WO2014087527A1 - 多気筒内燃機関のシリンダヘッド - Google Patents

多気筒内燃機関のシリンダヘッド Download PDF

Info

Publication number
WO2014087527A1
WO2014087527A1 PCT/JP2012/081698 JP2012081698W WO2014087527A1 WO 2014087527 A1 WO2014087527 A1 WO 2014087527A1 JP 2012081698 W JP2012081698 W JP 2012081698W WO 2014087527 A1 WO2014087527 A1 WO 2014087527A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
exhaust
cylinders
exhaust ports
combustion engine
Prior art date
Application number
PCT/JP2012/081698
Other languages
English (en)
French (fr)
Inventor
航平 小玉
中村 秀雄
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2012/081698 priority Critical patent/WO2014087527A1/ja
Priority to JP2014550867A priority patent/JP5975112B2/ja
Priority to US14/649,010 priority patent/US20150308369A1/en
Priority to CN201280077472.6A priority patent/CN104822916A/zh
Priority to DE112012007205.7T priority patent/DE112012007205T5/de
Publication of WO2014087527A1 publication Critical patent/WO2014087527A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4264Shape or arrangement of intake or exhaust channels in cylinder heads of exhaust channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/243Cylinder heads and inlet or exhaust manifolds integrally cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4264Shape or arrangement of intake or exhaust channels in cylinder heads of exhaust channels
    • F02F2001/4278Exhaust collectors

Definitions

  • the present invention relates to a cylinder head of a multi-cylinder internal combustion engine.
  • Patent Document 1 there is known a cylinder head of a multi-cylinder internal combustion engine in which exhaust ports are provided for a plurality of cylinders arranged in a row and the exhaust ports of the plurality of cylinders are gathered downstream. Further, as disclosed in Patent Document 2, it is also known that a plurality of exhaust ports are provided for each cylinder, and a plurality of exhaust ports corresponding to each cylinder are gathered downstream. And, as in Patent Document 2, in a cylinder head in which a plurality of exhaust ports are provided for each cylinder, a plurality of exhaust ports corresponding to each cylinder gather downstream to form a collective exhaust port, A plurality of collective exhaust ports respectively corresponding to the cylinders gather further downstream.
  • the cross-sectional area of the exhaust port is temporarily reduced after being enlarged at the cylinder-by-cylinder gathering part, and further enlarged once again at the cylinder-to-cylinder gathering part and then reduced.
  • the exhaust flow velocity increases accordingly. It fluctuates as it becomes slower or slower.
  • the ratio of the section where the exhaust flow velocity becomes slower with respect to the entire exhaust path increases, so the exhaust gas temperature decreases by increasing the exhaust flow velocity. It becomes difficult to perform effectively.
  • An object of the present invention is to provide a cylinder head of a multi-cylinder internal combustion engine capable of effectively reducing the temperature of the exhaust gas by increasing the flow velocity of the exhaust gas flowing through the exhaust port.
  • a plurality of exhaust ports corresponding to each cylinder in a plurality of cylinders arranged in a row are gathered together at a gathering portion on the downstream side, and The exhaust ports respectively corresponding to at least two of the cylinders are configured to be gathered at the same gathering portion.
  • the cross-sectional area of the exhaust port is directed downstream of the exhaust port, the cross-sectional area is only expanded once at the gathering portion and then reduced.
  • the flow velocity only needs to be changed once due to the expansion / reduction of the cross-sectional area of the exhaust port, and the variation in the flow velocity can be reduced.
  • the multi-cylinder internal combustion engine is, for example, an internal combustion engine having four cylinders arranged in a row, that is, an in-line four-cylinder internal combustion engine.
  • the exhaust ports respectively corresponding to the two central cylinders in the direction in which the four cylinders are arranged are gathered at the gathering portion.
  • the above-mentioned collective part where the exhaust ports respectively corresponding to the two central cylinders in the direction in which the four cylinders are arranged gathers is defined as a first collective part.
  • the exhaust ports respectively corresponding to the two cylinders at both ends in the direction in which the four cylinders are arranged are located downstream of each other and are displaced in the axial direction of each cylinder with respect to the first aggregate portion. It is conceivable to have a structure that gathers at the set part. In this case, the distance from the combustion chambers of the two central cylinders to the first collecting portion is made shorter than the distance from the combustion chambers of the two cylinders at both ends to the second collecting portion.
  • the top view which shows roughly the structure of the exhaust port in the cylinder head of a multicylinder internal combustion engine.
  • the front view which shows the structure of the exhaust port schematically.
  • the top view which shows roughly the comparative example of the structure of the same exhaust port.
  • the graph which shows the change of the cross-sectional area of the exhaust port according to the distance from the combustion chamber in an exhaust port.
  • FIG. 1 schematically shows the periphery of an exhaust port of a cylinder head 1 in a multi-cylinder internal combustion engine, more specifically, an in-line four-cylinder internal combustion engine.
  • a plurality of exhaust ports 3a, 3b are provided in four cylinders # 1 to # 4 arranged in a row.
  • the exhaust ports 3a and 3b are connected to the combustion chambers 2 of the corresponding cylinders.
  • the exhaust port 3a and the exhaust port 3b of the first cylinder # 1 gather together downstream in the exhaust flow direction to form a collective exhaust port 4, and the exhaust port 3a of the fourth cylinder # 4
  • the exhaust port 3b gathers downstream in the exhaust flow direction to form a collective exhaust port 5.
  • the collective exhaust port 4 in the first cylinder # 1 and the collective exhaust port 5 in the fourth cylinder # 4 are gathered further downstream (position P2).
  • the position P2 is the center of the cylinders # 1 to # 4 in the direction in which the first to fourth cylinders # 1 to # 4 are arranged, that is, the portion corresponding to the position between the second cylinder # 2 and the third cylinder # 3. Is set.
  • the exhaust port 3a and the exhaust port 3b of the second cylinder # 2 are gathered downstream (position P1), and the exhaust port 3a and the exhaust port 3b of the third cylinder # 3 are downstream (position). P1).
  • the exhaust ports in the cylinders # 2 and # 3 that is, the exhaust ports 3a and 3b in the second cylinder # 2 and the exhaust ports 3a and 3b in the third cylinder # 3 are gathered at the position P1.
  • the position P1 is the center of the cylinders # 1 to # 4 in the direction in which the first to fourth cylinders # 1 to # 4 are arranged, that is, the portion corresponding to between the second cylinder # 2 and the third cylinder # 3. Is set to
  • the position P1 is shifted upward with respect to the position P2.
  • the vertical direction in FIG. 2 is the axial direction of the first to fourth cylinders # 1 to # 4 (moving direction of a piston (not shown)).
  • the portions corresponding to the position P1 in the exhaust ports 3a and 3b of the second and third cylinders # 2 and # 3 are the two in the center of the first to fourth cylinders # 1 to # 4 in the direction in which they are arranged.
  • This is a collective part (hereinafter referred to as a first collective part) in which exhaust ports 3a and 3b provided in cylinders # 2 and # 3 gather.
  • the portion corresponding to the position P2 in the collective exhaust ports 4 and 5 of the first and fourth cylinders # 1 and # 4 is the cylinder at both ends in the direction in which the first to fourth cylinders # 1 to # 4 are arranged.
  • the collective exhaust ports 4 and 5 provided in # 1 and # 4 are collective parts (hereinafter referred to as second collective parts).
  • the second collective portion is located in the axial direction of the first to fourth cylinders # 1 to # 4 with respect to the first collective portion.
  • the distances from the combustion chambers 2 of the second and third cylinders # 2 and # 3 to the first collecting portion are the distances from the combustion chambers 2 of the first and fourth cylinders # 1 and # 4. It becomes shorter than the distance to the 2nd gathering part.
  • the length from the combustion chamber 2 to the first collecting portion in each of the exhaust ports 3a, 3b provided in the second and third cylinders # 2, # 3 is the first and fourth cylinders #. 1 and # 4, the exhaust ports 3a and 3b (including the collective exhaust ports 4 and 5) are shorter than the length from the combustion chamber 2 to the second collective portion.
  • the position of the cylinder-by-cylinder assembly portion of the second cylinder # 2 is a position PA.
  • the cross-sectional area of the exhaust ports 3a and 3b for each of the cylinders # 2 and # 3 (the total value of the cross-sectional area of the exhaust port 3a and the cross-sectional area of the exhaust port 3b) is It is inevitable that each of the above-described cylinder-by-cylinder assembly and the inter-cylinder assembly is enlarged.
  • FIG. 4 shows changes in the cross-sectional areas of the exhaust ports 3a and 3b in the second cylinder # 2 (the total value of the cross-sectional areas of both) according to the change in the distance from the combustion chamber 2 of the second cylinder # 2.
  • the broken line shows the change in the cross-sectional area when the structure of the exhaust port of FIG. 3 is adopted
  • the solid line shows the change of the cross-sectional area when the structure of the exhaust port of the present embodiment (FIG. 1) is adopted. Is shown.
  • the distance XA in the figure represents the distance from the combustion chamber 2 of the second cylinder # 2 to the position PA (collection unit by cylinder), and the distance XB is the position PB (from the combustion chamber 2 of the second cylinder # 2). This represents the distance to the inter-cylinder assembly portion) or the position P1 (first assembly portion).
  • the cross-sectional area (total value) of the exhaust ports 3a and 3b in the second cylinder # 2 is once increased at the position of the distance XA.
  • the image is reduced, further enlarged at the position of distance XB, and then reduced.
  • the cross-sectional area of the exhaust ports 3a and 3b is enlarged or reduced, the flow rate of the exhaust gas flowing therethrough also fluctuates as it increases or decreases. If the exhaust flow rate fluctuates and becomes slow many times in this way, the ratio of the interval where the exhaust flow rate slows down with respect to the entire exhaust path increases, so the temperature of the exhaust by increasing the exhaust flow rate increases. It is difficult to effectively perform the reduction.
  • the exhaust ports 3a, 3b of the second cylinder # 2 and the exhaust ports 3a, 3b of the third cylinder # 3 are located at the position P1. It is gathered at.
  • the cross-sectional area (total value) of the exhaust ports 3a and 3b for each of the cylinders # 2 and # 3 is only enlarged at the position P1 and then reduced when going downstream of the exhaust ports 3a and 3b.
  • the cross-sectional area (total value) of the exhaust ports 3a and 3b in the second cylinder # 2 is not enlarged at the position of the distance XA, but once enlarged at the position of the distance XB. to shrink.
  • the change of the flow rate is only required once, and the fluctuation of the flow rate is small.
  • the ratio of the section where the flow speed of the exhaust gas becomes slow with respect to the entire exhaust path increases due to the fact that the flow speed of the exhaust gas flowing through the exhaust ports 3a, 3b fluctuates many times. It is possible to prevent the exhaust flow rate from becoming difficult to be increased. Therefore, the problem that occurs when the structure of the exhaust port of FIG. 3 is adopted, that is, the exhaust gas temperature cannot be effectively lowered by the amount that the flow velocity of the exhaust gas flowing through the exhaust ports 3a and 3b is difficult to increase. This can be suppressed.
  • the positional relationship with the position P2 where the two gather may be reversed.
  • the exhaust port 3a and the exhaust port 3b of the first cylinder # 1 are gathered at the downstream position P2, and the exhaust port 3a and the exhaust port 3b of the fourth cylinder # 4 are gathered at the position P2. Also good. In this case, the collective portion of the exhaust port 3a and the exhaust port 3b in the first cylinder # 1 and the collective portion of the exhaust port 3a and the exhaust port 3b of the fourth cylinder # 4 coincide with each other.
  • a structure in which all the exhaust ports 3a and 3b of the first to fourth cylinders # 1 to # 4 are gathered at the same position may be employed. That is, a structure in which all eight exhaust ports 3a and 3b extending two from each of the four cylinders # 1 to # 4 are gathered at the same position may be employed.
  • the number of exhaust ports in each cylinder may be changed as appropriate to three or more.
  • the multi-cylinder internal combustion engine is not limited to an in-line type, and may be a V type in which exhaust ports of a plurality of cylinders in each bank are gathered for each bank.
  • the number of cylinders of a multi-cylinder internal combustion engine may be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 シリンダヘッド(1)は、一列に配置された複数の気筒における各気筒に対応する複数の排気ポート(3a,3b)がその下流側の集合部で互いに集合するとともに、上記複数の気筒のうち少なくとも二つの気筒(#2、#3)にそれぞれ対応する排気ポート同士も同集合部で集合する構造とされる。このため、上記気筒(#2,#3)の排気ポート(3a,3b)を流れる排気における、同排気ポート(3a,3b)の断面積の拡大・縮小による流速の変化が一度だけで済み、その流速の変動が少なくて済む。このため、上記排気ポート(3a,3b)を流れる排気の流速が速くなったり遅くなったりして何度も変動することに起因して排気経路全体に対する排気の流速の遅くなる区間の割合増えることを抑制でき、その割合の増加によって排気の流速が速くなりにくくなることを回避できる。

Description

多気筒内燃機関のシリンダヘッド
 本発明は、多気筒内燃機関のシリンダヘッドに関する。
 特許文献1に示されるように、一列に配置された複数の気筒毎に排気ポートが設けられ、それら複数の気筒の排気ポートが下流で集合する多気筒内燃機関のシリンダヘッドが知られている。また、特許文献2に示されるように、各気筒毎に複数の排気ポートを設け、各気筒に対応する複数の排気ポートを下流で集合させることも知られている。そして、特許文献2のように、各気筒毎に複数の排気ポートが設けられるシリンダヘッドでは、各気筒に対応する複数の排気ポートがその下流で集合して集合排気ポートを形成するとともに、上記複数の気筒にそれぞれ対応する複数の集合排気ポート同士が更に下流で集合する。
特開2007-285168公報 特開2009-68399公報
 ところで、上記シリンダヘッドでは、各気筒の排気ポートを通過する排気の流速を速めて同排気の温度を低下させることが望まれており、そうしたことを実現するために排気ポートの断面積を小さくすることが考えられる。ただし、各気筒に対応する複数の排気ポートが下流で集合する部分(以下、気筒別集合部という)、及び、複数の気筒にそれぞれ対応する気筒別集合部から延びる集合排気ポート同士が更に下流で集合する部分(以下、気筒間集合部)では、排気ポートの断面積が拡大することは避けられない。このため、排気ポートの断面積は、同排気ポートの下流に向かう際、気筒別集合部で拡大した後に一旦縮小し、更に気筒間集合部でもう一度拡大してから縮小する。しかし、排気ポートを流れる排気が気筒別集合部及び気筒間集合部を順に通過する際、それら集合部毎に排気ポートの断面積が拡大したり縮小したりすると、それに合わせて排気の流速も速くなったり遅くなったりして変動する。このように排気の流速が変動して何度も速くなったり遅くなったりする場合、排気経路全体に対する排気の流速の遅くなる区間の割合が増えるため、排気の流速を速めることによる排気の温度低下を効果的に行うことが困難になる。
 本発明の目的は、排気ポートを流れる排気の流速を速めることによる同排気の温度低下を効果的に行うことができる多気筒内燃機関のシリンダヘッドを提供することにある。
 以下、上記課題を解決するための手段及びその作用効果について記載する。
 上記課題を解決する多気筒内燃機関のシリンダヘッドは、一列に配置された複数の気筒における各気筒に対応する複数の排気ポートがその下流側の集合部で互いに集合するとともに、前記複数の気筒のうち少なくとも二つの気筒にそれぞれ対応する排気ポート同士が前記同集合部で集合するように構成される。この場合、排気ポートの断面積は、同排気ポートの下流に向かう際、上記集合部で一度拡大してから縮小するのみとなる。その結果、排気ポートを流れる排気における、同排気ポートの断面積の拡大・縮小による流速の変化が一度だけで済み、その流速の変動が少なくて済む。このため、排気ポートを流れる排気の流速が速くなったり遅くなったりして何度も変動することに起因して排気経路全体に対する排気の流速の遅くなる区間の割合が増えることが抑制され、それによって排気の流速が速くなりにくくなることを回避できる。従って、上述したように排気ポートを流れる排気の流速が速くなりにくくなる分だけ排気の温度低下を効果的に行うことができなくなることを抑制でき、その排気の温度低下を効果的に行うことができる。
 なお、上記多気筒内燃機関は、例えば一列に配置された四つの気筒を有する内燃機関、すなわち直列四気筒の内燃機関である。この場合、上記四つの気筒が並ぶ方向における中央の二つの気筒にそれぞれ対応する排気ポート同士が上記集合部で集合する構造とすることが考えられる。
 また、上記四つの気筒が並ぶ方向における中央の二つの気筒にそれぞれ対応する排気ポート同士が集合する上記集合部を第1の集合部とする。更に、上記四つの気筒が並ぶ方向における両端の二つの気筒にそれぞれ対応する排気ポート同士が、それらの下流であって前記第1の集合部に対し各気筒の軸線方向にずれて位置する第2の集合部で集合する構造とすることが考えられる。この場合、上記中央の二つの気筒の燃焼室から上記第1の集合部までの距離が、上記両端の二つの気筒の燃焼室から上記第2の集合部までの距離よりも短くされる。
多気筒内燃機関のシリンダヘットにおける排気ポートの構造を概略的に示す平面図。 同排気ポートの構造を概略的に示す正面図。 同排気ポートの構造の比較例を概略的に示す平面図。 排気ポートにおける燃焼室からの距離に応じた同排気ポートの断面積の変化を示すグラフ。
 以下、多気筒内燃機関のシリンダヘッドの一実施形態について、図1~図4を参照して説明する。
 図1は、多気筒内燃機関、詳しくは直列四気筒の内燃機関におけるシリンダヘッド1の排気ポート周りを概略的に示している。このシリンダヘッド1では、一列に配置された四つの気筒#1~#4にそれぞれ複数(この例では一つの気筒につき二つ)の排気ポート3a,3bが設けられている。それら排気ポート3a,3bはそれぞれ、対応する気筒の燃焼室2に接続されている。
 シリンダヘッド1においては、第1気筒#1の排気ポート3aと排気ポート3bとが排気の流れ方向の下流で集合して集合排気ポート4を形成するとともに、第4気筒#4の排気ポート3aと排気ポート3bとが排気の流れ方向の下流で集合して集合排気ポート5を形成している。更に、第1気筒#1における集合排気ポート4と第4気筒#4における集合排気ポート5とは更に下流(位置P2)で集合している。なお、位置P2は、第1~第4気筒#1~#4の並ぶ方向における気筒#1~#4の中央、すなわち第2気筒#2と第3気筒#3との間に対応する部分に設定されている。
 一方、シリンダヘッド1では、第2気筒#2の排気ポート3aと排気ポート3bとが下流(位置P1)で集合するとともに、第3気筒#3の排気ポート3aと排気ポート3bとが下流(位置P1)で集合している。従って、気筒#2,#3における排気ポート同士、すなわち第2気筒#2における排気ポート3a,3bと第3気筒#3の排気ポート3a,3bとも上記位置P1で集合している。なお、位置P1は、第1~第4気筒#1~#4の並ぶ方向においての気筒#1~#4の中央、すなわち第2気筒#2と第3気筒#3との間に対応する部分に設定されている。
 図2に示すように、上記位置P1は上記位置P2に対し上方にずれている。ちなみに、図2の上下方向は、第1~第4気筒#1~#4の軸線方向(図示しないピストンの移動方向)となる。そして、第2及び第3気筒#2,#3の排気ポート3a,3bにおける位置P1に対応する部分は、第1~第4気筒#1~#4のうちそれらの並ぶ方向における中央の二つの気筒#2,#3に設けられた排気ポート3a,3b同士が集合する集合部(以下、第1の集合部という)となる。また、第1及び第4気筒#1,#4の集合排気ポート4,5における位置P2に対応する部分は、第1~第4気筒#1~#4のうちそれらの並ぶ方向における両端の気筒#1,#4に設けられた集合排気ポート4,5同士が集合する集合部(以下、第2の集合部という)となる。
 なお、この第2の集合部は、上記第1の集合部に対し、第1~第4気筒#1~#4の軸線方向にずれて位置する。また、上記第2及び第3気筒#2,#3の各燃焼室2から上記第1の集合部までの距離は、上記第1及び第4気筒#1,#4の各燃焼室2から上記第2の集合部までの距離よりも短くなる。言い換えれば、上記第2及び第3気筒#2,#3に設けられた各排気ポート3a,3bにおける燃焼室2から上記第1の集合部までの長さは、上記第1及び第4気筒#1,#4に設けられた各排気ポート3a,3b(集合排気ポート4,5を含む)における燃焼室2から上記第2の集合部までの長さよりも短くなる。
 次に、多気筒内燃機関のシリンダヘッド1の作用について説明する。
 図3に示すように、仮に、第2気筒#2の排気ポート3aと排気ポート3bとが集合する部分(以下、気筒別集合部という)、及び、第3気筒#3の排気ポート3aと排気ポート3bとが集合する部分(気筒別集合部)が、図1の第1の集合部に相当する部分(以下、気筒間集合部という)よりも上流にあるとする。すなわち、気筒間集合部の位置を位置PB(図1の位置P1に相当)とすると、各気筒#2,#3の気筒別集合部の位置が上記位置PBよりも上流の位置となる。なお、図3においては、第2気筒#2の気筒別集合部の位置を位置PAとしている。こうした図3に示す排気ポートの構造を採用した場合、気筒#2,#3毎の排気ポート3a,3bの断面積(排気ポート3aの断面積と排気ポート3bの断面積との合計値)が、上述した気筒別集合部と気筒間集合部とでそれぞれ拡大することは避けられない。
 図4は、第2気筒#2の燃焼室2からの距離の変化に応じた第2気筒#2における排気ポート3a,3bの断面積(両者の断面積の合計値)の変化を示している。同図において、破線は図3の排気ポートの構造を採用した場合の上記断面積の変化を示し、実線は本実施形態の排気ポートの構造(図1)を採用した場合の上記断面積の変化を示している。また、図中の距離XAは第2気筒#2の燃焼室2から位置PA(気筒別集合部)までの距離を表しており、距離XBは第2気筒#2の燃焼室2から位置PB(気筒間集合部)もしくは位置P1(第1の集合部)までの距離を表している。
 同図の破線から分かるように、図3の排気ポートの構造を採用した場合、第2気筒#2における排気ポート3a,3bの断面積(合計値)は、距離XAの位置で拡大した後に一旦縮小し、更に距離XBの位置でもう一度拡大してから縮小する。この排気ポート3a,3bの断面積が拡大したり縮小したりすると、そこを流れる排気の流速も速くなったり遅くなったりして変動する。このように排気の流速が変動して何度も速くなったり遅くなったりする場合、排気経路全体に対する排気の流速の遅くなる区間の割合増えるため、その排気の流速を速めることによる同排気の温度低下を効果的に行うことが困難になる。
 こうした問題に対処するため、本実施形態のシリンダヘッド1では、図1に示すように、第2気筒#2の排気ポート3a,3b及び第3気筒#3の排気ポート3a,3b同士が位置P1で集合している。この場合、気筒#2,#3毎の排気ポート3a,3bの断面積(合計値)は、同排気ポート3a,3bの下流に向かう際、上記位置P1で一度拡大してから縮小するのみとなる。このため、図4に実線で示すように、第2気筒#2における排気ポート3a,3bの断面積(合計値)は、距離XAの位置では拡大せずに距離XBの位置で一度拡大した後に縮小する。
 このように、図1の排気ポートの構造では、第2及び第3気筒#2,#3の排気ポート3a,3bを流れる排気における、同排気ポート3a,3bの断面積の拡大・縮小による流速の変化が一度だけで済み、その流速の変動が少なくて済む。このため、上記排気ポート3a,3bを流れる排気の流速が速くなったり遅くなったりして何度も変動することに起因して排気経路全体に対する排気の流速の遅くなる区間の割合が増えることが抑制され、それによって排気の流速が速くなりにくくなることを回避できる。従って、図3の排気ポートの構造を採用した場合に生じる問題、すなわち排気ポート3a,3bを流れる排気の流速が速くなりにくくなる分だけ排気の温度低下を効果的に行うことができなくなる、といったことを抑制できる。
 以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
 (1)シリンダヘッド1における第2気筒#2の排気ポート3a,3b及び第3気筒#3の排気ポート3a,3b同士が位置P1で集合している。このため、気筒#2,#3の排気ポート3a,3bを流れる排気における、同排気ポート3a,3bの断面積の拡大・縮小による流速の変化が一度だけで済み、その流速の変動が少なくて済む。このため、上記排気ポート3a,3bを流れる排気の流速が速くなったり遅くなったりして何度も変動することに起因して排気経路全体に対する排気の流速の遅くなる区間の割合増えることが抑制され、それによって排気の流速が速くなりにくくなることを回避できる。従って、排気ポート3a,3bを流れる排気の流速が速くなりにくくなる分だけ排気の温度低下を効果的に行うことができなくなることを抑制でき、その排気の温度低下を効果的に行うことができる。
 (2)図3の排気ポートの構造を採用した場合でも、気筒#2,#3の排気ポート3a,3bの断面積を全体的に小さくすれば、上記排気ポート3a,3bを流れる排気の流速を速めて同排気の温度低下を促進することができるようにはなる。ただし、上述したように排気ポート3a,3bの断面積を小さくすることにより、同排気ポート3a,3bでの圧損が増えて多気筒内燃機関(燃焼室2)の掃気が悪化することは避けられず、それに伴って多気筒内燃機関の性能が低下するという問題が生じる。しかし、図1の排気ポートの構造を採用すれば、こうした多気筒内燃機関における性能低下という問題が発生することはない。
 なお、上記実施形態は、例えば以下のように変更することもできる。
 ・第2及び第3気筒#2,#3に設けられた排気ポート3a,3b同士が集合する位置P1と第1及び第4気筒#1,#4に設けられた集合排気ポート4,5同士が集合する位置P2との位置関係を逆にしてもよい。
 ・第1気筒#1の排気ポート3aと排気ポート3bとが下流側の位置P2で集合するとともに、第4気筒#4の排気ポート3aと排気ポート3bとが上記位置P2で集合するようにしてもよい。この場合、第1気筒#1における排気ポート3aと排気ポート3bとの集合部分と、第4気筒#4の排気ポート3aと排気ポート3bとの集合部分とが一致した状態となる。
 ・第1~第4気筒#1~#4の排気ポート3a,3b全てが同一の位置にて集合する構造であってもよい。すなわち、四つの気筒#1~#4それぞれから二つずつ延びる合計八つの排気ポート3a,3b全てが同一の位置にて集合する構造であってもよい。
 ・各気筒における排気ポートの数を三つ以上などに適宜変更してもよい。
 ・多気筒内燃機関は、直列型に限らず、バンク毎に各バンクの複数の気筒の排気ポートが集合するV型であってもよい。
 ・多気筒内燃機関の気筒数を適宜変更してもよい。
 1…シリンダヘッド、2…燃焼室、3a…排気ポート、3b…排気ポート、4…集合排気ポート、5…集合排気ポート。

Claims (3)

  1.  一列に配置された複数の気筒における各気筒に対し複数の排気ポートが設けられる多気筒内燃機関のシリンダヘッドにおいて、
     前記複数の気筒における各気筒に対応する複数の排気ポートがその下流側の集合部で互いに集合するとともに、前記複数の気筒のうち少なくとも二つの気筒にそれぞれ対応する排気ポート同士が前記集合部で集合している
     多気筒内燃機関のシリンダヘッド。
  2.  前記多気筒内燃機関は一列に配置された四つの気筒を有し、前記四つの気筒が並ぶ方向における中央の二つの気筒にそれぞれ対応する排気ポート同士が前記集合部で集合している
     請求項1記載の多気筒内燃機関のシリンダヘッド。
  3.  前記四つの気筒が並ぶ方向における中央の二つの気筒にそれぞれ対応する排気ポート同士が集合する前記集合部は第1の集合部であり、
     前記四つの気筒が並ぶ方向における両端の二つの気筒にそれぞれ対応する排気ポート同士が、それらの下流であって前記第1の集合部に対し各気筒の軸線方向にずれて位置する第2の集合部で集合しており、
     前記中央の二つの気筒の燃焼室から前記第1の集合部までの距離は、前記両端の二つの気筒の燃焼室から前記第2の集合部までの距離よりも短い
     請求項2記載の多気筒内燃機関のシリンダヘッド。
PCT/JP2012/081698 2012-12-06 2012-12-06 多気筒内燃機関のシリンダヘッド WO2014087527A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/081698 WO2014087527A1 (ja) 2012-12-06 2012-12-06 多気筒内燃機関のシリンダヘッド
JP2014550867A JP5975112B2 (ja) 2012-12-06 2012-12-06 多気筒内燃機関のシリンダヘッド
US14/649,010 US20150308369A1 (en) 2012-12-06 2012-12-06 Cylinder head of multi-cylinder internal combustion engine
CN201280077472.6A CN104822916A (zh) 2012-12-06 2012-12-06 多缸内燃机的气缸盖
DE112012007205.7T DE112012007205T5 (de) 2012-12-06 2012-12-06 Zylinderkopf einer Mehrzylinderbrennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081698 WO2014087527A1 (ja) 2012-12-06 2012-12-06 多気筒内燃機関のシリンダヘッド

Publications (1)

Publication Number Publication Date
WO2014087527A1 true WO2014087527A1 (ja) 2014-06-12

Family

ID=50882971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081698 WO2014087527A1 (ja) 2012-12-06 2012-12-06 多気筒内燃機関のシリンダヘッド

Country Status (5)

Country Link
US (1) US20150308369A1 (ja)
JP (1) JP5975112B2 (ja)
CN (1) CN104822916A (ja)
DE (1) DE112012007205T5 (ja)
WO (1) WO2014087527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022091413A (ja) * 2020-12-09 2022-06-21 トヨタ自動車株式会社 内燃機関の排気通路構造

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930220B2 (ja) * 2017-05-26 2021-09-01 スズキ株式会社 内燃機関のシリンダヘッド
JP6971291B2 (ja) * 2019-11-27 2021-11-24 本田技研工業株式会社 多気筒内燃機関

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412114A (ja) * 1990-05-01 1992-01-16 Nissan Motor Co Ltd 内燃機関の排気装置
JP2000265903A (ja) * 1999-03-16 2000-09-26 Honda Motor Co Ltd 多気筒エンジン
JP2010164035A (ja) * 2009-01-19 2010-07-29 Toyota Motor Corp エンジンの排気構造およびエンジンの排気構造の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252705A1 (de) * 1972-10-27 1974-05-02 Daimler Benz Ag Anbau eines abgasturboladers an eine brennkraftmaschine
DE112006000986A5 (de) * 2005-05-03 2008-03-20 Avl List Gmbh Abgassystem für eine Brennkraftmaschine
CN2900804Y (zh) * 2006-04-14 2007-05-16 陈法献 汽油机三元催化器结构的改进
JP4667332B2 (ja) * 2006-09-06 2011-04-13 川崎重工業株式会社 小型滑走艇
EP2146072A1 (de) * 2008-06-27 2010-01-20 Ford Global Technologies, LLC Brennkraftmaschine mit Zylinderkopf und Turbine
US20120006287A1 (en) * 2010-07-12 2012-01-12 Gm Global Technology Operations, Inc. Engine assembly with integrated exhaust manifold
JP5870488B2 (ja) * 2011-01-20 2016-03-01 マツダ株式会社 多気筒エンジンの吸排気装置
DE102011084834A1 (de) * 2011-10-20 2013-04-25 Ford Global Technologies, Llc Brennkraftmaschine mit mehreren Auslaßöffnungen je Zylinder und Ladungswechselverfahren für eine derartige Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412114A (ja) * 1990-05-01 1992-01-16 Nissan Motor Co Ltd 内燃機関の排気装置
JP2000265903A (ja) * 1999-03-16 2000-09-26 Honda Motor Co Ltd 多気筒エンジン
JP2010164035A (ja) * 2009-01-19 2010-07-29 Toyota Motor Corp エンジンの排気構造およびエンジンの排気構造の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022091413A (ja) * 2020-12-09 2022-06-21 トヨタ自動車株式会社 内燃機関の排気通路構造
JP7405065B2 (ja) 2020-12-09 2023-12-26 トヨタ自動車株式会社 内燃機関の排気通路構造

Also Published As

Publication number Publication date
JP5975112B2 (ja) 2016-08-23
DE112012007205T5 (de) 2015-09-10
US20150308369A1 (en) 2015-10-29
CN104822916A (zh) 2015-08-05
JPWO2014087527A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5975112B2 (ja) 多気筒内燃機関のシリンダヘッド
JP2011196181A (ja) 内燃機関のシリンダヘッド内冷却水通路構造
US11098681B2 (en) Cobra head air intake ports and intake manifolds
JP5958357B2 (ja) 内燃機関の流路構造
JP2013079609A (ja) 多気筒エンジンの排気装置
JPWO2012140722A1 (ja) 内燃機関のシリンダーヘッド
US20190219010A1 (en) Cobra head air intake ports
KR20170067960A (ko) 차량의 터보차져 구조
JP2013217288A (ja) 内燃機関の排気ポート構造
JP7362214B2 (ja) 内燃機関の排気系の構造
US11359583B2 (en) EGR device
JP2008308992A (ja) 内燃機関の吸気装置
JP4420064B2 (ja) インテークマニホールド
US10364733B2 (en) Internal combustion engine
JP6930220B2 (ja) 内燃機関のシリンダヘッド
US20130232959A1 (en) Exhaust manifold
JP2021080910A (ja) エンジン
JP6102884B2 (ja) エンジンの吸気装置
CA2798580C (en) Multi-cylinder internal combustion engine
JP7288303B2 (ja) エンジンのシリンダヘッド構造
JP6390650B2 (ja) 内燃機関の冷却水通路構造
JP5212238B2 (ja) 内燃機関
JP5878001B2 (ja) Egrシステム
KR20120124533A (ko) 트윈 스크롤 타입 터보차져
JP2020090914A (ja) 内燃機関の吸気マニホールド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550867

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649010

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120072057

Country of ref document: DE

Ref document number: 112012007205

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889548

Country of ref document: EP

Kind code of ref document: A1