WO2014084380A1 - ガラス物品 - Google Patents

ガラス物品 Download PDF

Info

Publication number
WO2014084380A1
WO2014084380A1 PCT/JP2013/082275 JP2013082275W WO2014084380A1 WO 2014084380 A1 WO2014084380 A1 WO 2014084380A1 JP 2013082275 W JP2013082275 W JP 2013082275W WO 2014084380 A1 WO2014084380 A1 WO 2014084380A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass article
content
liquid
article
Prior art date
Application number
PCT/JP2013/082275
Other languages
English (en)
French (fr)
Inventor
一雄 立和名
淳子 阿子島
照夫 山下
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020157012826A priority Critical patent/KR101875261B1/ko
Priority to US14/648,821 priority patent/US9718723B2/en
Priority to JP2014549935A priority patent/JP6293672B2/ja
Priority to CN201380059715.8A priority patent/CN104797540B/zh
Publication of WO2014084380A1 publication Critical patent/WO2014084380A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a glass article.
  • Glass articles are used as many optical elements themselves or their materials. During the process of manufacturing the optical element, there is an opportunity for the processing liquid or foreign matter to adhere to the surface of the glass article and become dirty. Therefore, the washing
  • a rinsing process is also provided along with the cleaning process in order to rinse the cleaning liquid used for the cleaning.
  • pure water as shown in Patent Document 1, other deionized water (hereinafter also referred to as DI water), and the like are used as the rinsing liquid used in this rinsing step.
  • DI water deionized water
  • the cleaning process will be described using an example of using DI water.
  • An organic compound such as IPA is also used as a rinse solution.
  • the glass article comes into contact with various liquids.
  • the various liquids include polishing liquids in addition to the cleaning liquid, the rinse liquid, and the storage liquid.
  • polishing liquid a technique that approximates the pH of a glass article and the pH of an abrasive-containing dispersion is disclosed in Patent Document 3 by the present applicant. This technique is based on the idea of suppressing the chemical reaction between the glass article and the polishing liquid ([0010] of Patent Document 3).
  • a lens which is an optical element, is manufactured through a wet process (a process in which a liquid and glass come into contact) including a grinding process, a polishing process, a cleaning process using a cleaning liquid, a rinsing process using a rinsing liquid, and a storage process.
  • a wet process a process in which a liquid and glass come into contact
  • a polishing process a cleaning process using a cleaning liquid
  • a rinsing process using a rinsing liquid a storage process.
  • treatment for fluorophosphate glasses with excellent optical properties (abnormal dispersion or low dispersion) using water (deionized water or pure water) as the treatment liquid
  • water deionized water or pure water
  • white burn, blue burn, and spider are generated, or latent scratches are manifested, resulting in a significant deterioration in the surface quality of the glass article.
  • the main object of the present invention is to provide a glass article that can maintain a high quality surface even after a wet process.
  • Fluorophosphate glass generally has a network structure in which phosphorus (P) and oxygen (O) are bonded together, and components having strong ion binding properties such as fluorine (F) fill the gaps in the structure. It is thought that there is.
  • the present inventors do not significantly affect the network structure, but the alkaline earth metal component and F component, which are modifying components, are transferred from the glass surface to the water. It was discovered that ions derived from water such as hydronium ions (H 3 O + ) or hydroxide ions (OH ⁇ ) easily enter the glass. It has also been found that the movement of the hydronium ions or hydroxide ions into the glass causes the occurrence of white burn, blue burn, and spiders in the fluorophosphate glass, and the appearance of latent scratches.
  • the present inventors combine the substance contained in the treatment liquid with the glass component contained in the glass to produce a compound that is sparingly soluble in water. As a result, it was conceived to suppress the movement of hydronium ions or hydroxide ions into the glass. And it discovered that said subject could be solved by making a poorly water-soluble compound densely exist on the surface of a fluorophosphate glass, and came to complete this invention.
  • a part of the solute is combined with a glass component present on the surface of the fluorophosphate glass, thereby allowing the surface of the fluorophosphate glass to come into contact with the treatment liquid.
  • Forming a poorly soluble compound in the solvent to make the glass surface insoluble in the solvent, and hydrogen contained in the solvent moves into the glass (moves as hydronium ions and hydroxide ions). It has been found that the glass surface can be reconstructed to such an extent that it can be suppressed.
  • a new method has been created in which a treatment liquid, which is a solution composed of a solvent and a solute, is used and the solute is used as a new source of glass components in the glass article. And in composition of the glass article, about content of the component which can comprise a glass skeleton, the surface side (shallow part) of the glass article newly created more glass articles than the inner side (deep part).
  • a treatment liquid which is a solution composed of a solvent and a solute
  • the method of the present invention has a completely opposite viewpoint to the conventional viewpoint of suppressing the elution of glass components as in Patent Documents 1 and 2.
  • the present invention is made based on the idea of accepting a solute as a member of a glass component.
  • the technique described in Patent Document 3 and the present invention are based on the opposite idea.
  • the technique described in Patent Literature 3 is based on suppression of a chemical reaction between a glass article and a polishing liquid.
  • the present invention is rather based on promoting a chemical reaction in which a part of the solute of the treatment liquid is welcomed to a member of the glass component in the glass surface layer.
  • the treatment liquid in the present invention is a liquid used when performing any one or more of a grinding process, a polishing process, a cleaning process, a rinsing process, and a storage process on the glass, such as a grinding liquid, a polishing liquid, and a cleaning liquid. , Rinse liquid, storage liquid and the like.
  • Embodiments of the present invention embodying the above configuration are as follows.
  • the first aspect of the present invention is: A glass article containing P, Al, alkaline earth metal, F and O, About content of P and O, the surface side of a glass article is more than the inner side of a glass article, Regarding the total content of alkaline earth metals and the content of F, the glass article is characterized in that the surface side of the glass article is less than the inner side of the glass article.
  • the second aspect of the present invention is: Regarding the content of the alkaline earth metal, the glass article according to the first aspect is characterized in that the surface side of the glass article is less than the inner side of the glass article.
  • the third aspect of the present invention is: Regarding the Al content, the glass article according to the first aspect or the second aspect is characterized in that the surface side of the glass article is greater than the inner side of the glass article.
  • the glass article is an optical element.
  • the present invention it is possible to provide a glass article capable of maintaining a high quality surface even after a wet process.
  • FIG. 9 is a graph showing a result of performing XPS on a glass substrate manufactured using glass 1, and is a graph showing a result of O.
  • FIG. 10 is a graph showing a result of XPS performed on a glass substrate produced using glass ⁇ , and a graph showing a result of O.
  • the “treatment liquid” refers to a liquid used in the defect generation suppression treatment, and also includes a “cleaning liquid” and a “storage liquid”. It is a liquid used for the prevention treatment of a fall.
  • cleaning liquid literally includes a liquid used for cleaning, for example, a liquid containing a detergent, and also includes a cleaning liquid, particularly a rinse liquid used for washing away the detergent.
  • the glass article in the present embodiment refers to the optical element itself, its material (glass material), or an intermediate product before it becomes a product.
  • the glass material include a precision press molding preform.
  • As this glass article it is composed of glass containing P, Al, alkaline earth metal, F and O as glass components. There is no particular limitation. In the present embodiment, a case where fluorophosphate glass is used as a glass article will be described.
  • the composition of the glass article is not particularly limited.
  • CG processing Curve generation for performing spherical processing, toric surface processing, and free-form surface processing as a cutting and grinding method for glass articles (for example, optical element blanks) formed in a shape that approximates the final shape optical element Rating processing (CG processing) is performed.
  • the process in which CG processing is performed is also called a rough cutting process.
  • a) Smoothing Smoothing is performed on a glass article that has been subjected to CG processing.
  • This smoothing is a process performed to prepare a glass article surface roughened by CG processing.
  • CG processing and smoothing are also polishing in the previous stage of a subsequent polishing process, and are also called grinding.
  • the glass article surface (lens surface or the like) is ground while supplying a grinding liquid.
  • This grinding liquid is a liquid containing a surfactant and the like, and is used for improving the lubricity during grinding and cooling the workpiece.
  • polishing process the lens surface is polished and finished to a smooth surface while supplying a polishing liquid using a polishing tool having a shape substantially inverted from the lens shape.
  • This polishing liquid is, for example, a liquid containing abrasive grains (cerium oxide particles, zirconium oxide particles, etc.) having a particle size of several ⁇ m.
  • the quality of the surface of the glass article may be deteriorated in each step of manufacturing the glass article.
  • a defect occurrence suppressing process is performed in which the glass article is processed using a processing liquid. Details will be described below.
  • the treatment liquid is a solution composed of a solvent and a solute. And when making a process liquid contact a glass article and performing a defect generation
  • ions such as P, O, and Al are bonded, A mesh is formed.
  • these substances are glass components, they mainly constitute a glass skeleton, so these components are also referred to as “glass skeleton substances”.
  • the gap portion of the mesh, CaF x, SrF x, glass components such as BaF x exists.
  • modifiers ions such as P, O, and Al may be a modifying substance, but the case where these ions are handled as a glass skeleton substance will be described below.
  • the modifying substance existing in the vicinity of the glass surface is eluted in the pure water.
  • a substance caused by water for example, H + or OH ⁇
  • the elution of a modifying substance typified by a metal compound results in a decrease in the durability of the surface of the glass article, and it is considered that a defect occurs or becomes apparent in the subsequent manufacturing process of the glass article.
  • it is named “defect occurrence suppression process”, but in this process, “defect occurrence or manifestation is suppressed”.
  • the modifying substance is eluted into the solvent of the processing liquid (hereinafter also referred to as “solution”), but a part of the solute in the processing liquid, for example, phosphorus Acid ions bind to the glass component. That is, the glass skeleton substance and a part of the solute in the treatment liquid are newly bonded, and the glass skeleton becomes dense.
  • the aluminum oxide that has not formed the network structure (oxidized Al) or other Al changes to aluminum phosphate (phosphate Al), this phosphorus
  • aluminum oxide is newly incorporated into the network structure. In any case, as a result, it is possible to suppress a decrease in durability of the surface of the glass article, and to suppress the occurrence of defects in the subsequent manufacturing process of the glass article.
  • the surface of the glass article after contact with the treatment liquid is reconfigured to a surface different from the surface before contact with the treatment liquid, and the glass surface is free from the solvent.
  • aluminum phosphate as a hardly soluble compound is formed, and the glass surface is hardly soluble in the solvent.
  • the treatment liquid preferably has a pH buffering action.
  • the treatment liquid is preferably a phosphate aqueous solution. That is, it is preferable to use a solution in which the solvent is water and the solute is phosphate.
  • the aqueous phosphate solution is a buffer solution, and the pH variation can be made mild. By doing so, the possibility of H + , H 3 O + and OH ⁇ entering the glass article can be reduced.
  • the conventional treatment liquid DI water, pure water, etc.
  • DI water DI water, pure water, etc.
  • the present inventor decided to use water as the solvent after obtaining the above knowledge for the first time.
  • a processing solution capable of eliminating the above-mentioned effects has been conceived by adding a solute, which is a substance that can be a glass skeleton substance, to a solvent that is water. Thanks to this treatment liquid, it is possible to provide a function of suppressing surface quality deterioration even for glass-type glass articles in which components contained in the glass article are eluted into water.
  • Water is a very convenient substance. If the treatment liquid is an organic compound such as IPA, problems such as harmfulness and bad odor when vaporized occur. In addition, the purpose of using organic compounds for processing liquids (cleaning liquids and storage liquids) is to increase the cost of waste liquid processing, which in turn greatly affects the price of glass products such as optical elements. Therefore, in consideration of worker safety and environmental considerations, it is extremely preferable to use water without using an organic compound in the treatment liquid.
  • organic compounds for processing liquids cleaning liquids and storage liquids
  • a fluorophosphate glass is used as in this embodiment, water can be used as a solvent for the treatment liquid, and the solute can be used as a new source of glass components in the glass article as described above.
  • the above problem is solved by adding the compound to water.
  • high quality may not be required on the entire surface of the glass article.
  • a surface other than the optical functional surface of the optical element for example, a surface corresponding to the edge of the optical lens, does not cause a decrease in performance as an optical element even if latent scratches become obvious or burns occur.
  • the surface of a glass article refers to a surface including at least a surface that requires high quality (for example, an optical functional surface of an optical element) among the surfaces of the glass article. It may not be the entire surface.
  • the optical function surface means a surface used for light transmission, refraction, reflection, diffraction, and the like, which is a control target of the optical element.
  • the optical functional surface of the optical element is often the surface of a glass article like the optical functional surface of a lens.
  • the treatment liquid is an aqueous solution containing the same kind of ions as the components contained in the glass skeleton material.
  • the glass article is a glass article containing P
  • the solvent of the treatment liquid is water
  • the solute of the treatment liquid contains phosphate.
  • the same kind of ions refers to the same ions or ions in equilibrium with the same ions, and are phosphate ions as referred to in the present embodiment. That is, the above-mentioned content indicates a state in which P and O, which are components contained in the glass article, are phosphate ions when they are eluted from the glass article.
  • the “same ion” contained in the treatment liquid refers to P x O y n ⁇ (where x, y, and n are natural numbers), for example PO 4 3- “Ions in equilibrium” are ions that are in ionization equilibrium with P x O y n ⁇ , for example, ions that include HPO 4 2 ⁇ , H 2 PO 4 ⁇ in addition to PO 4 3 ⁇ . is there.
  • the pH of the treatment liquid in the present embodiment is preferably 3 to 9.8, more preferably 5 to 9, further preferably 6 to 8, more preferably 6.5 to 7.5, and still more preferably 6. .6 to 7.3. If it is pH of this range, the component contained in a glass article will not elute too much from a glass article.
  • the treatment liquid is a phosphate aqueous solution
  • an even more preferred embodiment is to use an aqueous solution containing phosphate ion PO 4 3 ⁇ and having a pH controlled at around 7 as the treatment liquid.
  • the treatment liquid is a solution containing a solute and a solvent.
  • an aqueous solution containing phosphate ions PxOy n ⁇ such as PO 4 3 ⁇ and alkali metal ions, is used as the treatment liquid.
  • the treatment liquid for that purpose contains phosphate as a solute and water as a solvent.
  • the phosphate is not particularly limited, and sodium dihydrogen phosphate (NaH 2 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), sodium phosphate (Na 3 PO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), potassium hydrogen phosphate (KH 2 PO 4 ), potassium phosphate (K 3 PO 4 ) and the like are exemplified.
  • sodium dihydrogen phosphate NaH 2 PO 4
  • disodium hydrogen phosphate Na 2 HPO 4
  • sodium phosphate Na 3 PO 4
  • potassium dihydrogen phosphate KH 2 PO 4
  • potassium hydrogen phosphate KH 2 PO 4
  • potassium phosphate (K 3 PO 4 ) and the like are exemplified.
  • a substance having a chelate effect such as sodium tripolyphosphate (STTP Na 5 P 3 O 10 )
  • metal ions are incorporated into the substance having a chelate effect. The quality of the glass surface will deteriorate.
  • the treatment liquid may be a solution in which a solute such as a phosphate is dissolved in a solvent, or may be a solution similar to a state in which an acid and an alkali are added to the solvent to neutralize and the solute is dissolved in the solvent. Good. In either case, the treatment liquid contains a solute and a solvent.
  • the treatment liquid for example, sodium dihydrogen phosphate and disodium hydrogen phosphate are mixed at a molar ratio of 1: 1 so that the concentration of phosphorus and the concentration of sodium are in the range of 10 to 1000 ppm, respectively.
  • a treatment liquid in which the mixture is introduced into DI water or pure water can be mentioned.
  • a predetermined concentration of sodium dihydrogen phosphate aqueous solution and a predetermined concentration of disodium hydrogen phosphate aqueous solution may be prepared, and these aqueous solutions may be mixed.
  • the pH of the treatment liquid decreases, and when the introduction ratio of disodium hydrogen phosphate is increased, the pH of the treatment liquid tends to increase. Therefore, the pH of the treatment liquid can be easily adjusted by adjusting the introduction ratio of the phosphoric acid component and the alkali component.
  • the temperature of the treatment liquid is not particularly limited, and can be appropriately used within a range of 5 to 60 ° C. including normal temperature.
  • phosphate as a solute is ionized according to its dissociation constant, and phosphate ions (H 2 PO 4 ⁇ , HPO 3 2 ⁇ , PO 4 3 ⁇ , etc.) are present.
  • phosphate ions H 2 PO 4 ⁇ , HPO 3 2 ⁇ , PO 4 3 ⁇ , etc.
  • the glass article comes into contact with the treatment liquid
  • phosphate ions are present in the vicinity of the surface of the glass article, and the phosphate ions bind to at least one kind of glass component, such as Al, on the glass surface.
  • the Al component has a function of forming a glass network structure
  • a part of the solute, that is, phosphate ions in this embodiment is added to the network structure already present in the glass article before the contact with the treatment liquid.
  • aluminum phosphate which is a compound hardly soluble in water is formed on the glass surface, and the glass surface is hardly soluble in water.
  • the surface of the glass article after contact with the treatment liquid is reconstituted to a surface different from the surface before contact with the treatment liquid, and aluminum phosphate as a poorly soluble compound with respect to the solvent is formed on the glass surface.
  • the glass surface is hardly soluble in the solvent.
  • reconstructed surface can suppress that the component which leads to the deterioration of the quality of the glass surface contained in a process liquid, ie, hydrogen, transfers into glass from the glass surface.
  • the solvent of the treatment liquid is water
  • hydrogen such as hydronium ions and hydroxide ions contained in water can be suppressed from moving into the glass.
  • the treatment liquid is water (DI water or pure water, etc.)
  • DI water or pure water, etc. since there is no solute that combines with the glass component present on the glass surface and generates a hardly soluble compound, the glass surface is reconstructed. Does not happen. Therefore, it cannot suppress that the hydrogen which exists in water moves in a glass, As a result, a white burn, a blue burn, a spider will generate
  • the components constituting the glass flow out into the treatment liquid.
  • alkaline earth metal component or F component elutes, it is possible to suppress the movement of hydrogen from the treatment liquid into the glass, which leads to deterioration of the quality of the glass surface. The deterioration of the surface quality can be suppressed.
  • a hardly soluble compound (slightly soluble glass surface) due to a combination of a part of the solute, for example, phosphate ions and at least one glass component occurs near the glass surface.
  • a structure is considered to be formed within 10 nm in the depth direction from the surface. Therefore, such a structure is considered to have little influence on the optical properties (refractive index, dispersion value, etc.) of the glass article.
  • Zn is considered to exist as a so-called modifying component without forming a network structure in the glass before coming into contact with the treatment liquid.
  • a water-insoluble substance (zinc phosphate) can be formed on the surface of the glass article, which is more preferable.
  • water is selected as the solvent.
  • hydronium ions, hydroxide ions, and the like move from the surface of the fluorophosphate glass into the glass, which is not preferable.
  • IPA isopropyl alcohol
  • the organic solvent has a large environmental load and high cost.
  • a filter device that removes volatile gas from the exhaust gas is also required. If water can be used as the solvent, the above measures are not necessary.
  • water is suitable as a solvent for the treatment liquid because it is less expensive than an organic solvent such as IPA.
  • the treatment liquid preferably has a pH buffering action.
  • the bond between part of the solute and the glass component on the glass surface is formed by consuming part of the solute. Therefore, it can be said that the solute of the treatment liquid is a raw material supply source of the hardly soluble compound formed on the glass surface. Therefore, a part of the solute (for example, phosphate ions (for example, PO 4 3 ⁇ ) in the liquid that comes into contact with the surface of the glass article) is consumed for new bonds with the Al component on the glass surface.
  • new phosphate ions (PO 4 3 ⁇ ) are supplied in the processing solution due to the buffering action. Moreover, even if the hydrogen ions in the treatment liquid increase, the fluctuation can be reduced.
  • Whether or not the above-described structure is formed on the surface of the glass article after contact with the treatment liquid can be determined by a method capable of comparing the types and bonding states of elements in the vicinity of the surface. In this embodiment, for example, the determination may be made by the following method.
  • a glass article before contact with the treatment liquid and a glass article after contact with the treatment liquid are prepared.
  • An XPS spectrum can be obtained by measuring the surface of the sample of the prepared glass article using an X-ray photoelectron spectrometer.
  • the photoelectron energy detected as the XPS spectrum reflects the type and bonding state of elements existing near the surface of the sample. Therefore, for each element, the existence state of the element in the vicinity of the surface can be estimated by taking into account the photoelectron energy value, peak shift, and the like.
  • a specific peak indicating the bonding state of each element obtained by XPS is analyzed, and the sample before contact with the treatment liquid and the sample after contact are compared. For example, if P and O are contained in the solute, the intensity of the peak indicating the bond of P and O and the bond of P, O, and other metal is set to the sample before contact with the sample before contact. Compare with. As a result of comparison, when the peak intensity is high in the sample after contact, a part of the solute (P and O, in the vicinity of the surface of the glass article due to contact with the treatment liquid on the surface of the glass article. That is, it is determined that phosphate ions are bonded to the glass components (Al and other metals) of the glass article.
  • the ratio of the area of the region surrounded by the waveform and the baseline of each element in the XPS spectrum is the abundance ratio of each element.
  • the XPS spectrum waveform can be separated into Gaussian function waveforms for each bonding state, and the area of each region surrounded by these Gaussian function waveforms and the baseline Is the abundance ratio of elements in each bonded state.
  • X-ray photoelectron spectroscopy cannot detect hydrogen elements, but the quantification of hydrogen elements on the surface of glass materials and glass articles can be measured, for example, by secondary ion mass spectrometry (SIMS). . Therefore, in the case of SIMS analysis, the analysis result of the glass article before contact with the treatment liquid is compared with the analysis result of the glass article after contact with the treatment liquid. It can be directly confirmed that the movement of hydrogen is suppressed.
  • the processing liquid used in the defect generation suppressing process as described above can also be applied as a polishing liquid, a cleaning liquid, a rinsing liquid, and a storage liquid. Therefore, in manufacturing the glass article according to the present invention, it is not always necessary to provide the defect generation suppressing process as an independent process, and by using a predetermined processing liquid in the course of the polishing process, the cleaning process, the rinsing process, and the storage process. Defect generation suppression processing can be performed in parallel.
  • First cleaning In order to remove deposits (polishing liquid, abrasives, etc.) adhering to the surface of the glass article that has been subjected to polishing, the glass article is washed.
  • a known method may be used, but it is preferable to perform cleaning with a liquid obtained by adding a detergent to the processing liquid used in the d) defect generation suppressing process described above, which is the main feature of the present embodiment.
  • the glass article (optical lens) after the polishing process is placed on a holder, and cleaning is performed by immersing it in a cleaning tank storing a cleaning liquid in which a detergent or a surfactant is added to the above-described processing liquid. (Washing process).
  • ultrasonic cleaning by applying ultrasonic waves to the cleaning liquid from the periphery of the bottom surface of the cleaning tank at a predetermined frequency (for example, 50 kHz) to vibrate the cleaning liquid.
  • a predetermined frequency for example, 50 kHz
  • the first rinsing process is performed on the glass article in order to wash away the cleaning liquid adhering to the surface of the glass article.
  • a known method may be used, but it is preferable to perform the rinsing step with the processing liquid used in d) defect generation suppression processing which is the main feature of this embodiment.
  • the first rinsing step can be performed as a series of processes included in the first cleaning step.
  • the optical lens after the above-described cleaning process is placed on a holder, and is rinsed by immersing it in a rinsing tank that stores the rinsing liquid as the processing liquid described above (rinsing process).
  • a rinsing tank that stores the rinsing liquid as the processing liquid described above (rinsing process).
  • it is preferable to perform ultrasonic cleaning by applying an ultrasonic wave to the rinse liquid at a predetermined frequency (for example, 50 kHz) to vibrate the aqueous solution.
  • This rinsing step can be performed a desired number of times in a plurality of tanks, and it is not always necessary to apply supersonic waves and BR> G.
  • Centering processing is a step of grinding the outer peripheral portion of a glass article obtained by polishing or precision press molding into a desired shape with the optical axis as the center.
  • the outer peripheral portion of the glass article is ground while supplying the centering liquid. Similar to the grinding liquid, this centering liquid is used to improve the lubricity during centering and to cool the workpiece.
  • the outer peripheral shape of the glass article becomes a true circle centered on the optical axis when the glass article is a lens.
  • a specific method of the centering process a known method as described in Japanese Patent No. 4084919 of the applicant may be applied.
  • Second cleaning After the centering process is performed, the glass article is washed in order to remove the processing liquid and sludge adhering to the glass article.
  • a known method may be used, but as in the first cleaning, the processing liquid used in the defect occurrence suppression process, which is the main feature of the present embodiment, or a liquid obtained by adding a detergent to the processing liquid It is preferable to carry out washing with
  • Second rinse (process) Thereafter, a second rinsing step is performed on the glass article in order to wash away the cleaning liquid adhering to the surface of the glass article.
  • a second rinsing step is performed on the glass article in order to wash away the cleaning liquid adhering to the surface of the glass article.
  • the rinsing process a known method may be used, but the second rinsing process is performed with the processing liquid used in the defect generation suppressing process, which is the main feature of the present embodiment, as in the first rinsing process. Is preferred.
  • the second rinsing step can be performed as a series of processes included in the second cleaning step.
  • the grinding process, the polishing process, and the centering process correspond to a processing step in the method for manufacturing a glass article.
  • the above-described processing liquid can be used as one or both of a grinding liquid and a polishing liquid. By doing in this way, the fall of the quality of the glass article which a burn, a spider, a latent flaw, etc. which arise by a process process can be suppressed.
  • water is used as the solvent for the treatment liquid.
  • the above-described centering liquid usually uses an oil-based liquid, it is not always necessary to use the treatment liquid as the centering liquid.
  • the washing step and the rinsing step described above also correspond to the treatment step in the glass article manufacturing method.
  • the above-described processing liquid as one or both of the cleaning liquid and the rinsing liquid.
  • the treatment liquid may contain a detergent or the like depending on the application, but preferably does not contain a substance having a chelating effect.
  • the glass article in the present embodiment is manufactured.
  • This glass article can be used not only as an optical element but also as an intermediate product before becoming an optical element.
  • the glass article can also be used as a precision press-molding preform that requires high surface quality.
  • the glass article after the storage process is washed with a cleaning liquid in order to remove the abrasive and polishing liquid adhering to the glass surface in the previous process, or the storage liquid in contact with the storage process, and further rinsed with a rinsing liquid to rinse the cleaning liquid. And then dried.
  • the glass article is immersed in a dehydration tank that stores IPA (isopropyl alcohol), and the rinsing liquid on the lens surface is replaced with IPA to make glass. Remove the surface rinse. Finally, IPA vapor drying is performed in a vapor tank (drying process). After drying, if necessary, a film such as an antireflection film may be formed on the surface of the glass article. Before the film formation, a step of cleaning the surface of the glass article, that is, the above-described cleaning step may be performed. A known method may be adopted as the film forming method.
  • the feature of the present embodiment is structurally significant in the glass article after the defect occurrence suppressing process is performed. Specifically, in a glass article, there is a large difference in composition between the portion in direct contact with the treatment liquid (ie, the portion on the outermost surface side) and the other portion (ie, the portion on the inner side of the glass article) There is.
  • an antireflection film or the like may be coated on the surface of the glass optical element, or a coating may be applied on the glass surface. Such a coat or application is different from the glass to which the coating or the application is applied.
  • the front side of the glass article of the present embodiment is clearly distinguished from the coat or coating. Therefore, even if a foreign substance such as a coat or a coating is present on the glass surface, in this embodiment, the coating or the coating is not included in the glass article.
  • the surface side of the glass article refers to the surface side of a surface where high surface quality of the glass article is required, for example, an optical polishing surface, an optical functional surface, a surface molded into an optical functional surface, Point to.
  • the inner side of a glass article refers to the part in a deep layer part rather than the said surface side. The depth from the innermost surface will be described later.
  • an optical functional surface is a surface that transmits, refracts, diffracts, reflects, or partially reflects light, and preferably does not scatter light incident on the surface. Is done. Since surface defects cause light scattering, it is required to suppress the occurrence of defects on the optical functional surface. Needless to say, a predetermined relationship between the surface side and the inner side described below may also be established on a surface other than the surface where high surface quality of the glass article is required.
  • a distribution occurs between the content on the surface side of the glass article and the content on the inner side of the glass article for the specific glass component.
  • the surface side (shallow part) of the glass article is larger than the inner side (deep part) of the glass article.
  • content of Al it is preferable that the surface side (shallow part) of a glass article is larger than the inner side (deep part) of a glass article.
  • the surface side of the glass article is smaller than the inner side of the glass article.
  • the alkaline earth metal content is preferably such that the surface side of the glass article is smaller than the inner side of the glass article.
  • the surface side (shallow portion) of the glass article is larger than the inner side (deep part) of the glass article.
  • the surface side of the glass article is less than the inner side of the glass article. That is, P, Al, and O are present on the surface side of the glass article as well as the inner side.
  • the surface side of the glass article refers to a range from the outermost surface of the glass article to a depth of 4 to 5 nm.
  • the inner side of the glass article refers to a portion from a depth of 100 nm to a depth of 104 to 105 nm based on the outermost surface of the glass article (the outermost surface before sputtering).
  • Quantitative determination of P, Al, alkaline earth metal, F and O is performed by determining the abundance ratio of each element from XPS.
  • XPS waveform a spectrum derived from each element appears at a position corresponding to the binding energy specific to the element (also referred to as binding energy or binding energy).
  • the area of the region surrounded by the XPS waveform derived from each element and the baseline is obtained for each detected element. And the ratio of the said area for every element becomes abundance ratio of each element. If the abundance ratio of each element is normalized so that the total abundance ratio is 100%, the abundance of each element expressed in atomic% (atomic%), that is, the content of each element can be obtained.
  • the reason for this is that although the modifying substances (alkaline earth metal and F) are eluted into the solvent of the treatment liquid, the glass skeleton substance (P, Al and O) and the solute of the treatment liquid (for example, phosphate) This is thought to be due to the newly bonded glass skeleton. As a result, ⁇ 1.
  • the glass article of the present embodiment exhibits the same effect as described in the method for producing a glass article.
  • -Glass article containing Al and alkaline earth metal preferably the alkaline earth metal is at least one of Mg, Ca, Sr and Ba.
  • -Glass articles containing Zn-Glass articles containing rare earth elements glass articles further containing substances other than those described above may be used.
  • P, Al, alkaline earth metal, Zn and rare earth elements are cations, and O And F are anions.
  • the glass article contains a rare earth element component
  • the total content of rare earth elements on the inner side is RE (in) and the total content of rare earth elements on the surface side is RE (su) in atomic%
  • RE The ratio of RE (su) to (in) (RE (su) / RE (in)) is preferably 3 or less from the viewpoint of suppressing the generation of defects on the surface of the glass article and maintaining the surface with high quality.
  • the ratio (RE (su) / RE (in)) exceeds 5 by immersing the glass in pure water.
  • the ratio (RE (su) / RE (in)) is 3 or less, the quality of the glass surface can be maintained well.
  • the ratio (RE (su) / RE (in)) is more preferably 2.5 or less, further preferably 2.0 or less, More preferably, it is as follows.
  • O (in) when the O content on the inner side is O (in) and the O content on the surface side is O (su) in terms of atomic%, O (in) relative to O (in)
  • the ratio of su) (O (su) / O (in)) can be considered as one of indications indicating the density of the glass skeleton on the glass surface.
  • the ratio (O Whereas (su) / O (in)) is less than 2.0, the ratio after immersion (O (su) / O (in)) is 2.0 or more. Therefore, the ratio (O (su) / O (in)) is preferably 2.0 or more from the viewpoint of maintaining the glass surface with high quality. In order to maintain the glass surface with high quality, the ratio (O (su) / O (in)) is more preferably 2.1 or more, further preferably 2.2 or more, and 2.4 or more. It is more preferable that
  • F which is a modifying substance
  • the glass skeleton substance (P, Al, and O) and the solute (for example, phosphate) of the treatment liquid are newly added.
  • the content of F on the surface side is smaller than the content of F on the inner side is obtained.
  • the ratio (content of F on the surface side / content of F on the inner side) is 0.80 or less.
  • the ratio (content of F on the surface side / content of F on the inner side) exceeds 0.80 in the glass article in which the polished surface is wiped with ethanol to remove dirt. Moreover, as shown in Table 9, even in a glass article (glass D) treated with an aqueous phosphate solution, the ratio (content of F on the surface side / content of F on the inner side) is 0.80 or less. It has become.
  • the ratio (content of F on the surface side / content of F on the inner side) is one of the indicators of poor solubility in water on the surface of the glass article, in this embodiment, the ratio ( The content of F on the surface side / the content of F on the inner side is preferably 0.80 or less, more preferably 0.75 or less, and even more preferably 0.70 or less.
  • the glass article of this embodiment is a glass article containing F and O, and from the viewpoint of obtaining a glass having excellent optical properties (low dispersion or abnormal partial dispersion), the content of F is 20 anion% or more.
  • O content is preferably 80 anionic% or less.
  • the F content is 55 anion% or more and the O content is 45 anion% or less, the F content is 70 anion% or more, and the O content is 30 anion% or less.
  • the F content is 80 anion% or more, the O content is 20 anion% or less, the F content is 85 anion% or more, and the O content is 15 anion%. It is even more preferable that:
  • the composition of the glass article has a distribution in the depth direction.
  • the composition of the outermost surface of the glass article and the composition inside the glass article are different.
  • the composition in the glass article changes continuously with the depth, but when the depth from the outermost surface is increased to some extent, the composition becomes constant even if the depth changes. Therefore, a range having a constant composition in the depth direction can be considered as a portion having the original composition of glass, that is, a portion corresponding to the bulk.
  • the contents of F and O are contents in the bulk part, respectively.
  • the composition of the bulk portion can be measured as follows.
  • the surface of the glass article is dug down by sputtering, and the abundance ratio of each element detected by XPS is measured on the dug down surface. If the type of element to be detected and the abundance ratio of each element do not change even when deeply dug down, the abundance ratio of that element is the composition of the bulk portion.
  • the composition of the bulk portion is uniform and has a constant composition.
  • composition of the glass article or the content of the glass component without specifying the site means the composition in the bulk portion or the content of the glass component.
  • composition in the bulk part of the glass article or the content of the glass component can also be expressed in terms of cation% and anion% as described above.
  • the major factor in the composition that determines the Abbe number is the ratio of the contents of F and O. Therefore, when considering the behavior of the Abbe number, it is more convenient to indicate the F content and the O content by% anion.
  • the cation% and anion% display makes it easier to grasp the relationship with the glass composition.
  • composition in the bulk part of the glass article or the content of the glass component can also be quantified by an ICP-AES method, an ICP-MS method, an atomic absorption photometry method, or the like.
  • glass skeleton Al and modifiers Ca, Sr and F are bonded. If the above range is satisfied, in the glass skeleton material, the bond between Al and F is broken and the bond between Al and O is broken in exchange for the elution of the metal fluoride as the modifying substance. It represents that it is newly formed sufficiently.
  • the total content of oxidized Al and phosphate Al is preferably greater on the surface side of the glass article than on the inner side of the glass article. Moreover, also about content of Al of a phosphate state, it is preferable that the surface side of a glass article is more than the inner side of a glass article. Also about the content of Al of an oxidation state and Al of a phosphate state, it is preferable that the surface side of a glass article is more than the inner side of a glass article.
  • the skeleton is formed one after another.
  • the total content of Al in the oxidized state and Al in the phosphate state and the content of Al in the phosphate state are greater on the surface side of the glass article in contact with the treatment liquid than on the inner side of the glass article. It has become.
  • the content of Al in the oxidized state and Al in the phosphate state is preferably such that the surface side of the glass article is larger than the inner side of the glass article on the surface side in contact with the treatment liquid.
  • Al in an oxidized state means Al in a state directly bonded to oxygen
  • Al in a phosphate state means Al in a state directly bonded to P of P x O y .
  • the waveform derived from Al in the oxidation state has a peak at a binding energy of around 74.07 eV
  • the waveform derived from Al in the phosphate state has a peak at a binding energy of around 74.93 eV.
  • the waveform of the XPS spectrum is a waveform obtained by superimposing the waveform derived from the oxidized Al and the waveform derived from the phosphate Al.
  • the Al content (total amount) is expressed in atomic%
  • the Al content in the oxidation state is expressed as Al (ox).
  • the ratio of the total amount of Al (ox) and Al (ph) to Al (all) on the surface side ((Al (ox) + Al (ph )) / Al (all)) is 0.5 or more, that is, on the surface side, Al in the oxidation state or phosphate state occupies more than half of the total amount of Al.
  • the ratio ((Al (ox) + Al (ph)) / Al (all)) is more preferably 0.55 or more from the viewpoint of making the glass surface hardly soluble in water or the like, and is 0.60 or more. More preferably.
  • the surface side of the glass article is less than the inner side of the glass article.
  • the haze value of the surface of the glass article having the above composition is 1% or less, and the generation of defects can be suppressed extremely effectively.
  • a preferred range for the haze value is 0.5% or less, a more preferred range is 0.1% or less, and even more preferred is 0.0%.
  • the glass article in this embodiment is extremely suitable as an optical element (for example, an optical glass article lens).
  • an optical glass article lens for example, an optical glass article lens
  • other specific examples include various lenses such as a spherical lens, an aspherical lens, and a microlens, a diffraction grating, a lens with a diffraction grating, a lens array, a prism, and the like.
  • the shape surface include a concave meniscus lens, a biconcave lens, a planoconcave lens, a convex meniscus lens, a biconvex lens, and a planoconvex lens.
  • these lenses may be provided with an optical thin film or multilayer film such as an antireflection film, a total reflection film, a partial reflection film, or a film having spectral characteristics, if necessary, to form an optical element.
  • the optical element is suitable as a part of a high-performance and compact imaging optical system, and is suitable for an imaging optical system such as a digital still camera, a digital video camera, a mobile phone camera, and an in-vehicle camera.
  • an imaging optical system such as a digital still camera, a digital video camera, a mobile phone camera, and an in-vehicle camera.
  • the glass article is preferably a glass article manufactured through a process including polishing, that is, a glass article having a polished surface, and more preferably a glass article having an optical polished surface. Therefore, the glass article is preferably an optical element having an optical polishing surface.
  • the phosphorus phosphate glass contains phosphorus containing both P and O which are main components of the network structure.
  • Acid ions (PO 4 3- etc.) Are introduced into the glass. Therefore, the phosphate ion introduce
  • the treatment liquid can have a pH buffering action, the concentration of a part of the solute that binds to the glass component in the treatment liquid can be kept constant, and the glass surface quality deterioration suppressing effect can be stably maintained. Can be obtained. Moreover, elution of a glass component can be further suppressed by setting the pH range to a specific range.
  • Glass article grade As described above, there is no particular limitation on the glass article in the present embodiment. However, when the present invention is applied, the processing liquid is used even if the glass article has a relatively low latent scratch resistance (D NaOH ). The adverse effect on the surface of the resulting glass article can be reduced. In particular, it is preferable to apply the present invention to glass types that are liable to cause quality degradation due to the appearance of latent scratches (that is, glass types with low latent scratch resistance). Specifically, it is also particularly suitable for glass types (low-latency resistant glass types) in which quality deterioration occurs due to the occurrence of burns, spiders, or the emergence of latent scratches when stored in air or in water. It is.
  • the glass type may cause quality degradation due to the occurrence of burns, spiders, or the appearance of latent flaws. Particularly suitable for low glass types).
  • Treatment liquid using organic compounds The merits of using an aqueous solution as the treatment liquid are as described above, but a treatment liquid using an organic compound may be used as long as the solute can be welcomed into a glass skeleton.
  • the treatment liquid is not particularly limited as long as the solute can be welcomed into the glass skeleton.
  • the solute may be a salt of a combination of an acid and a base.
  • bonds with 1 type of a glass component it is more preferable to be comprised from the element contained in a glass component.
  • the treatment liquid other than the phosphate aqueous solution include a silicate aqueous solution.
  • the glass article is preferably a silicate glass article.
  • a borosilicate aqueous solution may also be used.
  • aqueous solution which added the phosphate and the borosilicate may be used as a processing liquid.
  • a compound may be appropriately mixed with an aqueous solution of a compound used as a buffer solution (acetic acid, citric acid, phthalic acid, etc.), and this may be used as a treatment liquid.
  • a liquid containing a solute having a chelating function is not preferable as a treatment liquid because it may reduce the surface quality of the glass article.
  • a defect generation suppressing process was performed after the polishing process.
  • this process may be performed at an arbitrary timing as long as it is performed before a defect of the glass article occurs or becomes apparent.
  • defect generation suppression processing may be performed also as a storage process.
  • cleaning process, or a rinse process although the time for a glass article and a process liquid to contact becomes short, since the surface hardly soluble occurs instantaneously, there exists an effect of this invention.
  • an optical element is ground and polished, an optical functional surface that requires high quality is finally created by a polishing process.
  • the defect generation suppressing process in a polishing process including a process after the polishing process or a final stage of the polishing process.
  • the quality of the surface of the precision press molding preform greatly affects the quality of the optical functional surface of the optical element. Therefore, it is preferable to perform the defect generation suppression process in the final stage of the polishing process of the precision press-molding preform, the preform cleaning process after the polishing process, and the rinsing process.
  • the conditions for realizing the effect according to the above-described embodiment vary depending on the glass type of the glass article.
  • the case where the glass article is a fluorophosphate glass is mainly illustrated.
  • the treatment liquid is a phosphate aqueous solution, the effects of the present invention may not be achieved.
  • the solute in the treatment liquid is a source for newly supplying the glass component in the glass article, and a part of the solute (eg, phosphate ions) is used as the glass component in the glass article.
  • a part of the solute eg, phosphate ions
  • the specific defect generation suppression treatment conditions should be investigated mainly using a substance containing the same substance as the glass skeleton substance of the glass article.
  • the optical lens is manufactured by grinding and polishing the glass material.
  • the optical lens can also be manufactured by press molding, for example, a precision mold press molding method.
  • This molding method is a method as shown below. First, a glass material preformed into a predetermined shape such as a spherical shape or a flat sphere shape is supplied between the molding die composed of an upper die and a lower die, and the glass material is heated together with the molding die. After the heating, the glass material is deformed by pressing using the upper and lower molds in a state where the glass material is softened. Then, after a glass raw material becomes below glass transition temperature, the optical lens as a glass article is obtained by taking out from a shaping
  • this precision mold press molding method is a method in which a glass material preheated outside the mold before being fed into the mold is supplied to a mold heated to a predetermined temperature, and then the glass material is press-molded. Includes a method of taking out from the mold after the glass transition temperature is lower than the glass transition temperature.
  • the outer periphery of the optical lens obtained by press molding such as the above-described precision mold press molding method
  • it may be performed in the same manner as the polishing lens of the above embodiment.
  • the above processing liquid can be used as one or both of the cleaning liquid and the rinsing liquid.
  • said process liquid can be used as any one or both of a washing
  • a thin film such as a hard carbon film is formed on the surface of the glass material in order to prevent fusion between the glass material and the mold in the manufacturing process.
  • the above-described processing liquid can be used as one or both of the cleaning liquid and the rinsing liquid.
  • composition of glass article (Composition of glass article) Next, although the composition example of a fluorophosphate glass is demonstrated, the glass used in this embodiment is not limited to the glass of these composition examples. In addition, these composition examples are compositions of a bulk part.
  • a first preferred glass of fluorophosphate glass (hereinafter referred to as glass 1) is a glass having an F content of 55 anion% or more and an O content of 45 anion% or less, that is, F ⁇ is 55 anion% or more.
  • O 2 ⁇ is a glass containing 45 anionic% or less.
  • a more preferable glass is a glass containing F ⁇ of 70 anion% or more and O 2 ⁇ of 30 anion% or less, and a more preferable glass is F ⁇ of 80 anion% or more and O 2 ⁇ of 20 anion. %, And more preferable glass is glass containing F ⁇ 85 anion% or more and O 2 ⁇ 15 anion% or less. More preferable glass among the glass 1 is as follows: P 5+ is 1 to 35 cation%, Al 3+ is 10 to 40 cation%, Li + is 0 to 25 cation%, F ⁇ is 55 to 99 anion%, This is a fluorophosphate glass (glass 1A) containing 1 to 45 anions of O 2 ⁇ .
  • a more preferable glass (glass 1B) in the glass 1A has, as glass components, P 5+ of 3 to 25 cation%, Al 3+ of more than 30 cation% to 40 cation% or less, and Li + of 0 to 20 cation%.
  • F ⁇ is 65 to 99 anion%
  • O 2 ⁇ is 1 to 35 anion%.
  • a glass having a lower limit of the content of F ⁇ is preferably 70 anion%, more preferably 80 anion%, more preferably 85 cation%. .
  • Mg 2+ is 0 to 15%
  • Ca 2+ is 0 to 35%
  • Sr 2+ is 0 to 25%
  • Ba 2+ in terms of cation%.
  • the glass contains 0 to 20% of Na, 0 to 10% of Na + , 0 to 10% of K + , and 0 to 12% in total of rare earth ions.
  • the upper limit of the total content of rare earth ions is preferably 10%, more preferably 7%, and even more preferably 5%.
  • the lower limit of the total content of rare earth ions is 0.1%.
  • glass containing 3 to 35% Ca 2+ is preferable.
  • any of Y 3+ , Gd 3+ , La 3+ , Yb 3+ , Lu 3+ which does not color the glass is preferable, and the total content thereof is preferably 0.1 cation% or more, and 12 cation%.
  • the total content of Y 3+ , Gd 3+ , La 3+ and Yb 3+ is preferably 0.1 to 10 cation%, more preferably 0.1 to 7 cation%, and more preferably 0.1 to 5 More preferably, the cation% is used.
  • Y 3+ is preferably contained, Y 3+ is preferably contained in an amount of 0.1 to 12 cations, and 0.1 to 10 cations is contained. More preferably, it is contained in an amount of 0.1 to 7 cations, more preferably 0.1 to 5 cations.
  • the Abbe number ⁇ d of glass 1 is preferably 78 or more, more preferably 80 or more, still more preferably 85 or more, and still more preferably 90 or more. More preferably, it is 93 or more.
  • the upper limit of the Abbe number ⁇ d is naturally determined by the above composition, but can be 100 or less.
  • the Abbe number ⁇ d generally depends on the F content in the glass, and the Abbe number ⁇ d increases as the F content increases. For this reason, the glass having a larger Abbe number ⁇ d becomes more markedly deteriorated in surface quality when contacted with water. Therefore, the effect of this embodiment becomes more remarkable as the glass has a larger Abbe number ⁇ d.
  • P 5+ has a function of forming a glass network structure. From the viewpoint of obtaining an optically homogeneous glass by suppressing volatilization during glass melting while maintaining the stability of the glass, the content of P 5+ is preferably within the above range.
  • Al 3+ serves to improve the stability of the glass, and is a useful component for forming a poorly soluble compound in a solvent such as water by combining with a part of the solute. From the viewpoint of obtaining such a function, the content of Al 3+ is preferably set in the above range.
  • Li + lowers the viscosity of the glass melt, but it has a very strong effect of lowering the liquidus temperature. As a result, the viscosity of the glass at the liquidus temperature is increased, It works to suppress the occurrence. It also has the function of lowering the glass transition temperature. From the viewpoint of obtaining such an effect, the Li + content is preferably within the above range. A preferable lower limit of the content of Li + is 0.1 cation%.
  • F ⁇ is an essential component for imparting low dispersibility and anomalous dispersibility to the glass. From the viewpoint of obtaining desired low dispersibility and anomalous dispersibility, the content of F ⁇ is preferably within the above range.
  • Anionic component in the glass 1 is substantially F - consists of a O 2-.
  • a small amount of Cl as anionic component - may be introduced.
  • F - and O 2- total content of it is preferably 95% or more by anionic%.
  • the content of each component of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Na + , and K + is preferably set in the above range.
  • Y 3+ is expected to improve the thermal stability of the glass when introduced in a small amount, but when introduced in excess, the melting temperature of the glass rises, volatilization from the molten glass is promoted, and the thermal stability of the glass. Also decreases. Therefore, it is preferable to set the content of Y 3+ within the above range.
  • a more preferable range of the content of Y 3+ is 0.1 to 12 cation%, a further preferable range is 0 to 10 cation%, a more preferable range is 0.1 to 7 cation%, and an even more preferable range is 0.1 to 5 % Cation.
  • La 3+ , Gd 3+ , Zr 4+ , Zn 2+ can be introduced for the purpose of adjusting the refractive index.
  • Yb 3+ and Lu 3+ can be introduced.
  • the content of B 3+ is preferably 0 to 1%, more preferably not substantially contained.
  • substantially free refers to a insignificant amount that volatility of the glass is not exhibited as to also include that it does not contain at all B 3+, contained B 3+.
  • Glass 1 does not require components such as Sc, Hf, and Ge. Since Sc, Hf, and Ge are expensive components, it is preferable not to introduce them. In addition, Lu is not an essential component but an expensive component. Therefore, it is preferable not to introduce Lu into glass in order to reduce the raw material cost of the glass article.
  • the glass 1 exhibits excellent light transmittance over a wide wavelength range in the visible range. From the viewpoint of taking advantage of these properties, it is preferable not to introduce substances that cause coloring such as Cu, Cr, V, Fe, Ni, Co, Nd, Er, Tb, and Eu.
  • a preferable range of the refractive index nd is 1.42 to 1.53.
  • volatile glass 1 from the viewpoint of suppressing erosive, the molar ratio (O 2- / P 5+) of O 2- content to the content of P 5+ 3.5 or more, i.e., 7/2 or more It is desirable to make it.
  • a second preferred glass of fluorophosphate glass (hereinafter referred to as glass 2) is expressed in atomic%, P is 0.1 to 6%, Al is 0.8 to 22%, O is 1 to 20%, F The total content of Ca, Sr and Ba exceeds 0 atomic%, and the value obtained by dividing the total amount of P and Al by the content of F ((P + Al) / F) is 0. .1 to 0.4 glass.
  • Ca is 1 to 20 atomic%
  • Sr is 1 to 20 atomic%
  • Ba is 1 to 20 atomic%
  • F is 30 to 60 atomic%
  • O is 1 to 20 atomic%
  • Mg is 0 to 10 atomic% %
  • Y is preferably contained in an amount of 0 to 10 atomic%.
  • glass having an Abbe number ⁇ d of 90 to 100 can be obtained.
  • the molar ratio of the content of O 2 ⁇ to the content of P 5+ O 2 ⁇ / P 5+ is preferably 2.5 or more, more preferably 2.8 or more, further preferably 2.9 or more, and further preferably 3 or more.
  • the glass article using a fluorophosphate glass was mentioned as an example.
  • the present invention can also be applied to glass articles made of other substances.
  • an example using a borate glass article as a glass article will be described.
  • the borate glass article contains B.
  • the solvent is water and the solute contains borate.
  • borate glass article in this embodiment the following glass articles are suitable. -Glass articles containing alkaline earth metals and Zn-Glass articles containing rare earth metals (rare earth elements)-Glass articles containing alkali metals
  • it may be a glass article further containing a substance other than the above, or it may be a glass article containing F like the fluorophosphate glass.
  • the above glass composition and optical characteristics are the composition and characteristics of the bulk portion of the glass substrate.
  • the composition of the glass A in atomic% (atomic%) display is such that the P content is 1.64%, the Al content is 10.21%, the Mg content is 2.06%, and the Ca content is 8.69%, Sr content 5.21%, Ba content 1.42%, Li content 0.3%, Na content 0.36%, Y content The content of 0.39%, the content of F is 63.85%, the content of O is 5.72%, and the content of Cl is 0.14%.
  • this glass substrate was immersed in the phosphate aqueous solution as a process liquid.
  • a phosphate aqueous solution an aqueous solution in which NaH 2 PO 4 and Na 2 HPO 4 were mixed at a molar ratio of 1: 1 so as to have a pH of 7.0 was used.
  • the phosphorus (P) concentration and sodium (Na) concentration in the treatment liquid were both 160 ppm, the treatment liquid temperature was 16 ° C., and the immersion time was 15 hours in total.
  • the surface of the polished glass substrate in Example 1 was immediately wiped with ethanol to remove slurry and sludge adhered to the glass surface.
  • the glass substrate thus obtained was used as a reference example. Therefore, the glass substrate of the reference example is not in contact with the phosphate aqueous solution.
  • the glass substrate was produced using the same method as in Example 1.
  • such a method is not preferable in practice because the operation of wiping the glass surface immediately after polishing with ethanol to remove the abrasive grains that cause sticking decreases the productivity. .
  • Example 1 After wiping the surface of the glass substrate obtained in Example 1 with ethanol, an XPS spectrum was measured for each glass substrate of Example 1 and the reference example, and it was included in the vicinity of the surface of the glass substrate (4 to 5 nm). The element type and bonding state were evaluated. For comparison, the types and bonding states of the elements were also evaluated for the composition and the inside of the glass substrate (about 100 nm from the surface). When measuring the inside of the glass substrate, the surface was shaved by about 100 nm by sputtering.
  • the XPS measurement conditions are as follows. Excitation X-ray: Al mono Detection area: ⁇ 100 ⁇ m Extraction angle: 45deg Detection depth: broken line: 4 to 5 nm, solid line: 100 nm (sputtering) Sputtering conditions: Ar + 2.0 kV Sputtering rate: about 5 nm / min (SiO 2 conversion) Based on the above measurement conditions, the types of elements existing on the surface side and the inner side of the glass substrate, that is, the glass article, the abundance ratio of each element, and the bonding state can be evaluated.
  • FIG. 1 to 6 are graphs showing the results of XPS, where (a) shows the results of Example 1, and (b) shows the results of the reference example.
  • FIG. 1 is a graph showing results for Al2p
  • FIG. 2 is P2s
  • FIG. 3 is O1s
  • FIG. 4 is Ca2p
  • FIG. 5 is Sr3p3 / 2
  • FIG. 7 to 8 show only the results of Example 1.
  • FIG. 7 is a graph showing the results for Ba3d5 / 2
  • FIG. 8 is a graph showing the results for Mg1s.
  • Example 1 to 3 show the results regarding the elements Al, P, and O forming a network structure in the fluorophosphate glass.
  • the XPS spectrum inside the glass indicated by the solid line is considered not to be affected by the treatment liquid, so it is considered that Example 1 and the reference example show almost the same spectrum.
  • Example 1 Compared to the reference example (each figure (b)), in Example 1 (each figure (a)), the elements (P, Al and O) forming a network structure on the surface of the glass substrate compared to the inside of the glass substrate. ) Peak intensity is remarkably high. This is presumably because the surface of the glass substrate is brought into contact with the treatment liquid, so that a part of the solute is introduced into the glass substrate and bonded to the glass component, and as a result, the peak intensity indicating bonding is increased. This result is considered to indicate that a hardly soluble compound (aluminum phosphate) is formed on the surface of the glass substrate.
  • aluminum phosphate aluminum phosphate
  • FIGS. 4 to 6 are results relating to elements that are considered to exist in the gaps of the network structure. Contrary to FIGS. 1 to 3, compared to the reference example (each figure (b)), Example 1 (each figure (a)) is more alkaline earth on the surface of the glass substrate than the inside of the glass substrate. The peak intensity of metal and F is significantly low. There are two possible reasons for this. One possibility is that alkaline earth metal elements and fluorine may have flowed out of the glass surface into the treatment liquid. Another possibility is that the phosphate ions are bonded to the network Al in the vicinity of the surface, and as a result, the ratio of the alkaline earth metal element and fluorine on the surface may be relatively reduced. For any reason, after all, it is considered that a slightly soluble compound (aluminum phosphate) is formed on the surface.
  • a slightly soluble compound aluminum phosphate
  • FIGS. 2 to 3 there is a significant difference not only in the peak intensity but also in the peak position between Example 1 and the reference example.
  • Example 1 in Example 1 (FIG. 2A), the peak intensity due to the bond between the metal and POx is extremely increased compared to the reference example (FIG. 2B), and P 2 The peak position is shifted from the peak due to O 5 .
  • the peak intensity also increases in Al (FIG. 1 (a)) and O (FIG. 3 (a)) forming a network structure, and in O (FIG. 3 (a))
  • the peak intensity due to the bond with POx is extremely increased, and the peak position is shifted from the peak due to the bond between the metal and O.
  • Example 1 glass substrates were respectively prepared in the same manner as in Example 1 and the reference example, and secondary ion mass spectrometry (SIMS) was performed in the depth direction.
  • SIMS secondary ion mass spectrometry
  • Example 1 it was confirmed that a high-quality glass surface free of spider was maintained while preventing the abrasive grains from sticking to the glass surface by immersion in the treatment liquid.
  • the glass A was ground and processed into a lens shape, and further optically polished with a polishing liquid to produce an optical lens.
  • the polishing liquid is obtained by dispersing abrasive grains in the treatment liquid.
  • the same kind of liquid as the above processing liquid was used as a storage liquid, and the lens was immersed in this storage liquid and stored. Further, the lens is taken out from the storage solution, and the foreign matter adhering to the lens surface is washed and removed with a solution obtained by adding a detergent to the same type of treatment solution as described above, and the lens is rinsed with the same type of treatment solution as the rinse solution. did.
  • the lens was treated with IPA (isopropyl alcohol) and dried to obtain a clean lens with no spider on the surface.
  • IPA isopropyl alcohol
  • Example 2 to 18 First, a disk-shaped flat glass substrate (diameter 43.7 mm, thickness 5 mm) made of the same glass A as in Example 1 was used as a glass article as a sample. This flat substrate is polished and has an optically polished surface.
  • the weight change value ( ⁇ Wt (mg)) before and after storage and the haze value (%) after storage were evaluated by the methods shown below for the glass articles subjected to the above storage treatment. Moreover, it was evaluated by visual observation whether or not a defect occurred on the surface of the glass article. Furthermore, it calculated
  • Weight change value The weight change value is calculated as a difference between the measurement results obtained by measuring the weight of the sample before and after being immersed in the treatment liquid. If the weight change value is large, there is a high possibility that latent scratches are enlarged. Therefore, it is preferable that the weight change value is small. The results are shown in Table 1.
  • haze value is a value representing the so-called fogging degree of glass, and the smaller the numerical value, the higher the transparency and the better.
  • haze value (%) Td / Tt ⁇ 100 (Td: diffuse transmittance, Tt: total light transmittance) is specified.
  • Such a haze value was obtained by immersing in a processing solution for a predetermined time using a haze meter defined in “Japan Optical Glass Industry Standard JOGIS Optical Glass Article Chemical Durability Measurement Method (Surface Method) 07-1975”. It is measured by transmitting the measurement light perpendicularly to the two opposite surfaces of the glass material sample later. The results are shown in Table 1.
  • the composition of the bulk portion of the glass substrate is the composition of the glass material.
  • composition of glass B in terms of atomic% (atomic%) has a P content of 8.52%, an Al content of 6.5%, an Mg content of 2.58%, and a Ca content of 4.42%, Sr content 5.26%, Ba content 3.64%, Y content 0.19%, F content 43.34%, O content 25.56%.
  • the glass B was ground and processed into a lens shape, and further optically polished with a polishing liquid to produce an optical lens.
  • the polishing liquid is obtained by dispersing abrasive grains in each of the above processing liquids.
  • the same kind of liquid as the above treatment liquid was used as a storage liquid, and the lens was immersed in this storage liquid and stored. Further, the lens is taken out from the storage solution, and the foreign matter adhering to the lens surface is washed and removed with a solution obtained by adding a detergent to the same type of liquid as the above-mentioned processing liquids. Rinse.
  • the lens was treated with IPA (isopropyl alcohol) and dried to obtain a clean lens with no spider on the surface.
  • IPA isopropyl alcohol
  • the treatment liquid does not necessarily have a buffer function. It can also be confirmed that the pH of the treatment liquid is not necessarily within the above-described range. Further, the treatment liquid does not need to have a phosphate as a solute.
  • a combination of phosphoric acid (H 3 PO 4 ) and sodium hydroxide (NaOH) may be used.
  • the treatment liquid may be selected so that a part of the solute can be combined with the glass component existing on the surface of the glass article.
  • the treatment liquid has a buffer function, and it is not necessarily good that the pH of the treatment liquid is 6 or more and 8 or less. It is necessary to adjust the treatment liquid and treatment conditions according to the glass type of the glass article. However, as shown in FIGS. 1 to 8, it is sufficient that the solute in the treatment liquid can be a source for newly supplying the glass component to the glass article during the defect generation suppressing process.
  • conditions for making the solute in the treatment liquid freely connectable to the glass component in the glass article and making it freely available as the glass component (especially the glass skeleton substance) are those skilled in the art, such as pH, treatment solution solute and solvent. It is possible to set as appropriate by adjusting the type of. After all, the content of the component that can constitute the glass skeleton is the great feature of the present invention that the surface side of the glass article is larger than the inner side of the glass article.
  • Example 23 Next, in atomic%, P is 1.89%, Al is 9.74%, Mg is 2.04%, Ca is 8.55%, Sr is 5.11%, and Ba is Refractive index including 1.4%, Li 1.47%, Na 0.61%, Y 0.38%, F 61.41%, O 7.28%, Cl 0.12% Seven disc-shaped flat glass substrates having an optical polishing surface similar to that of Example 1 were prepared using fluorophosphate glass (hereinafter referred to as glass C) having an nd of 1.437 and an Abbe number ⁇ d of 95.1. did.
  • glass C fluorophosphate glass
  • the molar ratio of glass C (O 2 ⁇ / P 5+ ) is 3.85, and the composition represented by cation% and anion% indicates that the content of P 5+ is 6.06 cation% and the content of Al 3+ is 31.23 cation%, Mg 2+ content 6.54 cation%, Ca 2+ content 27.41 cation%, Sr 2+ content 16.38 cation%, Ba 2+ content 4. 49 cation%, Li + content is 4.71 cation%, Na + content is 1.96 cation%, Y 3+ content is 1.22 cation%, and F ⁇ content is 89. 25 anion%, O 2 ⁇ content is 10.58 anion%, and Cl 2 ⁇ content is 0.17 anion%.
  • the composition of the bulk portion of the glass substrate is the composition of the glass material. Each substrate was treated under the following five conditions from Condition C-1 to Condition C-5.
  • a phosphate aqueous solution as a treatment liquid was prepared.
  • the phosphate aqueous solution is an aqueous solution in which NaH 2 PO 4 and Na 2 HPO 4 have a molar ratio of 1: 1 so as to have a pH of 7.0.
  • Both phosphorus (P) concentration and sodium (Na) concentration in the treatment liquid were set to 150 ppm.
  • the treatment liquid was placed as a rinsing liquid from the first tank to the third tank, and isopropyl alcohol (IPA) was placed as the rinsing liquid from the fourth tank to the sixth tank.
  • IPA isopropyl alcohol
  • the glass substrate was dipped sequentially from the first tank to the sixth tank to increase the cleanliness of the glass substrate surface.
  • the immersion time of the glass substrate in each tank from the first tank to the sixth tank was 100 seconds.
  • the liquid in the tank is circulated from the inside of the tank to the filter, the ion exchange resin, and the inside of the tank so that the function as the rinse liquid does not deteriorate. did.
  • the temperature of the rinse liquid in each tank from the first tank to the sixth tank is room temperature.
  • the seventh tank is called a vapor tank.
  • Vapor treatment IPA vapor drying treatment
  • IPA isopropyl alcohol
  • Condition C-1 + Condition C-2 The flat glass substrate rinsed according to condition C-1 was vacuum heated at 250 ° C. for 30 minutes (condition C-2).
  • Condition C-2 assumes that the substrate is heated when an optical multilayer film is coated on the optical polishing surface.
  • Condition C-1 + Condition C-2 + Condition C-3 Along with vacuum heating under Condition C-2, oxygen and argon gas were introduced, and the optical polishing surface of the flat glass substrate was ion-cleaned using a thermionic ion gun (Condition C-3). Condition C-3 also assumes that the substrate is heated when an optical multilayer film is coated on the optical polishing surface.
  • Test Example B The flat glass substrate was immersed in pure water at 16 ° C. for 15 hours.
  • the XPS spectrum was measured for each glass substrate treated under the conditions C-1 to C-5, and the abundance ratio and bonding state of elements contained in the vicinity of the glass substrate surface (4 to 5 nm) were evaluated. .
  • an XPS spectrum was also measured inside the glass substrate (about 100 nm from the surface), and the abundance ratio and bonding state of the elements were evaluated.
  • the surface was shaved by about 100 nm by sputtering.
  • the XPS measurement conditions are the same as in Example 1.
  • the waveform of the XPS spectrum derived from that element has a Gaussian function form.
  • the waveform of the XPS spectrum is a combined form of a plurality of Gaussian functions having slightly different peak positions.
  • the spectrum waveform obtained by XPS is decomposed (separated) into a plurality of types of Gaussian functions having peaks at the position of the binding energy corresponding to the assumed binding state, and the obtained Gaussian functions and the baseline are used. If the ratio of the area of the enclosed region is obtained, the abundance ratio of elements in each bonded state can be calculated.
  • constants in each Gaussian function may be fitted by the least square method or the like.
  • the abundance ratio and bonding state of elements inside (inside) the glass substrate were almost the same under the conditions C-1 to C-5, Test Example A, and Test Example B. Therefore, the abundance of each element on the inner side and the abundance for each Al bonding state obtained for the glass substrate treated under the condition C-1 are determined for each abundance of each element on the inner side of the glass substrate and for each Al bonding state.
  • the abundance of Here, the abundance is an abundance in atomic% (atomic%) representation of the remaining elements, excluding contamination such as C and N.
  • Table 5 shows that XPS measurement was performed on the glass substrates treated with the conditions C-1 to C-5, and the presence of P, Al, Mg, Ca, Sr, Ba, F, and O on the surface side of the glass substrate. The ratio between the amount and the abundance of each element on the inner side is shown.
  • the ratio of the abundance of P, Al, and O exceeds 1.0 in each of the conditions in which the treatment was performed using the phosphate aqueous solution, and the abundance on the surface side. Is greater than the abundance on the inside.
  • the ratio of each abundance of Mg, Ca, Sr, Ba, and F The ratio of the total abundance (total content) of Mg, Ca, Sr, and Ba is both less than 1.0, and the abundance on the surface side is Less than the abundance on the inside.
  • the haze value of the optically polished surface of each glass substrate treated under conditions C-1 to C-5 was 0.0%, and the weight change amount was 1.6 ⁇ 10 ⁇ 3 mg / (cm 2 ⁇ hour) or less. there were.
  • Table 6 shows the amount of Y present on the surface side of the glass substrate obtained by performing XPS measurement on the glass substrate subjected to the treatments of conditions C-1 to C-5 and the glass substrate of Test Example B. The ratio with the abundance of Y on the inner side is shown.
  • Table 7 shows the amount of O present on the surface side of the glass substrate obtained by XPS measurement on the glass substrate subjected to the treatments under conditions C-1 to C-5 and the glass substrate of Test Example A. The ratio of the O existing amount on the inner side and the ratio of the F existing amount on the surface side of the glass substrate and the F existing amount on the inner side are shown.
  • the ratio of the abundance on the surface side to the abundance on the inside side of O was a high value of 2.45 to 4.45.
  • the ratio (abundance on the surface side / abundance on the inner side) was 1.91 and less than 2.0.
  • the ratio of the abundance on the surface side to the abundance on the inside side of F Of 0.13 to 0.68 and 0.80 or less.
  • the ratio (existence on the surface side / existence on the inner side) exceeded 0.84 and 0.80.
  • Table 8 shows the XPS measurement of the glass substrate subjected to each of the conditions C-1 to C-5 and the glass substrate of Test Example A, and the Al for each bonding state on the surface side of the glass substrate obtained from the measurement result. And the abundance of Al for each bonding state on the inner side of the glass substrate of Test Example A are shown.
  • the abundance of Al is determined such that the total abundance of Al and other glass component elements is 100 atomic% (atomic%). Further, the XPS spectrum waveform of Al can be separated into six types of coupled Gaussian functions.
  • the six bonding states include metal Al having a different charge state corresponding to a binding energy of 70.60 eV, metal Al corresponding to a binding energy of 73.05 eV, Al 2 O 3 corresponding to a binding energy of 74.07 eV, and the like.
  • the XPS spectrum waveform of Al is separated into six types of waveforms for each bonding state, and the amount of Al present in each bonding state is determined from the ratio of the area of the region surrounded by each separated waveform and the baseline. Asked.
  • the amount of Al in the oxidized state on the outermost surface of the glass substrate treated under conditions C-3 and C-4 is larger than the amount of Al in the oxidized state on the inner side of the glass substrate.
  • the abundance of Al in the phosphate state on the outermost surface of the glass substrate treated under conditions C-1 to C-4 may be larger than the abundance of Al in the phosphate state on the inner side of the glass substrate. Recognize. Further, the total of the abundance of Al in the oxidation state and the abundance of Al in the phosphate state on the outermost surface of the glass substrate treated under conditions C-1 to C-4 is the oxidation state on the inner side of the glass substrate.
  • the ratio of the total amount of Al (the total amount of Al present in each state) to the total amount of Al in the oxidized state and the amount of Al present in the phosphate state ((the amount of Al present in the oxidized state) + Abundance of Al in phosphate state) / total amount of Al) is 0.5 or more for all glass substrates treated under conditions C-1 to C-4, whereas the glass substrate of Test Example A Then, it can be seen that when the ratio is 0.43, the total amount of Al in the oxidized state or phosphate state does not reach half of the total amount of Al.
  • Example 24 Next, in atomic%, P is 8.53%, Al is 6.5%, Mg is 2.58%, Ca is 4.41%, Sr is 5.25%, and Ba is Fluorophosphate glass containing 3.64%, Y 0.2%, F 43.32%, O 25.58%, refractive index nd 1.497, Abbe number ⁇ d 81.61 A disk-shaped flat glass substrate having an optical polishing surface similar to that of Example 1 was prepared.
  • the molar ratio of glass D (O 2 ⁇ / P 5+ ) is 3.00, and the composition represented by cation% and anion% is such that the content of P 5+ is 27.42 cation% and the content of Al 3+ is 20.89 cation%, Mg 2+ content 8.29 cation%, Ca 2+ content 14.18 cation%, Sr 2+ content 16.88 cation%, Ba 2+ content 11. 70 cation%, Y 3+ content is 0.64 cation%, F ⁇ content is 62.87 anion%, and O 2 ⁇ content is 37.13 anion%.
  • the composition of the bulk portion of the glass substrate is the composition of the glass material. The glass substrate was treated under the same condition D-1 as the condition C-1.
  • the ratio of P and O exceeds 1.0, and the ratio of each alkaline earth metal (the amount on the surface side / the amount on the inner side).
  • Alkaline earth metal total abundance AE ratio surface side total abundance / internal side total abundance
  • F ratio surface side abundance / internal side abundance
  • the abundance and proportion of Al in the phosphate state ((abundance of Al in the oxidation state + abundance of Al in the phosphate state) / total amount of Al) exceeds 0.5. .
  • Example 25 The 12 types of fluorophosphate glasses E1-E10, Glass F1, and Glass F2 having the compositions and properties shown in Table 11 (in atomic%) and Table 12 (in cation% and anion%) are the same as in the above examples. Then, a flat glass substrate having an optically polished surface is prepared and processed under conditions C-1 to C-5, and the abundance and bonding state of each element on the surface side and inside of the glass substrate are measured by XPS. Analysis and quantification.
  • the ratio of RE (su) to RE (in) (RE (su) / RE (in)) was 2 or less, but the same method as in Test Example B using each of the glasses E1 to E10.
  • the optically polished surface became cloudy and the ratio (RE (su) / RE (in)) exceeded 3.
  • the O content on the inner side is O (in) and the O content on the surface side is O (su) in atomic% display
  • the ratio of O (su) to O (in) (O (su) / O (in)) was 2.0 or more.
  • the ratio (O (su) / O (in)) was less than 2.0.
  • the content of phosphate Al, the total content of oxidized Al and phosphate Al are all the surface of the glass article. There were more sides than the inner side of the glass article.
  • the Al content (total amount of Al) in each bonded state is expressed as atomic% and the Al content in the oxidized state is expressed in atomic%.
  • the content of Al in the phosphate state is Al (ph)
  • the ratio of the total amount of Al (ox) and Al (ph) to Al (all) on the surface side was 0.5 or more.
  • the ratio of the abundance on the surface side to the abundance on the inside of F is determined.
  • the weight reduction amount was also equivalent to the weight reduction amount in Example 23.
  • the ratio of RE (su) to RE (in) (RE (su) / RE (in)) was 2 or less.
  • the optically polished surface became cloudy, and the ratio (RE (su) / RE (in)) exceeded 3.
  • the O content on the inner side is O (in) and the O content on the surface side is O (su) in atomic% display
  • the ratio of O (su) to O (in) (O (su) / O (in)) exceeded 1.0.
  • the content of phosphate-state Al was higher on the surface side of the glass article than on the inner side of the glass article. Further, in each glass substrate treated under the conditions C-1 to C-5, the Al content (total amount of Al) in each bonded state is expressed as atomic% and the Al content in the oxidized state is expressed in atomic%.
  • the content of Al in the phosphate state is Al (ph)
  • the ratio of the total amount of Al (ox) and Al (ph) to Al (all) on the surface side ((Al (ox ) + Al (ph)) / Al (all)) was 0.5 or more.
  • the ratio of the abundance on the surface side to the abundance on the inside of F (the abundance of F on the surface side / the abundance of F on the inside) is determined. As a result, it was 0.69 to 0.75, and in any glass substrate, it was 0.75 or less.
  • the ratio (abundance on the surface side / abundance on the inner side) was 0.85 or more. No defects such as spider and cloudiness were observed on the optically polished surface of each glass substrate treated under conditions C-1 to C-5. Moreover, the haze value of the optical polishing surface of each glass substrate was 0.0%. Moreover, the weight reduction amount was also equivalent to the weight reduction amount in Example 24.
  • Example 26 Glasses A to D were processed into lens shapes such as a biconvex lens, a convex meniscus lens, a concave meniscus lens, and a biconcave lens by a process including a polishing process.
  • the glass is immersed and stored in the phosphate aqueous solution (storage solution) used in each of the above examples, and then the glass is taken out from the phosphate aqueous solution and further polished to be processed into the lens shape described above. did.
  • the glass lenses A to D are washed to remove the polishing slurry and processing waste, rinse the washed lens under the same condition as condition C-1, and perform a vapor treatment with IPA.
  • a lens with a clean surface was obtained.
  • the optical polishing surface (corresponding to the optical function surface) of the obtained lens was analyzed by XPS for the abundance of each element on the surface side and inside and the abundance of the element in a specific state. was consistent with the results.
  • a lens made of glass C was treated under condition C-2 (condition C-1 + vacuum heating) and then analyzed by XPS.
  • condition C-2 condition C-1 + vacuum heating
  • XPS XPS
  • the above lens is a glass article processed through a process including a polishing process, but a lens that is molded by precision press molding without passing through the polishing process can similarly obtain a lens that is clean and free of spider and cloudiness.
  • the same relationship as in the above-described embodiment is established with respect to the abundance and bonding state of elements on the surface side and the inner side.
  • the various lenses thus obtained are used to record data on an optical element constituting an imaging optical system such as a camera, an optical element constituting a projection optical system such as a projector, an optical disc, and to read data recorded on the optical disc.
  • an optical element such as a microlens constituting an optical system, an imaging optical system of a surveillance camera such as a CCTV or an in-vehicle camera, an optical element mounted on an endoscope, and the like. Since these optical elements have surface defects such as spider, white turbidity, and dirt adhered to an extremely low level compared to conventional optical elements, the imaging optical system provides an extremely clear image. Make it possible. For example, it is suitable for devices in the medical field that require extremely clear images such as endoscopes. Further, since the surface defects are at a low level, no damage occurs even if laser light is incident thereon, and therefore, it is also suitable as an optical element for guiding the laser light.
  • the lens was mentioned as an example of an optical element, it can apply also to other types of optical elements, such as a prism.
  • other types of optical elements such as a prism.
  • optical elements having high surface quality can be produced.
  • Example 27 Glass 1 and glass 2 were given as examples of the glass to which the present invention can be applied. On the other hand, it may be more preferable to apply this invention depending on the property of glass. To give a specific example, the glass whose surface tends to become cloudy when immersed in pure water for a fixed time rather than the glass that is originally difficult to become clouded even when immersed in pure water for a fixed time, suppresses white turbidity, The application of the present invention is more effective in that the effect of maintaining the quality of the glass article can be remarkably exhibited.
  • the present inventor conducted an investigation in order to provide a stipulation that can distinguish between “glass that can be applied to the present invention” and “glass that can be applied to the present invention”.
  • glass that becomes clouded when immersed in pure water for 15 hours the above glass 1
  • fluorine glass glass ⁇
  • the XPS spectrum was measured. The measurement conditions were the same as in the above example.
  • items not specifically mentioned are the same as in the embodiment.
  • the glass ⁇ contains P 5+ at 24.4 cation%, O 2 ⁇ at 49.7 anion%, F ⁇ at 50.3 anion%, and other cation components.
  • FIG. 9 is a graph showing a result of performing XPS on a glass substrate manufactured using glass 1.
  • the horizontal axis represents the binding energy
  • the vertical axis represents the XPS signal intensity.
  • an XPS spectrum is shown in the range of binding energy of 525 to 540 eV.
  • white circles are data obtained for the outermost surface of the glass substrate when a glass substrate composed of glass 1 is immersed in pure water for 15 hours.
  • the black circles are data obtained by performing XPS analysis on the surface of the glass substrate that has been dug down 100 nm by sputtering.
  • a white circle is a plot relating to the surface side (outermost surface) after immersion in pure water
  • a black circle is a plot relating to the inner side of the glass substrate.
  • the portion deeper than 100 nm from the outermost surface of the glass substrate has a substantially constant composition regardless of the depth.
  • the glass substrate comprised from the glass 1 was clouded on the surface, after being immersed in pure water for 15 hours.
  • FIG. 10 is a graph showing a result of XPS performed on a glass substrate produced using glass ⁇ , and a graph showing a result of O.
  • the horizontal axis represents the binding energy
  • the vertical axis represents the signal intensity of XPS.
  • FIG. 10 also shows an XPS waveform with a binding energy in the range of 525 to 540 eV.
  • a white circle is a plot of the outermost surface of the glass substrate when a glass substrate composed of glass ⁇ is immersed in pure water for 15 hours
  • a black circle is a 100 nm dug down of the outermost surface of the glass substrate by sputtering.
  • a white circle is a plot relating to the surface side (outermost surface) after immersion in pure water
  • a black circle is a plot relating to the inner side of the glass substrate.
  • the portion deeper than 100 nm from the outermost surface of the glass substrate has a substantially constant composition regardless of the depth.
  • the surface was not cloudy.
  • the XPS signal at a binding energy of 531.9 eV was compared between the surface side after immersion in pure water, that is, the outermost surface (white circle) and the inner side (black circle).
  • the intensity is equal, or the peak of the signal intensity (white circle) on the outermost surface is smaller than the peak of the signal intensity (black circle) on the inner side.
  • the XPS signal intensity at a binding energy of 531.9 eV is 100 nm deep on the surface side after immersion in pure water, that is, the outermost surface (white circle). It is significantly larger than the side (black circle).
  • Examples of the bond having a binding energy near 531.9 eV include metal-POx, metal-OH, metal-CO 3 , metal-OF, and the like.
  • the binding energy corresponding to the metal-O bond is on the low energy side.
  • FIG. 9 the peak position on the surface side (white circle) after immersion in pure water is shifted to the high energy side as compared with the inside side (black circle).
  • oxygen in a bonded state such as metal-POx and metal-OH on the surface of the substrate relatively increases when immersed in pure water. Such glass tends to become clouded when immersed in pure water.
  • a glass substrate produced using glass ⁇ is immersed in pure water, there is no relative increase in oxygen in the bonded state of metal-POx, metal-OH, or the like on the substrate surface. Such glass is relatively less likely to become clouded even when immersed in pure water.
  • the abundance of each element on the surface side and inside is obtained from XPS data, and pure water is also determined from the ratio of the amount of oxygen O (atom%) on the surface side to the amount of oxygen O on the inside (atom%).
  • the ratio (the amount of oxygen O present on the surface side / the amount of oxygen O present on the inner side) is less than 2.0, whereas it becomes cloudy.
  • the ratio is 2.0 or more.
  • a glass article having a ratio (the amount of oxygen O present on the surface side / the amount of oxygen O present on the inner side) after being immersed in pure water under the same conditions as in Test Example B is 2.0 or more.
  • the glass article is preferably applied.
  • the present invention is more applicable to glass articles having a ratio (the amount of oxygen O present on the surface side / the amount of oxygen O present on the inner side) after immersion in pure water under the same conditions as in Test Example B.
  • the application of the present invention is more suitable for glass articles having the ratio of 3.0 or more.
  • the ratio after immersion in pure water under the same conditions as in Test Example B (the amount of oxygen O present on the surface side) / A glass in which the abundance of oxygen O on the inner side is within the above range is preferable.
  • the ratio after immersion in pure water under the same conditions as in Test Example B (the amount of oxygen O present on the surface side / inside side)
  • the ratio after immersion in pure water under the same conditions as in Reference Example 3 (the amount of oxygen O present on the surface side / the amount of oxygen O present on the inner side) is as follows. It was 2.5 or more. The glass that tends to become cloudy after being immersed in water has a large amount of fluorine elution from the glass surface. Therefore, the amount of fluorine F present on the inner side (as compared to glass that is difficult to become cloudy after being immersed in water) The ratio of the abundance (atom%) of fluorine F on the surface side to the (atom%) (the abundance of fluorine F on the surface side / the abundance of fluorine F on the inside side) becomes small.
  • the ratio (the amount of fluorine F present on the surface side / the amount of fluorine F present on the inner side) is 0.5.
  • the ratio (the amount of fluorine F present on the surface side / the amount of fluorine F present on the inner side) is 0.74.
  • the ratio (the amount of oxygen O present on the surface side / the amount of oxygen O present on the inner side) is 0.7 or more, whereas it becomes cloudy. For easy glass, the ratio is less than 0.7.
  • a glass article having a ratio (the amount of fluorine F present on the surface side / the amount of fluorine F present on the inner side) after immersion in pure water under the same conditions as in Test Example B is less than 0.7.
  • the glass article is preferably applied.
  • the application of the present invention is more applicable to glass articles having a ratio (the amount of fluorine F present on the surface side / the amount of fluorine F present on the inner side) after immersion in pure water under the same conditions as in Test Example B.
  • the application of the present invention is more suitable for glass articles having the ratio of 0.6 or less, and the application of the present invention is more suitable for glass articles having the ratio of 0.55 or less.
  • the ratio after immersion in pure water under the same conditions as in Test Example B was 0.55. It becomes as follows.
  • the relationship seen between the XPS spectrum of the outermost surface after immersion in pure water and the XPS spectrum of the surface dug down by 100 nm by sputtering can be related to the turbidity of the glass surface after immersion in pure water. .
  • the present invention is more suitably applied to any glass article manufactured using glass that satisfies the following relationship.
  • I sur > I in I sur XPS signal intensity at a binding energy of 531.9 eV on the surface of glass immersed in pure water for 15 hours
  • I in On a surface dug down to a depth of 100 nm from the outermost surface of glass immersed in pure water for 15 hours , XPS signal intensity at a binding energy of 531.9 eV
  • I sur and I in are arbitrary units, but are values obtained in common units.
  • the measurement conditions of XPS are as follows similarly to the above-mentioned conditions.
  • Excitation X-ray Al mono Detection area: ⁇ 100 ⁇ m Extraction angle: 45deg Detection depth: 4 to 5 nm (surface) Sputter depth: 100 nm Sputtering conditions: Ar + 2.0 kV Sputtering rate: about 5 nm / min (SiO 2 conversion)
  • the above glass articles are more preferable, and glass articles having the ratio of 3.0 or more are more preferable.
  • the application of the present invention is more suitable if the glass satisfies the following relationship.
  • Haze value of glass surface after immersion in NaOH aqueous solution (pH 8.2) for 15 hours> 1%
  • a more preferable relationship is as follows.
  • Haze value of glass surface after immersion in NaOH aqueous solution (pH 8.2) for 15 hours> 5%
  • a more preferable relationship is as follows.
  • Haze value of glass surface after soaking in NaOH aqueous solution (pH 8.2) for 15 hours> 10%
  • the glass article produced using the glass which has the said property is suitable.
  • the glass A to D, the glass E1 to E10, the glass F1, and the glass F2 all become cloudy when immersed in the sodium hydroxide aqueous solution for 15 hours.
  • [Appendix 1] A method for producing a glass article comprising a washing step of washing a glass article using a liquid
  • [Appendix 2] A method for producing a glass article comprising a washing step of washing a glass article using a liquid, The liquid is a solution composed of a solvent and a solute, In the washing step, the solute is used as a source for newly supplying a glass component to the glass article.
  • a method for producing a glass article obtained by processing a glass material At least a part of the surface of the glass material or the glass article is brought into contact with a treatment liquid (a grinding liquid, a polishing liquid, a cleaning liquid, a rinse liquid, a storage liquid, or the like) containing a solute and a solvent, and the glass material or the glass article.
  • a processing step for processing The glass material contains at least P, Al, alkaline earth metal elements, O and F as glass components, In the surface of the glass material or the glass article in contact with the treatment liquid, a part of the solute is combined with at least one kind of the glass component, and the surface is hardly soluble in the solvent.
  • a method for manufacturing a glass article A method for manufacturing a glass article.
  • a method for producing a glass article obtained by processing a glass material At least a part of the surface of the glass material or the glass article is brought into contact with a treatment liquid (a grinding liquid, a polishing liquid, a cleaning liquid, a rinse liquid, a storage liquid, or the like) containing a solute and a solvent, and the glass material or the glass article.
  • a processing step for processing The glass material contains at least P, Al, alkaline earth metal elements, O and F as glass components,
  • the method for producing a glass article, wherein the treatment liquid is a phosphate solution.
  • [Appendix 8] The method for producing a glass article according to any one of appendices 3 to 7, wherein movement of hydrogen contained in the treatment liquid into the glass material or the glass article is suppressed.
  • [Appendix 9] A method for producing a glass article obtained by processing a glass material, At least a part of the surface of the glass material or the glass article is brought into contact with a treatment liquid (a grinding liquid, a polishing liquid, a cleaning liquid, a rinse liquid, a storage liquid, or the like) containing a solute and a solvent, and the glass material or the glass article.
  • a treatment liquid a grinding liquid, a polishing liquid, a cleaning liquid, a rinse liquid, a storage liquid, or the like
  • a processing step for processing The glass material contains at least P, Al, alkaline earth metal elements, O and F as glass components, The glass material or the glass of hydrogen contained in the processing liquid by combining a part of the solute with at least one of the glass components on the surface of the glass material or the glass article in contact with the processing liquid.
  • a method for producing a glass article characterized by suppressing movement into the article.
  • Appendix 10 10. The method for producing a glass article according to any one of appendices 7 to 9, wherein the glass material has an F content of 55 anion% or more and an O content of 45 anion% or less.
  • Appendix 11 11. The method for producing a glass article according to any one of appendices 3 to 10, wherein the solute is a phosphate.
  • [Appendix 12] 12 The method for producing a glass article according to any one of appendices 3 to 11, wherein the solvent contains water.
  • [Appendix 13] 13 The method for manufacturing a glass article according to any one of appendices 3 to 12, wherein the glass material contains Zn.
  • [Appendix 14] 14 The method for producing a glass article according to any one of appendices 3 to 13, wherein the glass material includes a rare earth element.
  • [Appendix 15] 15 15. The method for producing a glass article according to any one of supplementary notes 3 to 14, wherein the treatment liquid has a pH buffering action.
  • [Appendix 16] The method for producing a glass article according to any one of appendices 3 to 15, wherein the pH of the treatment liquid is 3 to 9.8.
  • Appendix 19 The method for producing a glass article according to appendix 17 or 18, further comprising a film forming step of forming a film on the glass article after the cleaning step.
  • the glass article contains at least P, Al, alkaline earth metal elements, O and F as glass components,
  • a part of the solute contained in the treatment liquid is combined with at least one of the glass components to make the surface hardly soluble in the solvent.
  • the glass article contains at least P, Al, alkaline earth metal elements, O and F as glass components,
  • a method for treating a glass article, wherein the treatment liquid is a phosphate solution.
  • the glass article contains at least P, Al, alkaline earth metal elements, O and F as glass components,
  • a part of the solute contained in the treatment liquid is combined with at least one of the glass components, so that the glass material of hydrogen contained in the treatment liquid or
  • Appendix 24 The method for producing a glass article according to any one of appendices 3 to 16, wherein the treatment step is a storage step of storing the glass article after polishing in contact with the storage liquid.
  • Appendix 25 The glass article manufacturing method according to appendix 24, further comprising a washing step of washing the glass material or glass article stored in the storage step.
  • Embodiment 1 of the present invention A glass article containing P, Al, alkaline earth metal, F and O, About content of P and O, the surface side of a glass article is more than the inner side of a glass article, Regarding the total content of alkaline earth metals and the content of F, the glass article is characterized in that the surface side of the glass article is less than the inner side of the glass article.
  • the surface of the glass article is a glass article that is less than the inner side of the glass article.
  • the second embodiment of the present invention is the same as the first embodiment.
  • About Al content it is a glass article characterized by having the surface side of a glass article more than the inner side of a glass article.
  • Embodiment 3 of the present invention is the same as in Embodiment 1 or 2, About the total content of Al of oxidation state and Al of phosphate state, it is preferable that the surface side of a glass article is more than the inner side of a glass article.
  • Embodiment 4 of the present invention relates to any one of Embodiments 1 to 3, About content of phosphate state Al, it is preferable that the surface side of a glass article is more than the inner side of a glass article.
  • Embodiment 5 of the present invention relates to any one of Embodiments 1 to 4, About content of Al of an oxidation state and Al of a phosphate state, it is preferable that the surface side of a glass article is more than the inner side of a glass article.
  • Embodiment 6 of the present invention relates to any one of Embodiments 1 to 5,
  • Embodiment 7 of the present invention relates to Embodiments 1 to 6,
  • the alkaline earth metal is preferably at least one of Mg, Ca, Sr and Ba.
  • the content of F (F - content) of 55 anionic% or more, the content of O (O 2-content) is a glass article which is manufactured using the glass is 45 anionic% or less More preferably, the glass article is made of a glass having an F content of 80 anion% or more and an O content of 20 anion% or less, and the F content is 85 anion% or more. It is more preferable that the glass article is produced using a glass having a content of 15 anion% or less.
  • Embodiment 9 of the present invention relates to any one of Embodiments 1 to 8, It is preferable that the haze value of the surface of the said glass article is 1% or less.
  • the glass article is preferably produced using a glass having a molar ratio O 2 ⁇ / P 5+ of the O 2 ⁇ content to the P 5+ content of 2.8 or more.
  • the glass was produced using a glass having an F content of 55 anion% or more, an O content of 45 anion% or less, and a molar ratio O 2 ⁇ / P 5+ of 2.5 or more. It is preferably a glass article, and is produced using a glass having an F content of 80 anion% or more, an O content of 20 anion% or less, and a molar ratio O 2 ⁇ / P 5+ of 2.5 or more. More preferably, the glass article is made of glass having an F content of 85 anion% or more, an O content of 15 anion% or less, and a molar ratio O 2 ⁇ / P 5+ of 2.5 or more. More preferably, it is a glass article.
  • I sur XPS signal intensity at a binding energy of 531.9 eV on the surface of glass immersed in pure water for 15 hours
  • I in On a surface dug down by 100 nm from the outermost surface of glass immersed in pure water for 15 hours , XPS signal strength I sur , I in at a binding energy of 531.9 eV is an arbitrary unit, but a value obtained by a common unit.
  • the glass article is made of glass satisfying the above formula (1), in which F content is 55 anion% or more, O content is 45 anion% or less, More preferably, it is a glass article made using a glass satisfying the above formula (1), with an F content of 80 anion% or more, an O content of 20 anion% or less, and an F content of 85 anions. It is more preferable that the glass article is made by using a glass that satisfies the above formula (1).
  • the glass article is made using a glass satisfying the formula, wherein the F content is 85 anion% or more, the O content is 15 anion% or less, and the molar ratio O 2 ⁇ / P 5+ is More preferably, it is a glass article produced using a glass that satisfies the formula (1) above 2.5.
  • Including the rare earth element in terms of atomic%, when the total content of the rare earth element on the inner side is RE (in) and the total content of the rare earth element on the surface side is RE (su), the RE with respect to RE (in)
  • a glass article having a (su) ratio (RE (su) / RE (in)) of 3 or less is preferred.
  • the ratio of O (su) to O (in) (O (su) ) / O (in)) is preferably a glass article having a value of 2.0 or more, and in particular, the content of F ⁇ is preferably 80 anion% or more.
  • a glass article in which the surface side of the glass article is more than the inner side of the glass article is preferable.
  • a glass article in which the total content of rare earth elements is 0.1 cation% or more is preferable, and a glass in which the total content of Y, La, Gd, Yb, and Lu is 0.1 cation% or more Articles are preferred.
  • a glass article in which the total content of rare earth elements is 12 cation% or less is preferable, and a glass article in which the total content of Y, La, Gd, Yb, and Lu is 12 cation% or less is preferable.
  • the atomic content is expressed in terms of atomic percent
  • the Al content is Al (all)
  • the oxidized Al content is Al (ox)
  • the phosphate Al content is Al (ph).
  • the ratio of the total amount of Al (ox) and Al (ph) to Al (all) on the surface side is 0.5 or more. Glass articles are preferred.
  • the ratio of the amount of oxygen O present (atomic%) on the surface side to the amount of oxygen O present (atomic%) on the inner side ( The glass article is preferably a glass article having an oxygen O abundance on the surface side / an oxygen O abundance on the inner side) of 2 or more, more preferably a glass article having a ratio of 2.5 or more, and the ratio Is more preferably a glass article of 3.0 or more.
  • the ratio of the abundance (atom%) of fluorine F on the surface side to the abundance (atom%) of fluorine F on the inside (surface side) is preferably less than 0.7, more preferably a glass article having the ratio of 0.65 or less, and the ratio is It is more preferable that the glass article is 0.6 or less, and it is more preferable that the ratio is 0.55 or less.
  • the ratio of the F content on the surface side to the F content on the inner side is preferably 0.80 or less. 0.75 or less, more preferably 0.70 or less.
  • the glass article is preferably an optical element.
  • Embodiment 10 of the present invention a glass article having an optical polishing surface is preferable.
  • Another embodiment 1 of the present invention is a method for producing a glass article obtained by processing a glass material, wherein the glass material or at least part of the surface of the glass article is treated with a treatment liquid (grinding liquid) containing a solute and a solvent. , Polishing liquid, cleaning liquid, rinsing liquid, storage liquid, etc.) to treat the glass material or glass article, and the glass material has at least P, Al, alkaline earth metal element, O as a glass component.
  • F In the glass material or glass article surface in contact with the treatment liquid, a part of the solute is combined with at least one kind of glass component to make the surface hardly soluble in a solvent. is there.
  • At least one of the alkaline earth metal component and the F component contained in the glass material is eluted into the treatment liquid on the surface of the glass material or glass article in contact with the treatment liquid, and a part of the solute is glass. It is preferable to be a method for producing a glass article that forms a poorly soluble compound by combining with at least one of the components.
  • the solute is preferably a phosphate.
  • phosphate ions in the treatment liquid combine with an Al component in the glass to form a hardly soluble compound.
  • the glass material contains Zn as a glass component, and phosphate ions in the treatment liquid are combined with the Zn component in the glass to form a hardly soluble compound.
  • Another embodiment 2 of the present invention is a method for producing a glass article obtained by processing a glass material, wherein at least a part of the surface of the glass material or glass article is treated with a treatment liquid (grinding liquid) containing a solute and a solvent.
  • a processing step of processing a glass material or a glass article in contact with a polishing liquid, a cleaning liquid, a rinsing liquid, a storage liquid, etc. contains at least P, Al, alkaline earth metal, O, F as a glass component
  • the surface of the glass material or glass article in contact with the treatment liquid is characterized by suppressing the movement of hydrogen contained in the treatment liquid into the glass by combining a part of the solute with at least one of the glass components. It is a manufacturing method of the glass article to do.
  • At least one of the alkaline earth metal component and the F component contained in the glass material is eluted into the treatment liquid on the surface of the glass material or glass article in contact with the treatment liquid, and a part of the solute is glass. It is preferable to combine with at least one of the components to suppress hydrogen migration.
  • the solute is preferably a phosphate.
  • Another embodiment 3 of the present invention is a method for producing a glass article obtained by processing a glass material, wherein the glass material or at least a part of the surface of the glass article is treated with a treatment liquid (grinding liquid) containing a solute and a solvent.
  • the glass material or the glass article in contact with a polishing liquid, a cleaning liquid, a rinsing liquid, a storage liquid, etc.), and the glass material has at least P, Al, alkaline earth metal, O and a glass component.
  • Including F A method for producing a glass article, wherein the treatment liquid is a phosphate solution.
  • At least one of the alkaline earth metal component and the F component contained in the glass material elutes into the treatment liquid on the surface of the glass material or glass article in contact with the treatment liquid, and is contained in the treatment liquid.
  • a method for producing a glass article in which phosphate ions and at least one glass component are bonded is preferable.
  • the method for producing a glass article suppresses the movement of hydrogen contained in the treatment liquid into the glass.
  • the solvent contains water.
  • the F content (F ⁇ content) is 20 anion% or more and the O content (O 2 ⁇ content) is 80 anion% or less. It is preferable.
  • the F content (F ⁇ content) is 55 anion% or more, and the O content (O 2 ⁇ content) is 45 anion% or less. It is preferable.
  • the glass material is produced by using a glass having a molar ratio O 2 ⁇ / P 5+ of O 2 ⁇ content to P 5+ content of 2.8 or more. It is preferable.
  • the glass material is made of glass having an F content of 55 anion% or more, an O content of 45 anion% or less, and a molar ratio O 2 ⁇ / P 5+ of 2.5 or more. Preferably there is.
  • the glass material is produced using glass that satisfies the following formula (1).
  • I sur > I in (1)
  • I sur XPS signal intensity at a binding energy of 531.9 eV on the surface of glass immersed in pure water for 15 hours
  • I in On a surface dug down by 100 nm from the outermost surface of glass immersed in pure water for 15 hours , XPS signal strength I sur , I in at a binding energy of 531.9 eV is an arbitrary unit, but a value obtained by a common unit.
  • the glass material is made of glass satisfying the above formula (1) with an F content of 55 anion% or more and an O content of 45 anion% or less.
  • a glass satisfying the above formula (1) having an F content of 55 anion% or more, an O content of 45 anion% or less, a molar ratio O 2 ⁇ / P 5+ of 2.5 or more is used. It is preferable that it is produced.
  • the glass material preferably contains Zn.
  • the glass material preferably contains a rare earth element.
  • the glass material contains 0.1 cation% or more of rare earth elements.
  • the glass material preferably contains Y 3+ as a rare earth element.
  • the glass material preferably contains Y 3+ in an amount of 0.1 cation% or more.
  • the glass material preferably contains an alkali metal.
  • the treatment liquid has a pH buffering action.
  • the pH of the treatment liquid is preferably 3 to 9.8.
  • the processing step is at least one selected from a grinding step using a processing liquid as a grinding liquid, a polishing step using a processing liquid as a polishing liquid, and a cleaning process using a processing liquid as a cleaning liquid. It is preferable.
  • the cleaning process includes a rinsing process using the treatment liquid as a rinsing liquid.
  • the glass article is preferably an optical element.
  • a glass article having an optical polishing surface is preferable.
  • Another embodiment 4 of the present invention is a glass article processing method for processing a glass article by bringing at least a part of the surface of the glass article into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinse liquid, storage liquid, etc.).
  • the glass article contains at least P, Al, alkaline earth metal, O, and F as glass components
  • the treatment liquid contains a solute and a solvent
  • the surface of the glass article in contact with the treatment liquid A part of the glass component is combined with at least one glass component to form a compound that is hardly soluble in a solvent.
  • Another embodiment 5 of the present invention is a treatment liquid (grinding liquid, polishing liquid, cleaning liquid, rinsing liquid, storage liquid, etc.) containing at least a part of the surface of a glass material to be converted into a glass article by processing.
  • a glass material processing method for processing a glass material by bringing it into contact with the glass material, wherein the glass material contains at least P, Al, alkaline earth metal, O, and F as glass components, and the surface of the glass material in contact with the processing liquid In this method, a part of the solute is combined with at least one of the glass components to form a compound that is hardly soluble in a solvent.
  • Another embodiment 6 of the present invention is a glass article processing method for processing a glass article by bringing at least a part of the surface of the glass article into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinse liquid, storage liquid, etc.).
  • the glass article contains at least P, Al, alkaline earth metal, O, and F as glass components
  • the treatment liquid contains a solute and a solvent
  • a part of the glass article treatment method is characterized in that a part thereof is combined with at least one kind of glass component to make the surface hardly soluble in a solvent.
  • At least a part of the surface of a glass material to be converted into a glass article by processing is brought into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinsing liquid, storage liquid, etc.).
  • a processing method for processing glass material The glass material includes at least P, Al, alkaline earth metal, O, and F as a glass component, the processing liquid includes a solute and a solvent, and a part of the solute is present on the surface of the glass material in contact with the processing liquid. It is a processing method for a glass material characterized in that it is combined with at least one kind of glass component to make the surface hardly soluble in a solvent.
  • Another embodiment 8 of the present invention is a glass article processing method for processing a glass article by bringing at least a part of the surface of the glass article into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinse liquid, storage liquid, etc.).
  • the glass article contains at least P, Al, alkaline earth metal, O, and F as glass components, and the treatment liquid contains a solute and a solvent,
  • a processing liquid a grinding liquid, a polishing liquid, a cleaning liquid, a rinsing liquid, a storage liquid, or the like.
  • a processing liquid a grinding liquid, a polishing liquid, a cleaning liquid, a rinsing liquid, a storage liquid, or the like.
  • Another embodiment 10 of the present invention is a glass article processing method for processing a glass article by bringing at least a part of the surface of the glass article into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinse liquid, storage liquid, etc.).
  • the glass article includes at least P, Al, alkaline earth metal, O, and F as a glass component, and the treatment liquid is a phosphate solution.
  • At least a part of the surface of a glass material to be converted into a glass article by processing is brought into contact with a processing liquid (grinding liquid, polishing liquid, cleaning liquid, rinsing liquid, storage liquid, etc.)
  • a processing liquid grinding liquid, polishing liquid, cleaning liquid, rinsing liquid, storage liquid, etc.
  • the preferable form in the other forms 4 to 11 relating to the above-described processing method is the same as the preferred form in another form relating to the above-described method for producing a glass article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Mechanical Engineering (AREA)

Abstract

 P、Al、アルカリ土類金属、F及びOを含有するガラス物品であって、P及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、アルカリ土類金属及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ない。

Description

ガラス物品
 本発明は、ガラス物品に関する。
 多くの光学素子そのもの又はその材料として、ガラス物品が用いられている。光学素子の製造の工程中、ガラス物品の表面に加工液や異物等が付着して汚れる機会がある。そのため、適宜、ガラス物品に対する洗浄工程が行われ、ガラス物品は清浄に保たれる。また洗浄に用いられた洗浄液をすすぐべく、洗浄工程と共に、リンス工程も設けられる。通常、このリンス工程において用いられるリンス液には、特許文献1に示すような純水や、その他の脱イオン水(以降、DI水とも呼ぶ。)などが用いられる。以降、洗浄工程に関しては、DI水を用いる場合を例に挙げて説明する。なお、IPAなど有機化合物も、リンス液として用いられている。
 更に、このような工程間あるいは次工程に搬送する間に一時的に、ガラス物品を保管する必要がある。
 ガラス物品を保管する場合、空気中で保管すること、あるいは保管液に接触させて保管することが考えられる。保管液を用いる場合、たとえば特許文献2に示すように、水中で保管することが考えられる。
 また、ガラス物品の製造の際には、ガラス物品が種々の液と接触することになる。この種々の液としては、上記の洗浄液、リンス液及び保管液に加え、研磨液が挙げられる。この研磨液として、ガラス物品のpHと研磨剤含有分散液のpHとを近似させた技術が、本出願人により特許文献3にて開示されている。この技術は、ガラス物品と研磨液との化学反応を抑制するという思想の基になされたものである(特許文献3の[0010])。
特開2010-108590号公報 特開2009-167039号公報 特許第3361270号明細書
 しかしながら、ガラス物品に対する研削工程、研磨工程、洗浄液による洗浄工程、リンス液によるリンス工程、更には保管工程等を含むウェットプロセス(液体とガラスとが接触するプロセス)を経て光学素子であるレンズを作製した場合、レンズ表面に反射防止膜をコートするまでの間に、そのレンズの表面にヤケやクモリが生じたり、潜傷が顕在化してしまうという問題が生じることがあった。
 たとえば、光学特性(異常分散性あるいは低分散性)に優れるフツリン酸塩ガラスに関しては、処理液として、水(脱イオン水または純水)を用いて処理(研削、研磨、洗浄、リンス、保管等の処理)した場合、白ヤケ、青ヤケ、クモリが発生し、または潜傷が顕在化し、ガラス物品の表面品質の低下が顕著になるという問題が生じた。
 そこで本発明は、ウェットプロセスを経ても表面を高品質に維持可能なガラス物品を提供することを、主たる目的とする。
 本発明者らは、上記の課題を解決すべく、フツリン酸塩ガラスについて詳細な検討を行った。具体的には、フツリン酸塩ガラスの処理液として、DI水または純水等の水を用いた場合に、フツリン酸塩ガラスの表面近傍において変化が生じることに着目した。フツリン酸塩ガラスは、一般的に、リン(P)および酸素(O)が結合した網目構造を有しており、フッ素(F)等のイオン結合性が強い成分が該構造の隙間を埋めていると考えられる。本発明者らは、フツリン酸塩ガラスの表面が処理液としての水に接触すると、網目構造はそれほど影響を受けないものの、修飾成分であるアルカリ土類金属成分やF成分がガラス表面から水へ溶出し、ヒドロニウムイオン(H)あるいは水酸化物イオン(OH)等の水に由来するイオンがガラス内に容易に進入してしまうことを見出した。また、このヒドロニウムイオンあるいは水酸化物イオン等のガラス内への移動が、フツリン酸塩ガラスに、白ヤケ、青ヤケ、クモリの発生や潜傷の顕在化等を引き起こすことも見出した。
 そして、上記の知見に基づき、本発明者らは、処理液中に含まれる物質とガラス中に含まれるガラス成分とが結合し、水に対して難溶性の化合物を生成することにより、ガラス表面を難溶化し、ガラス内へのヒドロニウムイオンあるいは水酸化物イオン等の移動を抑制することを想到した。そして、フツリン酸塩ガラスの表面において、水に対して難溶性の化合物を密に存在させることで、上記の課題を解決できることを見出し、本発明を完成させるに至った。
 具体的には、溶質と溶媒とを含む処理液を用いて、溶質の一部をフツリン酸塩ガラス表面に存在するガラス成分と結合させることにより、処理液に接触後のフツリン酸塩ガラスの表面に溶媒に対して難溶性化合物を形成させて、ガラス表面を溶媒に対して難溶化し、溶媒中に含まれる水素がガラス内へ移動(ヒドロニウムイオン、水酸化物イオンとして移動)することを抑制できる程度にガラス表面を再構成できることを見出した。
 別の言い方をすると、溶媒及び溶質から構成される溶液である処理液を用い、当該溶質を、ガラス物品内におけるガラス成分の新たな供給源とするという手法を新たに創出した。そして、ガラス物品の組成においては、ガラス骨格を構成し得る成分の含有量については、ガラス物品の表面側(浅い部分)が、内部側(深い部分)よりも多いガラス物品を新たに創出した。
 本発明の手法は、特許文献1や2のように、ガラス成分の溶出を抑制するという従来の観点とは全く逆の観点を有している。つまり本発明は、溶質をガラス成分の一員に迎え入れるという思想に基づいて成されたものである。特に、特許文献3に記載の技術と本発明とは、正反対の思想に基づいて成されたものである。特許文献3に記載の技術は、ガラス物品と研磨液との間の化学反応の抑制に基づいて成されたものである。その一方、本発明は、むしろ積極的に、処理液の溶質の一部をガラス表面層においてガラス成分の一員に迎え入れるという化学反応を促進させることに基づいて成されたものである。
 なお、本発明における処理液は、ガラスに対して研削処理、研磨処理、洗浄処理、リンス処理、保管処理のいずれか一以上の処理を行う際に用いる液体、例えば、研削液、研磨液、洗浄液、リンス液、保管液等を意味する。
 以上の構成を具体化した本発明の態様は、以下の通りである。
 本発明の第1の態様は、
  P、Al、アルカリ土類金属、F及びOを含有するガラス物品であって、
  P及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、
  アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とするガラス物品である。
 本発明の第2の態様は、
  アルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とする第1の態様に記載のガラス物品である。
 本発明の第3の態様は、
  Alの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とする第1の態様または第2の態様に記載のガラス物品
 本発明の第4の態様は、第1ないし第3の態様のいずれかに記載の発明において、
  前記ガラス物品は光学素子であることを特徴とする。
 本発明によれば、ウェットプロセスを経ても表面を高品質に維持可能なガラス物品を提供することができる。
実施例1及び参考例におけるガラス物品(ガラス基板)に対し、XPS(X線光電子分光:X-ray Photoelectron Spectroscopy)を行った結果を示すグラフであり、Alについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1及び参考例におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Pについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1及び参考例におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Oについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1及び参考例におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Caについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1及び参考例におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Srについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1及び参考例におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Fについての結果を示すグラフである。(a)は実施例1の結果を示し、(b)は参考例の結果を示す。 実施例1におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Baについての結果を示すグラフである。 実施例1におけるガラス基板に対し、XPSを行った結果を示すグラフであり、Mgについての結果を示すグラフである。 図9は、ガラス1を用いて作製したガラス基板に対し、XPSを行った結果を示すグラフであり、Oについての結果を示すグラフである。 図10は、ガラスαを用いて作製したガラス基板に対し、XPSを行った結果を示すグラフであり、Oについての結果を示すグラフである。
 以下、本発明の実施の形態について説明する。
  本実施形態においては、次の順序で説明を行う。以下、明細書に特筆のない事項については、公知の技術を使用しても構わない。
  1.ガラス物品の製造方法
    A)ガラス物品の準備
    B)ガラス物品に対する加工
      a)CG加工
      b)スムージング
      c)研磨加工
      d)欠陥発生抑制処理
      e)第1の洗浄
      f)第1のリンス
      g)芯取加工
      h)第2の洗浄
      i)第2のリンス
    C)ガラス物品の保管
    D)その他(成膜等)
  2.ガラス物品
  3.実施の形態による効果
  4.変形例
 なお、本実施形態においては、本発明の構成を、後述する欠陥発生抑制処理で用いられる処理液に適用する場合に加え、洗浄液、リンス液及び保管液に適用した場合について述べる。先にも述べたように、本発明において「処理液」は、欠陥発生抑制処理にて用いられる液のことを指すほか、「洗浄液」や「保管液」を含む液でもあり、ガラス表面の品質低下の予防処理に用いられる液のことである。また、「洗浄液」とは、文字通り洗浄用途としての液体、例えば洗剤を含む液体も含むし、洗浄液、特に洗剤を洗い流すために用いられるリンス液も含まれる。
 <1.ガラス物品の製造方法>
  A)ガラス物品の準備
  本実施形態におけるガラス物品は、光学素子そのもの、又はその材料(ガラス素材)、もしくは製品となる前の段階の中間品を指す。ガラス素材としては精密プレス成形用プリフォームなどを例示することができる。このガラス物品としては、ガラス成分として、P、Al、アルカリ土類金属、F及びOを含有するガラスからなり、後に光学素子として出荷できる程度の品質を有するものであれば、素材・形状共に、特に限定はない。本実施形態においてはフツリン酸塩ガラスをガラス物品として用いた場合について述べる。なお、このガラス物品の組成についても特に限定されることはない。
 B)ガラス物品に対する加工(処理)
  a)CG加工
  最終形状の光学素子に近似させた形状に形成したガラス物品(例えば光学素子ブランク)に対し、切削・研削方法として球面加工、トーリック面加工、および自由曲面加工を行うためのカーブジェネレーティング加工(CG加工)を行う。CG加工が行われる工程は、粗削り工程とも呼ばれる。
 b)スムージング
  CG加工が行われたガラス物品に対し、スムージングを行う。このスムージングは、CG加工により粗くなったガラス物品表面を整えるために行われる工程である。CG加工およびスムージングは、後の研磨工程の前段階の研磨でもあり、研削加工ともいう。この研削加工では、研削液を供給しながらガラス物品表面(レンズ面等)を研削加工する。この研削液は、界面活性剤等を含む液体であり、研削加工時の潤滑性を高め、被加工物を冷却するために用いられる。
 c)研磨加工
  次いで、研磨工程において、レンズ形状を略反転した形状の研磨工具を用いて研磨液を供給しながらレンズ面を研磨加工して平滑な面に仕上げる。この研磨液は、たとえば、粒径が数μmの砥粒(酸化セリウム粒子、酸化ジルコニウム粒子等)を含む液体である。
  なお、上記のa)CG加工、b)スムージング、c)研磨加工の代わりに、精密プレス成形によりガラス物品(レンズ等)の加工を行っても構わない。
 d)欠陥発生抑制処理
  先にも述べたように、ガラス物品を製造する際の各工程において、ガラス物品の表面の品質の低下のおそれがある。それに加え、ガラス物品の表面品質の低下の抑制のためには、環境負荷が大きな物質を用いる必要が生じる場合もある。
  上記の各問題を解消すべく、本実施形態においては、上記のガラス物品を、処理液を用いて処理する欠陥発生抑制処理を行う。以下、詳述する。
 まず、処理液は、溶媒及び溶質から構成される溶液である。そして、処理液をガラス物品と接触させて欠陥発生抑制処理を行う際に、当該溶質を、ガラス物品内におけるガラス成分の新たな供給源とする。更に言うと、当該溶質の一部を、ガラス物品の表面近傍におけるガラス成分と結合自在とし、ガラス表面層においてガラス成分として加入自在とする。
 上記の内容を具体的に説明すると、本実施形態におけるフツリン酸塩ガラスを用いたガラス物品の場合、主にガラス骨格(ネットワークフォーマー)として、P、O、Al等のイオンが各々結合し、網目を形成している。これらの物質はガラス成分ではあるが、主にガラス骨格を構成することから、これらの成分のことを「ガラス骨格物質」とも言う。そして、その網目の隙間部分に、CaF、SrF、BaF等のガラス成分が存在している。これらの成分のことを「修飾物質」とも言う。もちろん、P、O、Al等のイオンが修飾物質となることもあるが、以下においてはこれらのイオンをガラス骨格物質として取り扱う場合について述べる。
 欠陥発生抑制処理前のガラス物品に対し、従来の保管工程のように純水に漬けた状態にしてしまうと、ガラス表面近傍に存在する修飾物質が純水中に溶出してしまう。そして、修飾物質が抜けた部分に、水に起因する物質(例えばHやOH)が入り込んでしまう。その結果、金属化合物に代表される修飾物質が溶出することにより、ガラス物品の表面の耐久性が低下してしまい、その後のガラス物品の製造工程にて欠陥が発生または顕在化してしまうと考えられる。なお、説明の便宜上、「欠陥発生抑制処理」と名付けているが、本処理においては「欠陥の発生または顕在化を抑制」している。
 ところが、本実施形態の欠陥発生抑制処理を行うことにより、修飾物質は処理液(以降、「溶液」とも言う)の溶媒へと溶出してしまうものの、処理液中の溶質の一部、例えばリン酸イオンがガラス成分と結合する。つまり、ガラス骨格物質と処理液中の溶質の一部とが新たに結合し、ガラス骨格が密になる。また、別のメカニズムとしては、網目構造を構成していなかった酸化アルミニウム(酸化状態のAl)やその他のAlがリン酸アルミニウム(リン酸塩状態のAl)へと変化するのに伴い、このリン酸アルミニウムが新たに網目構造に組み込まれるというメカニズムが挙げられる。いずれにせよ、その結果、ガラス物品の表面の耐久性の低下を抑制することが可能となり、その後のガラス物品の製造工程にて欠陥が発生することを抑制することが可能となると考えられる。
 また、本実施形態の欠陥発生抑制処理を行うことにより、処理液との接触後のガラス物品の表面は、処理液との接触前の表面と異なる表面に再構成され、ガラス表面に溶媒に対して難溶性化合物としてのリン酸アルミニウムが形成され、ガラス表面が溶媒に対して難溶化する。一旦、再構成された表面は、処理液中に含まれるガラス表面の品質の低下につながる成分、すなわち水素がガラス表面からガラス内に移動することを抑制できる。
 また、処理液は、pHの緩衝作用を有することが好ましい。本実施形態の場合、ガラス物品はフツリン酸塩ガラスからなる物品であることから、処理液をリン酸塩水溶液とするのが好ましい。即ち、溶媒を水、溶質をリン酸塩とした溶液を用いるのが好ましい。
 その理由としては、以下の通りである。まず、リン酸塩水溶液は緩衝液であり、pHの変動をマイルドにすることができる。こうすることにより、H、H及びOHがガラス物品中に入り込む可能性を減らすことができる。
 また、処理液についてであるが、上述の通り、従来の処理液(DI水や純水等)は、ガラス物品表面に少なからず品質劣化の影響を与える。本来ならば、当業者は、水そして水をベースにした処理液は、必ずしも好ましくないと考えるはずである。しかしながら本発明者は、上記の知見を初めて得た上で、あえて溶媒として水を使用することとした。
 本発明者の鋭意工夫の末、ガラス骨格物質となり得る物質である溶質を水である溶媒に加えることにより、上記の影響を排することが可能な処理液を想到するに至った。この処理液のおかげで、ガラス物品に含まれる成分が水に溶出してしまう硝種のガラス物品に対しても、表面の品質劣化を抑制させる機能を備えさせることが可能となる。
 水は、極めて使い勝手が良い物質である。仮に、処理液をIPAなど有機化合物とした場合、気化したときの有害性や悪臭という問題も発生する。また、わざわざ処理液(洗浄液や保管液)のために有機化合物を使用することは、廃液処理のコスト増加をもたらし、ひいては光学素子等のガラス製品の価格に大きな影響を与える。そのため、作業者の安全や環境への配慮を考慮に入れると、処理液に有機化合物を用いずに、水を用いることは極めて好ましい。
 そこで、本実施形態のようにフツリン酸塩ガラスを用いるのならば、処理液の溶媒として水を使用可能である上、上述のように溶質をガラス物品内におけるガラス成分の新たな供給源としうる化合物を水に加えるという手法により、上記の問題点は解消されるのである。その結果、作業の安全性を確保し、且つ、環境への負荷も小さくしつつも、ガラス物品の表面の品質劣化を抑制することが可能となる。なお、ガラス物品の全表面において高品質が要求されない場合がある。例えば、光学素子の光学機能面以外の面、例えば、光学レンズのコバに相当する面などは潜傷が顕在化したり、ヤケが生じても光学素子としての性能低下には至らない。したがって、本実施形態において、ガラス物品の表面というときは、ガラス物品の表面のうち、少なくとも高品質が要求される面(例えば、光学素子の光学機能面)を含む面を指し、必ずしもガラス物品の全表面でなくてもよい。なお、光学機能面とは光学素子の制御対象である光の透過、屈折、反射、回折等に使用する面を意味する。光学素子の光学機能面は、レンズの光学機能面のようにガラス物品の表面であることが多い。
 また、本実施形態の別の好ましい例としては、処理液を、ガラス骨格物質に含まれる成分と同種のイオンを含む水溶液とする場合が挙げられる。具体的に言うと、ガラス物品がPを含むガラス物品であり、処理液の溶媒は水であり、処理液の溶質はリン酸塩を含むものとする。
 なお、同種のイオンとは、同じイオン又は当該同じイオンと平衡関係にあるイオンのことであり、本実施形態で言うところのリン酸イオンである。つまり、ガラス物品に含まれる成分であるPおよびOが、ガラス物品から溶出する際にリン酸イオンとなっている状態のことを、上記の内容は指す。また、この場合、処理液に含まれている「同じイオン」とはP n-(ただし、x、y、nは自然数)、例えばPO 3-のことを指し、「同じイオンと平衡関係にあるイオン」とは、P n-と電離平衡となっているイオンのことであり、例えばPO 3-に加え、HPO 2-、HPO も含むイオンである。
 また、本実施形態における処理液のpHは、好ましくは3~9.8、より好ましくは5~9、さらに好ましくは6~8、一層好ましくは6.5~7.5、より一層好ましくは6.6~7.3である。この範囲のpHならば、ガラス物品に含まれる成分がガラス物品から溶出し過ぎることがなくなる。特に、処理液をリン酸塩水溶液とする場合、リン酸塩水溶液には3段階の解離平衡状態が存在し、pHの変動が少なくなるのはpH=2.15、7.20、12.38の3つの状態である。この中でもpH=7.20をカバーするpH5以上9以下という範囲が好ましい。なお、本実施形態において、より一層好ましい実施の形態は、リン酸イオンPO 3-を含み、pHが7付近にコントロールされた水溶液を処理液として用いることである。
 以下、本実施形態における処理液の具体例について詳述する。
  処理液は溶質および溶媒を含む溶液であり、本実施形態では、例えば処理液としてリン酸イオンPxOyn-、例えばPO 3-とアルカリ金属イオンを含む水溶液を用い、これらのイオンにより水溶液のpHがコントロールされていることが好ましい。そのための処理液は、溶質としてのリン酸塩と、溶媒としての水と、を含む。リン酸塩としては、特に制限されず、リン酸二水素ナトリウム(NaHPO)、リン酸水素二ナトリウム(NaHPO)、リン酸ナトリウム(NaPO)、リン酸二水素カリウム(KHPO)、リン酸水素カリウム(KHPO)、リン酸カリウム(KPO)等が例示される。ただし、トリポリリン酸ナトリウム(STTP Na10)のようにリン酸化合物であってもキレート効果を有する物質(キレート錯体)を溶質として使用すると、金属イオンがキレート効果を有する物質に取り込まれ、ガラス表面の品質が劣化してしまう。そのため、処理液中にキレート効果を有する物質を加えないことが好ましく、処理液がキレート効果を有する物質を含まないことが好ましい。処理液は、リン酸塩などの溶質を溶媒に溶解した溶液であってもよいし、溶媒に酸とアルカリを加えて中和させ、溶質が溶媒に溶解した状態と同様の溶液であってもよい。いずれの場合も処理液は溶質と溶媒とを含む。
 処理液の具体例としては、例えば、リン酸二水素ナトリウムとリン酸水素二ナトリウムをモル比で1:1の割合で混合し、リンの濃度とナトリウムの濃度がそれぞれ10~1000ppmの範囲となるように混合物をDI水または純水内に導入した処理液が挙げられる。あるいはまた、所定濃度のリン酸二水素ナトリウム水溶液と所定濃度のリン酸水素二ナトリウム水溶液を作り、これらの水溶液を混合してもよい。このとき、リン酸二水素ナトリウムの導入比率を高めると、処理液のpHが小さくなり、リン酸水素二ナトリウムの導入比率を高めると、処理液のpHが大きくなる傾向にある。従って、処理液のpHの調整は、リン酸成分とアルカリ成分の導入比率を調整することで、容易に調整可能である。
  なお、処理液の温度は特に限定されず、例えば、常温を含む5~60℃の範囲内で適宜使用できる。
 上記の処理液中では、溶質であるリン酸塩はその解離定数に従って電離しており、リン酸イオン(HPO 、HPO 2-、PO 3-等)が存在している。ガラス物品(加工後のガラス素材)が処理液と接触すると、ガラス物品の表面近傍にリン酸イオンが存在することとなり、そのリン酸イオンが、ガラス表面においてガラス成分の少なくとも一種、例えばAlと結合する。Al成分はガラスの網目構造を形成する働きがあるため、処理液との接触前からガラス物品内に既に存在していた網目構造に、溶質の一部、すなわち、本実施形態においてはリン酸イオンが新たに結合し、ガラス表面に水に対して難溶性の化合物であるリン酸アルミニウムが形成され、ガラス表面が水に対して難溶化する。
 また、別のメカニズムとしては、網目構造を構成していなかった酸化アルミニウムがリン酸アルミニウムへと変化するのに伴い、このリン酸アルミニウムが新たに網目構造に組み込まれるというメカニズムが挙げられる。いずれにせよ、このような新たな結合はガラス物品またはガラス素材の表面近傍でのみ生じる。その結果、ガラス物品の品質の低下につながる溶媒中の水素、たとえばヒドロニウムイオン(H)や水酸化物イオン(OH)等が、ガラス物品内に移動することを抑制することができる。
 換言すれば、処理液との接触後のガラス物品の表面は、処理液との接触前の表面と異なる表面に再構成され、ガラス表面に溶媒に対して難溶性化合物としてのリン酸アルミニウムが形成され、ガラス表面が溶媒に対して難溶化する。しかも、再構成された表面は、処理液中に含まれるガラス表面の品質の低下につながる成分、すなわち水素がガラス表面からガラス内に移動することを抑制できる。特に、処理液の溶媒が水である場合には、水中に含まれるヒドロニウムイオンや水酸化物イオンなどの水素がガラス内へ移動するのを抑制することができる。
 なお、上述したガラス表面の難溶化は、ガラス表面と処理液とが接触した瞬間から始まると考えられる。したがって、ガラス表面の難溶化が初期段階で急激に進むため、処理液との接触時間が短くても十分に難溶化する。そのため、ガラス表面が処理液と接触しさえすれば、接触時間が短い場合であっても、上述した効果は得られる。その結果、水素がガラス内に移動することを抑制することができる。
 これに対し、処理液が水(DI水あるいは純水等)である場合には、ガラス表面に存在するガラス成分と結合し、難溶性化合物を生成する溶質が存在しないため、ガラス表面の再構成は起こらない。したがって、水中に存在する水素がガラス内に移動することを抑制できず、その結果、白ヤケ、青ヤケ、クモリが発生したり、潜傷が顕在化してしまう。
 ところで、ガラス物品内で網目構造の隙間を埋めて存在しているイオン結合性の化合物(たとえば、アルカリ土類金属元素のフッ化物)が、処理液に溶出しやすい場合には、これらの化合物の溶出によりガラス構造中に隙間が形成される。そのため、ガラス表面の品質の低下につながる水素が処理液中よりガラス内へより進入しやすくなる。その結果、ガラス表面の品質の低下がさらに促進されてしまう。
 しかしながら、本実施形態では、このようにガラス成分が溶出しやすい場合であっても、これらの成分の溶出により形成される隙間には、ガラス表面の品質の低下につながる水素が進入するよりもリン酸イオンなどの溶質の一部の方が優先的に進入し、網目構造を形成するAlと結合し、ガラス表面を溶媒に対して難溶化すると考えられる。
 一般的には、ガラスを構成する成分が処理液に流出することは好ましくない。しかしながら、本実施形態では、むしろ、アルカリ土類金属成分やF成分が溶出する場合には、ガラス表面の品質の低下につながる水素が、処理液からガラス内に移動するのを抑制できるため、ガラス表面の品質低下を抑制することができる。
 なお、溶質の一部、例えばリン酸イオンとガラス成分の少なくも一種との結合による難溶性化合物の形成(ガラス表面の難溶化)は、ガラスの表面近傍で生じていると考えられる。具体的には、このような構造は、表面から深さ方向に10nm以内に形成されていると考えられる。そのため、このような構造は、ガラス物品の光学特性(屈折率や分散値など)にはほとんど影響しないと考えられる。
 また、Znは、処理液に接触する前のガラスにおいて、網目構造を形成せず、いわゆる修飾成分として存在していると考えられる。しかしながら、処理液に接触後のガラスの表面では、ガラス物品内に導入された溶質の一部と結合し、水に難溶な物質を形成することができる。したがって、フツリン酸塩ガラスにZnが含まれている場合には、水に難溶な物質(リン酸亜鉛)をガラス物品の表面に形成することができ、より好ましい。
 なお、本実施形態では、溶媒として水を選択している。上述したように、処理液が水である場合、ヒドロニウムイオンや水酸化物イオン等が、フツリン酸塩ガラスの表面からガラス内に移動し、ガラス表面の品質の低下につながるため好ましくない。
 処理液としてイソプロピルアルコール(IPA)を使用してもフツリン酸塩ガラスの表面品質の低下を抑制することはできるが、有機溶媒は環境への負荷が大きく、コストも高い。また、有機溶媒は揮発性を有するものが多いため、十分な排気がなされた作業環境にする必要がある。また排気ガスから揮発ガスを除去するフィルター装置も必要になる。溶媒として水を使用できるのであれば、上記措置が不要になる。また、水は、IPAのような有機溶媒に比べて、低コストでもあるため、処理液の溶媒として好適である。
 このように、処理液に水を使用することにはメリットもデメリットも存在する。しかしながら、本実施形態では、上記の処理液を用いることで、処理液の溶質が、ガラス物品の表面に元々存在しているガラス成分と結合し、処理液中の水素等のガラス内への移動を抑制する。したがって、水を溶媒として選択する際のメリットのみを享受できるため、従来、フツリン酸塩ガラスを保管するには適さない水をあえて溶媒として選択することができる。
 本実施形態では、処理液がpHの緩衝作用を有していることが好ましい。ガラス表面における溶質の一部とガラス成分との結合は、溶質の一部を消費して形成されたものである。したがって、処理液の溶質は、ガラス表面に形成される難溶性化合物の原料供給源であるということができる。そのため、溶質の一部(たとえば、ガラス物品の表面と接触する液体中のリン酸イオン(例えばPO 3-))がガラス表面のAl成分などとの新たな結合に消費された場合であっても、緩衝作用により、処理液中において新たなリン酸イオン(PO 3-)が供給される。また、処理液中の水素イオンが増えた場合であっても、その変動を低減することができる。
 処理液と接触した後のガラス物品の表面において、上述したような構造が形成されているか否かについては、表面近傍における元素の種類および結合状態を比較できる手法により判断できる。本実施形態では、たとえば、以下に示す方法により判断すればよい。
 まず、処理液に接触する前のガラス物品と、処理液に接触させた後のガラス物品と、を準備する。準備したガラス物品の試料の表面を、X線光電子分光装置を用いて、測定することで、XPSスペクトルが得られる。XPSスペクトルとして検出される光電子のエネルギーは、試料の表面近傍に存在する元素の種類や結合状態を反映している。したがって、各元素について、光電子のエネルギー値およびピークのシフト等を考慮することにより、表面近傍における元素の存在状態を推定することができる。
 本実施形態では、XPSにより得られる各元素の結合状態を示す特定のピークを解析し、処理液との接触前の試料と接触後の試料とを比較する。そして、たとえば、溶質にPおよびOが含まれている場合であれば、PおよびOの結合やP、Oおよび他の金属の結合を示すピークの強度を、接触前の試料と接触後の試料とで比較する。比較した結果、接触後の試料において、ピーク強度が高くなっている場合には、ガラス物品の表面において、処理液との接触により、ガラス物品の表面近傍において、溶質の一部(PおよびO、すなわち、リン酸イオン)がガラス物品のガラス成分(Alおよび他の金属)と結合していると判断する。定量的には、XPSスペクトルの各元素の波形とベースラインとによって囲まれる領域の面積の比が、各元素の存在比となる。特定の元素において、結合状態が異なるものが存在する場合、XPSスペクトル波形を結合状態毎のガウス関数型波形に分離することができ、これらガウス関数型波形とベースラインとによって囲まれる各領域の面積の比が、各結合状態にある元素の存在比となる。
 X線光電子分光法(XPS)では、水素元素を検出することができないが、ガラス素材やガラス物品の表面における水素元素の定量は、例えば二次イオン質量分析法(SIMS)により測定することができる。したがって、SIMSによる分析であれば、処理液に接触する前のガラス物品の分析結果と、処理液に接触させた後のガラス物品の分析結果とを比較することにより、処理中のガラス内への水素の移動が抑制されたことを直接的に確認することができる。
 以上のような欠陥発生抑制処理で用いられる処理液は、研磨液、洗浄液、リンス液及び保管液としても適用できる。したがって、本発明にかかるガラス物品を製造するにあたり、欠陥発生抑制処理を必ずしも独立したプロセスとして設ける必要はなく、研磨加工、洗浄工程、リンス工程、保管工程の過程で所定の処理液を用いることにより欠陥発生抑制処理を併行して実施できる。
 以上が本実施形態におけるd)欠陥発生抑制処理である。その後、e)第1の洗浄を行う。
 e)第1の洗浄(工程)
  研磨加工が行われたガラス物品の表面に付着する付着物(研磨液や研磨剤など)を除去するために、ガラス物品に対して洗浄が行われる。この洗浄については公知の手法を用いても構わないが、本実施形態の主な特徴である上述のd)欠陥発生抑制処理で用いた処理液に洗剤を加えた液により洗浄を行うのが好ましい。具体的には、研磨加工後のガラス物品(光学レンズ)を保持具に載置し、洗剤や界面活性剤を上述した処理液に添加した洗浄液を貯留する洗浄槽に浸漬することにより洗浄を行う(洗浄工程)。このとき、洗浄槽の底面周囲から洗浄液に対して所定の周波数(例えば、50kHz)で超音波を印加し洗浄液を振動させて超音波洗浄を行うことが好ましい。この洗浄は複数の槽で所望の回数行うことができる。
 f)第1のリンス(工程)
  第1の洗浄工程を終えた後、ガラス物品の表面に付着する洗浄液を洗い流すために、ガラス物品に対して第1のリンス工程が行われる。第1のリンス工程については、公知の手法を用いても構わないが、本実施形態の主な特徴であるd)欠陥発生抑制処理で用いた処理液によりリンス工程を行うのが好ましい。なお、第1のリンス工程は第1の洗浄工程に含めた一連のプロセスとして行うことができる。
 具体的には、上記の洗浄工程後の光学レンズを保持具に載置し、上述した処理液としてのリンス液を貯留するリンス槽に浸漬させてリンスを行う(リンス工程)。このとき、リンス液に対して所定の周波数(例えば、50kHz)で超音波を印加し水溶液を振動させて超音波洗浄を行うことが好ましい。このリンス工程は複数の槽で所望の回数行うことができ、必ずしも超音・BR>Gを印加しなくても良い。
 g)芯取加工
  芯取加工は、研磨加工または精密プレス成形によって得られたガラス物品の外周部を、光軸を中心として所望の形状に研削する工程である。この工程では、芯取り液を供給しながら、ガラス物品の外周部を研削する。この芯取り液は、研削液と同様に、芯取り時の潤滑性を高め、被加工物を冷却するために用いられる。芯取り加工を行うことにより、ガラス物品の外周形状が、ガラス物品をレンズとしたときの光軸を中心とする真円形となる。芯取加工の具体的な手法については、本出願人における特許第4084919号明細書に記載のような、公知のものを適用すれば良い。
 h)第2の洗浄(工程)
  芯取加工が行われた後、ガラス物品に付着している加工液やスラッジを除去するために、ガラス物品に対して洗浄が行われる。この洗浄については公知の手法を用いても構わないが、第1の洗浄と同様に、本実施形態の主な特徴である欠陥発生抑制処理で用いた処理液または処理液に洗剤を加えた液にて洗浄を行うのが好ましい。
 i)第2のリンス(工程)
  その後、ガラス物品の表面に付着する洗浄液を洗い流すために、ガラス物品に対して第2のリンス工程が行われる。リンス工程については、公知の手法を用いても構わないが、第1のリンスと同様に、本実施形態の主な特徴である欠陥発生抑制処理で用いた処理液により第2のリンス工程を行うのが好ましい。なお、第2のリンス工程は第2の洗浄工程に含めた一連のプロセスとして行うことができる。 
 上記の研削加工、研磨加工および芯取り加工は、ガラス物品の製造方法において、処理工程に相当する。本実施形態では、上述した処理液を、研削液および研磨液のいずれか一方、もしくは両方として用いることができる。このようにすることで、処理工程により生じるヤケやクモリまたは潜傷等がもたらすガラス物品の品質の低下を抑制できる。

  なお、本実施形態では、処理液の溶媒として、水を用いている。一方、上述した芯取り液は通常油系の液体を用いるため、必ずしも処理液を芯取り液として用いる必要はない。
 上記の洗浄工程およびリンス工程も、ガラス物品の製造方法において、処理工程に相当する。本実施形態では、上述した処理液を、洗浄液およびリンス液のいずれか一方、もしくは両方として用いることが好ましい。このようにすることで、処理工程により生じるヤケやクモリまたは潜傷等がもたらすガラス物品の品質の低下を抑制できる。この場合、処理液は、用途に応じて洗剤等を含んでもよいが、キレート効果を有する物質を含めないことが好ましい。
 以上の工程により、本実施形態におけるガラス物品が製造される。このガラス物品は、光学素子としてはもちろんのこと、光学素子になる前の中間品としても使用することが可能である。また、このガラス物品は、高い表面品質が求められる精密プレス成形用プリフォームとしても使用することができる。
 C)ガラス物品の保管
  上記の研磨、洗浄、リンス等の各種処理を行った後、もしくは各種処理の途中で、ガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む保管液に接触させてガラス素材またはガラス物品を保管する保管工程を経ても構わない。その際、保管液としては、上記の処理液を用いるのが好ましい。
 例えば、研磨加工後のガラス素材(ガラス物品)に付着した研磨剤や研磨液を除去するためにガラス素材を洗浄する場合において、洗浄工程に移行する間に一定時間が経過すると、ガラス表面に残存した研磨剤や研磨液が乾燥してガラス表面に固着してしまい、洗浄工程でこれらを容易に除去することが困難になる。このような場合は、研磨加工後のガラス素材を保管液中に保管することで、研磨剤や研磨液の固着を未然に防止できる。
 したがって、本実施形態では、ガラス素材の研磨工程後に保管工程を行うことが好ましい。また本実施形態では、研磨工程の途中に保管工程を行うことが好ましい。
 保管工程後のガラス物品は、前工程でガラス表面に付着した研磨剤や研磨液、もしくは保管工程中に接触した保管液を除去するために洗浄液で洗浄され、さらに洗浄液をすすぐためにリンス液でリンスされた後、乾燥される。
 D)その他(成膜等)  本実施形態のリンス工程を行った後、ガラス物品を、IPA(イソプロピルアルコール)を貯留する脱水槽に浸漬して、レンズ表面のリンス液をIPAと置換してガラス表面のリンス液を除去する。最後に、ベーパー槽にてIPA蒸気乾燥を行う(乾燥工程)。乾燥後、必要に応じてガラス物品の表面に反射防止膜等の成膜を行っても構わない。成膜する前にガラス物品の表面を清浄化する工程、すなわち、上記の洗浄工程を行ってもよい。成膜方法は、公知の手法を採用しても構わない。
 <2.ガラス物品>
  本実施形態の特徴は、欠陥発生抑制処理が行われた後のガラス物品に、構造的に大きな特徴がある。具体的に言うと、ガラス物品において、処理液と直接接触した部分(即ち最表面側の部分)と、それ以外の部分(即ちガラス物品の内部側の部分)との間で、組成に大きな違いがある。
 ところで、ガラス製光学素子の表面に反射防止膜などがコーティングされていたり、ガラス表面に塗布物が塗布されていることがある。このようなコートや塗布物は、コーティングされているガラスや塗布物が塗布されているガラスとは異質なものである。
 表面側と内部側との間で組成に大きな違いがあるといっても、本実施形態のガラス物品の表面側とコートや塗布物とは明瞭に区別される。したがって、ガラス表面にコートや塗布物などの異質な物質が存在するとしても、本実施形態において、コートや塗布物はガラス物品に含まれない。
 ガラス物品の表面において、高い表面品質が求められる部分は、光学研磨された面、すなわち、光学研磨面や、光学素子においては光学機能面であり、精密プレス成形用プリフォームにおいては、精密プレス成形により光学機能面となる面である。したがって、本実施形態において、ガラス物品の表面側とは、ガラス物品の高い表面品質が求められる面、例えば、光学研磨面、光学機能面、光学機能面に成形される面等、における表面側を指す。また、ガラス物品の内部側とは、前記表面側よりも深層部にある部分を指す。内部側の最表面からの深さについては後述する。
  光学機能面とは周知のように、光を透過させたり、屈折させたり、回折させたり、反射させたり、部分反射させたりする面であり、当該面に入射した光が散乱しないことが好ましいとされる。表面欠陥は光の散乱原因になるので、光学機能面において欠陥発生を抑制することが求められる。
  勿論、ガラス物品の高い表面品質が求められる面以外においても、以下に説明する表面側と内部側の所定の関係が成り立っていてもよい。
 まず、本実施形態のガラス物品は、特定のガラス成分について、ガラス物品の表面側の含有量と、ガラス物品の内部側の含有量との間に分布が生じている。具体例を挙げると、本実施形態で用いたフツリン酸塩ガラスを用いたガラス物品のように、P、Al、アルカリ土類金属、F及びOを含有するガラス物品の場合、第1の態様においては、P及びOの含有量については、ガラス物品の表面側(浅い部分)が、ガラス物品の内部側(深い部分)よりも多くなっている。Alの含有量についても、ガラス物品の表面側(浅い部分)が、ガラス物品の内部側(深い部分)よりも多くなっていることが好ましい。その一方、アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少なくなっている。第2の態様のように、アルカリ土類金属の含有量についても、ガラス物品の表面側が、ガラス物品の内部側よりも少なくなっていることが好ましい。
 第3の態様においては、P、Al及びOの含有量については、ガラス物品の表面側(浅い部分)が、ガラス物品の内部側(深い部分)よりも多くなっている。その一方、アルカリ土類金属及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少なくなっている。すなわち、ガラス物品の表面側にも内部側と同様、P、Al及びOが存在する。
 ここで、ガラス物品の表面側とは、ガラス物品の最表面から深さ4~5nmまでの範囲を指す。ガラス物品の内部側とは、ガラス物品の最表面(スパッタ前の最表面)を基準にして深さ100nmから深さ104~105nmまでの部分を指す。
 P、Al、アルカリ土類金属、F及びOの定量はXPSより各元素の存在比を求めることにより行われる。XPS波形において、元素固有の束縛エネルギー(結合エネルギーあるいはBinding Energyともいう)に相当する位置に各元素に由来するスペクトルが現れる。各元素に由来するXPS波形とベースラインとによって囲まれる領域の面積を検出された元素毎に求める。そして、元素毎の前記面積の比率が、各元素の存在比となる。存在比の合計が100%になるように各元素の存在比を規格化すれば、原子%(atomic %)表示の各元素の存在量、すなわち、各元素の含有量が得られる。特定の元素について、ガラス物品の表面側と内部側の含有量、存在量を比較する場合、これらの含有量、存在量は原子%(atomic %)表示による量である。ガラス物品の最表面について、各元素の定量を行う際は、C、Nなどの汚染物(コンタミネーション)を除外して、各元素の存在比を求める。一方、真空チャンバー内でスパッタによりガラス表面を掘り下げ、形成した面には汚染物の付着はほとんどないと考えてよいので、XPSにより検出された元素の存在比を求めればよい。
 また、ガラス物品の高い表面品質が求められる面(光学機能面、光学機能面に成形される面など)は、例えば、上記処理液に接触させることにより処理されるから、高い表面品質が求められる面の全域にわたり、XPS分析を行って表面側および内部側における各元素の組成比、結合状態を調べる必要はなく、高い表面品質が求められる面の少なくとも一ヶ所において、XPS分析を行い、表面側および内部側における各元素の組成比を調べたり、結合状態を調べればよい。
 この理由としては、修飾物質(アルカリ土類金属及びF)は処理液の溶媒へと溶出してしまうものの、ガラス骨格物質(P、Al及びO)と処理液の溶質(例えばリン酸塩)とが新たに結合し、ガラス骨格が密になっているためと考えられる。その結果、<1.ガラス物品の製造方法>で述べた効果と同様の効果を、本実施形態のガラス物品は奏することとなる。
 なお、本実施形態におけるフツリン酸塩ガラスを用いたガラス物品としては、以下のガラス物品が好適である。
・Al及びアルカリ土類金属を含むガラス物品(好ましくは、アルカリ土類金属は、Mg、Ca、Sr及びBaのうち少なくともいずれかである。)
・Znを含むガラス物品
・希土類元素を含むガラス物品
  もちろん、上記以外の物質を更に含有するガラス物品であっても構わない。なお、フツリン酸塩ガラスにおいて、ガラスを構成するガラス成分をカチオン成分とアニオン成分とに分けた場合、周知のように、P、Al、アルカリ土類金属、Znおよび希土類元素はカチオンであり、OおよびFはアニオンである。
 ガラス物品が希土類元素成分を含む場合、原子%表示にて、内部側における希土類元素の合計含有量をRE(in)、表面側における希土類元素の合計含有量をRE(su)としたとき、RE(in)に対するRE(su)の比(RE(su)/RE(in))が3以下であることが、ガラス物品表面の欠陥発生を抑制し、表面を高品質に維持する上から好ましい。DI水や純水にガラスを浸漬すると、前述のように水に溶出しやすい成分が選択的に溶出し、水に溶出しにくい希土類元素がガラス表面に残留するため、ガラスの表面側における希土類元素の存在量が増加し、ガラス表面が白濁するなどして表面品質が低下する。例えば、後述するガラスCでは、ガラスを純水に浸漬することにより、比(RE(su)/RE(in))が5を超える。これに対し、比(RE(su)/RE(in))が3以下であればガラス表面の品質を良好に維持することができる。ガラス表面の品質を良好に維持する上から、比(RE(su)/RE(in))が2.5以下であることがより好ましく、2.0以下であることがさらに好ましく、1.5以下であることが一層好ましい。
 希土類元素の有無によらず、原子%表示にて、内部側におけるOの含有量をO(in)、表面側におけるOの含有量をO(su)としたとき、O(in)に対するO(su)の比(O(su)/O(in))をガラス表面におけるガラスの骨格の粗密を示す目安の一つと考えることができる。
 例えば、Fの含有量が80アニオン%以上、O2-の含有量が20アニオン%以下のガラスを、pHが7付近のリン酸塩水溶液に浸漬すると、浸漬前のガラスでは、比(O(su)/O(in))が2.0未満であるのに対し、浸漬後の比(O(su)/O(in))は2.0以上となる。したがって、ガラス表面を高品質に維持する上から、比(O(su)/O(in))が2.0以上であることが好ましい。ガラス表面を高品質に維持する上から、比(O(su)/O(in))が2.1以上であることがより好ましく、2.2以上であることがさらに好ましく、2.4以上であることが一層好ましい。
 本実施形態では、ガラス物品の表面において、修飾物質であるFが処理液の溶媒へと溶出し、ガラス骨格物質(P、Al及びO)と処理液の溶質(例えばリン酸塩)とが新たに結合し、表面側のFの含有量が内部側のFの含有量より少ないガラス物品が得られる。後述する表7に示すように、リン酸塩水溶液を用いて処理したガラス物品(ガラスC)では、比(表面側のFの含有量/内部側のFの含有量)が0.80以下になるのに対し、研磨した面をエタノールで拭いて汚れを除去したガラス物品では、比(表面側のFの含有量/内部側のFの含有量)が0.80を超えている。また、表9に示すように、リン酸塩水溶液を用いて処理したガラス物品(ガラスD)でも、比(表面側のFの含有量/内部側のFの含有量)が0.80以下になっている。
 このように、比(表面側のFの含有量/内部側のFの含有量)は、ガラス物品表面の水に対する難溶化の指標の一つになっているため、本実施形態において、比(表面側のFの含有量/内部側のFの含有量)が0.80以下であることが好ましく、0.75以下であることがより好ましく、0.70以下であることがさらに好ましい。
 また、本実施形態のガラス物品はFおよびOを含むガラス物品であり、優れた光学特性(低分散性あるいは異常部分分散性)を有するガラスを得る上から、Fの含有量は20アニオン%以上、Oの含有量は80アニオン%以下であることが好ましい。特に、Fの含有量が55アニオン%以上、かつOの含有量が45アニオン%以下であることがさらに好ましく、Fの含有量が70アニオン%以上、Oの含有量が30アニオン%以下であることが一層好ましく、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下であることがより一層好ましく、Fの含有量が85アニオン%以上、Oの含有量が15アニオン%以下であることがさらに一層好ましい。
 ガラス物品の組成は深さ方向に分布を有する。ガラス物品の最表面の組成とガラス物品の内部の組成は異なる。ガラス物品内の組成は、深さとともに連続的に変化するが、最表面からの深さがある程度深くなると、深さが変化しても組成は一定になる。したがって、深さ方向に一定の組成を有する範囲がガラス本来の組成を有する部分、すなわち、バルクに相当する部分と考えることができる。上記のF、Oの含有量は、それぞれ、このバルク部分における含有量である。バルク部分の組成は、次のようにして測定することができる。ガラス物品の表面をスパッタにより掘り下げ、掘り下げた面においてXPSにより検出された各元素の存在比を測定する。深く掘り下げても検出される元素の種類、各元素の存在比が変化しなくなれば、その元素の存在比がバルク部分の組成である。バルク部分の組成は均一であり、一定の組成となっている。
 部位を特定せずにガラス物品の組成、あるいはガラス成分の含有量というときは、このバルク部分における組成、あるいはガラス成分の含有量を意味する。
 ガラス物品のバルク部分における組成、あるいはガラス成分の含有量は、上記のように、カチオン%、アニオン%表示で表示することもできる。例えば、アッベ数を決める組成上の大きな要因はF、Oの含有量の比である。したがって、アッベ数の挙動を考える場合、Fの含有量、Oの含有量をアニオン%により示したほうが都合がよい。このように、ガラス物品全体の性質については、カチオン%、アニオン%表示のほうがガラス組成との関係を把握しやすい。
 ガラス物品のバルク部分における組成、あるいはガラス成分の含有量は、ICP-AES法、ICP-MS法、原子吸光光度法などにより定量することもできる。
 フツリン酸塩ガラスの場合、ガラス骨格物質のAlや修飾物質のCa,SrとFとが結合している。上記の範囲を満たせば、修飾物質として金属フッ化物が溶出しているのと引き換えに、ガラス骨格物質においては、AlとFとの間の結合が切断され、AlとOとの間の結合が新たに十分形成されていることを表す。
 それに伴い、酸化状態のAl及びリン酸塩状態のAlの合計含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多くなっていることが好ましい。また、リン酸塩状態のAlの含有量についても、ガラス物品の表面側が、ガラス物品の内部側よりも多くなっていることが好ましい。酸化状態のAl及びリン酸塩状態のAlの含有量についても、ガラス物品の表面側が、ガラス物品の内部側よりも多くなっているのが好ましい。欠陥発生抑制処理の前だと、AlとFとが結合してしまいこの部分がガラス骨格の末端となってしまっていた。しかしながら、欠陥発生抑制処理の後だと、上述の通り、AlとFとの間の結合が切断され、AlとOとの間に結合が新たに形成され、この結合を基として、新たなガラス骨格が次々と形成されていく。その結果、酸化状態のAl及びリン酸塩状態のAlの合計含有量、リン酸塩状態のAlの含有量は、処理液と接触するガラス物品の表面側において、ガラス物品の内部側よりも多くなっている。また、酸化状態のAl及びリン酸塩状態のAlの含有量は、処理液と接触する表面側においてガラス物品の表面側が、ガラス物品の内部側よりも多くなっていることが好ましい。なお、酸化状態のAlとは、酸素と直接結合した状態のAlを意味し、リン酸塩状態のAlとは、PのPと直接結合した状態のAlを意味する。ただし、x、yは自然数である。なお、XPSスペクトルにおいて、酸化状態のAlに由来する波形は、束縛エネルギーが74.07eV付近にピークを有し、リン酸塩状態のAlに由来する波形は、束縛エネルギーが74.93eV付近にピークを有する。酸化状態のAlとリン酸塩状態のAlが存在する場合、XPSスペクトルの波形は、酸化状態のAlに由来する波形とリン酸塩状態のAlに由来する波形を、重ね合わせた波形となる。さらに、酸化状態、リン酸塩状態以外の結合状態と有するAlが存在する場合、酸化状態、リン酸塩状態以外の結合状態のAlに由来する波形がさらに重なった波形となる。したがって、XPSの測定データを処理することにより、Alが酸化状態であるか、リン酸塩状態であるかは、上記のようにXPSの分析結果より判別することができる。
 さらに、酸化状態のAl及びリン酸塩状態のAlの合計含有量については、原子%表示で、Alの含有量(総量)をAl(all)、酸化状態のAlの含有量をAl(ox)、リン酸塩状態のAlの含有量をAl(ph)としたとき、表面側においてAl(all)に対するAl(ox)とAl(ph)の合計量の比((Al(ox)+Al(ph))/Al(all))が0.5以上であること、すなわち、表面側において、Alの総量のうち、半分以上を酸化状態またはリン酸塩状態のいずれかの状態にあるAlが占めることがことがガラス表面を水などに対して難溶化する上から好ましい。ガラス表面を水などに対して難溶化する上から、比((Al(ox)+Al(ph))/Al(all))が0.55以上であることがより好ましく、0.60以上であることがさらに好ましい。
 それと同様に、フッ化状態のアルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少なくなっている。
 上記の組成を有するガラス物品の表面のヘイズ値は1%以下であり、極めて効果的に欠陥発生を抑制することができている。ヘイズ値の好ましい範囲は0.5%以下、より好ましい範囲は0.1%以下、さらに好ましくは0.0%である。
 本実施形態におけるガラス物品は光学素子(例えば光学ガラス物品レンズ)として極めて好適である。もちろん、他の具体例として、球面レンズ、非球面レンズ、マイクロレンズ等の各種のレンズ、回折格子、回折格子付のレンズ、レンズアレイ、プリズム等を例示することができる。また、形状面からは凹メニスカスレンズ、両凹レンズ、平凹レンズ、凸メニスカスレンズ、両凸レンズ、平凸レンズ等を例示することができる。
  なお、これらのレンズに対し、必要に応じて、反射防止膜、全反射膜、部分反射膜、分光特性を有する膜等の光学薄膜や多層膜を設け、光学素子とすることもできる。
  また、上記光学素子は、高性能かつコンパクトな撮像光学系の部品として好適であり、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話搭載カメラ、車載カメラ等の撮像光学系に好適である。
  また、上記ガラス物品の中でも、研磨面、特に光学研磨面を有するガラス物品において、液体処理後の表面品質低下が深刻な問題を引き起こしやすい。
  そのため、上記ガラス物品は、研磨を含む工程を経て作製されたガラス物品、すなわち、研磨面を有するガラス物品であることが好ましく、光学研磨面を有するガラス物品であることがより好ましい。したがって、上記ガラス物品は、光学研磨面を有する光学素子であることが好ましい。
 <3.実施の形態による効果>
  上記の実施形態では、ガラス物品を処理液に接触させることで、処理液に含まれる溶質の一部を、ガラス表面に存在するガラス成分と結合させ、ガラス表面に処理液に対して難溶性の化合物を形成(ガラス表面の難溶化)させ、フツリン酸塩ガラスが元来有する網目構造と一体化させている。このようにすることで、ガラス物品の表面近傍において、処理液との接触前よりも網目構造が密に存在することになる。この網目構造は、比較的強い結合を有しているため、溶媒と反応しがたい。したがって、溶媒が水である場合でも、溶媒中のヒドロニウムイオンや水酸化物イオン等がガラス内へ移動するのを抑制することができる。
 特に、フツリン酸塩ガラスにおいて、網目構造の隙間にイオンあるいはイオン結合性化合物として存在している考えられる元素(アルカリ金属元素、アルカリ土類金属元素、フッ素等)が、処理液に容易に溶出する場合には、溶出により形成されたガラス構造中の隙間に、溶質の一部が進入してガラス成分と結合し、ガラス表面を処理液中の水素がガラス内に移動しにくい部分として再構成できるため、ガラス内に水素が移動するのをさらに抑制することができる。
 また、ガラス物品を構成するフツリン酸塩ガラスに対し、処理液の溶質としてリン酸塩を採用する場合には、フツリン酸塩ガラスにおいて、網目構造の主成分であるPおよびOの両方を含むリン酸イオン(PO 3-等)がガラス内に導入される。そのため、ガラス内に導入されたリン酸イオンが、ガラス成分と結合することで、ガラス表面の品質低下を抑制することができる。
 また、処理液の溶媒としてフツリン酸塩ガラスの処理には適さないと考えられる水を採用することで、環境負荷を小さくでき、しかも低コストで処理液を作製することができる。さらに、処理液にpHの緩衝作用を持たせることができるため、処理液中におけるガラス成分と結合する溶質の一部の濃度を一定に保つことができ、安定してガラス表面の品質低下抑制効果を得ることができる。また、pHの範囲を特定の範囲とすることで、ガラス成分の溶出をより一層抑制することができる。
 その結果、ガラス物品の品質の低下の可能性が予め低減され、ウェットプロセスを経ても表面を高品質に維持可能なガラス物品、そのようなガラス物品の製造方法、そして品質低下の予防処理方法としてのガラス物品の欠陥発生抑制方法を提供できる。
 <4.変形例>
  以下、上記の本実施形態以外の変形例について述べる。
 (ガラス物品の等級)
  本実施形態におけるガラス物品としては特に限定がないことは上述の通りだが、本発明を適用する際には、耐潜傷性(DNaOH)が比較的低いガラス物品であっても、処理液がもたらすガラス物品表面への悪影響を軽減することができる。特に、潜傷の顕在化等による品質低下が生じ易い硝種(即ち、耐潜傷性が低い硝種)に対して、本発明を適用することは好適である。具体的には、空気中での保管あるいは水中での保管により、ヤケ、クモリの発生や潜傷の顕在化等による品質低下が生じるような硝種(耐潜傷性の低い硝種)にも特に好適である。また、処理液(研削液、研磨液、洗浄液、リンス液等)として水を用いた場合に、ヤケ、クモリの発生や潜傷の顕在化等による品質低下が生じるような硝種(耐潜傷性の低い硝種)にも特に好適である。
 (有機化合物を用いた処理液)
  処理液として水溶液を用いた場合のメリットについては既に述べたとおりだが、溶質をガラス骨格の一員に迎え入れることができるのなら、有機化合物を用いた処理液を使用しても構わない。
 (リン酸塩水溶液以外の処理液)
  溶質をガラス骨格の一員に迎え入れることができるのならば、処理液には特に限定はない。たとえば、溶質は酸と塩基との組み合わせによる塩でもよい。また、溶質は、ガラス成分の一種と結合するため、ガラス成分に含まれる元素から構成されることがより好ましい。リン酸塩水溶液以外の処理液としては、例えばケイ酸塩水溶液が挙げられるが、この場合、ガラス物品がケイ酸塩ガラス物品であるのが好ましい。また、ホウケイ酸塩水溶液でも構わない。また、リン酸塩及びホウケイ酸塩を加えた水溶液を処理液として用いても構わない。
  また、緩衝液として用いられている化合物(酢酸、クエン酸、フタル酸等々)の水溶液に対して適宜化合物を混合して、これを処理液としても構わない。ただし、キレート機能を有する溶質を含む液体はガラス物品の表面品質を低下させるおそれがあるため、処理液としては好ましくない。
 (欠陥発生抑制処理を行うタイミング)
  本実施形態においては、c)研磨加工後に、欠陥発生抑制処理を行った。しかしながら、この処理は、ガラス物品の欠陥が発生または顕在化する前に行われるならば、任意のタイミングで行っても構わない。例えば、保管工程を兼ねて、欠陥発生抑制処理を行っても構わない。研磨工程、洗浄工程又はリンス工程については、ガラス物品と処理液とが接触する時間が短くなるものの、表面の難溶化は瞬間的に生じるため、本発明の効果を奏することができる。光学素子を研削、研磨して製造する場合、高い品質が求められる光学機能面は最終的に研磨工程により創成される。仮に研磨工程前にガラス表面の品質が劣化したとしても、品質が劣化した表面を研磨工程で除去すれば、高い品質を有する表面を得ることができる。表面品質の劣化が特に問題になるのは、研磨工程後、もしくは研磨工程の最終段階における光学機能面の品質劣化である。したがって、欠陥発生抑制処理は研磨工程後の工程、または研磨工程の最終段階を含む研磨工程において行うことが好ましい。精密プレス成形により光学素子を製造する場合は、精密プレス成形用プリフォームの表面品質の良否が光学素子の光学機能面の品質の良否に大きく影響する。したがって、精密プレス成形用プリフォームの研磨工程の最終段階や研磨工程後のプリフォーム洗浄工程、リンス工程において欠陥発生抑制処理を行うことが好ましい。
 (欠陥発生抑制処理条件の多様性)
  なお、上記の実施形態に係る効果を実現するための条件は、ガラス物品の硝種等によって異なる。本明細書においては主に、ガラス物品がフツリン酸塩ガラスである場合について例示している。ガラス物品の硝種によっては、処理液をリン酸塩水溶液とすると本発明の効果を奏さない場合もある。
 いずれにせよ、本発明の技術的思想は、「処理液における溶質を、ガラス物品内におけるガラス成分を新たに供給する源とし、ガラス成分として溶質の一部(例えばリン酸イオン)をガラス物品の一員に加える」ことにあり、この思想自体に保護される価値がある。具体的な欠陥発生抑制処理条件(溶媒、溶質、処理温度、処理pH、処理液との接触時間等々)は、ガラス物品のガラス骨格物質と同じ物質を含む物質を使用することを中心として調べることにより、当業者ならガラス物品の硝種ごとに把握可能である。 
 (ガラス物品の製造方法)
  上記の実施形態では、ガラス素材を研削加工および研磨加工することにより、光学レンズを製造しているが、光学レンズは、プレス成形、たとえば精密モールドプレス成形法により製造することもできる。この成形法は、以下に示すような方法である。まず、球形状や扁平球形状など所定の形状に予備成形されたガラス素材を上型および下型からなる成形型の間に供給し、成形型と共にガラス素材を加熱する。加熱後、ガラス素材を軟化させた状態において上下の成形型を用いてプレスしてガラス素材を変形させる。その後、ガラス素材がガラス転移点温度以下になった後に、成形型から取り出すことによりガラス物品としての光学レンズが得られる。
 また、この精密モールドプレス成形法は、成形型内へ供給する前に型外で予熱したガラス素材を、所定温度に加熱された成形型に供給した後に、ガラス素材をプレス成形して、ガラス素材がガラス転移点温度以下になった後に、成形型から取り出す方法も含む。
 また、上記の精密モールドプレス成形法等のプレス成形によって得られた光学レンズの外周を芯取り加工する場合は、上記の実施形態の研磨レンズの場合と同様にすればよい。芯取り加工後に、レンズに付着した芯取り液を洗浄する際には、洗浄液およびリンス液のいずれか一方、もしくは両方として、上記の処理液を用いることができる。また、プレス成形により得られた光学レンズに被膜を形成する前に洗浄工程を行う場合にも、洗浄液およびリンス液のいずれか一方、もしくは両方として、上記の処理液を用いることができる。
 さらに、光学レンズを精密モールドプレス成形方法で製造する場合には、製造工程において、ガラス素材と成形型との融着を防止するために、ガラス素材の表面に硬質炭素膜等の薄膜を成膜する場合がある。その成膜プロセスの前工程で洗浄が行われ、この洗浄を行う場合にも、洗浄液およびリンス液のいずれか一方、もしくは両方として、上記の処理液を用いることができる。
 (ガラス物品の組成)
  次にフツリン酸塩ガラスの組成例について説明するが、本実施形態において使用するガラスは、これら組成例のガラスに限定されるものではない。なお、これらの組成例は、バルク部分の組成である。
 フツリン酸塩ガラスの第1の好ましいガラス(以下、ガラス1という)は、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下のガラス、すなわち、Fを55アニオン%以上、O2-を45アニオン%以下含むガラスである。ガラス表面を水に接触させたとき、表面品質の低下はガラス中のFの含有量の増加に伴い一層顕著になる。したがって、本実施態様の効果は、Fの含有量がより多いガラスにおいて一層顕著なものとなる。したがって、ガラス1において、より好ましいガラスは、Fを70アニオン%以上、O2-を30アニオン%以下含むガラスであり、さらに好ましいガラスはFを80アニオン%以上、O2-を20アニオン%以下含むガラスであり、一層好ましいガラスはFを85アニオン%以上、O2-を15アニオン%以下含むガラスである。ガラス1の中でより好ましいガラスは、ガラス成分として、P5+を1~35カチオン%、Al3+を10~40カチオン%、Liを0~25カチオン%、Fを55~99アニオン%、O2-を1~45アニオン%含むフツリン酸塩ガラス(ガラス1A)である。さらに、ガラス1Aの中でより好ましいガラス(ガラス1B)は、ガラス成分として、P5+を3~25カチオン%、Al3+を30カチオン%を超え40カチオン%以下、Liを0~20カチオン%、Fを65~99アニオン%、O2-を1~35アニオン%含むフツリン酸塩ガラスである。さらに、ガラス1Bにおいて、より分散の低いガラスを得る上から、Fの含有量の下限値が70アニオン%のガラスが好ましく、80アニオン%のガラスがより好ましく、85カチオン%のガラスがさらに好ましい。
 ガラス1、ガラス1A、ガラス1Bのいずれにおいても、上記成分に加え、カチオン%表示にて、Mg2+を0~15%、Ca2+を0~35%、Sr2+を0~25%、Ba2+を0~20%、Naを0~10%、Kを0~10%、希土類イオンを合計で0~12%含むガラスがさらに好ましい。中でも、希土類イオンの合計含有量の上限値が10%であることが好ましく、7%であることがより好ましく、5%であることがさらに好ましい。また、希土類イオンの合計含有量の下限値が0.1%であることが好ましい。また、Ca2+を3~35%含むガラスが好ましい。希土類イオンとしては、ガラスを着色させないY3+、Gd3+、La3+、Yb3+、Lu3+のいずれかが好ましく、それらの合計含有量が0.1カチオン%以上であることが好ましく、12カチオン%以下であることが好ましい。中でも、Y3+、Gd3+、La3+およびYb3+の合計含有量を0.1~10カチオン%にすることが好ましく、0.1~7カチオン%にすることがより好ましく、0.1~5カチオン%にすることがさらに好ましい。そして、これら希土類イオンの中でもガラスの安定性を維持する上から、Y3+を含有することが好ましく、Y3+を0.1~12カチオン%含有することが好ましく、0.1~10カチオン%含有することがより好ましく、0.1~7カチオン%含有することがさらに好ましく、0.1~5カチオン%含有することが一層好ましい。
 ガラス1(ガラス1A,ガラス1Bを含む)のアッベ数νdは78以上であることが好ましく、80以上であることがより好ましく、85以上であることがさらに好ましく、90以上であることが一層好ましく、93以上であることがより一層好ましい。アッベ数νdの上限は上記組成により自ずと定まるが、100以下を目安とすることができる。アッベ数νdは概ねガラス中のFの含有量に依存し、Fの含有量の増加とともにアッベ数νdも増加する。そのため、アッベ数νdが大きいガラスほど、水に接触したときの表面品質の低下は顕著になる。したがって、アッベ数νdが大きいガラスほど、本実施態様の効果も一層顕著になる。
 P5+は、ガラスの網目構造を形成する機能を有する。ガラスの安定性を維持しつつ、ガラス溶解時の揮発を抑えて光学的に均質なガラスを得るという観点から、P5+の含有量を上記範囲とすることが好ましい。
 Al3+は、ガラスの安定性を向上させる働きをし、溶質の一部と結合して水などの溶媒に対して難溶性化合物を形成する上で有用な成分である。このような働きを得るという観点から、Al3+の含有量を上記範囲にすることが好ましい。
 Liは、ガラス融液の粘性を低下させるが、液相温度を低下させる働きが非常に強く、結果的に液相温度におけるガラスの粘度を大きくし、熔融ガラスを成形する際、脈理の発生を抑制する働きをする。また、ガラス転移温度を低下させる働きもある。こうした効果を得るという観点から、Liの含有量を上記範囲にすることが好ましい。Liの含有量の好ましい下限は0.1カチオン%である。
 Fは、ガラスに低分散性、異常分散性を付与するための必須成分である。所望の低分散性、異常分散性を得るという観点から、Fの含有量を上記範囲にすることが好ましい。
 ガラス1におけるアニオン成分は実質的にFとO2-からなる。この他、アニオン成分として少量のClを導入することもできる。熔融ガラスを白金系パイプから流出する際、ガラスがパイプ外周面に濡れ上がって脈理などの発生要因となるが、Clを添加することによりガラス融液の濡れ上がりを低減する効果が得られる。
 熱的安定性の優れたガラスを実現するという観点から、FとO2-の合計含有量をアニオン%表示で95%以上とすることが好ましい。
 ガラスの熱的安定性、耐水性を改善するという観点から、Mg2+、Ca2+、Sr2+、Ba2+、Na、Kの各成分の含有量を上記範囲にすることが好ましい。
 Y3+は、少量の導入によりガラスの熱的安定性向上が期待されるが、過剰に導入するとガラスの熔融温度が上昇し、熔融ガラスからの揮発が助長されるとともに、ガラスの熱的安定性も低下する。したがって、Y3+の含有量を上記範囲にすることが好ましい。Y3+の含有量のより好ましい範囲は0.1~12カチオン%、さらに好ましい範囲は0~10カチオン%、一層好ましい範囲は0.1~7カチオン%、より一層好ましい範囲は0.1~5カチオン%である。
 この他、屈折率の調整などを目的として少量のLa3+、Gd3+、Zr4+、Zn2+を導入することができる。あるいは、Yb3+、Lu3+を導入することもできる。
 B3+はガラスの揮発性を著しく助長させるため、B3+の含有量を0~1%とすることが好ましく、実質的に含有しないことがより好ましい。なお、「実質的に含有しない」とは、全くB3+を含有しないことも含むし、B3+を含有していたとしてもガラスの揮発性が発揮されない程度の微々たる量であることを指す。
 Pb、As、Cd、Tl、Te、Cr、Se、U、Thは、環境負荷が大きい物質であるので、ガラスに導入しないことが好ましい。
 ガラス1は、Sc、Hf、Geといった成分を必要としない。Sc、Hf、Geは高価な成分なので、これらを導入しないことが好ましい。また、Luは、必須成分ではなく、高価な成分なので、ガラス物品の原料コストを低減する上からは、ガラスに導入しないことが好ましい。ガラス1は可視域の広い波長域にわたり、優れた光線透過性を示す。こうした性質を活かすという観点から、Cu、Cr、V、Fe、Ni、Co、Nd、Er、Tb、Euなどの着色の要因となる物質を導入しないことが好ましい。
 屈折率ndの好ましい範囲は1.42~1.53である。なお、ガラス1の揮発性、侵蝕性を抑制するという観点から、P5+の含有量に対するO2-の含有量のモル比O2-/P5+を3.5以上、すなわち、7/2以上にすることが望ましい。
 フツリン酸塩ガラスの第2の好ましいガラス(以下、ガラス2という)は、原子%表示で、Pを0.1~6%、Alを0.8~22%、Oを1~20%、Fを30~60%、を含有し、Ca、SrおよびBaの合計含有量は0原子%を超え、PおよびAlの合計量をFの含有量で割った値((P+Al)/F)が0.1~0.4であるガラスである。
  ガラス2において、Caを1~20原子%、Srを1~20原子%、Baを1~20原子%、Fを30~60原子%、Oを1~20原子%、Mgを0~10原子%、Yを0~10原子%含有することが好ましい。ガラス2によればアッベ数νdが90~100のガラスを得ることができる。
 なお、ガラスの熱的安定性を維持する上から、ガラス1、ガラス1A、ガラス1B、ガラス2のいずれにおいても、P5+の含有量に対するO2-の含有量のモル比O2-/P5+が2.5以上であることが好ましく、2.8以上であることがより好ましく、2.9以上であることがさらに好ましく、3以上であることが一層好ましい。
 なお、上記の実施形態においてはフツリン酸塩ガラスを用いたガラス物品を例として挙げた。ただ、それ以外の物質からなるガラス物品にも本発明は適用可能である。
  以下、ガラス物品としてホウ酸塩ガラス物品を用いた例について述べる。
 ホウ酸塩ガラス物品は、Bを含む。そして、その際、溶媒を水とし、溶質はホウ酸塩を含むようにする。この時、溶質として、更にリン酸塩を含むようにしても構わない。
 なお、本実施形態におけるホウ酸塩ガラス物品としては、以下のガラス物品が好適である。
・アルカリ土類金属及びZnを含むガラス物品
・希土類金属(希土類元素)を含むガラス物品
・アルカリ金属を含むガラス物品
 もちろん、上記以外の物質を更に含有するガラス物品であっても構わないし、フツリン酸塩ガラスと同様、Fを含むガラス物品であっても構わない。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
 次に実施例を示し、本発明について具体的に説明する。もちろん本発明は、以下の実施例に限定されるものではない。
 (実施例1)
  まず、ガラス物品としては、円盤状の平面ガラス基板(直径43.7mm、厚さ5mm)を用いた。この平面基板は、既に研磨加工され、光学研磨面を有している。また、このガラス基板の硝材は、カチオン成分としてP5+を5.4カチオン%、Al3+を33.7カチオン%、Liを1.0カチオン%、Naを1.2カチオン%、Mg2+を6.8カチオン%、Ca2+を28.7カチオン%、Sr2+を17.2カチオン%、Ba2+を4.7カチオン%、Y3+を1.3カチオン%含み、アニオン成分としてFを91.6アニオン%、O2-を8.2アニオン%、Clを0.2アニオン%を含むフツリン酸塩ガラス(モル比O2-/P5+=3.5)であり、屈折率ndが1.433、アッベ数νdが96である(ガラスAという)。ここで、上記のガラス組成、光学特性は上記ガラス基板のバルク部分の組成、特性である。
  原子%(atomic%)表示でのガラスAの組成は、Pの含有量が1.64%、Alの含有量が10.21%、Mgの含有量が2.06%、Caの含有量が8.69%、Srの含有量が5.21%、Baの含有量が1.42%、Liの含有量が0.3%、Naの含有量が0.36%、Yの含有量が0.39%、Fの含有量が63.85%、Oの含有量が5.72%、Clの含有量が0.14%である。
 そして、このガラス基板を、処理液としてのリン酸塩水溶液に浸漬させた。なお、リン酸塩水溶液としては、NaHPOとNaHPOをモル比1:1としてpH7.0となるようにした水溶液を用いた。また、処理液におけるリン(P)濃度とナトリウム(Na)濃度はともに160ppmとし、処理液の温度は16℃とし、浸漬時間は合計15時間とした。
 (参考例)
  参考例においては、実施例1における研磨後のガラス基板の表面を直ちにエタノールで拭いて、ガラス表面に付着したスラリーやスラッジを除去した。こうして得られたガラス基板を参考例とした。したがって、参考例のガラス基板は、リン酸塩水溶液に接触していない。それ以外は、実施例1と同様の手法を用いて、ガラス基板を作製した。なお、ガラス物品の量産において、研磨直後のガラス表面をエタノールで拭いて、固着の原因となる研磨砥粒などを除去する作業は生産性を低下させるため、このような方法は実用上、好ましくない。
 (評価)
  実施例1で得られたガラス基板の表面をエタノールで拭いた後、実施例1および参考例の各ガラス基板に対し、XPSスペクトルを測定し、ガラス基板の表面近傍(4~5nm)に含まれる元素の種類および結合状態について評価した。また、比較のため、組成とガラス基板の内部(表面から100nm程度)についても、元素の種類および結合状態を評価した。なお、ガラス基板の内部を測定する際には、スパッタリングにより表面を100nm程度削った。
 また、XPSの測定条件は、以下の通りである。
    励起X線:Al mono
    検出領域:φ100μm
    取出し角:45deg
    検出深さ:破線:4~5nm、実線:100nm(スパッタリング)
    スパッタリング条件:Ar 2.0kV
    スパッタリングレート:約5nm/min(SiO換算)
上記測定条件により、ガラス基板、すなわちガラス物品の表面側および内部側に存在する元素の種類、各元素の存在比および結合状態を評価することができる。
 なお、図1~図6は、XPSを行った結果を示すグラフであり、(a)は実施例1の結果を示し、(b)は参考例の結果を示す。ガラス基板の組成のうち、図1はAl2p、図2はP2s、図3はO1s、図4はCa2p、図5はSr3p3/2、図6はF1sについての結果を示すグラフである。なお、図7~図8は、実施例1の結果のみを示す。図7はBa3d5/2、図8はMg1sについての結果を示すグラフである。
 図1~図3はフツリン酸塩ガラスにおいて網目構造を形成している元素Al、P、Oに関する結果である。各図において、実線で示されるガラス内部のXPSスペクトルは、処理液の影響を受けていないと考えられるため、実施例1と参考例とではほぼ同じスペクトルを示していると考えられる。
 参考例(各図(b))に比べ、実施例1(各図(a))の方が、ガラス基板の内部に比べガラス基板の表面において、網目構造を形成する元素(P、Al及びO)のピーク強度が顕著に高い。これは、ガラス基板の表面が処理液と接触することにより、溶質の一部がガラス基板内に導入され、ガラス成分と結合した結果、結合を示すピーク強度が高くなったと考えられる。この結果は、ガラス基板の表面に難溶性化合物(リン酸アルミニウム)が形成されていることを示していると考えられる。
 一方、図4~図6は、網目構造の隙間に存在していると考えられる元素に関する結果である。図1~3とは逆に、参考例(各図(b))に比べ、実施例1(各図(a))の方が、ガラス基板の内部に比べガラス基板の表面において、アルカリ土類金属及びFのピーク強度が顕著に低い。これは2つの理由が考えられる。1つは、アルカリ土類金属元素およびフッ素がガラス表面から処理液に流出した可能性が考えられる。もう1つは、表面近傍において、リン酸イオンが網目構造のAlと結合した結果、表面におけるアルカリ土類金属元素およびフッ素の割合が相対的に減少した可能性が考えられる。いずれの理由であっても、結局のところ、表面には、難溶性化合物(リン酸アルミニウム)が形成されていることを示していると考えられる。
 また、図7~図8も実施例1における網目構造の隙間に存在していると考えられる元素に関する結果であるが、図4(a)~図6(a)と同様の傾向を示している。
 特に、図2~図3においては、実施例1と参考例との間に、ピーク強度だけでなく、ピーク位置にも顕著な差が生じている。図2においては、実施例1(図2(a))では、参考例(図2(b))に比べ、金属とPOxとの間の結合に起因するピーク強度が極端に増加し、Pに起因するピークからピーク位置のシフトが生じている。同様に、網目構造を形成しているAl(図1(a))やO(図3(a))においてもピーク強度が増大していること、O(図3(a))において、金属とPOxとの間の結合に起因するピーク強度が極端に増加し、金属とOとの間の結合に起因するピークからピーク位置のシフトが生じている。これらは、Al、PおよびOから構成される網目構造がガラス表面において増えていることを示していると考えられる。
 さらに、上記の実施例1および参考例と同様の方法でそれぞれガラス基板を作成し、その深さ方向について二次イオン質量分析(SIMS)を行った。その結果、実施例1の試料(リン酸塩水溶液に浸漬させた試料)および参考例の試料(リン酸塩水溶液に浸漬させなかった試料)は、どちらも、水素の二次イオン強度は、表面から漸次低下し、ある深さ以降では、ほぼ一定の値となる傾向を示していた。したがって、実施例1における処理液中の水素のガラス内への移動は、処理液中の水素の移動も起こらない参考例と同レベルであり、処理液中に含まれる水素のガラス内へ移動が抑制されていることを示していると考えられる。
 さらに、実施例1では、処理液中への浸漬によってガラス表面への研磨砥粒の固着を防止しつつ、クモリのない高品質なガラス表面が維持されていることが確認できた。
 次にガラスAを研削してレンズ形状に加工し、さらに研磨液を用いて光学研磨し、光学レンズを作製した。研磨液は、上記処理液に研磨砥粒を分散させたものである。研磨後、上記処理液と同種の液を保管液とし、この保管液の中にレンズを浸漬して保管した。さらに、レンズを保管液から取り出し、上記処理液と同種の液に洗剤を加えた液でレンズ表面に着いた異物を洗浄、除去し、さらに上記処理液と同種の液をリンス液としてレンズをリンスした。そして最後にレンズをIPA(イソプロピルアルコール)で処理し、乾燥させて表面にクモリのない清浄なレンズを得た。
 (硝種毎の実施例及び比較例)
  次に、硝種毎における実施例及び比較例の結果について述べる。
 (実施例2~18)
  まず、試料となるガラス物品としては、実施例1と同様のガラスAからなる円盤状の平面ガラス基板(直径43.7mm、厚さ5mm)を用いた。この平面基板は、研磨加工され、光学研磨面を有している。
 そして、このガラス基板を、表1に示す処理液に浸漬させた。また、リン酸塩水溶液の温度は16℃とし、浸漬時間は合計15時間とした。なお、参考として、処理液における元素分析濃度も表1に掲載した。
 上記の保管処理を行ったガラス物品に対し、保管前後での重量変化値(ΔWt(mg))および保管後のヘイズ値(%)を下記に示す方法により評価した。また、目視により、ガラス物品の表面において、欠陥が発生しているか否かについて評価した。さらに、上記の処理を行った前後の処理液のpHについても求めた。結果を表1に示す。
 (重量変化値)
  重量変化値は、処理液への浸漬前後での試料の重量を計測し、それぞれの計測結果の差分として算出される。重量変化値が大きいと、潜傷が拡大している可能性が高いため、重量変化値は小さいことが好ましい。結果を表1に示す。
 (ヘイズ値)
  ヘイズ値は、いわゆるガラスの曇りの度合を表す値であり、数値が小さい程透明性が高く好ましい。具体的には、ヘイズ値(%)=Td/Tt×100(Td:拡散透過率、Tt:全光線透過率)の式で特定される。このようなヘイズ値は、「日本光学硝子工業会規格JOGIS 光学ガラス物品の化学的耐久性の測定方法(表面法) 07-1975」に定められたヘイズメーターを用い、処理液に所定時間浸漬した後における硝材試料の対向する二つの表面に対し垂直に測定光を透過させることで、測定される。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、いくつかの実施例では、わずかに青ヤケや白濁の兆候が見られた試料(表中○で表記)があったものの、総じて良好であることが確認できた(表中◎で表記)。
 (比較例1~21)
  表2に示す処理液に接触させた以外は実施例2~18と同様に評価を行った。結果を表2に示す。
 表2より、全ての比較例のガラス物品の表面において、白濁、ヤケ、細かい傷の表出等、欠陥が発生していることが確認できた。
  実施例2~18においても、実施例1と同様にガラスAからなる表面にクモリのない清浄なレンズを得た。
 (実施例19~22)
  硝材として、カチオン成分として、P5+を27.4カチオン%、Al3+を20.9カチオン%、Mg2+を8.3カチオン%、Ca2+を14.2カチオン%、Sr2+を16.9カチオン%、Ba2+を11.7カチオン%、Y3+を0.6カチオン%、アニオン成分としてFを62.9アニオン%、O2-を37.1アニオン%含み、モル比O2-/P5+が3、屈折率ndが1.497、アッベ数νdが81.6のフツリン酸塩ガラス(ガラスBという)を用いて、表3に示す処理液に接触させた以外は実施例2~18と同様に評価を行った。なお、ガラス基板のバルク部分の組成は、上記硝材の組成である。
  原子%(atomic%)表示でのガラスBの組成は、Pの含有量が8.52%、Alの含有量が6.5%、Mgの含有量が2.58%、Caの含有量が4.42%、Srの含有量が5.26%、Baの含有量が3.64%、Yの含有量が0.19%、Fの含有量が43.34%、Oの含有量が25.56%である。
Figure JPOXMLDOC01-appb-T000003
 表3より、いくつかの実施例では、わずかに青ヤケや白濁の兆候が見られた試料があったものの、総じて良好であることが確認できた。
  次にガラスBを研削してレンズ形状に加工し、さらに研磨液を用いて光学研磨し、光学レンズを作製した。研磨液は、上記各処理液に研磨砥粒を分散させたものである。研磨後、上記処理液と同種の液を保管液をとし、この保管液の中にレンズを浸漬して保管した。さらに、レンズを保管液から取り出し、上記各処理液と同種の液に洗剤を加えた液でレンズ表面に着いた異物を洗浄、除去し、さらに上記各処理液と同種の液をリンス液としてレンズをリンスした。そして最後にレンズをIPA(イソプロピルアルコール)で処理し、乾燥させて表面にクモリのない清浄なレンズを得た。
 (比較例22~30)
  表4に示す処理液に接触させた以外は実施例19~22と同様に評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、全ての比較例のガラス物品の表面において、白濁、ヤケ、細かい傷の表出等、欠陥が発生していることが確認できた。
 なお、表1~4に示す結果から、処理液が緩衝機能を必ずしも有している必要はないことが確認できる。また、処理液のpHが必ずしも上述した範囲内にある必要はないことも確認できる。また、処理液が溶質としてリン酸塩を有している必要はなく、たとえば、リン酸(HPO)と水酸化ナトリウム(NaOH)との組み合わせでもよい。
 すなわち、図1~8から明らかなように、溶質の一部がガラス物品の表面に存在しているガラス成分と結合できるように処理液を選定すればよい。
 なお、表1~4に示す結果を考慮すると、必ずしも、処理液が緩衝機能を有していれば良いというわけでもないし、処理液のpHが6以上8以下だと良いというわけでもない。ガラス物品の硝種に応じて、処理液及び処理条件を調整する必要がある。ただ、図1~8に示すように、欠陥発生抑制処理の際に、処理液における溶質を、ガラス成分をガラス物品に対して新たに供給する源とできればよい。つまり、処理液における溶質を、ガラス物品内におけるガラス成分と結合自在とし、当該ガラス成分(特にガラス骨格物質)として加入自在とする条件は、当業者であれば、pHや処理液の溶質や溶媒の種類を調節することにより、適宜設定することが可能である。結局のところ、ガラス骨格を構成し得る成分の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いようにするという思想こそが、本発明の大きな特徴である。
 (実施例23)
  次に、原子%(atomic %)表示にて、Pを1.89%、Alを9.74%、Mgを2.04%、Caを8.55%、Srを5.11%、Baを1.4%、Liを1.47%、Naを0.61%、Yを0.38%、Fを61.41%、Oを7.28%、Clを0.12%含み、屈折率ndが1.437、アッべ数νdが95.1のフツリン酸ガラス(以下、ガラスCという)を用い、実施例1と同様の光学研磨面を有する円盤状の平面ガラス基板を7枚、用意した。
  なお、ガラスCのモル比(O2-/P5+)は3.85であり、カチオン%、アニオン%表示の組成は、P5+の含有量が6.06カチオン%、Al3+の含有量が31.23カチオン%、Mg2+の含有量が6.54カチオン%、Ca2+の含有量が27.41カチオン%、Sr2+の含有量が16.38カチオン%、Ba2+の含有量が4.49カチオン%、Liの含有量が4.71カチオン%、Naの含有量が1.96カチオン%、Y3+の含有量が1.22カチオン%であり、Fの含有量が89.25アニオン%、O2-の含有量が10.58アニオン%、Clの含有量が0.17アニオン%である。
  なお、ガラス基板のバルク部分の組成は、上記硝材の組成である。
  各基板を、以下に示す条件C-1から条件C-5までの5種の条件でそれぞれ処理した。
 (条件C-1)
  まず、処理液としてのリン酸塩水溶液を用意した。リン酸塩水溶液としては、NaHPOとNaHPOをモル比1:1としてpH7.0となるようにした水溶液である。処理液におけるリン(P)濃度とナトリウム(Na)濃度はともに150ppmとした。
  7槽からなるリンス装置を用い、第1槽から第3槽にリンス液として上記処理液を入れ、第4槽から第6槽にリンス液としてイソプロピルアルコール(IPA)を入れた。
  第1槽、第2槽、第4槽、第5槽では超音波洗浄を行った。第1槽から第6槽まで順次、ガラス基板を浸漬し、ガラス基板表面の清浄度を高めていった。第1槽から第6槽までの各槽におけるガラス基板の浸漬時間はいずれも100秒とした。また、第1槽から第6槽までの各槽において、槽毎に槽内の液を槽内からフィルター、イオン交換樹脂、槽内へと循環させて、リンス液としての機能が低下しないようにした。第1槽から第6槽までの各槽におけるリンス液の温度はいずれも室温である。第7槽はベーパー槽(Vapour槽)と呼ばれる。ベーパー槽では、103℃でイソプロピルアルコール(IPA)によるVapour処理(IPA蒸気乾燥処理)を60秒間行い、ガラス基板の表面を清浄な状態で乾燥させた。
 (条件C-1+条件C-2)
  条件C-1によりリンスした平面ガラス基板を250℃で30分間、真空加熱した(条件C-2)。条件C-2は光学研磨面に光学多層膜をコーティングするとき基板加熱を想定したものである。
 (条件C-1+条件C-2+条件C-3)
  条件C-2の真空加熱とともに、酸素、アルゴンガスを導入し、熱電子イオンガンを用いて、平面ガラス基板の光学研磨面をイオンクリーニングした(条件C-3)。条件C-3も光学研磨面に光学多層膜をコーティングするとき基板加熱を想定したものである。
 (条件C-4)
  平面ガラス基板を、実施例1と同様のリン酸塩水溶液に15時間浸漬した。リン酸塩水溶液の温度を16℃とした。リン酸塩水溶液は保管液に相当する。
 (条件C-5)
  平面ガラス基板を、実施例1と同様のリン酸塩水溶液に1分間浸漬した。リン酸塩水溶液の温度を16℃とした。
 (試験例A)
  研磨後のガラス基板の表面を直ちにエタノールで拭いて、ガラス表面に付着したスラリーやスラッジを除去した。
 (試験例B)
  平面ガラス基板を、16℃の純水に15時間浸漬した。
 (評価)
  条件C-1~条件C-5の各条件で処理した各ガラス基板に対し、XPSスペクトルを測定し、ガラス基板の表面近傍(4~5nm)に含まれる元素の存在比および結合状態について評価した。また、比較のため、ガラス基板の内部(表面から100nm程度)についても、XPSスペクトルを測定し、元素の存在比および結合状態を評価した。なお、ガラス基板の内部を測定する際には、スパッタリングにより表面を100nm程度削った。
  XPSの測定条件は、実施例1と同様である。
 XPSスペクトルにおいて、元素固有の束縛エネルギー(Binding Energy)の位置にピークが現れる。これらピーク周辺のスペクトル波形とスペクトルのベースラインによって囲まれた領域の面積を取り、元素毎の面積比を算出すると、この比が各元素の存在比となる。
  単一の元素が単一の結合状態にある場合、その元素に由来するXPSスペクトルの波形はガウス関数形となる。結合状態が単一ではなく、複数の結合状態にある場合、XPSスペクトルの波形は、ピーク位置が僅かに異なる複数のガウス関数形を合成した形になる。したがって、XPSによって得られたスペクトル波形を、想定される結合状態に対応する束縛エネルギーの位置をピークとする複数種のガウス関数に分解(分離)し、得られた各ガウス関数とベースラインとによって囲まれる領域の面積の比を求めれば、各結合状態の元素の存在比を算出することができる。XPSスペクトルの複数種のガウス関数への分解(分離)は、各ガウス関数における定数を最小二乗法などによりフィッティングすればよい。
 ガラス基板の内部(内部側)の元素の存在比、結合状態は、条件C-1~条件C-5、試験例A、試験例Bの各条件でほぼ同じであった。そこで、条件C-1により処理したガラス基板について得た内部側の各元素の存在量およびAlの結合状態毎の存在量を、ガラス基板の内部側の各元素の存在量およびAlの結合状態毎の存在量とした。ここで、存在量は、C、Nなどコンタミネーションを除外した、残る元素についての原子%(atomic%)表示での存在量である。
 [表5について]
  表5に、条件C-1~C-5の処理をそれぞれ行ったガラス基板についてXPS測定を行い、ガラス基板の表面側におけるP、Al、Mg、Ca、Sr、Ba、F、Oの各存在量と、内部側における各元素の存在量と、の比率を示す。
Figure JPOXMLDOC01-appb-T000005
 表5より明らかなように、リン酸塩水溶液を用いて処理を行ったいずれの条件においても、P、Al、Oの存在量の比率はそれぞれ1.0を超えており、表面側の存在量が内部側の存在量よりも多い。Mg、Ca、Sr、Ba、Fの各存在量の比率Mg、Ca、Sr、Baの合計存在量(合計含有量)の比率は、どちらも1.0未満であり、表面側の存在量が内部側の存在量よりも少ない。
  条件C-1~C-5の処理を行った各ガラス基板の光学研磨面のヘイズ値は0.0%、重量変化量は1.6×10-3mg/(cm・hour)以下であった。
 [表6について]
  表6に、条件C-1~C-5の処理をそれぞれ行ったガラス基板と、試験例Bのガラス基板についてXPS測定を行い、測定結果から求めたガラス基板の表面側におけるYの存在量と、内部側におけるYの存在量と、の比率を示す。
Figure JPOXMLDOC01-appb-T000006
 表6より明らかなように、リン酸塩水溶液を用いて処理を行った条件C-1~C-5については、Yの内部側の存在量に対する表面側の存在量の比率(表面側の存在量/内部側の存在量)が1.13以下であるのに対し、表面が白濁した試験例Bでは、比率(表面側の存在量/内部側の存在量)が5.13と極めて大きい値を示した。
 [表7について]
  表7に、条件C-1~C-5の処理をそれぞれ行ったガラス基板と、試験例Aのガラス基板についてXPS測定を行い、測定結果から求めたガラス基板の表面側におけるOの存在量と、内部側におけるOの存在量と、の比率、ならびにガラス基板の表面側におけるFの存在量と、内部側におけるFの存在量と、の比率を示す。
Figure JPOXMLDOC01-appb-T000007
 表7から明らかなように、リン酸塩水溶液を用いて処理した条件C-1~C-5については、Oの内部側の存在量に対する表面側の存在量の比率(表面側の存在量/内部側の存在量)が2.45~4.45と高い値を示した。一方、試験例Aについては、比率(表面側の存在量/内部側の存在量)が1.91と2.0未満であった。
  また、リン酸塩水溶液を用いて処理した条件C-1~C-5については、Fの内部側の存在量に対する表面側の存在量の比率(表面側の存在量/内部側の存在量)が0.13~0.68と0.80以下の値を示した。一方、試験例Aについては、比率(表面側の存在量/内部側の存在量)が0.84と0.80を超えていた。
 [表8について]

  表8に、条件C-1~C-5の処理をそれぞれ行ったガラス基板と、試験例Aのガラス基板についてXPS測定を行い、測定結果から求めたガラス基板の表面側における結合状態毎のAlの存在量と、試験例Aのガラス基板の内部側における結合状態毎のAlの存在量と、を示す。
  なお、表8において、Alの存在量は、Alおよびその他のガラス成分元素の存在量の合計が100原子%(atomic %)となるように定めている。
  また、AlのXPSスペクトル波形は、6種の結合状態のガウス関数形に分離することができる。
  6種の結合状態は、束縛エネルギーが70.60eVに相当する帯電状態の異なる金属Al、束縛エネルギーが73.05eVに相当する金属Al、束縛エネルギーが74.07eVに相当するAl等の酸化状態のAl、束縛エネルギーが74.93eVに相当するAl-POx等のリン酸塩状態のAl、束縛エネルギーが75.45eVに相当するAlOF等、束縛エネルギーが76.90eVに相当するAlF等のフッ化状態のAlである。
  前述の方法により、AlのXPSスペクトル波形を6種の結合状態毎の波形に分離し、分離した各波形とベースラインとにより囲まれる領域の面積の比から、各結合状態にあるAlの存在量を求めた。
Figure JPOXMLDOC01-appb-T000008
 表8より、条件C-3、C-4により処理したガラス基板の最表面における酸化状態のAlの存在量は、ガラス基板の内部側における酸化状態のAlの存在量よりも多いことがわかる。
  また、条件C-1~C-4により処理したガラス基板の最表面におけるリン酸塩状態のAlの存在量は、ガラス基板の内部側におけるリン酸塩状態のAlの存在量よりも多いことがわかる。
  さらに、条件C-1~C-4により処理したガラス基板の最表面における酸化状態のAlの存在量とリン酸塩状態のAlの存在量との合計は、ガラス基板の内部側における酸化状態のAlの存在量とリン酸塩状態のAlの存在量との合計よりも多いことがわかる。
  さらに、Alの総量(各状態のAlの存在量の合計量)に対する酸化状態のAlの存在量とリン酸塩状態のAlの存在量との合計量の比率((酸化状態のAlの存在量+リン酸塩状態のAlの存在量)/Alの総量)は、条件C-1~C-4により処理したガラス基板はいずれも0.5以上であるのに対し、試験例Aのガラス基板では、上記比率が0.43と、酸化状態またはリン酸塩状態のAlの合計存在量がAlの総量の半分にも達していないことがわかる。
  結局のところ、表8は、ガラス基板を処理液(リン酸塩水溶液)で処理することにより、処理液の溶質がガラス内部に取り込まれ、ガラス基板の表面が難溶化すれば、その後に、加熱等の処理を行い、表面側のリン酸塩状態のAlが減少したとしても、欠陥発生抑制効果は維持されることを示している。
 (実施例24)
  次に、原子%(atomic %)表示にて、Pを8.53%、Alを6.5%、Mgを2.58%、Caを4.41%、Srを5.25%、Baを3.64%、Yを0.2%、Fを43.32%、Oを25.58%含み、屈折率ndが1.497、アッべ数νdが81.61であるフツリン酸ガラス(以下、ガラスDという)を用い、実施例1と同様の光学研磨面を有する円盤状の平面ガラス基板を用意した。
  なお、ガラスDのモル比(O2-/P5+)は3.00であり、カチオン%、アニオン%表示の組成は、P5+の含有量が27.42カチオン%、Al3+の含有量が20.89カチオン%、Mg2+の含有量が8.29カチオン%、Ca2+の含有量が14.18カチオン%、Sr2+の含有量が16.88カチオン%、Ba2+の含有量が11.70カチオン%、Y3+の含有量が0.64カチオン%であり、Fの含有量が62.87アニオン%、O2-の含有量が37.13アニオン%である。
  なお、ガラス基板のバルク部分の組成は、上記硝材の組成である。
  条件C-1と同様の条件D-1で上記ガラス基板を処理した。
 [表9について]
  実施例23と同様にして、条件D-1により処理したガラス基板における表面側と内部側とのガラス成分元素の存在量を定量した。得られた表面側におけるP、Al、Mg、Ca、Sr、Ba、Y、F、Oの存在量と、内部側における各元素の存在量と、の比率を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9より、P、Oの比率(表面側の存在量/内部側の存在量)はそれぞれ1.0を超え、個々のアルカリ土類金属の比率(表面側の存在量/内部側の存在量)、アルカリ土類金属の合計存在量AEの比率(表面側の合計存在量/内部側の合計存在量)、Fの比率(表面側の存在量/内部側の存在量)はそれぞれ1.0未満になっている。
  また、Yの比率(表面側の存在量/内部側の存在量)は1.00であり、実施例23においてリン酸塩水溶液を用いて処理したときと同様、上記比率の増大がリン酸塩水溶液の使用によって抑えられている。
  条件D-1による処理後の光学研磨面のヘイズ値は0.0%、重量変化量は0.9×10-3mg/(cm・hour)未満であった。
 [表10について]
  実施例23と同様にして、条件D-1による処理後のガラス基板についてXPS測定を行い、ガラス基板の表面側および内部側における結合状態毎のAlの存在量を求めた。各結合状態のAlの存在量(原子%)を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10より、リン酸塩状態のAlの存在量、比率((酸化状態のAlの存在量+リン酸塩状態のAlの存在量)/Alの総量)については、0.5を超えている。
 (実施例25)
  表11(原子%表示)および表12(カチオン%およびアニオン%表示)に示す組成および特性を有するガラスE1~E10、ガラスF1、ガラスF2の12種のフツリン酸ガラスについても、上記実施例と同様、光学研磨面を有する平面ガラス基板を作製し、条件C-1~条件C-5の各条件で処理を行い、XPSによりガラス基板の表面側および内部側における各元素の存在量、結合状態を分析、定量した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 [ガラスE1~E10の分析結果について]
  条件C-1~C-5により処理したガラス基板について、P、Al及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、アルカリ土類金属の含有量、アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少なかった。
  ガラスE1~E10はいずれも希土類元素成分を含む。原子%表示にて、内部側における希土類元素の含有量をRE(in)、表面側における希土類元素の含有量をRE(su)としたとき、条件C-1~C-5により処理した各ガラス基板について、RE(in)に対するRE(su)の比(RE(su)/RE(in))が2以下であったが、ガラスE1~E10の各ガラスを用い、試験例Bと同様の方法により処理したガラス基板については、光学研磨面が白濁し、比(RE(su)/RE(in))が3を超えていた。
  条件C-1~C-5により処理した各ガラス基板において、原子%表示にて、内部側におけるOの含有量をO(in)、表面側におけるOの含有量をO(su)としたとき、O(in)に対するO(su)の比(O(su)/O(in))が2.0以上であった。一方、試験例Aと同様の方法により処理したガラス基板において、比(O(su)/O(in))が2.0未満であった。
  条件C-1~C-5により処理した各ガラス基板において、リン酸塩状態のAlの含有量、酸化状態のAl及びリン酸塩状態のAlの合計含有量については、いずれもガラス物品の表面側が、ガラス物品の内部側よりも多かった。
  また、条件C-1~C-5により処理した各ガラス基板において、原子%表示で、各結合状態のAlの含有量(Alの総量)をAl(all)、酸化状態のAlの含有量をAl(ox)、リン酸塩状態のAlの含有量をAl(ph)としたとき、表面側においてAl(all)に対するAl(ox)とAl(ph)との合計量の比((Al(ox)+Al(ph))/Al(all))が0.5以上であった。
  条件C-1~C-5により処理した各ガラス基板について、Fの内部側の存在量に対する表面側の存在量の比率(表面側のFの存在量/内部側のFの存在量)を求めたところ、0.1~0.69と、いずれのガラス基板においても0.70以下であった。
  条件C-1~C-5により処理した各ガラス基板の光学研磨面には、クモリ、白濁などの欠陥は認められなかった。また、上記各ガラス基板の光学研磨面のヘイズ値は0.0%であった。また重量減少量も実施例23における重量減少量と同等であった。
 [ガラスF1、ガラスF2の分析結果について]
  条件C-1~C-5により処理したガラス基板について、P及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、アルカリ土類金属の含有量、アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少なかった。
  ガラスF1、ガラスF2はいずれも希土類金属成分を含む。原子%表示にて、内部側における希土類元素の合計含有量をRE(in)、表面側における希土類元素の合計含有量をRE(su)としたとき、条件C-1~C-5により処理した各ガラス基板について、RE(in)に対するRE(su)の比(RE(su)/RE(in))が2以下であったが、試験例Bと同様の方法により処理したガラス基板については、光学研磨面が白濁し、比(RE(su)/RE(in))が3を超えていた。
  条件C-1~C-5により処理した各ガラス基板において、原子%表示にて、内部側におけるOの含有量をO(in)、表面側におけるOの含有量をO(su)としたとき、O(in)に対するO(su)の比(O(su)/O(in))が1.0を超えていた。
  条件C-1~C-5により処理した各ガラス基板において、リン酸塩状態のAlの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多かった。
  また、条件C-1~C-5により処理した各ガラス基板において、原子%表示で、各結合状態のAlの含有量(Alの総量)をAl(all)、酸化状態のAlの含有量をAl(ox)、リン酸塩状態のAlの含有量をAl(ph)としたとき、表面側においてAl(all)に対するAl(ox)とAl(ph)の合計量の比((Al(ox)+Al(ph))/Al(all))が0.5以上であった。
  条件C-1~C-5により処理した各ガラス基板について、Fの内部側の存在量に対する表面側の存在量の比率(表面側のFの存在量/内部側のFの存在量)を求めたところ、0.69~0.75であり、いずれのガラス基板においても0.75以下であった。
 試験例Aと同様の処置を行ったガラス基板のいずれも、比率(表面側の存在量/内部側の存在量)が0.85以上であった。
  条件C-1~C-5により処理した各ガラス基板の光学研磨面には、クモリ、白濁などの欠陥は認められなかった。また、上記各ガラス基板の光学研磨面のヘイズ値は0.0%であった。また重量減少量も実施例24における重量減少量と同等であった。
 (実施例26)
  ガラスA~ガラスDの各ガラスを、研磨工程を含む工程により両凸レンズ、凸メニスカスレンズ、凹メニスカスレンズ、両凹レンズなどのレンズ形状に加工した。研磨工程途中において上記各実施例において使用したリン酸塩水溶液(保管液)の中にガラスを浸漬、保管し、その後、リン酸塩水溶液中からガラスを取り出し、さらに研磨して上記レンズ形状に加工した。
  次に、ガラスA~ガラスDの各ガラスからなるレンズを洗浄して研磨スラリーや加工屑を除去し、条件C-1と同様の条件で洗浄したレンズをリンスし、IPAによるvapour処理を行って清浄な表面を有するレンズを得た。
  得られたレンズの光学研磨面(光学機能面に相当する)について、表面側および内部側における各元素の存在量、特定状態にある元素の存在量をXPSにより分析したところ、上記実施例で得た結果と一致していた。
  次に、ガラスCからなるレンズを条件C-2(条件C-1+真空加熱)により処理した後、XPSにより分析したところ、実施例23と同様の結果が得られた。
  さらに、ガラスCからなるレンズを条件C-3(条件C-2+イオンクリーニング)により処理した後、XPSにより分析したところ、実施例23と同様の結果が得られた。
  いずれの場合も、各レンズの光学機能面にクモリ、白濁は認められず、ヘイズ値も0.0%であった。また、十分な洗浄、リンスが行われたため、研磨剤や加工屑、汚れが完全に除去されていた。このように、リン酸塩水溶液による処理後に、真空加熱やイオンクリーニングを行っても、ガラス物品の表面品質は維持される。
  レンズの光学研磨面上に反射防止用の光学多層膜をコーティングした。コーティングによってもレンズの表面側の状態はコーティング前の状態に保たれており、光学機能面にクモリ、白濁は認められなかった。
  したがって、ガラス物品の表面をコートしても、ガラス物品の表面品質は維持される。
  上記レンズは研磨工程を含む工程を経て加工されたガラス物品であるが、研磨工程を経ずに精密プレス成形により成形されるレンズについても、同様に清浄かつクモリや白濁のないレンズを得ることができ、表面側、内部側における元素の存在量、結合状態についても、上記実施例と同様の関係が成り立つ。
  こうして得た各種レンズは、カメラなどの撮像光学系を構成する光学素子、プロジェクタなどの投射光学系を構成する光学素子、光ディスクなどにデータを記録したり、光ディスクに記録されたデータを読み取るための光学系を構成するマイクロレンズなどの光学素子、CCTVなどの監視カメラや車載カメラの撮像光学系、内視鏡に搭載される光学素子などに好適である。
  これらの光学素子は、従来のものと比較して、クモリ、白濁、汚れの付着などの表面の欠陥が極めて低レベルに抑えられているため、撮像光学系においては、極めて鮮明な画像を提供することを可能にする。例えば、内視鏡など極めて鮮明な画像が求められる医療分野の機器に好適である。また、表面欠陥が低レベルであるため、レーザー光を入射してもダメージが発生することもないため、レーザー光を導くための光学素子としても好適である。
  以上、光学素子の例としてレンズを挙げたが、プリズムなどの他種の光学素子にも応用ができる。
  ガラスE1~E10、ガラスF1、ガラスF2についても、同様に表面品質が高い光学素子を作ることができる。
 (実施例27)
  本発明を適用可能なガラスの例として、ガラス1及びガラス2を挙げた。その一方、ガラスの性質によっては、本発明を適用するのが更に好ましい場合がある。具体例を挙げると、純水に決まった時間浸漬させても表面がもともと白濁しにくいガラスよりも、純水に決まった時間浸漬させると表面が白濁しやすいガラスの方が、白濁を抑制し、ガラス物品の品質を維持する効果を顕著に発現できるという点で、本発明の適用が更に有効である。
 そこで、「本発明の適用が可能なガラス」と「本発明の適用が好適なガラス」を区別し得る規定を設けるべく、本発明者は調査を行った。この調査に際し、純水に15時間浸漬させると表面が白濁するガラス(上記のガラス1)と15時間純水に浸漬させても表面が白濁しないフッ素系ガラス(ガラスα)の2種類のガラスに対して、XPSスペクトルの測定を行った。測定条件は上記の実施例と同様とした。以降、特記のない事項については実施例と同様とする。なお、ガラスαは、P5+を24.4カチオン%、O2-を49.7アニオン%、Fを50.3アニオン%、その他のカチオン成分を含む。
 まず、ガラス1に対するXPSを行った結果を検証例1として、以下、説明する。図9は、ガラス1を用いて作製したガラス基板に対し、XPSを行った結果を示すグラフである。
  図9において、横軸は束縛エネルギー、縦軸はXPSの信号強度である。ここでは、酸素O1sに注目し、束縛エネルギーが525~540eVの範囲でXPSスペクトルを示す。
  図9において、白丸は、ガラス1から構成されるガラス基板を純水に15時間浸漬させた場合のガラス基板の最表面について得られたデータである。黒丸は、上記ガラス基板の最表面をスパッタにより100nm掘り下げた面についてXPS分析を行い、得られたデータである。すなわち、白丸は純水浸漬後の表面側(最表面)に関するプロットであり、黒丸はガラス基板の内部側に関するプロットである。
  本例では、ガラス基板の最表面から100nmよりも深い部分は、深さによらず、ほぼ一定の組成を有している。
  なお、ガラス1から構成されるガラス基板は、純水に15時間浸漬させた後、表面が白濁していた。
 一方、ガラスαに対するXPSを行った結果を検証例2として、以下、説明する。図10は、ガラスαを用いて作製したガラス基板に対し、XPSを行った結果を示すグラフであり、Oについての結果を示すグラフである。
  図10において、横軸は束縛エネルギー、縦軸はXPSの信号強度である。
  図10も、束縛エネルギーが525~540eVの範囲でXPS波形を示す。
  図10において、白丸は、ガラスαから構成されるガラス基板を純水に15時間浸漬させた場合のガラス基板の最表面のプロットであり、黒丸は、上記ガラス基板の最表面をスパッタにより100nm掘り下げた面についてXPS分析を行って得られたデータである。すなわち、白丸は純水浸漬後の表面側(最表面)に関するプロットであり、黒丸はガラス基板の内部側に関するプロットである。
  本例でも、ガラス基板の最表面から100nmよりも深い部分は、深さによらず、ほぼ一定の組成を有している。
  なお、ガラスαから構成されるガラス基板は、浸漬させた後、表面は白濁していなかった。
 表面が白濁していなかったガラスα(図10)では、純水浸漬後の表面側、すなわち最表面(白丸)と、内部側(黒丸)とを比べると、束縛エネルギー531.9eVにおけるXPSの信号強度は等しい、または、最表面における信号強度(白丸)のピークのほうが内部側の信号強度(黒丸)のピークよりも小さい。
 一方、表面が白濁していたガラス1(図9)では、束縛エネルギー531.9eVにおけるXPSの信号強度は、純水浸漬後の表面側、すなわち最表面(白丸)のほうが、深さ100nmの内部側(黒丸)より、著しく大きい。
 束縛エネルギーが531.9eV付近に対応する結合としては、金属-POx、金属-OH、金属-CO、金属-OFなどが挙げられる。これに対し、金属-O結合に対応する束縛エネルギーは低エネルギー側にある。
  図9では、内部側(黒丸)に比べて純水浸漬後の表面側(白丸)のピーク位置が高エネルギー側にシフトしている。
  ガラスAを用いて作製したガラス基板を純水に浸漬すると、修飾物質であるアルカリ土類金属成分やF成分が基板表面から純水へ溶出し、ヒドロニウムイオンや水酸化物イオンなどの水に由来するイオンがガラス内に進入すると考えられる。そのため、純水に浸漬することによって、基板表面の金属-POx、金属-OH等の結合状態にある酸素が相対的に増加すると考えられる。このようなガラスは、純水に浸漬することにより、表面が白濁しやすい。
  一方、ガラスαを用いて作製したガラス基板を純水に浸漬しても、基板表面の金属-POx、金属-OH等の結合状態にある酸素の相対的な増加は見られない。このようなガラスは、比較的、純水に浸漬しても、表面が白濁しにくい。
  また、表面側および内部側における各元素の存在量をXPSデータから求め、表面側における酸素Oの存在量(原子%)と内部側における酸素Oの存在量(原子%)の比率からも純水に浸漬したときに白濁しやすいガラスか白濁しにくいガラスかを区分けすることができる。
  試験例Bと同様の条件で純水に浸漬したガラスCでは、内部側における酸素Oの存在量に対する表面側における酸素Oの存在量の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が3.3であった。
  一方、同様の条件で純水に浸漬したガラスαでは、比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が1.8であった。
  このように、純水に浸漬したとき、白濁しにくいガラスでは、比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2.0未満であるのに対し、白濁しやすいガラスでは、前記比率が2.0以上となる。
  したがって、試験例Bと同様の条件で純水に浸漬した後の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2.0以上のガラス物品が、本発明の適用が好ましいガラス物品である。試験例Bと同様の条件で純水に浸漬した後の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2.5以上のガラス物品に本発明の適用がより好適であり、前記比率が3.0以上のガラス物品に本発明の適用がさらに好適である。特に、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下のガラスにおいて、試験例Bと同様の条件で純水に浸漬した後の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が上記範囲内になるガラスが好ましい。
  Fの含有量が80アニオン%以上であるガラスA、ガラスE1~ガラスE10についても、試験例Bと同様の条件で純水に浸漬した後の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が3.0以上であった。
  ガラスB、ガラスD、ガラスF1、ガラスF2についても、参考例3と同様の条件で純水に浸漬した後の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2.5以上であった。
  水に浸漬した後に表面が白濁しやすいガラスでは、ガラス表面からのフッ素の溶出量が多いため、水に浸漬した後に表面が白濁しにくいガラスと比較して、内部側におけるフッ素Fの存在量(原子%)に対する表面側におけるフッ素Fの存在量(原子%)の比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が小さくなる。
  試験例Bと同様の条件で純水に浸漬したガラスCでは、比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.5である。
  一方、同様の条件で純水に浸漬したガラスαでは、比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.74である。
  このように、純水に浸漬したとき、白濁しにくいガラスでは、比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が0.7以上であるのに対し、白濁しやすいガラスでは、前記比率が0.7未満となる。
  したがって、試験例Bと同様の条件で純水に浸漬した後の比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.7未満のガラス物品が、本発明の適用が好ましいガラス物品である。試験例Bと同様の条件で純水に浸漬した後の比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.65以下のガラス物品に本発明の適用がより好適であり、前記比率が0.6以下のガラス物品に本発明の適用がさらに好適であり、前記比率が0.55以下のガラス物品に本発明の適用が一層好適である。
  ガラスA、ガラスE1~ガラスE10についても、試験例Bと同様の条件で純水に浸漬した後の比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.55以下となる。
  なお、ガラス物品の表面側についてXPS分析を行う場合、分析を行う面を光学研磨面とすることが好ましい。
  このように、純水浸漬後の最表面のXPSスペクトルと、スパッタにより100nm掘り下げた面のXPSスペクトルとの間に見られる関係は、純水浸漬後のガラス表面の白濁しやすさと関連付けることができる。
 以上の内容をまとめると、上記の実施の形態に記載の内容に加え、以下の関係を満たすガラスを用いて作製したガラス物品であれば、本発明の適用が更に好適になる。
  Isur>Iin
  Isur:純水に15時間浸漬させたガラスの表面において、束縛エネルギー531.9eVでのXPSの信号強度
  Iin:純水に15時間浸漬させたガラスの最表面より深さ100nm掘り下げた面において、束縛エネルギー531.9eVでのXPSの信号強度
  ただし、Isur、Iinは任意単位ではあるが、共通の単位により求めた値である。
  また、XPSの測定条件は、前述の条件と同様、以下の通りである。
    励起X線:Al mono
    検出領域:φ100μm
    取出し角:45deg
    検出深さ:4~5nm(表面)
    スパッタ深さ:100nm
    スパッタリング条件:Ar 2.0kV
    スパッタリングレート:約5nm/min(SiO換算)
  16℃の純水に15時間浸漬した後において、比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2.0以上のガラス物品が好ましく、前記比率が2.5以上のガラス物品がより好ましく、前記比率が3.0以上のガラス物品がさらに好ましい。
 なお、上記の例では、浸漬させる対象が純水の場合について述べたが、水酸化ナトリウム(NaOH)の場合についても、同様のことが言える。つまり、NaOH水溶液(pH=8.2)に決まった時間浸漬させても表面がもともと白濁しにくいガラスαよりも、NaOH水溶液(pH=8.2)に決まった時間浸漬させるとガラス内の所定の成分が溶出して表面が白濁しやすいガラス1の方が、白濁を抑制し、ガラス物品の品質を維持する効果を顕著に発現できるという点で、本発明の適用が更に有効である。そして、NaOH水溶液(pH=8.2)に浸漬したときの表面の白濁しやすさについても、条件「Isur>Iin」と関連付けることができる。
 この場合、上記の実施の形態に記載の内容に加え、以下の関係を満たすガラスであれば、本発明の適用が更に好適になる。
  NaOH水溶液(pH=8.2)に15時間浸漬させた後のガラスの表面のヘイズ値>1%
  更に好適な関係としては、以下の通りである。
  NaOH水溶液(pH=8.2)に15時間浸漬させた後のガラスの表面のヘイズ値>5%
  一層好適な関係としては、以下の通りである。
  NaOH水溶液(pH=8.2)に15時間浸漬させた後のガラスの表面のヘイズ値>10%
 つまり、NaOH水溶液とガラス物品とが接触することによりガラスの表面の品質が低下してしまうようなガラスほど、本発明を適用することに著しい価値が生まれる。そのため、上記性質を有するガラスを用いて作製されたガラス物品ほど好適である。
  なお、ガラスA~D、ガラスE1~E10、ガラスF1、ガラスF2は、いずれも、上記水酸化ナトリウム水溶液に15時間浸漬すると表面が白濁する。
 以下、本発明の別の態様について付記する。
[付記1]
  液体を用いてガラス物品を洗浄する洗浄工程を有するガラス物品の製造方法であって、
  前記液体を構成する物質を、ガラス成分をガラス物品の表面に対して新たに供給する源とし、ガラス物品の前記液体と接する表面の欠陥発生を抑制することを特徴とするガラス物品の製造方法。
[付記2]
  液体を用いてガラス物品を洗浄する洗浄工程を有するガラス物品の製造方法であって、
前記液体は、溶媒及び溶質から構成される溶液であり、
  前記洗浄工程の際に、前記溶質を、ガラス成分をガラス物品に対して新たに供給する源とすることを特徴とするガラス物品の製造方法。[付記3]
  ガラス素材を加工してなるガラス物品を製造する方法であって、
  前記ガラス素材または前記ガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス素材または前記ガラス物品を処理する処理工程を有し、
  前記ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  前記処理液が接触した前記ガラス素材または前記ガラス物品の表面において、前記溶質の一部が、前記ガラス成分の少なくとも一種と結合して、前記表面を前記溶媒に対して難溶化することを特徴とするガラス物品の製造方法。
[付記4]
  前記ガラス物品の表面に、難溶性化合物を形成することを特徴とする付記3に記載のガラス物品の製造方法。
[付記5]
  前記難溶性化合物は、リン酸アルミニウムである付記4に記載のガラス物品の製造方法。
[付記6]
  前記ガラス素材のFの含有量が55アニオン%以上、Oの含有量が45アニオン%以下であることを特徴とする付記3~5のいずれかに記載のガラス物品の製造方法。
[付記7]
  ガラス素材を加工してなるガラス物品を製造する方法であって、
  前記ガラス素材または前記ガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス素材または前記ガラス物品を処理する処理工程を有し、
  前記ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  前記処理液がリン酸塩溶液であることを特徴とするガラス物品の製造方法。
[付記8]
  前記処理液中に含まれる水素の前記ガラス素材または前記ガラス物品中への移動を抑制することを特徴とする付記3~7のいずれかに記載のガラス物品の製造方法。
[付記9]
  ガラス素材を加工してなるガラス物品を製造する方法であって、
  前記ガラス素材または前記ガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス素材または前記ガラス物品を処理する処理工程を有し、
  前記ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  前記処理液が接触した前記ガラス素材または前記ガラス物品の表面において、前記溶質の一部が前記ガラス成分の少なくとも一種と結合することにより、前記処理液中に含まれる水素の前記ガラス素材または前記ガラス物品内への移動を抑制することを特徴とするガラス物品の製造方法。
[付記10]
  前記ガラス素材のFの含有量が55アニオン%以上、Oの含有量が45アニオン%以下であることを特徴とする付記7~9のいずれかに記載のガラス物品の製造方法。
[付記11]
  前記溶質がリン酸塩である付記3~10のいずれかに記載のガラス物品の製造方法。
[付記12]
  前記溶媒が水を含むことを特徴とする付記3~11のいずれかに記載のガラス物品の製造方法。
[付記13]
  前記ガラス素材は、Znを含むことを特徴とする付記3~12のいずれかに記載のガラス物品の製造方法。
[付記14]
  前記ガラス素材は、希土類元素を含むことを特徴とする付記3~13のいずれかに記載のガラス物品の製造方法。
[付記15]
  前記処理液がpHの緩衝作用を有することを特徴とする付記3~14のいずれかに記載のガラス物品の製造方法。
[付記16]
  前記処理液のpHが3~9.8であることを特徴とする付記3~15のいずれかに記載のガラス物品の製造方法。
[付記17]
  前記処理工程は、前記処理液を研削液として用いる研削工程、前記処理液を研磨液として用いる研磨工程、前記処理液を洗浄液として用いる洗浄工程から選ばれる少なくとも1つである付記3~16のいずれかに記載のガラス物品の製造方法。
[付記18]
  前記洗浄工程は、前記処理液をリンス液として用いるリンス工程を含むことを特徴とする付記17に記載のガラス物品の製造方法。
[付記19]
  前記洗浄工程後に、前記ガラス物品に被膜を形成する被膜形成工程を有することを特徴とする付記17または18に記載のガラス物品の製造方法。
[付記20]
  前記ガラス物品が光学素子であることを特徴とする付記3~19のいずれかに記載のガラス物品の製造方法。
[付記21]
  ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス物品を処理するガラス物品の処理方法であって、
  前記ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  前記処理液が接触した前記ガラス物品の表面において、前記処理液中に含まれる溶質の一部が、前記ガラス成分の少なくとも一種と結合して、前記表面を前記溶媒に対して難溶化することを特徴とするガラス物品の処理方法。
[付記22]
  ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス物品を処理するガラス物品の処理方法であって、
  前記ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  前記処理液がリン酸塩溶液であることを特徴とするガラス物品の処理方法。
[付記23]
  ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させて前記ガラス物品を処理するガラス物品の処理方法であって、
  前記ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、

  前記処理液が接触した前記ガラス物品の表面において、前記処理液中に含まれる溶質の一部が前記ガラス成分の少なくとも一種と結合することにより、前記処理液中に含まれる水素の前記ガラス素材または前記ガラス物品内への移動を抑制することを特徴とするガラス物品の処理方法。[付記24]
  前記処理工程は、研磨加工後のガラス物品を前記保管液に接触させて保管する保管工程であることを特徴とする付記3~16のいずれかに記載のガラス物品の製造方法。
[付記25]

  前記保管工程において保管したガラス素材またはガラス物品を洗浄する洗浄工程を有することを特徴とする付記24に記載のガラス物品の製造方法。
 続いて実施の形態について総括する。
 本発明の実施の形態1は、
  P、Al、アルカリ土類金属、F及びOを含有するガラス物品であって、
  P及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、
  アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とするガラス物品である。
  好ましくは、さらに、アルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないガラス物品である。
 本発明の実施の形態2は、形態1において、
  Alの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とするガラス物品である。
 本発明の実施の形態3は、形態1または2において、
  酸化状態のAl及びリン酸塩状態のAlの合計含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いのが好ましい。
 本発明の実施の形態4は、形態1ないし3のいずれかにおいて、
  リン酸塩状態のAlの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いのが好ましい。
 本発明の実施の形態5は、形態1ないし4のいずれかにおいて、
  酸化状態のAl及びリン酸塩状態のAlの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いのが好ましい。
 本発明の実施の形態6は、形態1ないし5のいずれかにおいて、
  フッ化状態のアルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことが好ましい。
 本発明の実施の形態7は、形態1ないし6において、
  前記アルカリ土類金属は、Mg、Ca、Sr及びBaのうち少なくともいずれかであることが好ましい。
 本発明の実施の形態8は、形態1ないし7のいずれかにおいて、
  Fの含有量(Fの含有量)が55アニオン%以上、Oの含有量(O2-の含有量)が45アニオン%以下であるガラスを用いて作製されたガラス物品であることが好ましく、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下であるガラスを用いて作製されたガラス物品であることがより好ましく、Fの含有量が85アニオン%以上、Oの含有量が15アニオン%以下であるガラスを用いて作製されたガラス物品であることがさらに好ましい。
 本発明の実施の形態9は、形態1ないし8のいずれかにおいて、
  前記ガラス物品の表面のヘイズ値が1%以下であることが好ましい。
  本発明の実施の形態において、P5+含有量に対するO2-含有量のモル比O2-/P5+が2.8以上であるガラスを用いて作製されたガラス物品であることが好ましい。
 本発明の実施の形態において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、モル比O2-/P5+が2.5以上であるガラスを用いて作製されたガラス物品であることが好ましく、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下、モル比O2-/P5+が2.5以上であるガラスを用いて作製されたガラス物品であることがより好ましく、Fの含有量が85アニオン%以上、Oの含有量が15アニオン%以下、モル比O2-/P5+が2.5以上であるガラスを用いて作製されたガラス物品であることがさらに好ましい。
 本発明の実施の形態において、下記(1)式を満たすガラスを用いて作製されたガラス物品であることが好ましい。
  Isur>Iin ・・・ (1)
  ただし、
  Isur:純水に15時間浸漬させたガラスの表面において、束縛エネルギー531.9eVでのXPSの信号強度
  Iin:純水に15時間浸漬させたガラスの最表面より深さ100nm掘り下げた面において、束縛エネルギー531.9eVでのXPSの信号強度
  Isur、Iinは任意単位ではあるが、共通の単位により求めた値。
 本発明の実施の形態において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、上記(1)式を満たすガラスを用いて作製されたガラス物品であることが好ましく、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下、上記(1)式を満たすガラスを用いて作製されたガラス物品であることがより好ましく、Fの含有量が85アニオン%以上、Oの含有量が15アニオン%以下、上記(1)式を満たすガラスを用いて作製されたガラス物品であることがさらに好ましい。
 本発明の実施の形態において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、モル比O2-/P5+が2.5以上、上記(1)式を満たすガラスを用いて作製されたガラス物品であることが好ましく、Fの含有量が80アニオン%以上、Oの含有量が20アニオン%以下、モル比O2-/P5+が2.5以上、上記(1)式を満たすガラスを用いて作製されたガラス物品であることがより好ましく、Fの含有量が85アニオン%以上、Oの含有量が15アニオン%以下、モル比O2-/P5+が2.5以上、上記(1)式を満たすガラスを用いて作製されたガラス物品であることがさらに好ましい。
 本発明の実施の形態において、NaOH水溶液(pH=8.2)に15時間浸漬させた後のガラスの表面のヘイズ値が1%を超えるガラスを用いて作製されたガラス物品であることが好ましい。
 また、上記の各形態において、
  希土類元素を含み、原子%表示にて、内部側における希土類元素の合計含有量をRE(in)、表面側における希土類元素の合計含有量をRE(su)としたとき、RE(in)に対するRE(su)の比(RE(su)/RE(in))が3以下であるガラス物品が好ましい。
 また、上記の各形態において、
  原子%表示にて、内部側におけるOの含有量をO(in)、表面側におけるOの含有量をO(su)としたとき、O(in)に対するO(su)の比(O(su)/O(in))が2.0以上であるガラス物品が好ましく、特に、Fの含有量が80アニオン%以上であることが好ましい。
 また、上記の各形態において、
  酸化状態のAl及びリン酸塩状態のAlの合計含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いガラス物品が好ましい。
 また、上記各形態において、希土類元素の合計含有量が0.1カチオン%以上であるガラス物品が好ましく、Y、La、Gd、YbおよびLuの合計含有量が0.1カチオン%以上であるガラス物品が好ましい。
 また、上記各形態において、希土類元素の合計含有量が12カチオン%以下であるガラス物品が好ましく、Y、La、Gd、YbおよびLuの合計含有量が12カチオン%以下であるガラス物品が好ましい。
 また、上記の各形態において、  原子%表示で、Alの含有量をAl(all)、酸化状態のAlの含有量をAl(ox)、リン酸塩状態のAlの含有量をAl(ph)としたとき、表面側においてAl(all)に対するAl(ox)とAl(ph)の合計量の比((Al(ox)+Al(ph))/Al(all))が0.5以上であるガラス物品が好ましい。
 上記の各形態において、ガラス物品が、16℃の純水に15時間浸漬した後、内部側における酸素Oの存在量(原子%)に対する表面側における酸素Oの存在量(原子%)の比率(表面側における酸素Oの存在量/内部側における酸素Oの存在量)が2以上となるガラス物品であることが好ましく、前記比率が2.5以上のガラス物品であることがより好ましく、前記比率が3.0以上のガラス物品であることがさらに好ましい。
 上記の各形態において、ガラス物品が、16℃の純水に浸漬した後、内部側におけるフッ素Fの存在量(原子%)に対する表面側におけるフッ素Fの存在量(原子%)の比率(表面側におけるフッ素Fの存在量/内部側におけるフッ素Fの存在量)が0.7未満のガラス物品であることが好ましく、前記比率が0.65以下のガラス物品であることがより好ましく、前記比率が0.6以下のガラス物品であることがさらに好ましく、前記比率が0.55以下のガラス物品であることが一層好ましい。
 上記の各形態において、内部側のFの含有量に対する表面側のFの含有量の比(表面側のFの含有量/内部側のFの含有量)が0.80以下であることが好ましく、0.75以下であることがより好ましく、0.70以下であることがさらに好ましい。
 本発明の実施の形態10は、上記各形態において、
  前記ガラス物品は光学素子であることが好ましい。
 また、本発明の実施の形態10において、光学研磨面を有するガラス物品であることが好ましい。
 最後に、本発明の別の形態について総括する。 
 本発明の別の形態1は、ガラス素材を加工してなるガラス物品を製造する方法であって、ガラス素材またはガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材またはガラス物品を処理する処理工程を有し、ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属元素、OおよびFを含み、
  処理液が接触したガラス素材またはガラス物品の表面において、溶質の一部が、ガラス成分の少なくとも一種と結合して、表面を溶媒に対して難溶化することを特徴とするガラス物品の製造方法である。
 別の形態1において、処理液が接触したガラス素材またはガラス物品の表面において、ガラス素材に含まれるアルカリ土類金属成分およびF成分のうち少なくとも一種が処理液へ溶出し、溶質の一部がガラス成分の少なくとも一種と結合して、難溶性化合物を形成するガラス物品の製造方法であることが好ましい。
 また、別の形態1において、溶質がリン酸塩であることが好ましい。
 また、別の形態1において、処理液中のリン酸イオンがガラス中のAl成分と結合して、難溶性化合物を形成することが好ましい。
 また、別の形態1において、ガラス素材が、ガラス成分としてZnを含み、処理液中のリン酸イオンがガラス中のZn成分と結合して、難溶性化合物を形成することが好ましい。
 本発明の別の形態2は、ガラス素材を加工してなるガラス物品を製造する方法であって、ガラス素材またはガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材またはガラス物品を処理する処理工程を有し、
  ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、
  処理液が接触したガラス素材またはガラス物品の表面において、溶質の一部がガラス成分の少なくとも一種と結合することにより、処理液中に含まれる水素のガラス内への移動を抑制することを特徴とするガラス物品の製造方法である。
 別の形態2において、処理液が接触したガラス素材またはガラス物品の表面において、ガラス素材に含まれるアルカリ土類金属成分およびF成分のうち少なくとも一種が処理液へ溶出し、溶質の一部がガラス成分の少なくとも一種と結合して、水素の移動を抑制することが好ましい。
 また、別の形態2において、溶質がリン酸塩であることが好ましい。
 本発明の別の形態3は、ガラス素材を加工してなるガラス物品を製造する方法であって、ガラス素材またはガラス物品の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材またはガラス物品を処理する処理工程を有し、ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属、OおよびFを含み、
  処理液がリン酸塩溶液であることを特徴とするガラス物品の製造方法である。
 別の形態3において、処理液が接触したガラス素材またはガラス物品の表面において、ガラス素材に含まれるアルカリ土類金属成分およびF成分のうち少なくとも一種が処理液へ溶出し、処理液中に含まれるリン酸イオンとガラス成分の少なくとも一種とが結合するガラス物品の製造方法であることが好ましい。
 上記別の形態1~3において、処理液中に含まれる水素のガラス中への水素の移動を抑制するガラス物品の製造方法であることが好ましい。
 上記別の形態1~3において、溶媒が水を含むことが好ましい。
 また上記別の形態1~3において、ガラス素材において、Fの含有量(Fの含有量)が20アニオン%以上、Oの含有量(O2-の含有量)が80アニオン%以下であることが好ましい。
 また上記別の形態1~3において、ガラス素材において、Fの含有量(Fの含有量)が55アニオン%以上、Oの含有量(O2-の含有量)が45アニオン%以下であることが好ましい。
 また上記別の形態1~3において、ガラス素材において、P5+含有量に対するO2-含有量のモル比O2-/P5+が2.8以上であるガラスを用いて作製されたものであることが好ましい。
 また、ガラス素材において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、モル比O2-/P5+が2.5以上であるガラスを用いて作製されたものであることが好ましい。
 また、ガラス素材において、下記(1)式を満たすガラスを用いて作製されたものであることが好ましい。
  Isur>Iin ・・・ (1)
  ただし、
  Isur:純水に15時間浸漬させたガラスの表面において、束縛エネルギー531.9eVでのXPSの信号強度
  Iin:純水に15時間浸漬させたガラスの最表面より深さ100nm掘り下げた面において、束縛エネルギー531.9eVでのXPSの信号強度
  Isur、Iinは任意単位ではあるが、共通の単位により求めた値。
 また、ガラス素材において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、上記(1)式を満たすガラスを用いて作製されたものであることが好ましい。
 また、ガラス素材において、Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下、モル比O2-/P5+が2.5以上、上記(1)式を満たすガラスを用いて作製されたものであることが好ましい。
 また、ガラス素材において、NaOH水溶液(pH=8.2)に15時間浸漬させた後のガラスの表面のヘイズ値が1%を超えるガラスを用いて作製されたものであることが好ましい。
 また上記別の形態1~3において、ガラス素材は、Znを含むことが好ましい。
 また上記別の形態1~3において、ガラス素材は、希土類元素を含むことが好ましい。
 また上記別の形態1~3において、ガラス素材は、希土類元素を0.1カチオン%以上含むことが好ましい。
 また上記別の形態1~3において、ガラス素材は、希土類元素としてY3+を含むことが好ましい。
 また上記別の形態1~3において、ガラス素材は、Y3+を0.1カチオン%以上含むことが好ましい。
 また上記別の形態1~3において、ガラス素材は、アルカリ金属を含むことが好ましい。
 また上記別の形態1~3において、処理液がpHの緩衝作用を有することが好ましい。
 また上記別の形態1~3において、処理液のpHが3~9.8であることが好ましい。
 また上記別の形態1~3において、処理工程は、処理液を研削液として用いる研削工程、処理液を研磨液として用いる研磨工程および処理液を洗浄液として用いる洗浄工程から選ばれる少なくとも1つであることが好ましい。
 また上記別の形態1~3において、洗浄工程は、処理液をリンス液として用いるリンス工程を含むことが好ましい。
 また上記別の形態1~3において、洗浄工程後に、ガラス物品に被膜を形成する被膜形成工程を有することが好ましい。
 また上記別の形態1~3において、ガラス物品が光学素子であることが好ましい。
 また、光学研磨面を有するガラス物品であることが好ましい。
 本発明の別の形態4は、ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス物品を処理するガラス物品の処理方法であって、ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液は溶質と溶媒とを含み、処理液が接触したガラス物品の表面において、溶質の一部がガラス成分の少なくとも一種と結合して、溶媒に対して難溶な化合物を形成することを特徴とするガラス物品の処理方法である。
 本発明の別の形態5は、加工によりガラス物品となるべきガラス素材の少なくとも一部の表面を、溶質と溶媒とを含む処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材を処理するガラス素材の処理方法であって、ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液が接触したガラス素材の表面において、溶質の一部がガラス成分の少なくとも一種と結合して、溶媒に対して難溶な化合物を形成することを特徴とするガラス素材の処理方法である。
 本発明の別の形態6は、ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス物品を処理するガラス物品の処理方法であって、ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液は溶質と溶媒とを含み、処理液が接触したガラス物品の表面において、溶質の一部が、ガラス成分の少なくとも一種と結合して、表面を溶媒に対して難溶化することを特徴とするガラス物品の処理方法である。
 本発明の別の形態7は、加工によりガラス物品となるべきガラス素材の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材を処理するガラス素材の処理方法であって、
  ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液は溶質と溶媒とを含み、処理液が接触したガラス素材の表面において、溶質の一部が、ガラス成分の少なくとも一種と結合して、表面を溶媒に対して難溶化することを特徴とするガラス素材の処理方法である。
 本発明の別の形態8は、ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス物品を処理するガラス物品の処理方法であって、ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液は溶質と溶媒とを含み、
  処理液が接触したガラス物品の表面において、溶質の一部がガラス成分の少なくとも一種と結合することにより、処理液中に含まれる水素のガラス内への移動を抑制することを特徴とするガラス物品の処理方法である。
 本発明の別の形態9は、加工によりガラス物品となるべきガラス素材の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材を処理するガラス素材の処理方法であって、ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属、O、Fを含み、処理液は溶質と溶媒とを含み、処理液が接触したガラス素材の表面において、溶質の一部が前記ガラス成分の少なくとも一種と結合することにより、処理液中に含まれる水素のガラス内への移動を抑制することを特徴とするガラス素材の処理方法である。
 本発明の別の形態10は、ガラス物品の少なくとも一部の表面を処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス物品を処理するガラス物品の処理方法であって、ガラス物品は、ガラス成分として少なくともP、Al、アルカリ土類金属、OおよびFを含み、処理液がリン酸塩溶液であることを特徴とするガラス物品の処理方法である。
 本発明の別の形態11は、加工によりガラス物品となるべきガラス素材の少なくとも一部の表面を、処理液(研削液、研磨液、洗浄液、リンス液、保管液等)に接触させてガラス素材を処理するガラス素材の処理方法であって、ガラス素材は、ガラス成分として少なくともP、Al、アルカリ土類金属、OおよびFを含み、処理液がリン酸塩溶液であることを特徴とするガラス素材の処理方法である。
 なお、上記処理方法に関する別の形態4~11における好ましい形態は、上記ガラス物品の製造方法に関する別の形態における好ましい形態と同様である。
 上記各態様、各形態は、相互に矛盾が生じない限り、任意の組み合わせが可能である。

Claims (14)

  1.  P、Al、アルカリ土類金属、F及びOを含有するガラス物品であって、
     P及びOの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多く、
     アルカリ土類金属の合計含有量及びFの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とするガラス物品。
  2.  アルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とする請求項1に記載のガラス物品。
  3.  Alの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とする請求項1または2に記載のガラス物品。
  4.  前記ガラス物品は、希土類元素を含み、原子%表示にて、ガラス物品の内部側における希土類元素の合計含有量をRE(in)、ガラス物品の表面側における希土類元素の合計含有量をRE(su)としたとき、RE(in)に対するRE(su)の比(RE(su)/RE(in))が3以下であることを特徴とする請求項1ないし3のいずれかに記載のガラス物品。
  5.  原子%表示にて、ガラス物品の内部側におけるOの含有量をO(in)、ガラス物品の表面側におけるOの含有量をO(su)としたとき、O(in)に対するO(su)の比(O(su)/O(in))が2.0以上であることを特徴とする請求項1ないし4のいずれかに記載のガラス物品。
  6.  酸化状態のAl及びリン酸塩状態のAlの合計含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とする請求項1ないし5のいずれかに記載のガラス物品。
  7.  リン酸塩状態のAlの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とする請求項1ないし6のいずれかに記載のガラス物品。
  8. 原子%表示で、結合状態毎のAlの含有量の合計をAl(all)、酸化状態のAlの含有量をAl(ox)、リン酸塩状態のAlの含有量をAl(ph)としたとき、表面側においてAl(all)に対するAl(ox)とAl(ph)の合計量の比((Al(ox)+Al(ph))/Al(all))が0.5以上であることを特徴とする請求項1ないし7のいずれかに記載のガラス物品。
  9.  酸化状態のAl及びリン酸塩状態のAlの含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも多いことを特徴とする請求項1ないし8のいずれかに記載のガラス物品。
  10.  フッ化状態のアルカリ土類金属の含有量については、ガラス物品の表面側が、ガラス物品の内部側よりも少ないことを特徴とする請求項9に記載のガラス物品。
  11.  前記アルカリ土類金属は、Mg、Ca、Sr及びBaのうち少なくともいずれかであることを特徴とする請求項1ないし10のいずれかに記載のガラス物品。
  12.  Fの含有量が55アニオン%以上、Oの含有量が45アニオン%以下であることを特徴とする請求項1ないし11のいずれかに記載のガラス物品。
  13.  前記ガラス物品の表面のヘイズ値が1%以下であることを特徴とする請求項1ないし12のいずれかに記載のガラス物品。
  14.  前記ガラス物品は光学素子であることを特徴とする請求項1ないし13のいずれかに記載のガラス物品。
PCT/JP2013/082275 2012-11-30 2013-11-29 ガラス物品 WO2014084380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157012826A KR101875261B1 (ko) 2012-11-30 2013-11-29 유리 물품
US14/648,821 US9718723B2 (en) 2012-11-30 2013-11-29 Glass article
JP2014549935A JP6293672B2 (ja) 2012-11-30 2013-11-29 ガラス物品およびその製造方法
CN201380059715.8A CN104797540B (zh) 2012-11-30 2013-11-29 玻璃物品

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2012263740 2012-11-30
JP2012-263740 2012-11-30
JP2012-263738 2012-11-30
JP2012263739 2012-11-30
JP2012-263739 2012-11-30
JP2012263738 2012-11-30
JP2013113431 2013-05-29
JP2013-113432 2013-05-29
JP2013-113431 2013-05-29
JP2013-113433 2013-05-29
JP2013113432 2013-05-29
JP2013113433 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014084380A1 true WO2014084380A1 (ja) 2014-06-05

Family

ID=50828008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082275 WO2014084380A1 (ja) 2012-11-30 2013-11-29 ガラス物品

Country Status (6)

Country Link
US (1) US9718723B2 (ja)
JP (1) JP6293672B2 (ja)
KR (1) KR101875261B1 (ja)
CN (1) CN104797540B (ja)
TW (1) TWI616419B (ja)
WO (1) WO2014084380A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012763A1 (ja) * 2017-07-12 2019-01-17 日本電産株式会社 レンズ製造方法
WO2020059431A1 (ja) * 2018-09-20 2020-03-26 日本電気硝子株式会社 赤外線吸収ガラスの製造方法
JP2021172574A (ja) * 2020-04-30 2021-11-01 日本電気硝子株式会社 ガラス板の前処理方法及びガラス物品の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150105944A (ko) * 2013-01-10 2015-09-18 호야 가부시키가이샤 광학 소자의 제조 방법
CR20170028A (es) 2014-06-27 2017-09-28 Vidrio Plano Mexico Sa De Cv Proceso de fabricación de láminas de vidrio con acabado difuso y lámina de vidrio resultante
CN106145668B (zh) 2016-06-24 2019-01-04 成都光明光电股份有限公司 光学玻璃、光学预制件和光学元件
KR102022976B1 (ko) * 2017-05-19 2019-09-20 한국광기술원 형광 장수명 특성을 갖는 능동소자용 불소인산염계 유리
KR102608946B1 (ko) * 2018-09-28 2023-11-30 시디지엠 글라스 컴퍼니 리미티드 플루오로포스페이트 광학 유리, 광학 프리폼, 소자 및 기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153843A (ja) * 1988-12-06 1990-06-13 Asahi Glass Co Ltd 表面処理されたリン酸塩系ガラスおよびその表面処理方法
JPH10330132A (ja) * 1997-04-04 1998-12-15 Hoya Corp ガラス製品の製造方法およびフィルター
US6093484A (en) * 1997-04-04 2000-07-25 Hoya Corporation Method for the production of glass product
JP2010083733A (ja) * 2008-10-02 2010-04-15 Olympus Corp 加工液およびガラス製品の製造方法
JP2013112585A (ja) * 2011-11-30 2013-06-10 Hoya Corp ガラスの処理方法および光学素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053360A (en) * 1987-12-04 1991-10-01 Kigre, Inc. Ion-exchangeable phosphate glass compositions and strengthened optical quality glass articles
JPH11209144A (ja) * 1998-01-21 1999-08-03 Hoya Corp 近赤外吸収フィルター用ガラスおよびそれを用いた近赤外吸収フィルター
US6652972B1 (en) * 1999-11-01 2003-11-25 Schott Glass Technologies Inc. Low temperature joining of phosphate glass
US20050188724A1 (en) 2004-03-01 2005-09-01 Hoya Corporation Process for the production of precision press-molding preform and process for the production of optical element
JP4166173B2 (ja) * 2004-03-05 2008-10-15 Hoya株式会社 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP4458897B2 (ja) * 2004-03-29 2010-04-28 Hoya株式会社 熔融ガラス流出ノズル、およびガラス成形体、プレス成形用プリフォーム、光学素子それぞれの製造方法
JP5016826B2 (ja) 2006-01-30 2012-09-05 Hoya株式会社 成形用ガラス素材の製造方法、ガラス素材、及びガラス光学素子の製造方法
JP5491686B2 (ja) * 2006-09-07 2014-05-14 株式会社オハラ ガラス
JP2009167039A (ja) 2008-01-15 2009-07-30 Nippon Electric Glass Co Ltd ガラス物品の保管方法及びレンズ硝材の製造方法
JP5371667B2 (ja) 2008-09-30 2013-12-18 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2015095565A1 (en) * 2013-12-20 2015-06-25 Novartis Ag Molds for making contact lenses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153843A (ja) * 1988-12-06 1990-06-13 Asahi Glass Co Ltd 表面処理されたリン酸塩系ガラスおよびその表面処理方法
JPH10330132A (ja) * 1997-04-04 1998-12-15 Hoya Corp ガラス製品の製造方法およびフィルター
US6093484A (en) * 1997-04-04 2000-07-25 Hoya Corporation Method for the production of glass product
JP2010083733A (ja) * 2008-10-02 2010-04-15 Olympus Corp 加工液およびガラス製品の製造方法
JP2013112585A (ja) * 2011-11-30 2013-06-10 Hoya Corp ガラスの処理方法および光学素子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012763A1 (ja) * 2017-07-12 2019-01-17 日本電産株式会社 レンズ製造方法
WO2020059431A1 (ja) * 2018-09-20 2020-03-26 日本電気硝子株式会社 赤外線吸収ガラスの製造方法
JPWO2020059431A1 (ja) * 2018-09-20 2021-09-09 日本電気硝子株式会社 赤外線吸収ガラスの製造方法
JP7452428B2 (ja) 2018-09-20 2024-03-19 日本電気硝子株式会社 赤外線吸収ガラスの製造方法
JP2021172574A (ja) * 2020-04-30 2021-11-01 日本電気硝子株式会社 ガラス板の前処理方法及びガラス物品の製造方法

Also Published As

Publication number Publication date
TW201439023A (zh) 2014-10-16
JP6293672B2 (ja) 2018-03-14
US9718723B2 (en) 2017-08-01
CN104797540A (zh) 2015-07-22
CN104797540B (zh) 2019-03-12
KR101875261B1 (ko) 2018-07-05
KR20150071028A (ko) 2015-06-25
JPWO2014084380A1 (ja) 2017-01-05
US20150299029A1 (en) 2015-10-22
TWI616419B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6293672B2 (ja) ガラス物品およびその製造方法
US8632693B2 (en) Wetting agent for semiconductors, and polishing composition and polishing method employing it
JP5160043B2 (ja) モールドプレス用ガラス素材、及びガラス光学素子の製造方法
TWI687385B (zh) 光學玻璃及光學元件
JP7219199B2 (ja) 光学ガラスおよび光学素子
KR20120004538A (ko) 광학유리, 광학소자 및 정밀 프레스 성형용 프리폼
SG177280A1 (en) Manufacturing method for glass substrates for magnetic disks
US6093484A (en) Method for the production of glass product
JP7385334B2 (ja) 光学素子及び光学装置
JPH10330132A (ja) ガラス製品の製造方法およびフィルター
JP6325460B2 (ja) 光学素子の製造方法
JP5846877B2 (ja) ガラスの処理方法および光学素子の製造方法
JP7059794B2 (ja) ガラス基板およびガラス基板の製造方法
JP6716316B2 (ja) 多層膜付き基板の再生方法、多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法
JP2002121051A (ja) 情報記録媒体用ガラス基板の製造方法、及び情報記録媒体の製造方法
US10295705B2 (en) Anti-reflection glass substrate and method for manufacturing same
JP5769585B2 (ja) ガラス製光学素子の製造方法
JP3626921B2 (ja) レンズ用無機親水性硬質層形成材料、レンズ用無機親水性硬質層形成方法
US8926759B2 (en) Manufacturing method of a glass substrate for a magnetic disk
JP2012091952A (ja) ガラスの表面処理法、ガラスの研磨方法および光学素子の製造方法。
CN105122363A (zh) 磁盘用玻璃基板的制造方法和磁盘的制造方法
JP2007065036A (ja) 光学器材用液剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549935

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012826

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14648821

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13858141

Country of ref document: EP

Kind code of ref document: A1