WO2014083939A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2014083939A1
WO2014083939A1 PCT/JP2013/076961 JP2013076961W WO2014083939A1 WO 2014083939 A1 WO2014083939 A1 WO 2014083939A1 JP 2013076961 W JP2013076961 W JP 2013076961W WO 2014083939 A1 WO2014083939 A1 WO 2014083939A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cup
electric motor
shaped member
scroll
Prior art date
Application number
PCT/JP2013/076961
Other languages
English (en)
French (fr)
Inventor
文一 長岡
西木 照彦
広康 高橋
圭亮 鳴海
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/443,692 priority Critical patent/US9976556B2/en
Priority to KR1020157013737A priority patent/KR101719937B1/ko
Priority to EP13858173.1A priority patent/EP2927498B1/en
Publication of WO2014083939A1 publication Critical patent/WO2014083939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers

Definitions

  • the present invention relates to a scroll compressor, and more particularly, to a device that prevents refrigerating machine oil from flowing out of a hermetic container at the start of operation and during operation of the scroll compressor.
  • the scroll compressor includes a hermetic container, a compression mechanism unit composed of a fixed scroll and an orbiting scroll, and an electric motor element that rotationally drives the orbiting scroll of the compression mechanism unit.
  • the refrigerant gas contains refrigeration oil that lubricates the bearing portion of the drive unit. Therefore, the refrigerating machine oil is taken out of the sealed container together with the refrigerant gas. For this reason, the refrigerating machine oil stored at the bottom of the hermetic container is reduced, and the bearing portion of the main shaft that rotationally drives the orbiting scroll is caused due to insufficient oil supply, which causes a failure of the scroll compressor.
  • This scroll compressor includes a refrigerant guide means for guiding a high-pressure refrigerant gas discharged from a discharge port of a fixed scroll to the rotor side of the electric motor, and a refrigerant gas formed through the rotor of the electric motor and guided by the refrigerant guide means. And an oil separating means for separating the oil contained in the refrigerant gas by the centrifugal force generated by the rotation of the rotor, while cooling the motor while being passed through.
  • the mixed gas of the refrigerant gas and the refrigerating machine oil discharged from the compression mechanism is guided to the upper surface side of the rotor of the electric motor by the refrigerant guide means, and the rotor and the upper and lower It descends through a through channel provided in the end ring.
  • Refrigerating machine oil contained in the refrigerant gas is separated by the centrifugal force generated by the rotation of the rotor while the mixed gas descends the through passage.
  • the balance weight for canceling the force imbalance accompanying the revolving motion of the orbiting scroll is fixed to the upper and lower surfaces of the rotor.
  • the present invention has been made to solve the above problems, and prevents the refrigerant gas and the refrigerating machine oil from being stirred by the balance weight, thereby improving the oil separation efficiency and obtaining a highly reliable scroll compressor.
  • the purpose is that.
  • a scroll compressor includes a hermetically sealed container, a compression mechanism unit that is provided in the hermetically sealed container, and has a compression chamber that compresses refrigerant by meshing the plate-like spiral teeth of the fixed scroll and the swing scroll.
  • An electric motor provided in the container for rotationally driving the orbiting scroll; a rotating shaft for transmitting a driving force of the electric motor to the orbiting scroll; a frame for rotatably supporting the rotating shaft; and a rotor of the electric motor.
  • a balance weight that is fixed to the upper surface and the lower surface and cancels out an unbalance of the force generated in the compression mechanism, and a refrigerant that guides the refrigerant gas discharged from the discharge port provided in the fixed scroll of the compression mechanism to the bottom of the sealed container
  • a cup-shaped member provided on the upper and lower surfaces of the flow path, the rotor of the electric motor and enclosing the balance weight, and a refrigerant gas containing refrigerating machine oil
  • a through passage that flows through the rotor of the electric motor from the lower side to the upper side through the opening, and an opening facing the opening of the cup-shaped member provided on the upper surface of the rotor of the electric motor.
  • a discharge cover that guides the refrigerant gas that has passed through the through channel to a discharge pipe attached to the hermetic container.
  • the cup-shaped member includes the balance weight and is installed on both the upper and lower surfaces of the rotor, the refrigerant gas discharged from the compression mechanism and the refrigerating machine oil are stirred by the balance weight. And can be led to the bottom of the closed container.
  • the refrigerating machine oil is separated from the mixed gas by the centrifugal force generated by the rotation of the rotor in the process of ascending the through passage provided in the rotor.
  • the refrigerant gas from which the refrigerating machine oil has been separated is discharged from the cup-shaped member on the upper surface of the rotor through the discharge cover and out of the sealed container through the discharge pipe.
  • the discharge cover is installed at the lower part of the frame, and is separated from the space filled with the refrigerant gas discharged from the compression mechanism and the refrigerating machine oil. It can be led out of the sealed container without being mixed with the refrigerating machine oil. Therefore, according to the present invention, the refrigerant gas and the refrigerating machine oil can be prevented from being stirred by the balance weight, the oil separation efficiency can be improved, and a highly reliable scroll compressor can be obtained.
  • FIG. 1 drawings including FIG. 1 are schematically shown, and the relationship between the sizes of the constituent members may be different from the actual one.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration and operation of the vertical scroll compressor 100 will be described.
  • This scroll compressor 100 becomes one of the components of the refrigerating cycle used for various industrial machines, such as a refrigerator, a freezer, an air conditioning apparatus, a freezing apparatus, and a water heater.
  • the scroll compressor 100 sucks the refrigerant circulating in the refrigeration cycle, compresses it, and discharges it as a high-temperature and high-pressure state.
  • the scroll compressor 100 includes a compression mechanism unit 14 that combines a fixed scroll 1 and an orbiting scroll 2 that revolves (oscillates) with respect to the fixed scroll 1 in an airtight container 10.
  • the scroll compressor 100 includes an electric motor 5 that drives the swinging scroll 2 connected to the main shaft 6 in the sealed container 10.
  • the compression mechanism is disposed on the upper side and the electric motor 5 is disposed on the lower side in the sealed container 10.
  • the fixed scroll 1 includes a base plate portion 1a and plate-like spiral teeth 1b that are spiral protrusions provided on one surface (lower side in FIG. 1) of the base plate portion 1a.
  • the orbiting scroll 2 is provided on the base plate portion 2a and one surface (upper side in FIG. 1) of the base plate portion 2a, and is a plate that is a spiral protrusion having substantially the same shape as the plate-like spiral tooth 1b. And the spiral tooth 2b.
  • the outer periphery of the fixed scroll 1 is fastened to the guide frame 4 with bolts (not shown).
  • a suction pipe 13 for introducing the refrigerant gas from the suction port 1e to the compression chamber 1f through the suction check valve 1g is provided on the outer peripheral portion of the base plate portion 1a of the fixed scroll 1.
  • a discharge port 1d that discharges the compressed and high-pressure refrigerant gas is formed at the center of the base plate portion 1a of the fixed scroll 1. Then, the compressed refrigerant gas having a high pressure is discharged into the upper space 10 a in the sealed container 10.
  • the refrigerant gas discharged to the upper space 10a is guided to the oil separation mechanism through the refrigerant flow path, and the refrigerant gas from which the oil has been separated is discharged from the discharge pipe 12 to form a refrigeration cycle. is doing.
  • the oscillating scroll 2 performs a revolving motion (oscillating motion) without rotating with respect to the fixed scroll 1 by an Oldham mechanism 9 for preventing the rotating motion.
  • a pair of Oldham guide grooves 1c are formed on a substantially straight line on the outer peripheral portion of the base plate portion 1a of the fixed scroll 1.
  • a pair of two fixed-side keys 9a of the Oldham mechanism 9 is engaged with the Oldham guide groove 1c so as to be freely slidable.
  • a pair of Oldham guide grooves 2c having a phase difference of 90 degrees with the Oldham guide groove 1c of the fixed scroll 1 are formed in a substantially straight line on the outer peripheral portion of the base plate portion 2a of the orbiting scroll 2.
  • the Oldham guide groove 2c is engaged with a pair of two swing-side keys 9b of the Oldham mechanism 9 so as to be reciprocally slidable.
  • the Oldham mechanism 9 configured as described above enables the swing scroll 2 to perform swinging motion (turning motion) without rotating.
  • a hollow cylindrical boss 2d is formed at the center of the surface of the swing scroll 2 opposite to the surface on which the plate-like spiral teeth 2b are formed (the lower side in FIG. 1).
  • An eccentric shaft portion (oscillation shaft portion) 6a provided at the upper end portion of the main shaft 6 is inserted into the boss portion 2d.
  • a thrust surface 2f slidable against the thrust bearing 3a of the compliant frame 3 is formed on the surface opposite to the plate-like spiral teeth 2b (the lower side in FIG. 1) of the base plate portion 2a of the orbiting scroll 2.
  • the base plate portion 2a of the orbiting scroll 2 is provided with a bleed hole 2g penetrating the compression chamber 1f and the thrust surface 2f, and has a structure for extracting refrigerant gas during compression and guiding it to the thrust surface 2f.
  • the compliant frame 3 is stored in the guide frame 4.
  • the compliant frame 3 is provided with an upper cylindrical surface 3p and a lower cylindrical surface 3s on the outer periphery.
  • An inner cylindrical portion of the guide frame 4 is provided with an upper cylindrical surface 4c and a lower cylindrical surface 4d into which the upper cylindrical surface 3p and the lower cylindrical surface 3s of the compliant frame 3 are respectively fitted.
  • the compliant frame 3 is supported in the radial direction in the guide frame 4 by fitting the upper cylindrical surface 3p and the upper cylindrical surface 4c, and the lower cylindrical surface 3s and the lower cylindrical surface 4d, respectively.
  • a main bearing 3c and an auxiliary main bearing 3d that support the main shaft 6 that is rotationally driven by the rotor 5a of the electric motor 5 in the radial direction are provided at the center of the lower cylindrical surface 3s of the compliant frame 3.
  • a communication hole 3e is provided through the outer periphery of the compliant frame 3 in the axial direction from within the plane of the thrust bearing 3a.
  • the thrust bearing opening 3t that opens to the upper end of the communication hole 3e is disposed so as to face the extraction hole 2g that penetrates the base plate 2a of the orbiting scroll 2.
  • the compliant frame 3 includes an intermediate pressure adjusting valve 3g for adjusting the pressure of the boss outer space 2n between the frame upper space 4a and the boss outer space 2n, an intermediate pressure adjusting valve retainer 3h, and an intermediate pressure adjusting spring.
  • An intermediate pressure adjusting valve space 3n for storing 3k is provided. The intermediate pressure adjusting spring 3k is retracted from the natural length and stored.
  • the compliant frame 3 and the guide frame 4 are configured separately. However, the present invention is not limited thereto, and both the frames may be configured as a single integrated frame.
  • the frame lower space 4b formed by the inner surface of the guide frame 4 and the outer surface of the compliant frame 3 is partitioned by ring-shaped sealing materials 7a and 7b.
  • two ring-shaped seal grooves for accommodating the ring-shaped sealing materials 7 a and 7 b are formed on the inner peripheral surface of the guide frame 4.
  • the seal grooves are formed on the outer peripheral surface of the compliant frame 3. It may be.
  • the frame lower space 4b communicates only with the communication hole 3e of the compliant frame 3, and has a structure that encloses the refrigerant gas being compressed supplied from the extraction hole 2g.
  • the space on the outer peripheral side of the thrust bearing 3a surrounded by the base plate part 2a of the orbiting scroll 2 and the compliant frame 3, that is, the base plate outer peripheral part space 2k, is a low pressure space of the intake gas atmosphere (intake pressure). It has become.
  • FIG. 2 is a cross-sectional view showing the first passage 4f provided in the outer peripheral portion of the guide frame 4 of FIG.
  • the guide frame 4 is fixed to the hermetic container 10 by shrink fitting the outer peripheral surface or welding.
  • the guide frame 4 and the fixed scroll 1, that is, the outer peripheral portion of the compression mechanism portion 14, is provided with a first passage 4 f by a notch.
  • the refrigerant gas discharged from the discharge port 1d into the upper space 10a of the sealed container 10 flows downward of the sealed container 10 through the first passage 4f.
  • the bottom of the sealed container 10 is an oil reservoir 10b in which the refrigeration oil 11 is stored.
  • the hermetic container 10 is provided with a discharge pipe 12 for discharging the refrigerant gas to the outside.
  • the first passage 4 f is provided at a position opposite to the discharge pipe 12.
  • a first discharge passage 4 g that communicates from the center of the lower end of the guide frame 4 to the side surface is provided, and the first discharge passage 4 g communicates with the discharge pipe 12.
  • a discharge cover 16 having an opening 16b is provided at the lower end of the guide frame 4 so as to surround the lower cylindrical portion (the portion where the lower cylindrical surface 4d is formed).
  • the second discharge passage 16a in the discharge cover 16 communicates with the first discharge passage 4g.
  • the electric motor 5 drives the main shaft 6 to rotate, and includes a rotor 5a fixed to the main shaft 6, a stator 5b fixed to the hermetic container 10, a main shaft 6 that is a rotating shaft, and the like.
  • the rotor 5a is shrink-fitted and fixed to the main shaft 6, and is driven to rotate by starting energization of the stator 5b to rotate the main shaft 6.
  • an upper end portion of the main shaft 6 is formed with an eccentric shaft portion 6a that is rotatably engaged with the rocking bearing 2e of the rocking scroll 2, and a main shaft balance weight 6f is shrink-fitted and fixed below the shaft portion 6a.
  • a main shaft portion 6b that is rotatably engaged with the main bearing 3c and the auxiliary main bearing 3d of the compliant frame 3 is formed below the eccentric shaft portion 6a.
  • a sub-shaft portion 6 c that is rotatably engaged with the sub-bearing 8 a of the sub-frame 8 is formed at the lower end portion of the main shaft 6.
  • the subframe 8 is provided with an inflow hole 8b through which the refrigeration oil 11 flows into the oil reservoir 10b.
  • the rotor 5a of the electric motor 5 is fixed by shrinkage fitting between the sub shaft portion 6c and the main shaft portion 6b.
  • the main shaft 6 is provided with an oil supply passage 6d composed of a hole penetrating in the axial direction, and an oil supply port 6e at the lower end of the oil supply passage 6d is held in the refrigerating machine oil 11 stored at the bottom of the sealed container 10. Therefore, the refrigerating machine oil 11 is sucked up from the oil supply port 6e by the oil supply mechanism or the pump mechanism provided in the lower part of the main shaft 6.
  • the upper end of the oil supply passage 6d is opened in the boss portion 2d of the orbiting scroll 2, and the sucked refrigeration oil 11 flows out from the upper end opening of the oil supply passage 6d to the oscillating bearing 2e. 2e is lubricated.
  • the oil supply passage 6d is provided with an oil supply hole 6g that branches in the lateral direction, and the refrigerating machine oil 11 is supplied to the auxiliary main bearing 3d through the oil supply hole 6g to lubricate the auxiliary main bearing 3d and the main shaft portion 6b. It has become.
  • the oil supply hole for the main bearing 3c is not shown in FIG.
  • a first balance weight 15a is fixed to the upper end surface of the rotor 5a, and a second balance weight 15b is fixed to the lower end surface at diagonally eccentric positions. Further, in the outer space of the boss portion 2d, the main shaft balance weight 6f is fixed to the main shaft 6 below the eccentric shaft portion 6a. The three balance weights 15a, 15b, 6f cancel the unbalance between the centrifugal force and the moment force generated by the swinging scroll 2 swinging through the eccentric shaft portion 6a of the main shaft 6, thereby providing a static balance. And dynamic balance.
  • a first cup-like member 17 containing the first balance weight 15a is fixed to the upper end surface of the rotor 5a, and a second cup-like shape containing the second balance weight 15b is attached to the lower end surface of the rotor 5a.
  • the member 18 is fixed.
  • the first cup-shaped member 17 has an upper opening 17a facing the opening 16b of the discharge cover 16 described above.
  • the second cup-shaped member 18 is attached with the opening portion facing downward.
  • FIG. 3 is a longitudinal sectional view (a) and a transverse sectional view (b) of the rotor 5a of the electric motor 5 of FIG.
  • the rotor 5a is provided with a plurality of through passages 5f penetrating in the axial direction. Further, the through channel 5f is provided so as to penetrate the bottoms of the first cup-shaped member 17 and the second cup-shaped member 18 while avoiding the installation positions of the first balance weight 15a and the second balance weight 15b (see FIG. 1).
  • the 1st cup-shaped member 17 and the 2nd cup-shaped member 18 are made into a nonmagnetic material.
  • the through flow path 5f may be formed so as to penetrate the first balance weight 15a and the second balance weight 15b, or may be provided avoiding the positions of the first cup-shaped member 17 and the second cup-shaped member 18. Good. Further, the plurality of through channels 5f are formed symmetrically or point-symmetrically with respect to the axis.
  • FIG. 4 is a cross-sectional view of the stator 5b of the electric motor 5 of FIG.
  • the outer surface of the stator 5b of the electric motor 5 is fixed to the sealed container 10 by shrink fitting or welding.
  • a second passage 5g is formed in the outer periphery of the stator 5b by a notch.
  • the first passage 4 f and the second passage 5 g described above constitute the refrigerant flow path 30 that guides the refrigerant gas discharged from the discharge port 1 d to the bottom of the sealed container 10.
  • the glass terminal 10c is installed in the side surface of the airtight container 10, and the glass terminal 10c and the stator 5b of the electric motor 5 are connected by the lead wire 5h.
  • the operation of the scroll compressor 100 according to Embodiment 1 will be described.
  • the refrigerant is sucked from the suction pipe 13, and is formed by meshing the plate-like spiral teeth 1b of the fixed scroll 1 and the plate-like spiral teeth 2b of the orbiting scroll 2. Enter chamber 1f.
  • the orbiting scroll 2 driven by the electric motor 5 reduces the volume of the compression chamber 1f with an eccentric orbiting motion. Due to this compression stroke, the suction refrigerant becomes high pressure.
  • the intermediate-pressure refrigerant gas in the middle of compression is guided from the extraction hole 2g of the orbiting scroll 2 to the frame lower space 4b through the communication hole 3e of the compliant frame 3, and the frame lower space 4b. Maintain an intermediate pressure atmosphere.
  • the mixed gas of refrigerant and refrigerating machine oil discharged from the discharge port 1d of the fixed scroll 1 through the compression stroke to the upper space 10a of the sealed container 10 is a first passage 4f provided in the outer peripheral portion of the compression mechanism section 14,
  • the refrigerant 5 is guided to the space below the motor 5, that is, the bottom of the sealed container 10 through the refrigerant flow path 30 including the second passage 5 g provided on the outer peripheral portion of the stator 5 b of the electric motor 5.
  • the mixed gas is separated in the process of being led to the bottom of the sealed container 10.
  • the refrigerant gas separated from the refrigerating machine oil 11 enters the inside through the opening of the second cup-shaped member 18 attached to the lower end surface of the rotor 5a of the electric motor 5, and enters the through passage 5f provided in the rotor 5a. Inflow.
  • the refrigerant gas from which the refrigerating machine oil 11 is separated rises in the first cup-shaped member 17 attached to the upper end surface of the rotor 5a and flows into the discharge cover 16. Further, the refrigerant gas from which the refrigerating machine oil 11 is separated passes through the second discharge passage 16 a in the discharge cover 16, passes through the first discharge passage 4 g, and is further discharged through the discharge pipe 12 to the outside of the sealed container 10.
  • the first cup-shaped member 17 includes the first balance weight 15a
  • the second cup-shaped member 18 includes the second balance weight 15b.
  • the refrigerant gas from which the refrigerating machine oil 11 is separated can be prevented from being agitated by the rotation of the first balance weight 15a and the second balance weight 15b.
  • the opening 17 a of the first cup-shaped member 17 is provided so as to face the opening 16 b of the discharge cover 16, and the discharge cover 16 is separated from the space between the guide frame 4 and the electric motor 5. Therefore, the refrigerant gas from which the refrigerating machine oil 11 is separated is not mixed again with the mixed gas (refrigerant gas containing the refrigerating machine oil 11) in the sealed container 10. Therefore, since the refrigerating machine oil 11 can be prevented from being taken out of the sealed container 10, it is possible to prevent a decrease in the reliability of the scroll compressor 100 due to insufficient oil supply.
  • FIG. FIG. 5 is a longitudinal sectional view (a) and a transverse sectional view (b) showing the rotor 5a of the electric motor 5 according to Embodiment 2 of the present invention.
  • the scroll compressor 100 other than the rotor 5a has the configuration as shown in FIG.
  • the first cup-shaped member 17 and the second cup-shaped member 18 are made of a nonmagnetic material.
  • a plurality of magnet insertion holes 5c are provided in the axial direction in addition to the through channel 5f, and permanent magnets 19 are provided in the respective magnet insertion holes 5c. It is configured to be inserted and stored. Further, the action and effect of oil separation in the second embodiment are the same as those in the first embodiment.
  • the first balance weight 15a is fixed to the upper end surface of the rotor 5a of the electric motor 5, and the second balance weight 15b is fixed to the lower end surface.
  • a first cup-shaped member 17 formed of a nonmagnetic material is provided on the end surface, and a second cup-shaped member 18 formed of a nonmagnetic material is provided on the lower end surface.
  • the rotor 5a has a configuration in which a plurality of permanent magnets 19 are inserted and installed in the axial direction in addition to the through flow path 5f.
  • the 1st cup-shaped member 17 and the 2nd cup-shaped member 18 are set as the regular hexagonal external shape according to the arrangement
  • the arrangement of the permanent magnets 19 may be a regular polygon such as a regular square.
  • the magnetic flux of the permanent magnet 19 is applied to the rotor 5 a of the electric motor 5. Leakage to the end face and the lower end face can be prevented, and performance degradation of the scroll compressor 100 can be prevented.
  • FIG. FIG. 6 is a partial cross-sectional view showing peripheral elements of rotor 5a of electric motor 5 according to Embodiment 3 of the present invention.
  • the rotor 5a of the electric motor 5 includes the permanent magnet 19 inserted in the axial direction and arranged in a regular polygon, and the first cup-like member 17 and the second cup made of magnetic material fixed to both end faces. It has a cup-shaped member 18, and a non-magnetic plate 20 interposed between the cup-shaped members 17, 18 and the rotor 5a. That is, the rotor 5a of the second embodiment includes the installation and arrangement shape of the permanent magnet 19 to the rotor 5a described with reference to FIG.
  • the member 18 is made of a magnetic material, and a non-magnetic plate 20 is provided between the cup-like members 17 and 18 and the rotor 5a.
  • the other configuration of the scroll compressor 100 is the same as that of the first embodiment. Further, the operation and effect of oil separation in the third embodiment are the same as those in the first embodiment.
  • the plate 20 formed of a nonmagnetic material between the first cup-shaped member 17 and the second cup-shaped member 18 of magnetic material and the end face of the rotor 5a of the electric motor 5 is used. Therefore, it is possible to prevent the magnetic flux of the permanent magnet 19 from leaking to the upper end surface and the lower end surface of the rotor 5a of the electric motor 5, and to prevent the performance of the scroll compressor 100 from being deteriorated. .
  • FIG. 7 is a partial cross-sectional view showing peripheral elements of rotor 5a of electric motor 5 according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the scroll compressor 100 of the second embodiment in that the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, the second balance weight 15b, and the rotor 5a of the electric motor 5 are used. Is fixed by a rivet 21. Other configurations are the same as those of the second embodiment.
  • the through flow path 5 f and the permanent magnet 19 described above are omitted for simplification of the drawing. Further, the operation and effect of oil separation in the fourth embodiment are the same as those in the first embodiment.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, the second balance weight 15b, and the rotor 5a of the electric motor 5 are combined with each other, A rivet through hole 22 penetrating from the first balance weight 15a to the second balance weight 15b is provided, and the first cup-shaped member 17 and the second cup-shaped member 18 are provided by one rivet 21 per one rivet through-hole.
  • the first balance weight 15a, the second balance weight 15b, and the rotor 5a of the electric motor 5 are fixed.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15 a, the second balance weight 15 b, and the rotor 5 a of the electric motor 5 are provided at one location on the rivet through hole. Therefore, the number of parts can be reduced, and the manufacturing cost of the scroll compressor 100 can be reduced.
  • FIG. FIG. 8 is a partial cross-sectional view showing peripheral elements of rotor 5a of electric motor 5 according to Embodiment 5 of the present invention.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, the second balance weight 15b, the plate 20, and the electric motor 5 The rotor 5a is fixed by a rivet 21.
  • Other configurations are the same as those of the third embodiment.
  • the through flow path 5 f and the permanent magnet 19 described above are omitted for simplification of the drawing. Further, the operation and effect of oil separation in the fifth embodiment are the same as those in the first embodiment.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, the second balance weight 15b, the plate 20, and the rotor 5a of the electric motor 5 are combined.
  • a rivet through hole 22 that penetrates from the first balance weight 15a to the second balance weight 15b is provided, and the first cup-shaped member 17 and the second cup are provided by one rivet 21 per one rivet through hole.
  • the member 18, the first balance weight 15a, the second balance weight 15b, the plate 20, and the rotor 5a of the electric motor 5 are fixed.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, the second balance weight 15b, the plate 20, and the rotor 5a of the electric motor 5 are rivet-passed. Since it is fixed by one rivet 21 per hole, the number of parts can be reduced, and the compressor manufacturing cost can be reduced.
  • the first cup-shaped member 17, the second cup-shaped member 18, the first balance weight 15a, and the second balance weight will be described.
  • Other configurations and operations are the same as those in the first to fifth embodiments, and a description thereof will be omitted.
  • the axial dimension of the first cup-shaped member 17 is formed to be larger than or equal to the axial dimension of the first balance weight 15a, and the axial dimension of the second cup-shaped member 18 is the second balance weight. It is formed so as to be larger than or equal to the axial dimension of 15b.
  • the concave and convex portions of the first balance weight 15a and the second balance weight 15b are changed to the first cup-shaped member 17, Since the second cup-shaped member 18 can completely enclose the refrigerant gas, the refrigerant gas 11 separated from the refrigerating machine oil 11 can be prevented from being stirred in the through flow path 5f.

Abstract

 スクロール圧縮機100は、密閉容器10と、冷媒の圧縮機構部14と、揺動スクロール2を支持するコンプライアントフレーム3およびガイドフレーム4と、揺動スクロールを駆動する電動機5と、電動機の回転子5aの上下両面に固定されたバランスウェイト15a、15bと、固定スクロール1の吐出口1dより吐出された冷媒ガスを密閉容器の底部へ導く冷媒流路30と、電動機の回転子の上下両面に設けられバランスウェイトを内包するカップ状部材17、18と、冷凍機油11を含む冷媒ガスがカップ状部材の内部を通って電動機の回転子を下側から上側へ貫通流動する貫通流路5fと、フレームの下部に設けられ、電動機の回転子の上面に設けられた第1カップ状部材17の開口部17aに対面する開口部16bを有し、貫通流路を通過した冷媒ガスを吐出管12へ導く吐出カバー16と、を備える。

Description

スクロール圧縮機
 本発明は、スクロール圧縮機に関し、特に、スクロール圧縮機の運転開始時および運転時において、冷凍機油が密閉容器外へ流出するのを防止する装置に関するものである。
 スクロール圧縮機は、密閉容器と、固定スクロールおよび揺動スクロールからなる圧縮機構部と、この圧縮機構部の揺動スクロールを回転駆動する電動機要素とを備えている。そして、圧縮機構部で圧縮され固定スクロールの吐出口より吐出された高圧の冷媒ガスがそのまま密閉容器外へ排出されると、冷媒ガスには駆動部の軸受部を潤滑する冷凍機油が含まれているため、その冷凍機油が冷媒ガスと共に密閉容器外へ持ち出されることになる。そのため、密閉容器の底部に貯留されている冷凍機油が減り、給油不足のため揺動スクロールを回転駆動する主軸の軸受部の焼き付きなどが発生するため、スクロール圧縮機の故障などを引き起こす。
 このような課題を解決するものとして、冷凍機油が密閉容器外に流出する量を低減する装置を備えたスクロール圧縮機が提案されている(例えば、特許文献1参照)。このスクロール圧縮機は、固定スクロールの吐出口より吐出された高圧の冷媒ガスを電動機の回転子側へ案内する冷媒案内手段と、電動機の回転子に貫通形成され冷媒案内手段により案内される冷媒ガスが貫通流動されながら電動機を冷却させると同時に回転子の回転による遠心力により冷媒ガスに包含されていたオイルが分離されるオイル分離手段とを備えたものである。
特開2006-105123号公報
 特許文献1に開示された油流出低減装置では、圧縮機構部から吐出された冷媒ガスと冷凍機油の混合ガスは、冷媒案内手段により電動機の回転子の上面側に案内され、回転子および上下のエンドリングに設けられた貫通流路を通って下降する。この混合ガスが貫通流路を下降する過程で回転子の回転による遠心力により冷媒ガスに含まれている冷凍機油が分離される構成となっている。しかし、回転子の上下面には揺動スクロールの公転運動に伴う力のアンバランスを相殺するためのバランスウェイトが固定されている。このバランスウェイトがファンの羽根のように回転することで、回転子の下面から排出される冷凍機油と冷媒ガスとを攪拌するため、油の持ち出し量を効果的に減らすことができず、油流出防止効果が十分に得られないという問題があった。
 本発明は、上記のような課題を解決するためになされたもので、バランスウェイトによる冷媒ガスと冷凍機油の攪拌を防止し、油の分離効率を向上させ、信頼性の高いスクロール圧縮機を得ることを目的としている。
 本発明に係るスクロール圧縮機は、密閉容器と、密閉容器内に設けられ、固定スクロールと揺動スクロールの板状渦巻歯を互いに噛み合わせて冷媒を圧縮する圧縮室を有する圧縮機構部と、密閉容器内に設けられ、揺動スクロールを回転駆動する電動機と、前記電動機の駆動力を前記揺動スクロールに伝達する回転軸と、前記回転軸を回転自在に支持するフレームと、電動機の回転子の上面および下面に固定され、圧縮機構部で発生する力のアンバランスを相殺するバランスウェイトと、圧縮機構部の固定スクロールに設けられた吐出口より吐出された冷媒ガスを密閉容器の底部へ導く冷媒流路と、電動機の回転子の上面および下面に設けられ、バランスウェイトを内包するカップ状部材と、冷凍機油を含む冷媒ガスが、カップ状部材の内部を通って電動機の回転子を下側から上側へ貫通流動する貫通流路と、フレームの下部に設けられ、電動機の回転子の上面に設けられたカップ状部材の開口部に対面する開口部を有し、貫通流路を通過した冷媒ガスを密閉容器に取り付けられた吐出管へ導く吐出カバーと、を備えたものである。
 本発明に係るスクロール圧縮機は、カップ状部材がバランスウェイトを内包して回転子の上下両面に設置されているので、圧縮機構部から吐出された冷媒ガスと冷凍機油をバランスウェイトにより攪拌することなく密閉容器の底部へ導くことができる。冷媒ガスと冷凍機油の混合ガスは、回転子に設けられた貫通流路を上昇する過程において、回転子の回転による遠心力により混合ガスから冷凍機油が分離される。冷凍機油が分離された冷媒ガスは、回転子上面のカップ状部材内から吐出カバー内を通って吐出管より密閉容器外へ排出される。また、吐出カバーはフレームの下部に設置されており、圧縮機構部から吐出された冷媒ガスと冷凍機油の混合ガスが満たされる空間から隔てられているので、冷凍機油が分離された冷媒ガスを再び冷凍機油と混合することなく密閉容器外へ導くことができる。したがって、本発明によれば、バランスウェイトによる冷媒ガスと冷凍機油の攪拌を防止し、油の分離効率を向上させ、信頼性の高いスクロール圧縮機が得られるという効果がある。
本発明の実施の形態1に係るスクロール圧縮機を示す縦断面図である。 図1のガイドフレームの外周部に設けた第1通路を示す横断面図である。 図1の電動機の回転子の縦断面図(a)と横断面図(b)である。 図1の電動機の固定子の横断面図である。 本発明の実施の形態2に係る電動機の回転子を示す縦断面図(a)と横断面図(b)である。 本発明の実施の形態3に係る電動機の回転子の周辺要素を示す部分断面図である。 本発明の実施の形態4に係る電動機の回転子の周辺要素を示す部分断面図である。 本発明の実施の形態5に係る電動機の回転子の周辺要素を示す部分断面図である。
 以下、本発明に係るスクロール圧縮機の実施の形態について図面に基づいて説明する。なお、ここで説明するスクロール圧縮機は、縦置き型の例を示すが、横置き型のものにも本発明を適用できるものである。また、図1を含め、以下の図面は模式的に表したものであり、各構成部材の大きさの関係についても実際のものとは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール圧縮機100の縦断面図である。図1に基づいて、縦置き型のスクロール圧縮機100について、その構成および動作について説明する。
 このスクロール圧縮機100は、例えば、冷蔵庫や冷凍庫、空気調和装置、冷凍装置、給湯器等の各種産業機械に用いられる冷凍サイクルの構成要素の一つとなるものである。
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出させるものである。このスクロール圧縮機100は、密閉容器10内に固定スクロール1と固定スクロール1に対して公転(揺動)する揺動スクロール2を組み合わせた圧縮機構部14を備えている。また、スクロール圧縮機100は、密閉容器10内に揺動スクロール2を主軸6と接続して駆動する電動機5を備えている。縦置き型のスクロール圧縮機100の場合、密閉容器10内において、例えば圧縮機構部は上側に、電動機5は下側に、それぞれ配置されている。
 固定スクロール1は、台板部1aと、台板部1aの一方の面(図1において下側)に設けられた渦巻状突起である板状渦巻歯1bと、で構成されている。また、揺動スクロール2は、台板部2aと、台板部2aの一方の面(図1において上側)に設けられ、板状渦巻歯1bと実質的に同一形状の渦巻状突起である板状渦巻歯2bと、で構成されている。この固定スクロール1の板状渦巻歯1bと揺動スクロール2の板状渦巻歯2bとを互いに噛み合わせることで、相対的に容積が変化する圧縮室1fが形成される。
 固定スクロール1は、外周部がガイドフレーム4にボルト(図示せず)によって締結されている。固定スクロール1の台板部1aの外周部には、冷媒ガスを吸入口1eより吸入逆止弁1gを介して圧縮室1fに導入するための吸入管13が設けられている。固定スクロール1の台板部1aの中央部には、圧縮され、高圧となった冷媒ガスを吐出する吐出口1dが形成されている。そして、圧縮され、高圧となった冷媒ガスは、密閉容器10内の上部空間10aに排出されるようになっている。この上部空間10aに排出された冷媒ガスは、後で説明するように冷媒流路を通って油分離機構に導かれ、油を分離された冷媒ガスが吐出管12より吐出され、冷凍サイクルを形成している。
 揺動スクロール2は、自転運動を阻止するためのオルダム機構9により、固定スクロール1に対して自転運動することなく公転運動(揺動運動)を行うようになっている。固定スクロール1の台板部1aの外周部にはほぼ一直線上に2個1対のオルダム案内溝1cが形成されている。このオルダム案内溝1cにはオルダム機構9の2個1対の固定側キー9aが往復摺動自在に係合されている。また、揺動スクロール2の台板部2aの外周部には、固定スクロール1のオルダム案内溝1cと90度の位相差をもつ2個1対のオルダム案内溝2cがほぼ一直線上に形成されており、このオルダム案内溝2cにはオルダム機構9の2個1対の揺動側キー9bが往復摺動自在に係合されている。
 上記のように構成されたオルダム機構9によって揺動スクロール2は自転することなく揺動運動(旋回運動)を行うことができる。また、揺動スクロール2の板状渦巻歯2bの形成面と反対側(図1において下側)の面の中心部には、中空円筒形状のボス部2dが形成されている。このボス部2dには、主軸6の上端部に設けられた偏心軸部(揺動軸部)6aが挿入される。また、揺動スクロール2の台板部2aの板状渦巻歯2bと反対側(図1において下側)の面にはコンプライアントフレーム3のスラスト軸受3aと圧接摺動可能なスラスト面2fが形成されている。また、揺動スクロール2の台板部2aには圧縮室1fとスラスト面2fを貫通する抽気孔2gが設けられ、圧縮途中の冷媒ガスを抽出してスラスト面2fに導く構造となっている。
 コンプライアントフレーム3は、ガイドフレーム4内に収納されている。コンプライアントフレーム3は、外周部に上円筒面3pと下円筒面3sが設けられている。ガイドフレーム4の内周部にはコンプライアントフレーム3の上円筒面3pおよび下円筒面3sがそれぞれ嵌合する上円筒面4cと下円筒面4dが設けられている。これらの上円筒面3pと上円筒面4cおよび下円筒面3sと下円筒面4dをそれぞれ嵌合することによって、コンプライアントフレーム3はガイドフレーム4内にて半径方向に支持されている。また、コンプライアントフレーム3の下円筒面3sの中心部には電動機5の回転子5aにより回転駆動される主軸6を半径方向に支持する主軸受3cおよび補助主軸受3dが設けられている。また、スラスト軸受3aの面内からコンプライアントフレーム3の外周部を軸方向に貫通する連通孔3eが設けられている。連通孔3eの上端に開口するスラスト軸受開口部3tは揺動スクロール2の台板部2aを貫通する抽気孔2gに対面して配置されている。
 また、コンプライアントフレーム3のスラスト軸受3aの外周側には、オルダム機構環状部9cが往復摺動運動する面(往復摺動面)3bが形成されており、台板外周部空間2kとフレーム上部空間4aとを連通する連通穴3fがオルダム機構環状部9cの内側に連通するように形成されている。さらに、コンプライアントフレーム3には、フレーム上部空間4aとボス部外側空間2nとの間にボス部外側空間2nの圧力を調整する中間圧調整弁3g、中間圧調整弁押さえ3h、中間圧調整スプリング3kを収納するための中間圧調整弁空間3nが設けられている。そして中間圧調整スプリング3kは自然長より縮められて収納されている。
 なお、本実施の形態1では、コンプライアントフレーム3とガイドフレーム4とは別体に構成されているが、これに限らず、両フレームを一体の一つのフレームで構成してもよい。
 ガイドフレーム4の内側面とコンプライアントフレーム3の外側面とによって形成されるフレーム下部空間4bは、その上下をリング状シール材7a、7bで仕切られている。ここでは、ガイドフレーム4の内周面にリング状シール材7a、7bを収納するリング状のシール溝が2箇所に形成されているが、このシール溝はコンプライアントフレーム3の外周面に形成されていてもよい。フレーム下部空間4bは、コンプライアントフレーム3の連通孔3eとのみ連通しており、抽気孔2gより供給される圧縮途中の冷媒ガスを封入する構造となっている。また、上下を揺動スクロール2の台板部2aとコンプライアントフレーム3で囲われたスラスト軸受3aの外周側の空間、すなわち台板外周部空間2kは吸入ガス雰囲気(吸入圧)の低圧空間となっている。
 図2は、図1のガイドフレーム4の外周部に設けた第1通路4fを示す横断面図である。図2に示すように、ガイドフレーム4は、外周面を焼きばめ、もしくは溶接などによって密閉容器10に固着されている。このガイドフレーム4および固定スクロール1、すなわち圧縮機構部14の外周部には、切欠きによる第1通路4fが設けられている。吐出口1dより密閉容器10の上部空間10aに吐出された冷媒ガスは、第1通路4fを通って密閉容器10の下方へ流れていく。密閉容器10の底部は冷凍機油11が貯留される油溜め部10bとなっている。
 密閉容器10には冷媒ガスを外部へ排出する吐出管12が設けられている。そして、上記の第1通路4fは吐出管12とは反対側の位置に設けられている。また、ガイドフレーム4の下端中央から側面まで連通する第1吐出通路4gが設けられており、第1吐出通路4gは吐出管12に通じている。また、ガイドフレーム4の下端には、下部円筒部(下円筒面4dが形成された部分)を囲むように開口部16bを有する吐出カバー16が設けられている。吐出カバー16内の第2吐出通路16aは第1吐出通路4gに連通している。
 電動機5は、主軸6を回転駆動するものであり、主軸6に固定された回転子5a、密閉容器10に固定された固定子5b、および回転軸である主軸6等で構成されている。回転子5aは、主軸6に焼きばめ固定され、固定子5bへの通電を開始することにより回転駆動し、主軸6を回転させるようになっている。また、主軸6の上端部は揺動スクロール2の揺動軸受2eと回転自在に係合する偏心軸部6aが形成されており、その下側には主軸バランスウェイト6fが焼きばめ固定されている。
 さらに、偏心軸部6aの下側にはコンプライアントフレーム3の主軸受3cおよび補助主軸受3dと回転自在に係合する主軸部6bが形成されている。また、主軸6の下端部にはサブフレーム8の副軸受8aと回転自在に係合する副軸部6cが形成されている。サブフレーム8には冷凍機油11が油溜め部10bに流入する流入孔8bが設けられている。また、副軸部6cと主軸部6b間には電動機5の回転子5aが焼きばめ固定されている。主軸6には軸方向に貫通する孔からなる給油路6dが設けられており、給油路6dの下端の給油口6eが密閉容器10の底部に貯留された冷凍機油11内につかっている。そのため、主軸6の下部に設けられた給油機構またはポンプ機構により給油口6eから冷凍機油11が吸い上げられる。給油路6dの上端は揺動スクロール2のボス部2d内に開口しており、吸い上げられた冷凍機油11が給油路6dの上端開口より揺動軸受2eに流れ出し、偏心軸部6aおよび揺動軸受2eを潤滑するようになっている。また、給油路6dには横方向に分岐する給油孔6gが設けられており、冷凍機油11はこの給油孔6gより補助主軸受3dに給油され、補助主軸受3dおよび主軸部6bを潤滑するようになっている。なお、主軸受3cに対する給油孔は、図1では図示を省略されている。
 回転子5aの上端面には第1バランスウェイト15aが、下端面には第2バランスウェイト15bがそれぞれ対角状の偏心位置に固定されている。また、ボス部2dの外側空間内において、偏心軸部6aの下側の主軸6には前述の主軸バランスウェイト6fが固定されている。これら3個のバランスウェイト15a、15b、6fによって揺動スクロール2が主軸6の偏心軸部6aを介して揺動することにより生じる遠心力とモーメントの力のアンバランスを相殺することで、静バランスおよび動バランスがとられている。
 さらに、回転子5aの上端面には第1バランスウェイト15aを内包する第1カップ状部材17が固定されており、回転子5aの下端面には第2バランスウェイト15bを内包する第2カップ状部材18が固定されている。また、第1カップ状部材17は、上部の開口部17aが前述の吐出カバー16の開口部16bに対面して設けられている。第2カップ状部材18は開口部を下向きにした状態で取り付けられている。
 図3は、図1の電動機5の回転子5aの縦断面図(a)と横断面図(b)である。
 図1および図3に示すように、回転子5aには軸方向に貫通する複数の貫通流路5fが設けられている。また、貫通流路5fは、第1バランスウェイト15aおよび第2バランスウェイト15bの設置位置を避けて第1カップ状部材17および第2カップ状部材18の底部を貫通して設けられている(図1参照)。また、第1カップ状部材17および第2カップ状部材18は、非磁性体とすることが好ましい。なお、貫通流路5fは、第1バランスウェイト15aおよび第2バランスウェイト15bを貫通して形成してもよく、第1カップ状部材17および第2カップ状部材18の位置を避けて設けてもよい。また、複数の貫通流路5fは軸心に対して対称または点対称に形成される。
 図4は、図1の電動機5の固定子5bの横断面図である。
 電動機5の固定子5bは、外周面が焼きばめ、もしくは溶接などによって密閉容器10に固定されている。図4に示すように、固定子5bの外周部には切欠きによる第2通路5gが設けられている。
 前述した第1通路4fおよび第2通路5gが、吐出口1dから吐出した冷媒ガスを密閉容器10の底部へ導く冷媒流路30を構成している。
 また、図1に示すように、密閉容器10の側面にはガラス端子10cが設置されており、ガラス端子10cと電動機5の固定子5bとはリード線5hで接続されている。
 次に、実施の形態1に係るスクロール圧縮機100の動作について説明する。
 このスクロール圧縮機100の起動時および運転時には、冷媒が吸入管13より吸入され、固定スクロール1の板状渦巻歯1bおよび揺動スクロール2の板状渦巻歯2bを噛み合わせることで形成される圧縮室1fに入る。電動機5により駆動される揺動スクロール2は偏心旋回運動に伴って圧縮室1fの容積を減少させる。この圧縮行程により吸入冷媒は高圧となる。なお、上記圧縮行程において、圧縮途中の中間圧力の冷媒ガスは揺動スクロール2の抽気孔2gよりコンプライアントフレーム3の連通孔3eを経て、フレーム下部空間4bに導かれ、このフレーム下部空間4bの中間圧力雰囲気を維持する。
 上記圧縮行程を経て固定スクロール1の吐出口1dから密閉容器10の上部空間10aに吐出された冷媒と冷凍機油の混合ガスは、圧縮機構部14の外周部に設けられた第1通路4fと、電動機5の固定子5bの外周部に設けられた第2通路5gとからなる冷媒流路30を通って、電動機5より下方の空間、すなわち密閉容器10の底部に導かれる。混合ガスは、密閉容器10の底部に導かれる過程で分離される。冷凍機油11と分離された冷媒ガスは、電動機5の回転子5aの下端面に取り付けられた第2カップ状部材18の開口部から内部に入り、回転子5aに設けられた貫通流路5fに流入する。冷凍機油11が分離された冷媒ガスは、回転子5aの上端面に取り付けられた第1カップ状部材17の内部を上昇して吐出カバー16内へ流入する。さらに、冷凍機油11が分離された冷媒ガスは、吐出カバー16内の第2吐出通路16aを経て第1吐出通路4gを通り、さらに吐出管12を通って密閉容器10外へ放出される。
 本実施の形態1では、第1カップ状部材17は第1バランスウェイト15aを内包し、第2カップ状部材18は第2バランスウェイト15bを内包して設けられているので、貫通流路5fで冷凍機油11が分離された冷媒ガスが第1バランスウェイト15aおよび第2バランスウェイト15bの回転によって攪拌されるのを防ぐことができる。さらに、第1カップ状部材17の開口部17aは吐出カバー16の開口部16bと対面するように設けられており、かつ、吐出カバー16はガイドフレーム4と電動機5間の空間から隔てられているので、冷凍機油11が分離された冷媒ガスが、密閉容器10内の混合ガス(冷凍機油11を含む冷媒ガス)と再び混合されることがない。そのため、冷凍機油11が密閉容器10外へ持ち出されることを防止できるので、給油不足によるスクロール圧縮機100の信頼性の低下を防止することができる。
実施の形態2.
 図5は、本発明の実施の形態2に係る電動機5の回転子5aを示す縦断面図(a)と横断面図(b)である。
 本実施の形態2では、回転子5a以外のスクロール圧縮機100は図1に示したとおりの構成を有するものである。また、第1カップ状部材17および第2カップ状部材18は非磁性体で形成されている。
 本実施の形態2の回転子5aは、図5に示すように、前記貫通流路5fのほかに、複数の磁石挿入孔5cが軸方向に設けられ、各磁石挿入孔5cに永久磁石19を挿入し収納した構成としたものである。また、本実施の形態2の油分離の作用および効果は、実施の形態1と同様である。
 本実施の形態2では、電動機5の回転子5aの上端面には第1バランスウェイト15aが固定され、下端面には第2バランスウェイト15bが固定されており、電動機5の回転子5aの上端面には非磁性体により形成された第1カップ状部材17、下端面には非磁性体により形成された第2カップ状部材18が設けられる。さらに、回転子5aは、前記貫通流路5fのほかに、複数の永久磁石19を軸方向に挿入設置した構成である。また、図示は省略するが、第1カップ状部材17および第2カップ状部材18は、図5に示す永久磁石19の配置形状に合わせて正六角形の外形形状とすることが好ましい。なお、永久磁石19の配置は、正四角形など正多角形であればよい。このような第1カップ状部材17および第2カップ状部材18の外形形状とすることで、永久磁石19が回転子5a内部から飛び出すことを防止でき、かつ、回転子コア端面の全面を覆わず、端面の一部が露出するので、コア端面を基準に組立を行うことができ、歪等の少ない精度の高い回転子を製造することができる。
 以上のように、本実施の形態2では、第1カップ状部材17および第2カップ状部材18は非磁性体によって形成されているため、永久磁石19の磁束が電動機5の回転子5aの上端面および下端面に漏れ出てしまうのを防止することができ、スクロール圧縮機100の性能低下を防止することができる。
実施の形態3.
 図6は、本発明の実施の形態3に係る電動機5の回転子5aの周辺要素を示す部分断面図である。
 本実施の形態3では、電動機5の回転子5aが、軸方向に挿入され正多角形に配置された永久磁石19と、両端面に固定された磁性体の第1カップ状部材17および第2カップ状部材18と、各カップ状部材17、18と回転子5aとの間に介在させた非磁性体のプレート20とを有することを特徴とするものである。すなわち、本実施の形態2の回転子5aは、実施の形態2の図5について説明した永久磁石19の回転子5aへの挿入設置と配置形状を備え、第1カップ状部材17および第2カップ状部材18は磁性体で形成され、さらに各カップ状部材17、18と回転子5aとの間に非磁性体のプレート20を設けたものである。そのほかのスクロール圧縮機100の構成は実施の形態1と同じである。また、本実施の形態3の油分離の作用および効果は、実施の形態1と同様である。
 以上のように、本実施の形態3では、磁性体の第1カップ状部材17および第2カップ状部材18と電動機5の回転子5aの端面との間に非磁性体によって形成されたプレート20を設けているため、永久磁石19の磁束が電動機5の回転子5aの上端面および下端面に漏れ出てしまうのを防止することができ、スクロール圧縮機100の性能低下を防止することができる。
実施の形態4.
 図7は、本発明の実施の形態4に係る電動機5の回転子5aの周辺要素を示す部分断面図である。
 本実施の形態4は、実施の形態2のスクロール圧縮機100において、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、電動機5の回転子5aがリベット21によって固定されていることを特徴とするものである。その他の構成は実施の形態2と同様である。なお、図7では、図の簡明化のため、前述した貫通流路5f、永久磁石19は省略されている。また、本実施の形態4の油分離の作用および効果は、実施の形態1と同様である。
 図7に示すように、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、電動機5の回転子5aには、これらを組合わせた状態において、第1バランスウェイト15aから第2バランスウェイト15bまで貫通するリベット通し穴22が設けられており、リベット通し穴1箇所につき1本のリベット21によって、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、電動機5の回転子5aが固定される。
 以上のように、本実施の形態4では、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、電動機5の回転子5aがリベット通し穴1箇所につき1本のリベット21によって固定されるため、部品点数を減らすことができ、スクロール圧縮機100の製造コストを減らすことができる。
実施の形態5.
 図8は、本発明の実施の形態5に係る電動機5の回転子5aの周辺要素を示す部分断面図である。
 本実施の形態5では、実施の形態3のスクロール圧縮機100において、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、プレート20、電動機5の回転子5aがリベット21によって固定されていることを特徴とするものである。その他の構成は実施の形態3と同様である。なお、図8では、図の簡明化のため、前述した貫通流路5f、永久磁石19は省略されている。また、本実施の形態5の油分離の作用および効果は、実施の形態1と同様である。
 図8に示すように、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、プレート20、電動機5の回転子5aには、これらを組合わせた状態において、第1バランスウェイト15aから第2バランスウェイト15bまで貫通するリベット通し穴22が設けられており、リベット通し穴1箇所につき1本のリベット21によって、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、プレート20、電動機5の回転子5aが固定される。
 以上のように、本実施の形態5では、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15b、プレート20、電動機5の回転子5aがリベット通し穴1箇所につき1本のリベット21によって固定されるため、部品点数を減らすことができ、圧縮機製造コストを減らすことができる。
 次に、以上の実施の形態1~5のいずれかの実施の形態に係るスクロール圧縮機100において、第1カップ状部材17、第2カップ状部材18、第1バランスウェイト15a、第2バランスウェイト15bの軸方向寸法(高さ)を規定したことについて説明する。その他の構成および動作については実施の形態1~5と同様であり、説明は省略する。
 第1カップ状部材17の軸方向寸法は第1バランスウェイト15aの軸方向寸法よりも大きい、もしくは同じになるように形成されており、第2カップ状部材18の軸方向寸法は第2バランスウェイト15bの軸方向寸法よりも大きい、もしくは同じになるように形成されている。
 以上のように、第1カップ状部材17および第2カップ状部材18の軸方向寸法を規定することにより、第1バランスウェイト15a、第2バランスウェイト15bの凹凸部を第1カップ状部材17、第2カップ状部材18によって完全に囲うことができるので、貫通流路5fで冷凍機油11が分離された冷媒ガスが攪拌されるのを防ぐことができる。
 1 固定スクロール、1a 台板部、1b 板状渦巻歯、1c オルダム案内溝、1d 吐出口、1e 吸入口、1f 圧縮室、1g 吸入逆止弁、2 揺動スクロール、2a 台板部、2b 板状渦巻歯、2c オルダム案内溝、2d ボス部、2e 揺動軸受、2f スラスト面、2g 抽気孔、2k 台板外周部空間、2n ボス部外側空間、3 コンプライアントフレーム、3a スラスト軸受、3b 往復摺動面、3c 主軸受、3d 補助主軸受、3e 連通孔、3f 連通穴、3g 中間圧調整弁、3h 中間圧調整弁押さえ、3k 中間圧調整スプリング、3n 中間圧調整弁空間、3p 上円筒面、3s 下円筒面、3t スラスト軸受開口部、4 ガイドフレーム、4a フレーム上部空間、4b フレーム下部空間、4c 上円筒面、4d 下円筒面、4f 第1通路、4g 第1吐出通路、4h 開口部、5 電動機、5a 回転子、5b 固定子、5c 磁石挿入孔、5f 貫通流路、5g 第2通路、5h リード線、6 主軸、6a 偏心軸部、6b 主軸部、6c 副軸部、6d 給油路、6e 給油口、6f 主軸バランスウェイト、6g 給油孔、7a リング状シール材、7b リング状シール材、8 サブフレーム、8a 副軸受、8b 流入孔、9 オルダム機構、9a 固定側キー、9b 揺動側キー、9c オルダム機構環状部、10 密閉容器、10a 上部空間、10b 油溜め部、10c ガラス端子、11 冷凍機油、12 吐出管、12a 吐出管先端部、13 吸入管、14 圧縮機構部、15 バランスウェイト、15a 第1バランスウェイト、15b 第2バランスウェイト、16 吐出カバー、16a 第2吐出通路、16b 開口部、17 第1カップ状部材、17a 開口部、18 第2カップ状部材、19 永久磁石、20 プレート、21 リベット、22 リベット通し穴、30 冷媒流路、100 スクロール圧縮機。

Claims (6)

  1.  密閉容器と、
     前記密閉容器内に設けられ、固定スクロールと揺動スクロールの板状渦巻歯を互いに噛み合わせて冷媒を圧縮する圧縮室を有する圧縮機構部と、
     前記密閉容器内に設けられ、前記揺動スクロールを回転駆動する電動機と、
     前記電動機の駆動力を前記揺動スクロールに伝達する回転軸と、
     前記回転軸を回転自在に支持するフレームと、
     前記電動機の回転子の上面および下面に固定され、前記圧縮機構部で発生する力のアンバランスを相殺するバランスウェイトと、
     前記圧縮機構部の前記固定スクロールに設けられた吐出口より吐出された冷媒ガスを前記密閉容器の底部へ導く冷媒流路と、
     前記電動機の回転子の上面および下面に設けられ、前記バランスウェイトを内包するカップ状部材と、
     冷凍機油を含む冷媒ガスが、前記カップ状部材の内部を通って前記電動機の回転子を下側から上側へ貫通流動する貫通流路と、
     前記フレームの下部に設けられ、前記電動機の回転子の上面に設けられたカップ状部材の開口部に対面する開口部を有し、前記貫通流路を通過した冷媒ガスを前記密閉容器に取り付けられた吐出管へ導く吐出カバーと、
    を備えたことを特徴とするスクロール圧縮機。
  2.  前記電動機の回転子は、両端面に固定された非磁性体のカップ状部材を有する
    ことを特徴とする請求項1に記載のスクロール圧縮機。
  3.  前記電動機の回転子は、両端面に固定された磁性体のカップ状部材と、該カップ状部材と前記回転子との間に介在させた非磁性体のプレートとを有する
    ことを特徴とする請求項1に記載のスクロール圧縮機。
  4.  前記電動機の回転子、前記バランスウェイトおよび前記カップ状部材が、リベットによって固定されている
    ことを特徴とする請求項2に記載のスクロール圧縮機。
  5.  前記電動機の回転子、前記バランスウェイト、前記カップ状部材および前記プレートが、リベットによって固定されている
    ことを特徴とする請求項3に記載のスクロール圧縮機。
  6.  前記カップ状部材の軸方向寸法が前記バランスウェイトの軸方向寸法より大きい、または同じである
    ことを特徴とする請求項1~5のいずれか一項に記載のスクロール圧縮機。
PCT/JP2013/076961 2012-11-30 2013-10-03 スクロール圧縮機 WO2014083939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/443,692 US9976556B2 (en) 2012-11-30 2013-10-03 Scroll compressor
KR1020157013737A KR101719937B1 (ko) 2012-11-30 2013-10-03 스크롤 압축기
EP13858173.1A EP2927498B1 (en) 2012-11-30 2013-10-03 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262313A JP5875506B2 (ja) 2012-11-30 2012-11-30 スクロール圧縮機
JP2012-262313 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083939A1 true WO2014083939A1 (ja) 2014-06-05

Family

ID=50827585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076961 WO2014083939A1 (ja) 2012-11-30 2013-10-03 スクロール圧縮機

Country Status (6)

Country Link
US (1) US9976556B2 (ja)
EP (1) EP2927498B1 (ja)
JP (1) JP5875506B2 (ja)
KR (1) KR101719937B1 (ja)
CN (2) CN103850935B (ja)
WO (1) WO2014083939A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875506B2 (ja) * 2012-11-30 2016-03-02 三菱電機株式会社 スクロール圧縮機
CN104295494A (zh) * 2014-09-16 2015-01-21 合肥圣三松冷热技术有限公司 一种涡旋式压缩机动涡旋配重结构
JP6361451B2 (ja) * 2014-10-16 2018-07-25 株式会社デンソー 電気装置および電気装置の製造方法
JP6090405B1 (ja) * 2015-10-16 2017-03-08 ダイキン工業株式会社 圧縮機
WO2018212054A1 (ja) * 2017-05-16 2018-11-22 ダイキン工業株式会社 ロータ
CN107061269A (zh) * 2017-06-12 2017-08-18 美的集团股份有限公司 涡旋压缩机
US11193490B2 (en) * 2018-03-30 2021-12-07 Kabushiki Kaisha Toyota Jidoshokki Scroll compressor including bushing mounted on eccentric shaft containing cylindrical and auxiliary weight portions and balancer disposed above annular rotor remote from back pressure chamber
KR102051097B1 (ko) 2018-06-07 2019-12-02 엘지전자 주식회사 압축기
WO2020067739A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Scroll compressor
CN116940764A (zh) * 2021-03-23 2023-10-24 三菱电机株式会社 压缩机以及制冷循环装置
CN113904478B (zh) * 2021-09-28 2022-10-25 珠海格力节能环保制冷技术研究中心有限公司 一种电机组件、压缩机及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160587A (ja) * 1982-03-19 1983-09-24 Hitachi Ltd 密閉形電動圧縮機
JPH05256271A (ja) * 1992-03-16 1993-10-05 Seiko Epson Corp 冷凍サイクル用コンプレッサ
JP2006105123A (ja) 2004-10-07 2006-04-20 Lg Electronics Inc スクロール圧縮機のオイル吐出低減装置
JP2006125211A (ja) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp スクロール圧縮機
WO2012127749A1 (ja) * 2011-03-24 2012-09-27 三洋電機株式会社 スクロール圧縮装置
JP2012202208A (ja) * 2011-03-23 2012-10-22 Daikin Industries Ltd 圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160587A (en) * 1980-05-13 1981-12-10 M S Netsugaku Kogyo Kk Heat medium heat exchanging method for annular two-phase flow gas and liquid and apparatus therefor
US5666015A (en) * 1993-04-30 1997-09-09 Sanyo Electric Co., Ltd. Electric motor for a compressor with a rotor with combined balance weights and oil separation disk
WO2002019499A1 (fr) * 2000-09-01 2002-03-07 Matsushita Electric Industrial Co., Ltd. Moteur électrique
JP2003244921A (ja) * 2002-02-14 2003-08-29 Matsushita Refrig Co Ltd リニアモータおよびリニアコンプレッサ
JP4175148B2 (ja) * 2003-03-12 2008-11-05 松下電器産業株式会社 密閉型圧縮機
JP4143827B2 (ja) * 2003-03-14 2008-09-03 株式会社富士通ゼネラル スクロール圧縮機
KR100575815B1 (ko) * 2004-12-10 2006-05-03 엘지전자 주식회사 스크롤 압축기의 유토출 저감 장치
KR100677521B1 (ko) * 2005-05-19 2007-02-02 엘지전자 주식회사 스크롤 압축기의 유분리 장치
KR20070093638A (ko) * 2006-03-14 2007-09-19 엘지전자 주식회사 스크롤 압축기의 유분리 장치
JP4542161B2 (ja) * 2008-01-09 2010-09-08 日立アプライアンス株式会社 密閉型電動圧縮機
JP4696153B2 (ja) * 2008-12-15 2011-06-08 日立アプライアンス株式会社 回転型圧縮機
JP4980412B2 (ja) * 2009-11-26 2012-07-18 三菱電機株式会社 スクロール圧縮機
JP5875506B2 (ja) * 2012-11-30 2016-03-02 三菱電機株式会社 スクロール圧縮機
JP5933042B2 (ja) * 2013-01-16 2016-06-08 三菱電機株式会社 密閉形圧縮機及びこの密閉形圧縮機を備えた蒸気圧縮式冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160587A (ja) * 1982-03-19 1983-09-24 Hitachi Ltd 密閉形電動圧縮機
JPH05256271A (ja) * 1992-03-16 1993-10-05 Seiko Epson Corp 冷凍サイクル用コンプレッサ
JP2006105123A (ja) 2004-10-07 2006-04-20 Lg Electronics Inc スクロール圧縮機のオイル吐出低減装置
JP2006125211A (ja) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp スクロール圧縮機
JP2012202208A (ja) * 2011-03-23 2012-10-22 Daikin Industries Ltd 圧縮機
WO2012127749A1 (ja) * 2011-03-24 2012-09-27 三洋電機株式会社 スクロール圧縮装置
JP2012202252A (ja) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd スクロール圧縮装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927498A4 *

Also Published As

Publication number Publication date
US9976556B2 (en) 2018-05-22
US20150285249A1 (en) 2015-10-08
KR20150075113A (ko) 2015-07-02
EP2927498A4 (en) 2016-11-16
JP2014109194A (ja) 2014-06-12
CN103850935B (zh) 2017-09-15
EP2927498B1 (en) 2019-12-25
KR101719937B1 (ko) 2017-03-24
CN203641001U (zh) 2014-06-11
EP2927498A1 (en) 2015-10-07
CN103850935A (zh) 2014-06-11
JP5875506B2 (ja) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5875506B2 (ja) スクロール圧縮機
JP5984787B2 (ja) スクロール圧縮機
KR100910698B1 (ko) 왕복형 전동 압축기
KR20110015863A (ko) 압축기
WO2018131088A1 (ja) 圧縮機
KR101563368B1 (ko) 압축기
JP4343086B2 (ja) スクロール圧縮機
JP2004150406A (ja) 圧縮機
WO2015125304A1 (ja) 圧縮機
JP6320575B2 (ja) 電動圧縮機
JP2014105672A (ja) スクロール圧縮機
JP5836845B2 (ja) スクロール圧縮機
JP7139718B2 (ja) 圧縮機
WO2022201300A1 (ja) 圧縮機及び冷凍サイクル装置
KR20110015852A (ko) 압축기
KR20110015855A (ko) 압축기
KR101567089B1 (ko) 압축기
KR101698085B1 (ko) 밀폐형 압축기
KR101521304B1 (ko) 압축기
KR20110015853A (ko) 압축기
JP2007170414A (ja) 圧縮機
JP2012241629A (ja) 密閉型電動圧縮機
KR20110015851A (ko) 압축기
JP2012067676A (ja) スクロール圧縮機,電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14443692

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013858173

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157013737

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE