terminal portion 10b of the fixed winding portion 10 so as to be located radially outward of the fixed winding portion 10, and the first movable winding portion. It has the 2nd movable winding part 20 (2) extended from the terminal part of the said 1st movable winding part 20 (1) so that it may be located in the radial direction outer side of the winding part 20 (1).
  • a terminal portion of the second movable winding portion 20 (2) forms an outer end portion of the mainspring spring 1
  • An outer end side attaching hook 2b is formed on the outer end portion (the end portion of the second movable winding portion 20 (2)).
  • the present invention is not limited to this embodiment.
  • the present invention can also be applied to the production of a mainspring spring having three or more movable winding portions.
  • the mainspring spring 1 is elastically deformed from the free length state (the state shown in FIG. 1 (a)) in the direction of reducing the diameter to the retained elastic state (the state shown in FIGS. 1 (b) and (c)).
  • the first movable winding portion 20 (1) is connected to both the fixed winding portion 10 adjacent to the radially inner side and the second movable winding portion 20 (2) adjacent to the radially outer side.
  • the first movable winding portion 20 (1) is spaced apart from the start end portion by a predetermined angle in the circumferential direction in the retained elastic state.
  • the first position 25a it is only in contact with the second movable winding portion 20 (2) in a state of being radially separated from the fixed winding portion 10, and is spaced from the first position 25a by a predetermined angle outward in the circumferential direction.
  • the fixed winding portion 10 is in contact with only the second movable winding portion 20 (2) in a state of being radially separated from the fixed winding portion 10 and predetermined outward in the circumferential direction from the second position 25b.
  • the third position 25c that is angularly separated, the fixed winding portion 10 is in contact with only the second movable winding portion 20 (2) while being radially separated.
  • the first movable winding portion 20 (1) in the retained elastic state, the first movable winding portion 20 (1) further has a fourth position between the second position 25 b and the third position 25 c in the circumferential direction. At the position 25d, the second movable winding portion 20 (2) is in contact with only the fixed winding portion 10 in a state of being radially separated.
  • the first movable winding portion 20 (1) in the retained elastic state, is the same in the circumferential direction as both the fixed winding portion 10 and the second movable winding portion 20 (2). No contact is made at the position, and only one of the fixed winding part 10 and the second movable winding part 20 (2) is contacted at a plurality of positions displaced in the circumferential direction.
  • the mainspring spring 1 having such a configuration can increase the natural frequency as compared with the conventional mainspring spring, and can effectively prevent local stress concentration.
  • 9A to 9C are plan views of the conventional mainspring spring 200 in a free length state, an initial torque generation state, and a maximum torque generation state, respectively.
  • FIG. 10 shows the relationship between the number of turns and the curvature when the conventional mainspring spring 200 is in the initial torque generation state (FIG. 9B).
  • FIG. 11 shows the relationship between the number of turns and the curvature when the conventional mainspring spring 200 is in the maximum torque generation state (FIG. 9C).
  • the conventional mainspring spring 200 in the free spring state, has a radius of curvature approximately as it goes from the inner end located radially inward to the outer end located radially outward. It is configured to increase at a constant rate (the radius increases at a substantially constant rate).
  • the innermost All the winding portions from the first winding portion 210 (1) located at the outermost position to the third winding portion 210 (3) located at the radially outermost side are substantially at the same position in the circumferential direction (hereinafter referred to as the circumferential first position 205). Will be in contact with other winding portions that are adjacent in the radial direction at only one location.
  • the entire circumferential region other than the first circumferential position 205 can be freely elastically deformed without receiving frictional contact with other winding portions adjacent in the radial direction. Therefore, the natural frequency of the whole mainspring spring becomes low, and resonance tends to occur.
  • the winding portion (the second winding portion 210 (2) in the illustrated form) positioned in the center in the radial direction is positioned radially inward at the first circumferential position 205. (210 (1)) and the winding portion 210 (3) positioned radially outwardly, the pressure is narrowed, and there is a problem that stress concentrates on the first circumferential position 205 during the elastic deformation operation.
  • the first movable winding portion 20 (1) has the fixed winding portion 10 or the second movable winding portion 20 at a plurality of positions 25 a, 25 b, 25 c displaced in the circumferential direction. It is in contact with only one of (2). Accordingly, it is possible to effectively prevent the occurrence of resonance by increasing the natural frequency.
  • the first movable winding portion 20 (1) is configured not to contact both the fixed winding portion and the second movable winding portion at the same position in the circumferential direction. Therefore, it is possible to effectively prevent stress concentration from occurring at a predetermined location during the elastic deformation operation.
  • FIGS. 2 and 3 respectively show the number of turns and the curvature when the mainspring 1 is in the initial torque generation state (FIG. 1B) and the maximum torque generation state (FIG. 1C). The relationship is shown.
  • the first movable winding portion 20 (1) has a plurality of small curvatures having a smaller radius of curvature than both sides in the circumferential direction. Has a part.
  • the plurality of small curvature portions include first to third small curvature portions 21a to 21c.
  • the first small curvature portion 21a is provided at a position spaced apart from the end portion 10b of the fixed winding portion 10 in the circumferential direction.
  • the second small curvature portion 21b is provided at a position spaced apart from the first small curvature portion 21a in the circumferential direction.
  • the third small curvature portion 21c is provided at a position spaced apart from the second small curvature portion 21b in the circumferential direction.
  • the first small curvature portion 21a is arranged on the first start side and the end side in the circumferential direction.
  • a first transition area 22a and a second transition area 22b having a radius of curvature larger than that of the curvature portion 21a are provided. That is, the first small curvature portion 21a is located between the first and second transition regions 22a and 22b in the circumferential direction.
  • the second small curvature portion 21b is located on the circumferential end side of the second transition region 22b, and the mainspring spring 1 further includes the second small curvature portion 21b closer to the circumferential end side than the second small curvature portion 21b.
  • a third transition region 22c having a radius of curvature larger than that of the small curvature portion 21b is provided. That is, the second small curvature portion 21b is located between the second and third transition regions 22b and 22c in the circumferential direction.
  • the third small curvature portion 21c is located on the circumferential end side of the third transition region 22c, and the mainspring spring 1 further includes the third small curvature portion 21c closer to the circumferential end side than the third small curvature portion 21c.
  • a fourth transition region 22d having a radius of curvature larger than that of the small curvature portion 21c is provided. That is, the third small curvature portion 21c is located between the third and fourth transition regions 22c and 22d in the circumferential direction.
  • the second movable winding portion 20 (2) is provided with first to third large curvature portions 23a to 23c at positions corresponding respectively to the first to third small curvature portions 21a to 21c in the circumferential direction.
  • Each of the first to third large curvature portions 23a to 23c has a larger radius of curvature than both sides in the circumferential direction.
  • the first to third small curvature portions 21a to 21c are in contact with the corresponding first to third large curvature portions 23a to 23c, respectively.
  • the first small curvature portion 21 a contacts the first large curvature portion 23 a while leaving a gap between the first winding portion 10 and the fixed winding portion 10, and the second small curvature portion 21 b is connected to the fixed winding portion 10.
  • the third small curvature portion 21c is in contact with the third large curvature portion 23c while leaving a gap between the fixed winding portion 10 and the second large curvature portion 23b. is doing.
  • the mainspring spring 1 has a curvature smaller than that of the fourth transition region 22d in order from the fourth transition region 22d to the circumferential end side.
  • a seventh transition region 22g having a larger curvature is provided.
  • the fifth to seventh transition regions 22e to 22g act as the first to third large curvature portions 23a to 23c, respectively.
  • the first movable winding portion 20 (1) has the second and third portions in the circumferential direction in the retained elastic state.
  • the intermediate portion between the small curvature portions 21b and 21c is in contact with the fixed winding portion 10 while leaving a gap with the second movable winding portion 20 (2), thereby further increasing the natural frequency. I am trying.
  • FIGS. 4 (a) and (b), FIGS. 5 (a) and (b), FIGS. 6 (a) and (b), and FIGS. 7 (a) and (b) show process schematic diagrams in the manufacturing method. .
  • the substantially linear long member 100 is conveyed to one side in the first direction along the longitudinal direction by at least a pair of conveying rollers 120 and is engaged with the pressing member 130 whose position can be changed.
  • the pressing member 130 is movable in a second direction orthogonal to both the first direction and the rotation axis direction of the transport roller 120.
  • the pressing member 130 is disposed so as to engage with the one side in the second direction of the long member 100 in a work area 190 located on one side in the first direction with respect to the pair of transport rollers 120.
  • the pressing member 130 may take various forms as long as the linear elongated member 100 can be deformed in a spiral shape.
  • the pressing member 130 includes a pin-shaped member whose position can be changed along the second direction in a state parallel to the rotation axis, and a roller member supported by the pin-shaped member so as to be relatively rotatable. Can have. According to such a configuration, when the elongate member 100 is deformed from a straight shape to a spiral shape, it is possible to effectively prevent the surface from being scratched.
  • At least one of the pair of transport rollers 120 is provided with a rotation speed sensor (not shown) that detects the rotation speed.
  • a rotation speed sensor (not shown) that detects the rotation speed.
  • the spiral forming step based on the signal from the rotation speed sensor, which part of the elongated member 100 that is currently engaged with the pressing member 130 is formed in the spiral body. (I.e., which winding portion of the spiral body is located and where the winding member is located in the circumferential direction), the position control of the pressing member 130 in the second direction is performed. Configured to do.
  • the pressing member 130 is located on one side of the long member 100 in the second direction (that is, radially outward in a state after the long member 100 is formed in a spiral shape). (See FIG. 6 (a)), the radius of curvature of the spiral body decreases as the pressing member 130 is moved to the other side in the second direction, and the pressing As the member 130 is moved to one side in the second direction, the radius of curvature of the spiral body is increased.
  • a guide 140 for guiding the elongate member 100 toward the work area 190 is provided on the downstream side in the transport direction of the transport roller 120 (one side in the first direction).
  • a guide 145 that stably guides the long member 100 to the transport roller 120 is provided on the upstream side of the transport roller 120 in the transport direction (the other side in the first direction).
  • the manufacturing method according to the present embodiment further includes a start side cutting step that is executed before the spiral forming step and a termination side cutting step that is executed after the spiral forming step.
  • the long member 100 is transported by the pair of transport rollers 120 so that the distal end side of the long member 100 reaches the work area 190 (FIG. 4A), The long member 100 is cut by the cutting member 150 disposed in the work area 190 to form the starting end portion of the mainspring spring (FIG. 4B). Based on a signal from the rotational speed sensor when the long member 100 is cut by the cutting member 150, an initial position corresponding to the starting end can be recognized.
  • the terminal-side cutting step is configured to cut the spiral body from the long member 100 by the cutting member 150 disposed in the work area 190 (FIG. 7B).
  • terminus side cutting process at the time of manufacturing one mainspring spring 1 is carried out. It can utilize as the said start end side cutting process.
  • the terminal side cutting step in manufacturing one mainspring spring 1 and the starting end side cutting step in manufacturing the next mainspring spring 1 can be made as separate operations. .
  • the mainspring 1 has the inner end side mounting hook 2a at the inner end (starting end 10a of the fixed winding portion 10), and the outer end (externally located).
  • the outer end side attaching hook 2b is provided at the terminal end of the movable winding portion 20 (2).
  • the manufacturing method further includes an inner end side attaching hook forming step (FIG. 5 (a)) and an outer end side attaching hook forming step (FIG. 6 (b) and FIG. 7 (a)).
  • the inner end side attaching hook forming step is executed between the starting end side cutting step (FIG. 4B) and the spiral forming step (FIGS. 5B and 6A), and the long member
  • the inner end side attaching hook 2a is formed by causing the inner end side attaching hook forming member 110 disposed in the work area 190 to act on a predetermined portion of the 100 that continues from the starting end portion 10a. Yes.
  • the inner end side attachment hook forming member is engaged with a side of the long member 100 facing inward in the radial direction in a state after being formed in the spiral body.
  • the hook movable pin 115 is moved around the hook fixing pin 111 in a state where the distal end portion of the elongated member 100 is sandwiched between the hook fixing pin 111 and the hook fixing pin 111 so that the inner end side mounting is performed.
  • a hook 2a is formed.
  • the outer end side attaching hook forming step is executed between the spiral forming step (FIGS. 5B and 6A) and the terminal side cutting step (FIG. 7B), and the spiral forming step
  • the outer end side attaching hook forming member 160 disposed in the work area 190 is caused to act on the outer end portion of the spiral body formed by the above-described configuration to form the outer end side attaching hook 2b. .
  • the outer end side attachment hook forming member 160 includes a hook fixing pin 161 that engages with the radially outward side of the spiral body. , And a hook movable pin 165 that engages with the radially inward side of the spiral body.
  • the hook movable pin 165 is moved around the hook fixing pin 161 in a state where the elongated member 100 forming the spiral body is sandwiched between the hook movable pin 165 and the outer end end.
  • a side mounting hook 2a is formed.
  • the transport roller 120, the pressing member 130, the cutting member 150, the inner end side attachment hook forming member 110, and the outer end side attachment hook forming member are operated.
  • An actuator (not shown) and an operation program for the actuator are stored, and a control device (not shown) for controlling the operation of each actuator based on the operation program in accordance with a signal from the rotation speed sensor. This is preferably carried out using a manufacturing apparatus.
  • FIGS. 8A and 8B are cross-sectional views taken along lines VIII (a) -VIII (a) and VIII (b) -VIII (b) in FIG. 6A, respectively.
  • the elongate member 100 has a pair of first sides 101 (1) and 101 (2) whose cross-sectional shapes are opposed to each other, and a pair of second sides 102 (1) that are opposed to each other. It is substantially rectangular.
  • the long member 100 is in the initial state before being formed into a spiral by the pressing member 130.
  • the other side 101 (2) (the side facing inward in the radial direction when formed in the spiral) is along a straight line connecting corresponding ends of the pair of second sides 102 (1) and 102 (2).
  • One of the pair of first sides 101 (1) (the side that engages with the pressing member 130 and faces radially outward when formed in a spiral) is the pair of second sides 102 ( 1), a convex shape that bulges outward as compared to a straight line (two-dot chain line in FIG. 8A) connecting corresponding end portions of 102 (2).
  • the cross-sectional shape of the long member 100 can be substantially rectangular (FIG. 8 ( b)).
  • the long member 100 is one of the pair of first sides 101 (1) in the initial state before being formed on the spiral by the pressing member 130. ) (The side facing radially outward in the state after being formed in the spiral body) is outward as compared to the straight line connecting the corresponding end portions of the pair of second sides 102 (1), 102 (2) It is made into the convex shape bulged to (refer Fig.8 (a)).
  • the cross section of the elongate member 100 is substantially as shown in FIG. It can be rectangular. Therefore, it is possible to effectively ensure a contact area with the winding portion adjacent in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Wire Processing (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 一対の搬送ローラによって略直線状の長尺部材を長手方向に沿った第1方向の一方側へ搬送しつつ第2方向移動可能とされた押圧部材に前記長尺部材の前記第2方向一方側を係合させることで、直線状の前記長尺部材から固定巻き部、第1可動巻き部及び第2可動巻き部を含む螺旋体を形成する螺旋形成工程を含む。前記螺旋形成工程は、前記搬送ローラの回転数を検出する回転数センサからの信号に基づき、前記押圧部材に係合している長尺部材の長手方向位置と螺旋体に形成された後の周方向位置との関係を認識した状態で、前記押圧部材の第2方向位置を制御するものとされる。

Description

ぜんまいばねの製造方法
 本発明は、ぜんまいばねの製造方法に関する。
 ぜんまいばねは、例えば、内燃機関においてクランク軸から回転動力を受けてカム軸を回転駆動する為のバルブタイミング調整装置等の種々の用途において広く利用されている。
 前記バルブタイミング調整装置は、クランク軸に作動連結されたハウジングとカム軸に作動連結されたベーンロータとを備え、前記ハウジングの内部空間が前記ベーンロータにおけるベーンによって遅角室及び進角室に区画されており、前記遅角室又は前記進角室の一方に作動油を供給し且つ他方から排出させることによって、前記ハウジングに対する前記ベーンロータの回転位相を変化させ得るようになっている。
 ここで、前記バルブタイミング調整装置には、さらに、前記ハウジングに対する前記ベーンロータの回転位相を最も遅角側の位置と最も進角側の位置との間の中間位相に保持して、内燃機関の始動性向上を図る為に、ぜんまいばねが備えられている。
 前記ぜんまいばねは、前記ベーンロータが中間位相よりも遅角側に位置する際において前記ベーンロータを中間位相へ向けて進角側へ付勢し得るように前記ハウジング及び前記ベーンロータの間に介挿されており、これにより、内燃機関の始動時における前記ベーンロータの回転移動を中間位相に保持して、内燃機関の始動性を向上させ得るようになっている。
 ぜんまいばねは、長尺の線材が略同一平面内において螺旋状に巻き回されてなる部材であり、縮径する方向に内端部及び外端部が周方向に相対移動されることで保有弾性を有する状態となる。
 図9に、従来のぜんまいばねの平面図を示す。
 図9(a)~(c)は、それぞれ、ぜんまいばねの自由長状態、初期トルク発生状態(ぜんまいばねが所定の初期トルクを発生するように自由長状態から縮径方向に弾性変形された状態)及び最大トルク発生状態(ぜんまいばねが最大トルクを発生するように初期トルク発生状態から縮径方向に弾性変形された状態)を示している。
 図9(a)に示すように、従来のぜんまいばねは、自由長状態において、径方向内方に位置する内端部から径方向外方に位置する外端部へ行くに従って曲率半径が略一定割合で大きくなる(半径が略一定割合で大きくなる)ように構成されている。
 斯かる構成の従来のぜんまいばねにおいては、図9(b)及び(c)に示すように、初期トルク発生状態や最大トルク発生状態等の保有弾性を有する状態に置かれた際に、最内方に位置する第1巻き部分から径方向最外方に位置する第n巻き部分(図示の形態においては第3巻き部分)に至る全ての巻き部分が周方向に関し略同一位置(以下、周方向第1位置と称す)の一箇所のみで径方向に隣接する他の巻き部分と接触することになる。
 即ち、前記従来のぜんまいばねにおいては、全ての巻き部分において、前記周方向第1位置以外の周方向全領域が、周方向に隣接する他の巻き部分との摩擦接触を受けること無く、自由に弾性変形可能な領域となっており、従って、ぜんまいばね全体の固有振動数が低くなるという問題があった。
 このような従来のぜんまいばねが、例えば、前記特許文献1に記載のようなバルブタイミング調整装置に用いられた場合には、内燃機関の出力回転数が増加して、ぜんまいばねに付加される振動の周波数が固有振動数に近づくと共振が生じ、ぜんまいばねに大きな負荷が掛かってしまう。
 さらに、径方向に関し中央に位置する巻き部が前記周方向第1位置において径方向内方に位置する巻き部及び径方向外方に位置する巻き部に接触状態で狭圧されることになり、弾性変形動作時に前記周方向第1位置に応力が集中し、この部分の損傷を招く虞があった。
 従って、固有振動数を上昇させることができ且つ弾性変形動作時における局所的な応力集中を防止又は低減できるぜんまいばねが望まれている。
特開2010-180862号公報
 本発明は、前記従来技術に鑑みなされたものであり、固有振動数を上昇させることができ且つ弾性変形動作時における局所的な応力集中を防止又は低減できるぜんまいばねを効率的に製造し得る製造方法の提供を目的とする。
 本発明は、前記目的を達成する為に、座巻き部として作用する固定巻き部と前記固定巻き部の終端部から続く複数の可動巻き部とが実質的に同一平面内で螺旋状に巻き回されたぜんまいばねであって、前記複数の可動巻き部のうち少なくとも径方向最内方に位置する第1可動巻き部が、前記ぜんまいばねが自由長状態から縮径する方向に弾性変形された保有弾性状態において、径方向内方側に隣接する前記固定巻き部及び径方向外方側に隣接する第2可動巻き部の双方とは周方向同一位置において接触せず、且つ、周方向に変位された複数の位置で前記固定巻き部又は前記第2可動巻き部の何れか一方とのみ接触しているぜんまいばねの製造方法において、少なくとも一対の搬送ローラによって略直線状の長尺部材を長手方向に沿った第1方向の一方側へ搬送しつつ、前記第1方向及び前記搬送ローラの回転軸方向の双方と直交する第2方向に移動可能とされ且つ前記一対の搬送ローラより前記第1方向の一方側の作業領域に配置された押圧部材に前記長尺部材の前記第2方向一方側を係合させることで、直線状の前記長尺部材から前記固定巻き部、前記第1可動巻き部及び前記第2可動巻き部を含む螺旋体を形成する螺旋形成工程を含み、前記螺旋形成工程は、前記一対の搬送ローラの少なくとも一方の回転数を検出する回転数センサからの信号に基づき、前記押圧部材に係合している前記長尺部材の長手方向位置と前記螺旋体に形成された後の周方向位置との関係を認識した状態で、前記押圧部材の前記第2方向位置を制御するように構成されたぜんまいばねの製造方法を提供する。
 本発明に係るぜんまいばねの製造方法によれば、保有弾性状態において、第1可動巻き部が径方向内方側に隣接する固定巻き部及び径方向外方側に隣接する第2可動巻き部の双方とは周方向同一位置において接触せず、且つ、周方向に変位された複数の位置で前記固定巻き部又は前記第2可動巻き部の何れか一方とのみ接触するぜんまいばねを、効率的に製造することができる。
 一形態においては、前記螺旋形成工程は、前記第1可動巻き部における複数の周方向位置に小曲率部を形成し、且つ、前記第2可動巻き部には前記複数の小曲率部に対応した周方向位置に大曲率部を形成するように構成され、前記複数の小曲率部が、前記固定巻き部には接触しない状態で対応する前記大曲率部に接触するものとされる。
 好ましくは、本発明に係る前記ぜんまいばねの製造方法は、さらに、前記螺旋形成工程の前に実行される始端側切断工程であって、前記長尺部材の先端側が前記作業領域に到達するように前記一対の搬送ローラによって前記長尺部材を搬送した状態で前記作業領域に配設された切断部材によって前記長尺部材を切断して前記ぜんまいばねの始端部を形成すると共に、この時点での前記回転数センサからの信号に基づき前記始端部に対応した初期位置を認識する始端側切断工程と、前記螺旋形成工程の後に実行される終端側切断工程であって、前記作業領域に配置された前記切断部材によって前記螺旋体を前記長尺部材から切断して前記ぜんまいばねを得る終端側切断工程とを含み得る。
 より好ましくは、本発明に係る前記ぜんまいばねの製造方法は、さらに、前記始端側切断工程及び前記螺旋形成工程の間に実行される内端側取付フック形成工程であって、前記長尺部材のうち前記始端部から続く所定部位に対して、前記作業領域に配置された内端側取付フック形成部材を作用させて内端側取付フックを形成する内端側取付フック形成工程と、前記螺旋形成工程及び前記終端側切断工程の間に実行される外端側取付フック形成工程であって、前記螺旋形成工程によって形成された前記螺旋体の外端部位に対して、前記作業領域に配置された外端側取付フック形成部材を作用させて外端側取付フックを形成する外端側取付フック形成工程とをさらに含み得る。
 この場合、前記終端側切断工程は、前記外端側取付フックの搬送方向下流側を切断するものとされる。
 前記長尺部材は、断面形状が対向する一対の第1辺及び対向する一対の第2辺を有する矩形状とされ得る。
 そして、前記螺旋形成工程において、前記押圧部材は前記長尺部材の前記一対の第1辺の一方に係合し、前記押圧部材が前記第2方向に沿って前記一対の第1辺の一方の側から他方の側へ向かって移動されるに従って前記押圧部材によって螺旋状に形成されている部位の曲率半径が小さくなり且つ前記押圧部材が前記第2方向に沿って前記一対の第1辺の他方の側から一方の側へ向かって移動されるに従って前記押圧部材によって螺旋状に形成されている部位の曲率半径が大きくなるように構成され得る。
 この場合、好ましくは、前記長尺部材が前記押圧部材によって前記螺旋体に形成される前の状態においては、前記一対の第1辺の他方は前記一対の第2辺の対応端部同士を結ぶ直線に沿いつつ、前記一対の第1辺の一方は前記一対の第2辺の対応端部同士を結ぶ直線に比して外方へ膨出された凸状とされ得る。
図1(a)~(c)は、本発明の一実施の形態に係るぜんまいばねの製造方法によって製造されたぜんまいばねの平面図であり、図1(a)~(c)は、それぞれ、自由長状態、初期トルク発生状態及び最大トルク発生状態を示している。 図2は、図1に示す前記ぜんまいばねが初期トルク発生状態とされた際の巻数と曲率との関係を示すグラフである。 図3は、図1に示す前記ぜんまいばねが最大トルク発生状態とされた際の巻数と曲率との関係を示すグラフである。 図4(a)及び(b)は、本発明の一実施の形態に係るぜんまいばねの製造方法における工程模式図であり、それぞれ、前記ぜんまいばねの素材となる長尺部材を搬送している状態、及び、始端側切断工程を示している。 図5(a)及び(b)は、本発明の一実施の形態に係るぜんまいばねの製造方法における工程模式図であり、それぞれ、内端側取付フック形成工程、及び、螺旋形成工程の一部を示している。 図6(a)及び(b)は、本発明の一実施の形態に係るぜんまいばねの製造方法における工程模式図であり、それぞれ、螺旋形成工程の一部、及び、外端側取付フック形成工程の一部を示している。 図7(a)及び(b)は、本発明の一実施の形態に係るぜんまいばねの製造方法における工程模式図であり、それぞれ、外端側取付フック形成工程の一部、及び、終端側切断工程を示している。 図8(a)及び(b)は、それぞれ、図6(a)におけるVIII(a)-VIII(a)線及びVIII(b)-VIII(b)線に沿った断面図である。 図8(c)及び(d)は、それぞれ、従来のぜんまいばねにおける図8(a)及び(b)に対応した断面図である。 図9(a)~(c)は、従来のぜんまいばねの平面図であり、図9(a)~(c)は、それぞれ、自由長状態、初期トルク発生状態及び最大トルク発生状態を示している。 図10は、図9に示す従来のぜんまいばねが初期トルク発生状態とされた際の巻数と曲率との関係を示すグラフである。 図11は、図9に示す前記ぜんまいばねが最大トルク発生状態とされた際の巻数と曲率との関係を示すグラフである。
 以下、本発明に係るぜんまいばねの製造方法の好ましい実施の形態について、添付図面を参照しつつ説明する。
 まず、本実施の形態に係る製造方法によって製造されるぜんまいばね1の構成について説明する。
 図1に前記ぜんまいばね1の平面図を示す。
 図1(a)~(c)は、それぞれ、前記ぜんまいばね1の自由長状態、初期トルク発生状態(所定の初期トルクを発生するように自由長状態から縮径方向に弾性変形された状態)及び最大トルク発生状態(最大トルクを発生するように初期トルク発生状態から縮径方向に弾性変形された状態)を表している。
 図1(a)~(c)に示すように、前記ぜんまいばね1は、長尺部材100が実質的に同一平面内で螺旋状に巻き回されることで、径方向最内方に位置し、座巻き部として作用する固定巻き部10と、前記固定巻き部10の終端部から続く複数の可動巻き部20とを有している。
 前記固定巻き部10は、始端側の一端部10aが前記ぜんまいばね1の内端部を形成し、且つ、他端部10bが前記一端部10aから螺旋状に延びて前記可動巻き部20につながる終端部を形成している。
 図示の形態においては、前記ぜんまいばね1の内端部から略1.25巻き領域が前記固定巻き部10として作用している。
 又、前記ぜんまいばね1の内端部(前記固定巻き部の始端部)には内端側取付フック2aが形成されている。
 前記複数の可動巻き部20は、前記固定巻き部10の径方向外方に位置するように前記固定巻き部10の終端部10bから延びる第1可動巻き部20(1)と、前記第1可動巻き部20(1)の径方向外方に位置するように前記第1可動巻き部20(1)の終端部から延びる第2可動巻き部20(2)とを有している。
 図1(a)~(c)に示すように、前記ぜんまいばね1においては、前記第2可動巻き部20(2)の終端部が前記ぜんまいばね1の外端部を形成しており、前記外端部(前記第2可動巻き部20(2)の終端部)には外端側取付フック2bが形成されている。
 なお、本実施の形態においては、前記可動巻き部が2つとされている前記ぜんまいばね1を製造する場合を例に説明するが、当然ながら、本発明は斯かる形態に限定されるものではなく、前記可動巻き部が3つ以上とされたぜんまいばねを製造する際にも適用可能である。
 前記ぜんまいばね1においては、自由長状態(図1(a)に示す状態)から縮径する方向に弾性変形されて保有弾性状態(図1(b)及び(c)に示す状態)とされた際に、前記第1可動巻き部20(1)が、径方向内方側に隣接する前記固定巻き部10及び径方向外方側に隣接する前記第2可動巻き部20(2)の双方とは周方向同一位置においては接触せず、且つ、周方向に変位された複数の位置で前記固定巻き部10又は前記第2可動巻き部20(2)の何れか一方とのみ接触するように構成されている。
 具体的には、図1(b)及び(c)に示すように、前記第1可動巻き部20(1)は、前記保有弾性状態において、始端部から周方向外方へ所定角度離間された第1位置25aにおいて前記固定巻き部10とは径方向に離間された状態で前記第2可動巻き部20(2)とのみ接触し、前記第1位置25aから周方向外方へ所定角度離間された第2位置25bにおいて前記固定巻き部10とは径方向に離間された状態で前記第2可動巻き部20(2)とのみ接触し、且つ、前記第2位置25bから周方向外方へ所定角度離間された第3位置25cにおいて前記固定巻き部10とは径方向に離間された状態で前記第2可動巻き部20(2)とのみ接触している。
 なお、前記ぜんまいばね1においては、前記保有弾性状態の際に、前記第1可動巻き部20(1)は、さらに、周方向に関し前記第2位置25b及び前記第3位置25cの間の第4位置25dにおいて前記第2可動巻き部20(2)とは径方向に離間された状態で前記固定巻き部10とのみ接触している。
 このように、前記ぜんまいばね1においては、前記保有弾性状態において、前記第1可動巻き部20(1)が、前記固定巻き部10及び第2可動巻き部20(2)の双方と周方向同一位置において接触せず、且つ、周方向に変位された複数の位置で前記固定巻き部10又は前記第2可動巻き部20(2)の何れか一方とのみ接触するように構成されている。
 斯かる構成を備えた前記ぜんまいばね1は、従来のぜんまいばねに比して、固有振動数を高めることができ、さらに、局所的な応力集中を有効に防止することができる。
 図9(a)~(c)に、それぞれ、従来のぜんまいばね200の自由長状態、初期トルク発生状態及び最大トルク発生状態における平面図を示す。
 又、図10に、従来のぜんまいばね200が初期トルク発生状態(図9(b))とされた際の巻数と曲率との関係を示す。
 図11に、従来のぜんまいばね200が最大トルク発生状態(図9(c))とされた際の巻数と曲率との関係を示す。
 図9(a)に示すように、従来のぜんまいばね200は、自由長状態において、径方向内方に位置する内端部から径方向外方に位置する外端部へ行くに従って曲率半径が略一定割合で大きくなる(半径が略一定割合で大きくなる)ように構成されている。
 斯かる構成の従来のぜんまいばね200においては、図9(b)及び(c)に示すように、初期トルク発生状態や最大トルク発生状態等の保有弾性状態とされた際には、最内方に位置する第1巻き部分210(1)から径方向最外方に位置する第3巻き部分210(3)に至る全ての巻き部分が周方向に関し略同一位置(以下、周方向第1位置205と称す)の一箇所のみで径方向に隣接する他の巻き部分と接触することになる。
 この場合、全ての巻き部分の各々において、前記周方向第1位置205以外の周方向全領域が、径方向に隣接する他の巻き部分との摩擦接触を受けること無く自由に弾性変形可能な領域となり、従って、ぜんまいばね全体の固有振動数が低くなり、共振が生じやすい。
 さらに、前記従来構成においては、径方向に関し中央に位置する巻き部(図示の形態においては第2巻き部分210(2))が前記周方向第1位置205において径方向内方に位置する巻き部(210(1))及び径方向外方に位置する巻き部210(3)によって狭圧されることになり、弾性変形動作時に前記周方向第1位置205に応力が集中するという問題も生じる。
 これに対し、前記ぜんまいばね1においては、前記第1可動巻き部20(1)は周方向に変位された複数の位置25a、25b、25cで前記固定巻き部10又は前記第2可動巻き部20(2)の何れか一方とのみ接触している。従って、固有振動数を上昇させて、共振の発生を有効に防止することができる。
 さらに、前記第1可動巻き部20(1)は、周方向同一位置において前記固定巻き部及び前記第2可動巻き部の双方と同時には接触しないように構成されている。従って、弾性変形動作時に所定箇所に応力集中が生じることを有効に防止できる。
 図2及び図3に、それぞれ、前記ぜんまいばね1が初期トルク発生状態(図1(b))とされた際及び最大トルク発生状態(図1(c))とされた際の巻数と曲率との関係を示す。
 図1(a)~(c)、図2及び図3に示すように、前記第1可動巻き部20(1)は、周方向両側に比して曲率半径が小とされた複数の小曲率部を有している。
 図示の形態においては、前記複数の小曲率部は、第1~第3小曲率部21a~21cを含んでいる。
 前記第1小曲率部21aは、前記固定巻き部10の終端部10bから周方向に離間された位置に設けられている。
 前記第2小曲率部21bは、前記第1小曲率部21aから周方向に離間された位置に設けられている。
 前記第3小曲率部21cは、前記第2小曲率部21bから周方向に離間された位置に設けられている。
 図1(a)~(c)、図2及び図3に示すように、前記ぜんまいばね1においては、前記第1小曲率部21aより周方向始端側及び終端側に、それぞれ、前記第1小曲率部21aよりも曲率半径が大とされた第1移行領域22a及び第2移行領域22bが設けられている。
 即ち、前記第1小曲率部21aは、周方向に関し前記第1及び第2移行領域22a、22bの間に位置している。
 前記第2小曲率部21bは前記第2移行領域22bの周方向終端側に位置しており、前記ぜんまいばね1には、さらに、前記第2小曲率部21bより周方向終端側に前記第2小曲率部21bよりも曲率半径が大とされた第3移行領域22cが設けられている。
 即ち、前記第2小曲率部21bは、周方向に関し前記第2及び第3移行領域22b、22cの間に位置している。
 前記第3小曲率部21cは前記第3移行領域22cの周方向終端側に位置しており、前記ぜんまいばね1には、さらに、前記第3小曲率部21cより周方向終端側に前記第3小曲率部21cよりも曲率半径が大とされた第4移行領域22dが設けられている。
 即ち、前記第3小曲率部21cは、周方向に関し前記第3及び第4移行領域22c、22dの間に位置している。
 一方、前記第2可動巻き部20(2)には、周方向に関し前記第1~第3小曲率部21a~21cとそれぞれ対応した位置に第1~第3大曲率部23a~23cが設けられており、前記第1~第3大曲率部23a~23cの各々は、周方向両側に比して曲率半径が大とされている。
 斯かる構成において、前記第1~第3小曲率部21a~21cが、それぞれ、対応する前記第1~第3大曲率部23a~23cに接触している。
 詳しくは、前記第1小曲率部21aは前記固定巻き部10との間に隙間を存しつつ前記第1大曲率部23aに接触し、前記第2小曲率部21bは前記固定巻き部10との間に隙間を存しつつ前記第2大曲率部23bに接触し、前記第3小曲率部21cは前記固定巻き部10との間に隙間を存しつつ前記第3大曲率部23cに接触している。
 なお、前記ぜんまいばね1には、図1(a)~(c)に示すように、前記第4移行領域22dより周方向終端側に、順に、前記第4移行領域22dよりも曲率が小とされた第4小曲率部21d、前記第4小曲率部21dより曲率が大とされた第5移行領域22e、前記第5移行領域22eよりも曲率が小とされた第5小曲率部21e、前記第5小曲率部21eより曲率が大とされた第6移行領域22f、前記第6移行領域22fよりも曲率が小とされた第6小曲率部21f、及び、前記第6小曲率部21fより曲率が大とされた第7移行領域22gが設けられている。
 斯かる構成において、前記第5~第7移行領域22e~22gが、それぞれ、前記第1~第3大曲率部23a~23cとして作用している。
 又、前記ぜんまいばね1においては、図1(b)及び(c)に示すように、前記第1可動巻き部20(1)は、前記保有弾性状態において、周方向に関し前記第2及び第3小曲率部21b、21cの間の中間が前記第2可動巻き部20(2)との間に隙間を存しつつ前記固定巻き部10に接触しており、これにより、固有振動数のさらなる上昇を図っている。
 次に、前記ぜんまいばね1を製造する為の本実施の形態に係る製造方法について説明する。
 図4(a)及び(b)、図5(a)及び(b)、図6(a)及び(b)並びに図7(a)及び(b)に、前記製造方法における工程模式図を示す。
 前記製造方法は、少なくとも一対の搬送ローラ120によって略直線状の長尺部材100を長手方向に沿った第1方向の一方側へ搬送しつつ、位置変更可能な押圧部材130に係合させることで、直線状の前記長尺部材100から前記固定巻き部10、前記第1可動巻き部20(1)及び前記第2可動巻き部20(2)を含む螺旋体を形成する螺旋形成工程を含んでいる(図6(a))。
 前記押圧部材130は、図6(a)に示すように、前記第1方向及び前記搬送ローラ120の回転軸方向の双方と直交する第2方向に移動可能とされている。
 前記押圧部材130は、前記一対の搬送ローラ120より前記第1方向の一方側に位置する作業領域190において前記長尺部材100の前記第2方向一方側に係合するように配置されており、前記押圧部材130の前記第2方向位置を変化させることで、前記螺旋体の曲率半径を変化させ得るようになっている。
 前記押圧部材130は、直線状の前記長尺部材100を螺旋状に変形させ得る限り種々の形態をとり得る。例えば、前記押圧部材130は、前記回転軸と平行な状態で前記第2方向に沿って位置変更可能とされるピン状部材と、前記ピン状部材に相対回転自在に支持されるローラー部材とを有し得る。斯かる構成によれば、前記長尺部材100を直線状から螺旋状に変形させる際に、表面に擦り傷等が生じることを有効に防止できる。
 詳しくは、前記一対の搬送ローラ120の少なくとも一方には回転数を検出する回転数センサ(図示せず)が備えられている。
 そして、前記螺旋形成工程は、前記回転数センサからの信号に基づき、現時点において前記押圧部材130に係合している前記長尺部材100の部分が前記螺旋体に形成された後の状態においてどの部分を形成するか(即ち、前記螺旋体のうちのどの巻き部に位置し且つその巻き部内において周方向に関しどこに位置するか)を認識した状態で、前記押圧部材130の前記第2方向に関する位置制御を行うように構成されている。
 ここで、前述の通り、前記押圧部材130は、前記長尺部材100のうち前記第2方向に関し一方側(即ち、前記長尺部材100が螺旋状に形成された後の状態において径方向外方を向く側)に係合するように配置されており(図6(a)参照)、前記押圧部材130を前記第2方向他方側へ移動させるに従って螺旋体における曲率半径が小さくなり、且つ、前記押圧部材130を前記第2方向一方側へ移動させるに従って螺旋体における曲率半径が大きくなるようになっている。
 好ましくは、前記搬送ローラ120の搬送方向下流側(前記第1方向一方側)には、前記長尺部材100を前記作業領域190に向けて案内するガイド140が備えられる。
 本実施の形態においては、前記搬送ローラ120の搬送方向上流側(前記第1方向他方側)に、前記長尺部材100を安定して前記搬送ローラ120へ案内するガイド145が備えられている。
 本実施の形態に係る前記製造方法は、さらに、前記螺旋形成工程の前に実行される始端側切断工程及び前記螺旋形成工程の後に実行される終端側切断工程を含んでいる。
 前記始端側切断工程は、前記長尺部材100の先端側が前記作業領域190に到達するように前記一対の搬送ローラ120によって前記長尺部材100を搬送した状態(図4(a))で、前記作業領域190に配設される切断部材150によって前記長尺部材100を切断して前記ぜんまいばねの始端部を形成するように構成されている(図4(b))。
 前記切断部材150によって前記長尺部材100を切断した際の前記回転数センサからの信号に基づき、前記始端部に対応した初期位置を認識することができる。
 前記終端側切断工程は、前記作業領域190に配置された前記切断部材150によって前記螺旋体を前記長尺部材100から切断するように構成されている(図7(b))。
 なお、前記長尺部材100から複数の前記ぜんまいばね1を連続的に製造する場合には、一のぜんまいばね1を製造する際の前記終端側切断工程を、次のぜんまいばね1を製造する際の前記始端側切断工程として利用することができる。
 当然ながら、これに代えて、一のぜんまいばね1を製造する際の前記終端側切断工程と次のぜんまいばね1を製造する際の前記始端側切断工程とを別作業とすることも可能である。
 前述の通り、前記ぜんまいばね1は、内端部(前記固定巻き部10の始端部10a)に前記内端側取付フック2aを有しており、且つ、外端部(最外方に位置する可動巻き部20(2)の終端部)に前記外端側取付フック2bを有している。
 従って、前記製造方法は、さらに、内端側取付フック形成工程(図5(a))及び外端側取付フック形成工程(図6(b)及び図7(a))を含んでいる。
 前記内端側取付フック形成工程は、前記始端側切断工程(図4(b))及び前記螺旋形成工程(図5(b)及び図6(a))の間に実行され、前記長尺部材100のうち前記始端部10aから続く所定部位に対して、前記作業領域190に配置された内端側取付フック形成部材110を作用させて前記内端側取付フック2aを形成するように構成されている。
 詳しくは、前記内端側取付フック形成部材は、図5(a)に示すように、前記長尺部材100のうち前記螺旋体に形成された後の状態において径方向内方を向く側に係合するフック用固定ピン111と、前記螺旋体に形成された後の状態において径方向外方を向く側に係合するフック用可動ピン115と有している。
 前記フック用可動ピン115は前記フック用固定ピン111との間に前記長尺部材100の先端部を狭持した状態で前記フック用固定ピン111回りに移動され、これにより、前記内端側取付フック2aが形成される。
 前記外端側取付フック形成工程は、前記螺旋形成工程(図5(b)及び図6(a))及び前記終端側切断工程(図7(b))の間に実行され、前記螺旋形成工程によって形成された前記螺旋体の外端部位に対して、前記作業領域190に配置された外端側取付フック形成部材160を作用させて前記外端側取付フック2bを形成するように構成されている。
 詳しくは、前記外端側取付フック形成部材160は、図6(b)及び図7(a)に示すように、前記螺旋体の径方向外方を向く側に係合するフック用固定ピン161と、前記螺旋体の径方向内方を向く側に係合するフック用可動ピン165と有している。
 前記フック用可動ピン165は前記フック用固定ピン161との間に前記螺旋体を形成する前記長尺部材100を狭持した状態で前記フック用固定ピン161回りに移動され、これにより、前記外端側取付フック2aが形成される。
 本実施の形態に係る前記製造方法は、例えば、前記搬送ローラ120、前記押圧部材130、前記切断部材150、前記内端側取付フック形成部材110及び前記外端側取付フック形成部材をそれぞれ作動させるアクチュエータ(図示せず)と、前記アクチュエータに対する動作プログラムが格納され、前記回転数センサからの信号に応じて前記動作プログラムに基づき前記各アクチュエータの作動制御を司る制御装置(図示せず)とを備えた製造装置を用いて好適に実施される。
 図8(a)及び(b)に、それぞれ、図6(a)におけるVIII(a)-VIII(a)線及びVIII(b)-VIII(b)線に沿った断面図を示す。
 図8(a)に示すように、前記長尺部材100は、断面形状が対向する一対の第1辺101(1)、101(2)及び対向する一対の第2辺102(1)を有する略矩形状とされている。
 本実施の形態に係る前記製造方法においては、図8(a)に示すように、前記長尺部材100は、前記押圧部材130によって螺旋体に形成される前の初期状態において、前記一対の第1辺の他方101(2)(螺旋体に形成された際に径方向内方を向く側)が前記一対の第2辺102(1)、102(2)の対応端部同士を結ぶ直線に沿いつつ、前記一対の第1辺の一方101(1)(前記押圧部材130に係合する側であり、螺旋体に形成された際に径方向外方を向く側)が前記一対の第2辺102(1)、102(2)の対応端部同士を結ぶ直線(図8(a)における2点鎖線)に比して外方へ膨出された凸状とされている。
 斯かる構成によれば、前記押圧部材130によって前記長尺部材100が直線状から螺旋体に形成された後において、前記長尺部材100の断面形状を略矩形状とすることができる(図8(b)参照)。
 即ち、前記押圧部材130によって直線状の前記長尺部材100から螺旋体を形成する際に、前記長尺部材100のうち前記押圧部材130に係合する側(即ち、前記螺旋体に形成された後の状態において径方向外方を向く側)が前記押圧部材130によって押圧されて、薄肉化される。
 例えば、図8(c)に示すように、前記押圧部材130によって前記螺旋体に形成される前の初期状態において断面略矩形状の長尺部材100’を用いたとすると、前記押圧部材130による前記螺旋体への形成後においては、図8(d)に示すように、径方向外方を向く側101(1)が凹状に凹んでしまう。
 これに対し、本実施の形態においては、前述の通り、前記長尺部材100は、前記押圧部材130によって前記螺旋体に形成される前の初期状態において、前記一対の第1辺の一方101(1)(前記螺旋体に形成された後の状態において径方向外方を向く側)が前記一対の第2辺102(1)、102(2)の対応端部同士を結ぶ直線に比して外方へ膨出された凸状とされている(図8(a)参照)。
 斯かる構成によれば、前記長尺部材100が前記押圧部材130によって直線状から螺旋体に形成された後の状態において、図8(b)に示すように、前記長尺部材100の断面を略矩形状とすることができる。
 従って、径方向に隣接する巻き部との接触面積を有効に確保することができる。
1        ぜんまいばね
2a       内端側取付フック
2b       外端側取付フック
10       固定巻き部
20(1)    第1可動巻き部
20(2)    第2可動巻き部
21a~21c  第1~第3小曲率部
23a~23c  第1~第3大曲率部
100      長尺部材
101(1)、101(2) 一対の第1辺
102(1)、102(2) 一対の第2辺
120      搬送ローラ
130      押圧部材
150      切断部材

Claims (5)

  1.  座巻き部として作用する固定巻き部と前記固定巻き部の終端部から続く複数の可動巻き部とが実質的に同一平面内で螺旋状に巻き回されたぜんまいばねであって、前記複数の可動巻き部のうち少なくとも径方向最内方に位置する第1可動巻き部が、前記ぜんまいばねが自由長状態から縮径する方向に弾性変形された保有弾性状態において、径方向内方側に隣接する前記固定巻き部及び径方向外方側に隣接する第2可動巻き部の双方とは周方向同一位置において接触せず、且つ、周方向に変位された複数の位置で前記固定巻き部又は前記第2可動巻き部の何れか一方とのみ接触しているぜんまいばねの製造方法において、
     少なくとも一対の搬送ローラによって略直線状の長尺部材を長手方向に沿った第1方向の一方側へ搬送しつつ、前記第1方向及び前記搬送ローラの回転軸方向の双方と直交する第2方向に移動可能とされ且つ前記一対の搬送ローラより前記第1方向の一方側の作業領域に配置された押圧部材に前記長尺部材の前記第2方向一方側を係合させることで、直線状の前記長尺部材から前記固定巻き部、前記第1可動巻き部及び前記第2可動巻き部を含む螺旋体を形成する螺旋形成工程を含み、
     前記螺旋形成工程は、前記一対の搬送ローラの少なくとも一方の回転数を検出する回転数センサからの信号に基づき、前記押圧部材に係合している前記長尺部材の長手方向位置と前記螺旋体に形成された後の周方向位置との関係を認識した状態で、前記押圧部材の前記第2方向位置を制御するように構成されていることを特徴とするぜんまいばねの製造方法。
  2.  前記螺旋形成工程は、前記第1可動巻き部における複数の周方向位置に小曲率部を形成し、且つ、前記第2可動巻き部には前記複数の小曲率部に対応した周方向位置に大曲率部を形成するように構成され、前記複数の小曲率部が、前記固定巻き部には接触しない状態で対応する前記大曲率部に接触することを特徴とする請求項1に記載のぜんまいばねの製造方法。
  3.  前記螺旋形成工程の前に実行される始端側切断工程であって、前記長尺部材の先端側が前記作業領域に到達するように前記一対の搬送ローラによって前記長尺部材を搬送した状態で前記作業領域に配設された切断部材によって前記長尺部材を切断して前記ぜんまいばねの始端部を形成すると共に、この時点での前記回転数センサからの信号に基づき前記始端部に対応した初期位置を認識する始端側切断工程と、
     前記螺旋形成工程の後に実行される終端側切断工程であって、前記作業領域に配置された前記切断部材によって前記螺旋体を前記長尺部材から切断して前記ぜんまいばねを得る終端側切断工程とを含むことを特徴とする請求項1又は2に記載のぜんまいばねの製造方法。
  4.  前記始端側切断工程及び前記螺旋形成工程の間に実行される内端側取付フック形成工程であって、前記長尺部材のうち前記始端部から続く所定部位に対して、前記作業領域に配置された内端側取付フック形成部材を作用させて内端側取付フックを形成する内端側取付フック形成工程と、
     前記螺旋形成工程及び前記終端側切断工程の間に実行される外端側取付フック形成工程であって、前記螺旋形成工程によって形成された前記螺旋体の外端部位に対して、前記作業領域に配置された外端側取付フック形成部材を作用させて外端側取付フックを形成する外端側取付フック形成工程とをさらに含み、
     前記終端側切断工程は、前記外端側取付フックの搬送方向下流側を切断することを特徴とする請求項3に記載のぜんまいばねの製造方法。
  5.  前記長尺部材は、断面形状が対向する一対の第1辺及び対向する一対の第2辺を有する矩形状とされており、
     前記螺旋形成工程において、前記押圧部材は前記長尺部材の前記一対の第1辺の一方に係合しており、前記押圧部材が前記第2方向に沿って前記一対の第1辺の一方の側から他方の側へ向かって移動されるに従って前記押圧部材によって螺旋状に形成されている部位の曲率半径が小さくなり且つ前記押圧部材が前記第2方向に沿って前記一対の第1辺の他方の側から一方の側へ向かって移動されるに従って前記押圧部材によって螺旋状に形成されている部位の曲率半径が大きくなるように構成されており、
     前記長尺部材が前記押圧部材によって前記螺旋体に形成される前の状態において、前記一対の第1辺の他方は前記一対の第2辺の対応端部同士を結ぶ直線に沿いつつ、前記一対の第1辺の一方は前記一対の第2辺の対応端部同士を結ぶ直線に比して外方へ膨出された凸状とされていることを特徴とする請求項1から4の何れかに記載のぜんまいばねの製造方法。
PCT/JP2013/081239 2012-12-14 2013-11-20 ぜんまいばねの製造方法 WO2014091891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380061198.8A CN104822473B (zh) 2012-12-14 2013-11-20 盘簧的制造方法
US14/436,794 US9782819B2 (en) 2012-12-14 2013-11-20 Spiral spring manufacturing method
EP13863522.2A EP2933036B1 (en) 2012-12-14 2013-11-20 Spiral spring manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-272912 2012-12-14
JP2012272912A JP5839714B2 (ja) 2012-12-14 2012-12-14 ぜんまいばねの製造方法

Publications (1)

Publication Number Publication Date
WO2014091891A1 true WO2014091891A1 (ja) 2014-06-19

Family

ID=50934186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081239 WO2014091891A1 (ja) 2012-12-14 2013-11-20 ぜんまいばねの製造方法

Country Status (5)

Country Link
US (1) US9782819B2 (ja)
EP (1) EP2933036B1 (ja)
JP (1) JP5839714B2 (ja)
CN (1) CN104822473B (ja)
WO (1) WO2014091891A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661725B2 (ja) * 2012-12-13 2015-01-28 サンコール株式会社 ぜんまいばね
CN105290278B (zh) * 2015-11-13 2017-12-29 江门市科业机电制造有限公司 一种螺旋网罩生产设备
CN110576091B (zh) * 2018-06-11 2021-12-10 上海微创投资控股有限公司 盘管及将管材制备成盘管的装置
CN111774454A (zh) * 2019-04-03 2020-10-16 海信(浙江)空调有限公司 一种铜管自动盘管机
CN110125631B (zh) * 2019-04-28 2021-05-14 上海航天设备制造总厂有限公司 一种涡卷弹簧跑合装置及方法
CN112893696A (zh) * 2021-01-08 2021-06-04 南京亭上雪科技有限公司 一种钢条螺旋折弯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318640U (ja) * 1986-07-21 1988-02-06
JPH0576949A (ja) * 1991-09-25 1993-03-30 Sankoole Kk 波形ばね成形装置
JPH09206866A (ja) * 1996-01-31 1997-08-12 Asahi Seiki Kogyo Kk 渦巻ばねの成形方法
JP2010180862A (ja) 2009-02-09 2010-08-19 Denso Corp バルブタイミング調整装置
JP2013092098A (ja) * 2011-10-25 2013-05-16 Denso Corp 液圧式バルブタイミング調整装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503149A (en) * 1942-12-30 1950-04-04 Bonnemort Daniel Emil Augustin Double spiral spring
DE943288C (de) * 1950-04-27 1956-05-17 Willem Johan Bernard Jansen Verfahren und Vorrichtung zur Herstellung von flachen Spiralfedern
DE2410898C3 (de) * 1974-03-07 1978-03-16 Feinmetall Gmbh, 7033 Herrenberg Vorrichtung zum fortlaufenden Biegen eines Metalldrahtes bzw. -bandes
US4184350A (en) * 1978-06-26 1980-01-22 Sun Chemical Corporation High-production method and apparatus for making spiral convolution electrical heating coils
JPS59199135A (ja) * 1983-04-26 1984-11-12 Morita Tekkosho:Kk コイルばねのピツグテイル成形方法およびこれを実施するための装置
JP3328538B2 (ja) * 1997-02-03 2002-09-24 東洋ファイン株式会社 渦巻ばねの製造方法
US7055244B2 (en) * 2002-03-14 2006-06-06 Anand Waman Bhagwat Method of manufacturing flat wire coil springs to improve fatigue life and avoid blue brittleness
GR1006845B (el) * 2003-10-02 2010-07-05 Αναγνωστοπουλος, Αντωνιος Παναγιωτη Μεθοδος και συστημα παραγωγης ελατηριων απο συρμα κυκλικης ή αλλης διατομης
JP4536701B2 (ja) * 2006-11-06 2010-09-01 三菱製鋼株式会社 コイルバネ形成装置
JP2010527795A (ja) * 2007-05-23 2010-08-19 シパヒオグル,セリック ヤイ ヴェ ヤン ウルンレリ サナイ ヴェ チカレット リミテッド シルケチ 連続型入れ子構造のバネ及びその製造
JP4949958B2 (ja) * 2007-07-25 2012-06-13 シロキ工業株式会社 スパイラルスプリングの製造方法及び装置
CN101214523A (zh) * 2008-01-01 2008-07-09 长安汽车(集团)有限责任公司 一种超长护套弹簧的自动绕制方法
JP2009190059A (ja) * 2008-02-14 2009-08-27 Shiroki Corp スパイラルスプリングの製造方法及び装置
CH699955A1 (de) * 2008-11-25 2010-05-31 Remex Ag Verfahren und Vorrichtung zur Herstellung von Federn.
JP5051267B2 (ja) * 2010-04-26 2012-10-17 株式会社デンソー バルブタイミング調整装置
JP5333544B2 (ja) * 2011-08-08 2013-11-06 株式会社デンソー 液圧式バルブタイミング調整装置
JP5661725B2 (ja) * 2012-12-13 2015-01-28 サンコール株式会社 ぜんまいばね

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318640U (ja) * 1986-07-21 1988-02-06
JPH0576949A (ja) * 1991-09-25 1993-03-30 Sankoole Kk 波形ばね成形装置
JPH09206866A (ja) * 1996-01-31 1997-08-12 Asahi Seiki Kogyo Kk 渦巻ばねの成形方法
JP2010180862A (ja) 2009-02-09 2010-08-19 Denso Corp バルブタイミング調整装置
JP2013092098A (ja) * 2011-10-25 2013-05-16 Denso Corp 液圧式バルブタイミング調整装置

Also Published As

Publication number Publication date
EP2933036A4 (en) 2016-03-23
CN104822473B (zh) 2016-08-24
JP2014117717A (ja) 2014-06-30
US9782819B2 (en) 2017-10-10
US20160167106A1 (en) 2016-06-16
EP2933036B1 (en) 2018-06-06
CN104822473A (zh) 2015-08-05
JP5839714B2 (ja) 2016-01-06
EP2933036A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2014091891A1 (ja) ぜんまいばねの製造方法
JP5914416B2 (ja) プーリ構造体
US9780607B2 (en) Stator core for an electronically commutated direct current motor and method for producing a stator
JP2008261496A5 (ja)
JP5333544B2 (ja) 液圧式バルブタイミング調整装置
WO2014091892A1 (ja) ぜんまいばね
JP2010048231A (ja) 金属触媒担体の製造装置
JP2007306659A (ja) ステータ用コアおよび当該ステータ用コアの製造装置および当該ステータ用コアの製造方法
JP4620114B2 (ja) 線バネ製造装置
JP5920632B2 (ja) バルブタイミング調整装置
JP6538486B2 (ja) コイルばねの製造方法及びコイルばねの製造装置
JP2010172130A (ja) 積層鉄心及びその製造方法
US10047639B2 (en) Camshaft and manufacturing method therefor
JP2014190441A (ja) チェーン
JP6683926B2 (ja) ローラチェーン
JP2010142004A (ja) コイルの製造方法
JP2016125354A (ja) 内燃機関の可変動弁装置
JP2016102559A (ja) 組立カムシャフト
JP2013167284A (ja) 伝動ベルトおよび伝動ベルトの製造方法
JP2013113374A (ja) 無段変速機用のベルト
JP2010242622A (ja) 可変動弁機構およびこれを用いた内燃機関
JP2015072031A (ja) 動力伝達チェーン及びそれを用いた動力伝達装置
JP2014196807A (ja) トルクコンバータの製造方法
JP2017133429A (ja) カムシャフト及びその製造方法
JP2015132209A (ja) 可変動弁機構の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013863522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14436794

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE