WO2022201300A1 - 圧縮機及び冷凍サイクル装置 - Google Patents

圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2022201300A1
WO2022201300A1 PCT/JP2021/011961 JP2021011961W WO2022201300A1 WO 2022201300 A1 WO2022201300 A1 WO 2022201300A1 JP 2021011961 W JP2021011961 W JP 2021011961W WO 2022201300 A1 WO2022201300 A1 WO 2022201300A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance weight
rotor
cup
shaped member
compressor according
Prior art date
Application number
PCT/JP2021/011961
Other languages
English (en)
French (fr)
Inventor
広康 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/011961 priority Critical patent/WO2022201300A1/ja
Priority to JP2023508212A priority patent/JP7399347B2/ja
Priority to CN202180092499.1A priority patent/CN116940764A/zh
Publication of WO2022201300A1 publication Critical patent/WO2022201300A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a compressor and a refrigeration cycle device, and particularly to the structure of refrigerant flow paths inside the compressor.
  • a scroll compressor includes a closed container, a compression mechanism section including a fixed scroll and an orbiting scroll, and an electric motor that rotationally drives the orbiting scroll of the compression mechanism section.
  • the refrigerant gas contains refrigerating machine oil that lubricates the bearings of the drive unit.
  • the refrigerating machine oil is brought out of the sealed container together with the refrigerant gas.
  • a scroll compressor has been proposed that has a structure that reduces the amount of refrigerating machine oil that flows out of the closed container (see, for example, Patent Document 1).
  • the scroll compressor disclosed in Patent Document 1 includes a compression mechanism, an electric motor that drives the compression mechanism, and a balance weight that offsets the imbalance between centrifugal force and moment generated in the compression mechanism.
  • Balance weights are fixed to the upper and lower ends of the rotor, and cups are provided to surround the balance weights. The cup prevents the refrigerant and refrigerating machine oil in the closed container from being agitated by the balance weight.
  • the mixed gas of refrigerant gas and refrigerating machine oil discharged from the compression mechanism is guided to the bottom of the sealed container through the refrigerant flow path.
  • the mixed gas that has reached the lower portion of the sealed container passes through the passage through the rotor, is discharged toward the compression mechanism, and flows into the discharge cover attached to the end face of the compression mechanism.
  • the refrigerating machine oil contained in the mixed gas is separated, and the amount of refrigerating machine oil contained in the mixed gas can be reduced.
  • the scroll compressor disclosed in Patent Literature 1 has a fixed balance weight for canceling out the force imbalance associated with the orbital motion of the orbiting scroll.
  • the balance weight rotates like the blades of a fan to agitate the refrigerating machine oil and the refrigerant gas discharged from below the rotor through the through passage.
  • the refrigerant and refrigerating machine oil discharged through the passage through the rotor are agitated again by the balance weight, so separation of the refrigerant and refrigerating machine oil is suppressed, and a sufficient oil spill prevention effect is obtained.
  • the present disclosure has been made in order to solve the above problems, and is a compressor and a refrigeration cycle that suppresses agitation of refrigerant gas and refrigerating machine oil by a balance weight and improves the efficiency of separating refrigerating machine oil from refrigerant. Intended to obtain equipment.
  • a compressor includes an airtight container having an oil reservoir that stores refrigerator oil, a compression mechanism that is provided in the airtight container and compresses a refrigerant, and is provided in the airtight container to generate a driving force.
  • An electric motor and a rotating shaft for transmitting a driving force generated by the electric motor to the compression mechanism, the electric motor including a rotor fixed to the rotating shaft, and a rotor fixed to the sealed container, the compression mechanism a stator formed with a refrigerant flow path for guiding refrigerant gas discharged from a section to a lower portion of the closed container; a first balance weight fixed to an end surface of the rotor facing the compression mechanism section; a first cup-shaped member having a side wall that surrounds the outer peripheral surface of one balance weight; the first balance weight is formed by connecting an arc-shaped light portion and an arc-shaped weight portion; A concave portion formed in an end face facing the rotor, and comprising a spacing portion opened to the outer peripheral surface of the
  • a refrigeration cycle apparatus includes the compressor described above.
  • the compressor causes the refrigerating machine oil, which passes through the through passage of the rotor together with the refrigerant, to collide with the spaced portion provided on the end surface of the first balance weight provided on the upper portion of the rotor. It is discharged to the outside of the first cup-shaped member from a discharge port provided on the side wall of the first cup-shaped member.
  • the compressor and the refrigeration cycle device have improved efficiency in separating refrigerating machine oil from refrigerant.
  • FIG. 1 is a longitudinal sectional view of scroll compressor 100 as a compressor according to Embodiment 1.
  • FIG. It is an example of a refrigeration cycle apparatus using the scroll compressor 100 according to Embodiment 1.
  • FIG. 4 is a cross-sectional view showing a first passage 4f provided in the outer peripheral portion of the guide frame 4 of FIG. 1;
  • FIG. 4 is a cross-sectional view of rotor 5a of scroll compressor 100 according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 1.
  • FIG. 4 is an enlarged view of the peripheral structure of the first cup-shaped member 17 of the scroll compressor 100 according to Embodiment 1.
  • FIG. 5 is a cross-sectional view of stator 5b of electric motor 5 of scroll compressor 100 according to Embodiment 1.
  • FIG. FIG. 8 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 2;
  • FIG. 10 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 3;
  • FIG. 12 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 4;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a modified example of the scroll compressor 100 according to Embodiment 4;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a modified example of the scroll compressor 100 according to Embodiment 4;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a modified example of the scroll compressor 100 according to Embodiment 4;
  • FIG. 12 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 5;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a modified example of the scroll compressor 100 according to Embodiment 5;
  • FIG. 12 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 6;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a modified example of the scroll compressor 100 according to Embodiment 6;
  • FIG. 12 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 7;
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of a rotor 5a of a scroll compressor 100 according to Embodiment 8;
  • FIG. 20 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 9;
  • FIG. 1 is schematic representations, and the relationship between the sizes of the constituent members may differ from the actual ones.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor 100 as a compressor according to Embodiment 1.
  • FIG. FIG. 2 shows an example of a refrigeration cycle apparatus using the scroll compressor 100 according to Embodiment 1.
  • the refrigerating cycle device 200 is used, for example, in various industrial machines such as refrigerators, freezers, air conditioners, refrigerating devices, and water heaters.
  • Scroll compressor 100 is one of the components of refrigeration cycle device 200 .
  • the refrigeration cycle device 200 is configured by sequentially connecting a scroll compressor 100, a four-way switching valve 103, an indoor heat exchanger 106, a pressure reducer 105, and an outdoor heat exchanger 104 by piping.
  • a suction muffler 101 is connected to the suction side of the scroll compressor 100 and is connected to a four-way switching valve 103 .
  • the four-way switching valve 103 is also connected to the discharge side of the scroll compressor 100 , switches the flow of refrigerant from the scroll compressor 100 , and switches the direction of refrigerant flow in the circuit of the refrigeration cycle device 200 .
  • the refrigeration cycle device 200 in Embodiment 1 is an air conditioner as an example.
  • the refrigeration cycle device 200 switches between cooling operation and heating operation by switching the four-way switching valve 103 .
  • the indoor heat exchanger 106 is installed indoors, and the remaining scroll compressor 100, four-way switching valve 103, outdoor heat exchanger 104, and pressure reducer 105 are installed outdoors. .
  • the four-way switching valve 103 is connected to the solid line side in FIG.
  • the high-temperature and high-pressure refrigerant compressed by the scroll compressor 100 flows to the indoor heat exchanger 106 functioning as a condenser, where it is condensed and liquefied.
  • the liquid refrigerant is throttled by the pressure reducer 105 , becomes a low-temperature, low-pressure two-phase state, and flows into the outdoor heat exchanger 104 .
  • the gas-liquid two-phase refrigerant evaporates in the outdoor heat exchanger 104 functioning as an evaporator, gasifies, and returns to the scroll compressor 100 through the four-way switching valve 103 .
  • the refrigerant circulates as indicated by the solid line arrows in FIG. 2 during the heating operation. Due to this circulation, the outdoor heat exchanger 104, which is an evaporator, exchanges heat with the outside air, and the refrigerant sent to the outdoor heat exchanger 104 absorbs heat. It is sent to the vessel 106 and exchanges heat with the air in the room to warm the air in the room.
  • the four-way switching valve 103 is connected to the dashed line side in FIG.
  • the high-temperature and high-pressure gas refrigerant compressed by the scroll compressor 100 flows to the outdoor heat exchanger 104 functioning as a condenser, where it is condensed and liquefied.
  • the liquid refrigerant is throttled by the pressure reducer 105 , becomes a low-temperature, low-pressure two-phase state, and flows into the indoor-side heat exchanger 106 .
  • the gas-liquid two-phase refrigerant evaporates in the indoor heat exchanger 106 functioning as an evaporator, gasifies, and returns to the scroll compressor 100 through the four-way switching valve 103 .
  • the indoor heat exchanger 106 changes from a condenser to an evaporator
  • the outdoor heat exchanger 104 changes from an evaporator to a condenser. Therefore, the coolant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the indoor heat exchanger 106, which is an evaporator, exchanges heat with the indoor air, and absorbs heat from the indoor air, that is, cools the indoor air. 104, heat is exchanged with the outside air, and the heat is released to the outside air.
  • the refrigerant that circulates in the refrigeration cycle device 200 is generally R410A refrigerant, R32 refrigerant, R290 refrigerant, or the like.
  • This scroll compressor 100 sucks the refrigerant circulating through the refrigeration cycle device 200, compresses it, and discharges it in a high-temperature, high-pressure state.
  • This scroll compressor 100 includes a compression mechanism section 14 in which a fixed scroll 1 and an orbiting scroll 2 that revolves (oscillates) with respect to the fixed scroll 1 are combined in a sealed container 10 .
  • the scroll compressor 100 also includes an electric motor 5 that drives the orbiting scroll 2 via a rotating shaft 6 .
  • a vertical type scroll compressor 100 will be described as an example. In the case of the vertical scroll compressor 100 , for example, the compression mechanism section 14 is arranged above the sealed container 10 and the electric motor 5 is arranged below the compression mechanism section 14 .
  • the compression mechanism section 14 includes a fixed scroll 1 , an orbiting scroll 2 , a compliant frame 3 and a guide frame 4 .
  • the fixed scroll 1 is a base plate portion 1a and a spiral projection provided so as to protrude from one surface of the base plate portion 1a facing the side where the electric motor 5 is arranged (the lower surface in FIG. 1). and a plate-like spiral tooth 1b.
  • the orbiting scroll 2 is provided so as to protrude from the base plate portion 2a and the surface of the base plate portion 2a facing the fixed scroll 1 (the upper surface in FIG. 1), and is substantially the same as the plate-like spiral tooth 1b. and a plate-like spiral tooth 2b that is a shaped spiral protrusion.
  • the scroll compressor 100 includes a guide frame 4 that supports the compression mechanism 14 from below.
  • the guide frame 4 is fixed inside the sealed container 10, and the fixed scroll 1 is fastened to the guide frame 4 with bolts (not shown) at its outer peripheral portion.
  • a suction pipe 13 for introducing refrigerant gas into the compression chamber 1f is provided on the outer peripheral portion of the base plate portion 1a of the fixed scroll 1. As shown in FIG.
  • the suction pipe 13 is connected to a suction port 1e provided with a suction check valve 1g.
  • a discharge port 1d is formed in the central portion of the base plate portion 1a of the fixed scroll 1 to discharge compressed and high-pressure refrigerant gas.
  • the compressed and high-pressure refrigerant gas is discharged to the upper space 10a inside the sealed container 10.
  • Refrigerant gas discharged into the upper space 10a is guided to an oil separation mechanism through a refrigerant flow path 30 as will be described later, and the refrigerant gas from which the refrigerating machine oil is separated is discharged from the discharge pipe 12.
  • FIG. 1 Refrigerant gas discharged into the upper space 10a is guided to an oil separation mechanism through a refrigerant flow path 30 as will be described later, and the refrigerant gas from which the refrigerating machine oil is separated is discharged from the discharge pipe 12.
  • the orbiting scroll 2 is prevented from rotating by the Oldham mechanism 9, and is configured to revolve (or oscillate) relative to the fixed scroll 1 without rotating.
  • a pair of Oldham guide grooves 1c are formed on the outer periphery of the base plate portion 1a of the fixed scroll 1 in a substantially straight line.
  • a pair of fixed-side keys 9a of an Oldham mechanism 9 are engaged with the Oldham guide groove 1c so as to be reciprocally slidable.
  • a pair of Oldham's guide grooves 2c having a phase difference of 90 degrees from the Oldham's guide grooves 1c of the fixed scroll 1 are formed on the outer periphery of the base plate 2a of the orbiting scroll 2 so as to be substantially aligned. .
  • a pair of rocking side keys 9b of the Oldham mechanism 9 are engaged with the Oldham guide groove 2c so as to be reciprocally slidable.
  • the Oldham mechanism 9 configured as described above allows the orbiting scroll 2 to perform an orbiting motion (orbiting motion) without rotating on its own axis.
  • a hollow cylindrical boss 2d is formed at the center of the surface of the orbiting scroll 2 opposite to the surface on which the plate-like spiral teeth 2b are formed (lower side in FIG. 1).
  • An eccentric shaft portion 6a provided at the upper end portion of the rotating shaft 6 is inserted into the boss portion 2d.
  • a thrust surface 2f that can press and slide against the thrust bearing 3a of the compliant frame 3 is formed on the surface of the base plate portion 2a of the orbiting scroll 2 opposite to the plate-like spiral tooth 2b (lower side in FIG. 1). there is Further, the base plate portion 2a of the orbiting scroll 2 is provided with an air bleed hole 2g penetrating the compression chamber 1f and the thrust surface 2f.
  • the compliant frame 3 is housed within the guide frame 4.
  • the compliant frame 3 supports the orbiting scroll 2 and the Oldham mechanism 9 from below, and supports the rotating shaft 6 in the axial and radial directions. Also, the compliant frame 3 is supported by the guide frame 4 .
  • the compliant frame 3 has an upper cylindrical surface 3p and a lower cylindrical surface 3s on its outer periphery.
  • the inner peripheral portion of the guide frame 4 is provided with an upper cylindrical surface 4c with which the upper cylindrical surface 3p of the compliant frame 3 is fitted and a lower cylindrical surface 4d with which the lower cylindrical surface 3s of the compliant frame 3 is fitted.
  • the compliant frame 3 is radially supported by the guide frame 4 by the upper cylindrical surface 4c and the lower cylindrical surface 4d.
  • a main bearing 3c and an auxiliary main bearing 3d that radially support the rotating shaft 6 that is rotationally driven by the rotor 5a of the electric motor 5.
  • a communication hole 3e is provided that axially penetrates the outer peripheral portion of the compliant frame 3 from the surface of the thrust bearing 3a.
  • a thrust bearing opening 3t opened at the upper end of the communication hole 3e is arranged to face an air bleed hole 2g passing through the base plate portion 2a of the orbiting scroll 2. As shown in FIG.
  • a reciprocating sliding surface 3b is formed on which the Oldham mechanism annular portion 9c reciprocates and slides.
  • the compliant frame 3 has a communication hole 3f penetrating from the inner peripheral surface to the outer peripheral surface.
  • the communication hole 3f is formed so as to communicate the base plate outer peripheral space 2k and the frame upper space 4a with the inner space of the Oldham mechanism annular portion 9c.
  • the compliant frame 3 is provided with an intermediate pressure regulating valve 3g, an intermediate pressure regulating valve retainer 3h, and an intermediate pressure regulating spring 3k for adjusting the pressure in the boss outer space 2n between the frame upper space 4a and the boss outer space 2n.
  • the intermediate pressure regulating spring 3k is housed in the intermediate pressure regulating valve space 3n while being shortened from its natural length.
  • the compliant frame 3 and the guide frame 4 are configured separately, but the present invention is not limited to this, and both frames may be configured as one integrated frame.
  • a frame lower space 4b formed by the inner surface of the guide frame 4 and the outer surface of the compliant frame 3 is partitioned from above and below by ring-shaped sealing materials 7a and 7b.
  • two ring-shaped seal grooves for accommodating the ring-shaped seal members 7a and 7b are formed on the outer peripheral surface of the compliant frame 3, but these seal grooves are formed on the inner peripheral surface of the guide frame 4.
  • the frame lower space 4b communicates only with the communication hole 3e of the compliant frame 3, and has a structure for enclosing refrigerant gas in the process of compression supplied from the bleed hole 2g.
  • the base plate outer peripheral space 2k which is a space on the outer peripheral side of the thrust bearing 3a surrounded above and below by the base plate portion 2a of the orbiting scroll 2 and the compliant frame 3, has a low-pressure suction gas atmosphere (suction pressure). It has become a space.
  • FIG. 3 is a cross-sectional view showing the first passage 4f provided on the outer peripheral portion of the guide frame 4 of FIG.
  • the outer peripheral surface 40 of the guide frame 4 is fixed to the sealed container 10 by shrink fitting or welding.
  • a notch is provided in the outer peripheral portion of the guide frame 4 and the outer peripheral portion of the fixed scroll 1, and the first passage 4f is formed by the notch. That is, the outer peripheral portion of the compression mechanism portion 14 is provided with a first passage 4 f that communicates between the upper space and the lower space of the compression mechanism portion 14 .
  • the refrigerant gas discharged from the discharge port 1d into the upper space 10a of the closed container 10 flows downward through the closed container 10 through the first passage 4f.
  • Refrigerant gas that has passed through the electric motor 5 arranged below the compression mechanism portion 14 flows to the bottom portion of the sealed container 10 in which the oil reservoir portion 10b is formed.
  • Refrigerating machine oil 11 is stored in an oil reservoir portion 10 b at the bottom of the closed container 10 .
  • the sealed container 10 is provided with a discharge pipe 12 through which the compressed refrigerant gas inside is discharged to the outside.
  • the above-described first passage 4f is provided at a position opposite to the discharge pipe 12 across the central axis.
  • the guide frame 4 includes a first discharge passage 4g that communicates with the discharge pipe 12. As shown in FIG.
  • the first discharge passage 4g is opened at the central portion of the lower end surface and the side surface, and is formed so that the space below the guide frame 4 and the discharge pipe 12 fixed to the sealed container 10 communicate with each other.
  • the lower end of the guide frame 4 is formed with a lower cylindrical portion 41 (the portion where the lower cylindrical surface 4d is formed) that supports the lower cylindrical surface 3s of the compliant frame 3 from the outside in the radial direction.
  • a discharge cover 16 is fixed to the end face of the guide frame 4 facing the electric motor 5 in which the first discharge passage 4g is opened so as to surround the lower cylindrical portion 41. As shown in FIG.
  • the discharge cover 16 has an opening 16b formed downward in the central portion thereof.
  • a second discharge passage 16a formed by the discharge cover 16 and the end face of the guide frame 4 communicates with the first discharge passage 4g.
  • the electric motor 5 rotates the rotating shaft 6 with a driving force generated by electric power, and includes a rotor 5 a fixed to the rotating shaft 6 and a stator 5 b fixed to the sealed container 10 .
  • the rotor 5a is fixed to the rotating shaft 6 by shrink fitting or the like.
  • the stator 5b When the stator 5b is energized, the rotor 5a is rotationally driven to rotate the rotary shaft 6.
  • an eccentric shaft portion 6a is formed which is rotatably engaged with the swing bearing 2e of the swing scroll 2.
  • a rotating shaft balance weight 6f is fixed to the lower portion of the eccentric shaft portion 6a by shrink fitting or the like.
  • a glass terminal 10c is installed on the side surface of the sealed container 10, and the glass terminal 10c and the stator 5b of the electric motor 5 are connected by a lead wire 5j.
  • a main shaft portion 6b rotatably engaged with the main bearing 3c and auxiliary main bearing 3d of the compliant frame 3 is formed below the fixed portion 6g to which the eccentric shaft portion 6a and the rotating shaft balance weight 6f are fixed.
  • a sub-shaft portion 6c is formed which rotatably engages with the sub-bearing 8a of the sub-frame 8 fixed to the bottom of the sealed container 10.
  • the subframe 8 is fixed to the lower portion of the sealed container 10 by shrink fitting or the like, and is provided with an inflow hole 8b so that the refrigerating machine oil 11 flows into the oil reservoir portion 10b formed at the lower end portion of the sealed container 10.
  • the rotary shaft 6 has a rotor 5a of the electric motor 5 fixed by shrink fitting, for example, between a secondary shaft portion 6c at the lower end and a main shaft portion 6b at the upper end.
  • the rotating shaft 6 has an oil supply passage 6d that is a hole penetrating in the axial direction.
  • An oil supply port 6e is attached to the lower end of the oil supply path 6d.
  • the oil supply port 6 e is submerged in the refrigerating machine oil 11 stored at the bottom of the sealed container 10 . Therefore, the refrigerating machine oil 11 is sucked upward from the oil supply port 6 e by the oil supply mechanism or the pump mechanism provided at the lower portion of the rotating shaft 6 .
  • the upper end of the oil supply passage 6d opens into the boss portion 2d of the orbiting scroll 2, and the refrigerating machine oil 11 sucked up flows out from the upper end opening of the oil supply passage 6d to the swing bearing 2e, and flows into the eccentric shaft portion 6a and the swing bearing. Lubricate 2e.
  • the rotary shaft 6 is provided with an oil supply hole 6h branching from the oil supply passage 6d.
  • the oil supply hole 6h extends in a direction crossing the oil supply passage 6d.
  • the refrigerator oil 11 is supplied to the auxiliary main bearing 3d through the oil supply hole 6h to lubricate the auxiliary main bearing 3d and the main shaft portion 6b. 1, an oil supply hole (not shown) for supplying the refrigerating machine oil 11 to the main bearing 3c of the rotary shaft 6 is omitted.
  • FIG. 4 is a cross-sectional view of rotor 5a of scroll compressor 100 according to the first embodiment.
  • 4(a) shows a longitudinal section including the central axis of the rotor 5a
  • FIG. 4(b) shows a transverse section perpendicular to the central axis of the rotor 5a.
  • the rotor 5a has a cylindrical shape, and has a shaft fixing hole 5h in which the rotating shaft 6 is fixed in the center.
  • a through-passage 5f extending parallel to the central axis and penetrating the rotor 5a in the vertical direction is formed.
  • the through flow passages 5f are arranged at four locations around the central axis of the rotor 5a, and are arranged at equal distances from the central axis.
  • a first balance weight 15a is fixed to the upper end face 52 of the rotor 5a.
  • a second balance weight 15i is fixed to the lower end surface 53 of the rotor 5a.
  • the first balance weight 15 a and the second balance weight 15 i are fixed symmetrically with respect to the central axis of the rotation shaft 6 when viewed in the axial direction of the rotation shaft 6 .
  • the centers of gravity of the first balance weight 15a and the second balance weight 15i are positioned eccentrically with respect to the central axis of the rotating shaft 6, and the respective centers of gravity are arranged at symmetrical positions with respect to the central axis.
  • FIG. 5 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to Embodiment 1.
  • FIG. FIG. 5(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 5(b) shows a cross section taken along line AA in FIG. 5(a).
  • the first balance weight 15a has an arc-shaped light portion 15b and an arc-shaped heavy portion 15c that are connected to form an annular shape surrounding the central axis.
  • the first balance weight 15a is fixed to the upper end surface of the rotor 5a.
  • a first cup-shaped member 17 is sandwiched between the first balance weight 15a and the upper end surface of the rotor 5a.
  • the lightweight portion 15b includes an arc portion 15p arranged along the outer circumference of the rotor 5a and an inner peripheral surface 15k of the arc portion 15p partially extending toward the center. and two protruding portions 15q formed to protrude.
  • the projecting portion 15q protrudes to the vicinity of the shaft fixing hole 5h of the rotor 5a, and has a fastener hole 15d through which a fastener 15h for fixing the first balance weight 15a to the rotor 5a is inserted.
  • the weight portion 15c is formed in a semi-cylindrical shape and formed thicker than the light portion 15b in the central axis direction of the rotor 5a. Further, the weight portion 15c faces the contact portion 15f formed with the fastener hole 15d through which the fastener 15h is passed, and the upper end surface of the rotor 5a of the weight portion 15c, and contacts the first cup-shaped member 17. and a spacing portion 15g that is recessed from the surface. As shown in FIG. 5(b), the spacing portion 15g is a recess formed in the surface facing the upper end surface of the rotor 5a. The recess is opened on the outer peripheral surface of the first balance weight 15a.
  • the spacing portion 15g is formed at a position corresponding to the through passage 5f of the rotor 5a. That is, the spacing portion 15g is a recess partially formed in the lower end surface of the first balance weight 15a, and the space surrounded by the recess communicates with the outer space from the outer peripheral surface of the first balance weight 15a. is formed in
  • the first balance weight 15a causes the orbiting scroll 2 to oscillate together with the second balance weight 15i fixed to the lower end surface of the rotor 5a and the rotating shaft balance weight 6f fixed to the upper end portion of the rotating shaft 6. offset the resulting imbalance between the centrifugal force and the moment force. That is, the compression mechanism section 14 is configured to achieve dynamic balance and static balance by the first balance weight 15a, the second balance weight 15i, and the rotating shaft balance weight 6f.
  • first cup-shaped member 17 and second cup-shaped member 18 As shown in FIG. 1, a first cup-shaped member 17 is fixed to the upper end surface of the rotor 5a so as to radially surround the outer peripheral surface of the first balance weight 15a. A second cup-shaped member 18 surrounding the outer peripheral surface of the second balance weight 15i from the outside is fixed to the lower end surface of the rotor 5a.
  • the first cup-shaped member 17 and the second cup-shaped member 18 are formed in a cylindrical shape with a bottom, and have a central portion through which the rotating shaft 6 is inserted, a position corresponding to the through passage 5f of the rotor 5a, and a fastener 15h. A hole is formed in the portion to be inserted.
  • FIG. 6 is an enlarged view of the peripheral structure of the first cup-shaped member 17 of the scroll compressor 100 according to Embodiment 1.
  • the first cup-shaped member 17 has an opening 17a at its upper end facing the opening 16b of the discharge cover 16 described above.
  • the tip of the side wall 17c of the first cup-shaped member 17 protrudes toward the compression mechanism 14 beyond the end face of the first balance weight 15a.
  • the tip of the side wall 17c of the first cup-shaped member 17 is positioned below the opening 16c of the discharge cover 16 in the axial direction, but is positioned above or above the opening 16c.
  • a side wall 17c of the first cup-shaped member 17 is formed with a discharge port 17b at a position that overlaps with the spaced portion 15g of the first balance weight 15a that opens in the radial direction.
  • the coolant that has passed through the through passage 5f is configured to flow outside the side wall 17c of the first cup-shaped member 17 from the spaced portion 15g through the outlet portion 17b.
  • the relationship between the inner diameter D of the opening 16b of the discharge cover 16 and the inner diameter d of the opening 17a of the first cup-shaped member 17 is D ⁇ d. That is, the inner diameter of the opening 16 b of the discharge cover 16 is smaller than the inner diameter d of the opening 17 a at the upper end of the first cup-shaped member 17 . Therefore, the refrigerating machine oil discharged to the outside of the first cup-shaped member 17 is suppressed from flowing into the opening 16b inside the side wall 17c of the first cup member 17. As shown in FIG.
  • the second cup-shaped member 18 is attached to the lower end surface of the rotor 5a with the opening facing downward.
  • the second cup-shaped member 18 is formed such that a bottomed tubular portion surrounds the outer peripheral surface of the second balance weight 15i from the outside.
  • the rotor 5a is provided with a plurality of through passages 5f extending axially therethrough. 5 f of several through-flow paths are arrange
  • the opening of the through passage 5f installed on the weight portion 15c side of the first balance weight 15a is arranged to avoid the position facing the contact portion 15f of the first balance weight 15a.
  • the opening of the through passage 5f installed on the light weight portion 15b side of the first balance weight 15a is located at a position avoiding the contact portion 15f of the first balance weight 15a, that is, the projection of the light weight portion 15b of the first balance weight 15a. It is arranged to avoid the portion 15q.
  • the first cup-shaped member 17 and the second cup-shaped member 18 are preferably made of non-magnetic material.
  • the through flow path 5f may be formed so as to penetrate the second balance weight 15i, or may be provided to avoid the position of the second cup-shaped member 18.
  • the plurality of through passages 5f are formed symmetrically or point-symmetrically with respect to the central axis of the rotor 5a.
  • FIG. 7 is a cross-sectional view of stator 5b of electric motor 5 of scroll compressor 100 according to the first embodiment.
  • FIG. 7 shows a cross section perpendicular to the central axis of the stator 5b.
  • the stator 5b of the electric motor 5 has its outer peripheral surface fixed to the closed container 10 by shrink fitting or welding.
  • the stator 5b has a flat surface 5r parallel to the central axis formed on part of the outer peripheral surface.
  • the stator 5b has a cylindrical outer peripheral portion partially cut out by the flat surface 5r.
  • the second passage 5g is formed surrounded by a flat surface 5r formed on the stator 5b and the inner peripheral surface of the sealed container 10. As shown in FIG.
  • the first passage 4f formed on the outer peripheral surface of the guide frame 4 and the second passage 5g formed on the outer peripheral surface of the stator 5b pass the refrigerant gas discharged from the discharge port 1d of the compression mechanism portion 14 into the sealed container 10. It constitutes a coolant channel 30 leading to the bottom of the .
  • a mixed gas composed of the refrigerant and the refrigerating machine oil is discharged from the discharge port 1d of the fixed scroll 1 into the upper space 10a of the sealed container 10 through the compression stroke.
  • the mixed gas passes through a refrigerant flow path 30 consisting of a first passage 4f provided on the outer circumference of the compression mechanism portion 14 and a second passage 5g provided on the outer circumference of the stator 5b of the electric motor 5. It is led to the space below 5, that is, the bottom of the closed container 10. Refrigerant oil is separated from the mixed gas in the process of being led to the bottom of the sealed container 10 .
  • Refrigerant gas from which the refrigerating machine oil has been separated enters the second cup-shaped member 18 through the opening 18a of the second cup-shaped member 18 attached to the lower end surface of the rotor 5a of the electric motor 5, and enters the second cup-shaped member 18. It flows into the through flow channel 5f. Part of the refrigerant gas and refrigerating machine oil that rises through the through passage 5f installed corresponding to the spaced portion 15g of the first balance weight 15a collides with the spaced portion 15g of the first balance weight 15a. The refrigerant gas and refrigerating machine oil that have collided with the spaced portion 15g flow radially outward and are discharged to the outside of the first cup-shaped member 17 through the discharge port portion 17b.
  • the refrigerant gas that has passed through the through passage 5f that does not face the spaced portion 15g rises inside the first cup-shaped member 17 and flows into the discharge cover 16. As shown in FIG. Further, the refrigerant gas passes through the second discharge passage 16 a in the discharge cover 16 , the first discharge passage 4 g, and the discharge pipe 12 to be discharged out of the sealed container 10 .
  • the discharge of the refrigerating machine oil to the outside of the scroll compressor 100 will be described.
  • the refrigerating machine oil is supplied to each bearing and sliding portion, and then circulates inside the sealed container 10 together with the refrigerant. Some is discharged to the outside of the sealed container 10 through the discharge pipe 12 together with the refrigerant. If the amount of refrigerating machine oil discharged to the outside of the sealed container 10 is large, the amount of refrigerating machine oil held in the oil reservoir 10b decreases. When the amount of refrigerating machine oil in the sealed container 10 decreases, the amount of oil supplied to each bearing and sliding part decreases, and finally the refrigerating machine oil runs out, causing abnormal wear or adhesion in each bearing and sliding part. Compressor breaks down.
  • scroll compressor 100 in order to reduce the amount of refrigerating machine oil 11 that is discharged to the outside of sealed container 10, it flows to the upper end of rotor 5a through passage 5f of rotor 5a.
  • the incoming refrigerant and refrigerating machine oil collide with the spaced portion 15g of the weight portion 15c of the first balance weight 15a and are guided radially outward.
  • the spaced portion 15g is formed at a position facing the through channel 5f.
  • the refrigerant and refrigerating machine oil that have passed through the through flow path 5f and collided with the spaced portion 15g change their flow direction and flow outward from the spaced portion 15g by centrifugal force.
  • a side wall 17c of the first cup-shaped member 17 has an outlet portion 17b.
  • the outlet portion 17b of the first cup-shaped member 17 is provided corresponding to the position where the spaced portion 15g is provided on the outer peripheral surface of the first balance weight 15a, and faces the spaced portion 15g in the radial direction. is provided.
  • the first cup-shaped member 17 surrounds the first balance weight 15a provided at the upper end of the rotor 5a from the radially outer side of the rotor 5a, and is open at the top. However, since the side wall 17c of the first cup-shaped member 17 is provided with the discharge hole portion 17b corresponding to the spaced portion 15g, the refrigerating machine oil and the refrigerant gas are discharged from the discharge port portion 17b in the side wall 17c to the first outlet. It is discharged outside the cup-shaped member 17 .
  • the refrigerant gas and refrigerating machine oil that have flowed out from the discharge port 17b of the first cup-shaped member 17 are blown out beyond the opening 16b of the discharge cover 16, so that they are difficult to flow into the discharge cover 16 opening 16b.
  • the refrigerating machine oil flows outward from the discharge port 17b, it flows below the closed container 10 together with the refrigerant gas flowing downward from above the closed container 10 .
  • the mixed gas of the refrigerant gas and the refrigerating machine oil compressed by the compression mechanism portion 14 flows downward in the sealed container 10 and circulates upward again. Refrigerant oil 11 is separated until . Therefore, in the scroll compressor 100 according to Embodiment 1, the amount of refrigerating machine oil discharged to the outside of the sealed container 10 is significantly reduced as compared with the conventional compressor. As a result, scroll compressor 100 increases the amount of refrigerating machine oil that can be held in oil reservoir 10b. As a result, a decrease in the amount of oil supplied to the bearings and sliding members in the scroll compressor 100 can be suppressed, and the highly reliable scroll compressor 100 and refrigeration cycle device 200 can be obtained.
  • Embodiment 2 A scroll compressor 100 according to Embodiment 2 will be described.
  • a scroll compressor 100 according to Embodiment 2 is different from that of Embodiment 1 in the structure of a first cup-shaped member 17 .
  • FIG. 8 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the second embodiment.
  • FIG. 8(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 8(b) shows a cross section taken along line AA of FIG. 8(a).
  • at least one discharge port 17d is added to the side wall 17c of the first cup-shaped member 17 on the light weight portion 15b side of the first balance weight 15a.
  • refrigerating machine oil may flow into the opening 16b of the discharge cover 16 together with the refrigerant gas flowing out from the through passage 5f that does not face the spaced portion 15g of the first balance weight 15a.
  • the first cup-shaped member 17 is further provided with an outlet portion 17d, so that the refrigerant gas and refrigerating machine oil flowing out of the through-flow passage 5f arranged on the side of the lightweight portion 15b are discharged into the first cup-shaped member. 17 in the radial direction.
  • the discharge port portion 17d may be called a second discharge port portion.
  • the outlet portion 17d is provided near the boundary between the light portion 15b and the weight portion 15c on the side of the light portion 15b of the first balance weight 15a.
  • the outlet portion 17d installed on the side of the lightweight portion 15b is not limited to this position.
  • the outlet portion 17d is provided at a portion other than the radially outer side of the spacing portion 15g, and the spacing portion 15g is not arranged on an imaginary straight line connecting the central axis and the outlet portion 17d.
  • the scroll compressor 100 can increase the amount of refrigerating machine oil discharged to the outside of the first cup-shaped member 17 by newly providing the discharge port 17b in the first cup-shaped member 17 .
  • the scroll compressor 100 can suppress the refrigerating machine oil discharged to the outside. .
  • Embodiment 3 A scroll compressor 100 according to Embodiment 3 will be described.
  • a scroll compressor 100 according to the third embodiment differs from the first embodiment in the structures of the first cup-shaped member 17 and the first balance weight 15a.
  • FIG. 9 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the scroll compressor 100 according to the third embodiment.
  • FIG. 9(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 9(b) shows a cross section taken along line BB of FIG. 9(a).
  • the contact portion 15f of the light weight portion 15b of the first balance weight 15a is also provided with the separation portion 15g opening radially outward in the same manner as the separation portion 15g of the weight portion 15c.
  • the through flow passage 5f of the rotor 5a is arranged so as to face the spaced portion 15g provided in the lightweight portion 15b.
  • a side wall 17c of the first cup-shaped member 17 located radially outside the spaced portion 15g of the light weight portion 15b is formed with a discharge port portion 17b.
  • the spacing portion 15g provided in the weight portion 15c may be called the first spacing portion 15g, and the spacing portion 15g provided in the light weight portion 15b may be referred to as the second spacing portion 15g.
  • the refrigerant gas passes through the through passage 5f of the rotor 5a of the electric motor 5 and rises above the rotor 5a.
  • Refrigerant gas and refrigerating machine oil rising from the through passage 5f facing the spaced portion 15g of the first balance weight 15a are discharged to the outside of the first cup-shaped member 17 as described above.
  • the through flow path 5f provided on the side of the light weight portion 15b flows directly toward the discharge cover 16. It faces the second spacing portion 15g. Therefore, the refrigerant gas and refrigerating machine oil that have passed through the through passage 5f collide with the second spaced portion 15g and flow radially outward.
  • a radially outer side of the second spaced portion 15g is opened to the outer peripheral surface of the first balance weight 15a, and a discharge port portion 17b is provided at a position facing the opening.
  • the second separation portion 15g also changes the flow of the refrigerant that has passed through the through-flow passage 5f and causes the refrigerant to flow radially outward. together with it flows radially outward of the first cup-shaped member 17 .
  • the refrigerating machine oil from flowing into the opening 16b of the discharge cover 16 inside the opening 17a of the first cup-shaped member 17 together with the refrigerant.
  • Embodiment 4 A scroll compressor 100 according to Embodiment 4 will be described.
  • a scroll compressor 100 according to the fourth embodiment differs from that of the first embodiment in the structures of the separation portion 15g and the discharge port portion 17b.
  • FIG. 10 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the fourth embodiment.
  • FIG. 10(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 10(b) shows a cross section taken along line AA of FIG. 10(a).
  • one spaced portion 15g faces two through passages 5f of the rotor 5a provided on the side of the weight portion 15c. That is, the two spacing portions 15g formed in the weight portion 15c of the first balance weight 15a according to Embodiment 1 shown in FIG. 5 are connected to be changed into one spacing portion 15g.
  • the structure of the first balance weight 15a can be simplified by arranging one separation portion 15g so as to face a plurality of through passages 5f as shown in FIG. can be
  • the first cup-shaped member 17 shown in FIG. 10 has one outlet portion 17b corresponding to one separation portion 15g provided in the weight portion 15c.
  • the outlet portion 17b is arranged on an extension of a straight line connecting the central axis and the spaced portion 15g when viewed in the axial direction.
  • the same effects as those of Embodiment 1 are obtained, and the structures of the first balance weight 15a and the first cup-shaped member 17 are simplified. , the manufacturing is easy and the cost can be reduced.
  • FIG. 11 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the modified example of the scroll compressor 100 according to the fourth embodiment.
  • FIG. 11(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 11(b) shows a cross section taken along line AA of FIG. 11(a).
  • the first cup-shaped member 17 of the scroll compressor 100 according to the fourth embodiment is located on the light weight portion 15b side of the first balance weight 15a, and is located between the light weight portion 15b and the weight portion 15c.
  • a discharge port 17d may be provided near the boundary.
  • FIG. 12 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the modified example of the scroll compressor 100 according to the fourth embodiment.
  • FIG. 12(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 12(b) shows a cross section taken along line AA of FIG. 12(a).
  • the first cup-shaped member 17 shown in FIG. 12(a) has one outlet portion 17b corresponding to the spaced portion 15g formed in the weight portion 15c, and corresponds to each of the two through passages 5f. You may have the discharge port part 17b which extended.
  • each of the two outlet portions 17b may be arranged on an extension of a straight line connecting the central axis and the through-flow passage 5f from the axial viewpoint. Since the first cup-shaped member 17 shown in FIG. 12(a) has a small area of the discharge port 17b per one, the first cup-shaped member 17 shown in FIGS. 10(a) and 11(a) You can keep your strength higher. Further, the first cup-shaped member 17 shown in FIG. 12(a) has two or more outlet portions 17b formed at positions overlapping with the spaced portion 15g, so that the efficiency of discharging refrigerating machine oil is high.
  • FIG. 13 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the modified example of the scroll compressor 100 according to Embodiment 4.
  • FIG. FIG. 13(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 11(b) shows a cross section taken along line AA of FIG. 13(a).
  • the first cup-shaped member 17 shown in FIG. 12(a) is on the light weight portion 15b side of the first balance weight 15a and near the boundary between the light weight portion 15b and the weight portion 15c, as in the second embodiment. may be provided with an outlet portion 17d.
  • the scroll compressor 100 according to the fourth embodiment has the same effects as those of the second embodiment.
  • Embodiment 5 A scroll compressor 100 according to Embodiment 5 will be described.
  • a scroll compressor 100 according to Embodiment 5 differs from Embodiment 3 shown in FIG. 9 in the structures of a spacing portion 15g and a discharge port portion 17b.
  • FIG. 14 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the fifth embodiment.
  • FIG. 14(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 14(b) shows a cross section taken along line BB of FIG. 14(a).
  • the light weight portion 15b of the first balance weight 15a is also provided with the separation portion 15g.
  • the first balance weight 15a according to Embodiment 5 is configured such that one spaced portion 15g provided in the light weight portion 15b faces the two through passages 5f.
  • the first cup-shaped member 17 shown in FIG. 14 includes a discharge port 17b radially outward of a spaced portion 15g provided in each of the light portion 15b and the weight portion 15c.
  • Each outlet portion 17b is formed to have a width corresponding to the circumferential width of the spacing portion 15g.
  • the outlet portion 17b is arranged on an extension of a straight line connecting the central axis and the spaced portion 15g when viewed in the axial direction.
  • FIG. 15 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the modified example of the scroll compressor 100 according to the fifth embodiment.
  • FIG. 15(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 15(b) shows a cross section taken along line BB of FIG. 15(a).
  • the first cup-shaped member 17 according to Embodiment 5 may be provided with outlet portions 17b corresponding to each of the plurality of through-flow passages 5f. That is, as shown in FIG. 15(a), the first cup-shaped member 17 may be configured such that two discharge port portions 17b are arranged corresponding to one separation portion 15g. At this time, each of the plurality of outlet portions 17b is arranged on an extension of a straight line connecting the central axis and each of the plurality of through-flow passages 5f from the axial viewpoint.
  • Embodiment 6 A scroll compressor 100 of Embodiment 6 will be described. A scroll compressor 100 according to Embodiment 6 is different from Embodiment 1 shown in FIG.
  • FIG. 16 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the sixth embodiment.
  • FIG. 16(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 16(b) shows a cross section taken along line AA of FIG. 16(a).
  • a scroll compressor 100 according to Embodiment 6 has the same structure as the first balance weight 15a of Embodiment 1 shown in FIG.
  • one discharge port portion 17b is provided for two spaced portions 15g provided in the weight portion 15c. Even with such a structure, the same effects as those of the scroll compressor 100 according to Embodiment 1 can be obtained, and the structure of the first cup-shaped member 17 can be simplified.
  • FIG. 17 is an explanatory diagram of the structure of the upper portion of the rotor 5a of the modified example of the scroll compressor 100 according to the sixth embodiment.
  • FIG. 17(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 17(b) shows a cross section taken along line AA of FIG. 17(a).
  • the first cup-shaped member 17 of the scroll compressor 100 according to the fourth embodiment is located on the light weight portion 15b side of the first balance weight 15a, and is located between the light weight portion 15b and the weight portion 15c.
  • a discharge port 17d may be provided near the boundary.
  • Embodiment 7 A scroll compressor 100 according to Embodiment 7 will be described.
  • a scroll compressor 100 according to Embodiment 7 differs from Embodiment 3 shown in FIG. 9 in the structure of a discharge port portion 17b of a first cup-shaped member 17.
  • FIG. 18 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the seventh embodiment.
  • FIG. 18(a) is a view of the rotor 5a viewed from the axial direction
  • FIG. 18(b) shows a cross section taken along line BB of FIG. 18(a).
  • a scroll compressor 100 according to Embodiment 7 has the same structure as the first balance weight 15a of Embodiment 3 shown in FIG. .
  • one outlet portion 17b is provided for two spaced portions 15g provided in the weight portion 15c. Even with such a structure, the scroll compressor 100 according to Embodiment 7 can obtain the same effects as those of Embodiment 3, and the structure of the first cup-shaped member 17 can be simplified.
  • the discharge port 17b corresponding to the spaced portion 15g of either the light weight portion 15b or the weight portion 15c may be changed to a plurality of discharge port portions 17b. good. That is, one of the two discharge port portions 17b of the first cup-shaped member 17 shown in FIG. 18(a) may be changed to a plurality of discharge port portions 17b shown in FIG. 15(a).
  • Embodiment 8 A scroll compressor 100 of Embodiment 8 will be described.
  • a scroll compressor 100 according to the eighth embodiment is obtained by changing the shape of the first balance weight 15a of the first embodiment.
  • FIG. 19 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the eighth embodiment.
  • FIG. 19 is a view of the rotor 5a viewed from the axial direction.
  • the shape of a lightweight portion 15b is changed from that of the first balance weight 15a of Embodiment 1 shown in FIG.
  • the light weight portion 215b of the first balance weight 215a according to the eighth embodiment has two arcuate portions 215p respectively connected to both ends of the weight portion 15c.
  • the first balance weight 215a is an arc that surrounds the central axis by the weight portion 15c that forms a half circumference around the central axis and the arc portions 215p that are connected to both ends of the weight portion 15c and that are less than a quarter circumference. It has a shape.
  • the through passage 5f provided on the side of the lightweight portion 215b is arranged in a portion where the circular arc portion 215p is not provided.
  • the discharge port 17b may be provided on the light weight portion 215b side of the first cup-shaped member 17 as in the second embodiment. Further, the spacing portion 15g on the weight portion 15c side may be changed so that one spacing portion 15g corresponds to a plurality of through flow paths 5f, as in the fourth embodiment shown in FIG. Similarly to the sixth embodiment shown in FIG. 16, the discharge port 17b may also be changed so that one discharge port 17b corresponds to a plurality of spacing portions 15g.
  • the scroll compressor 100 according to the eighth embodiment can also obtain the same effect as the first embodiment.
  • the light weight portion 215b according to the eighth embodiment may be formed to have the same thickness and inner and outer diameter dimensions as those of the weight portion 15c.
  • the first balance weight 215a has an arc shape and is configured such that the center of gravity is eccentric with respect to the central axis, and the structure can be simplified.
  • Embodiment 9 A scroll compressor 100 according to Embodiment 9 will be described.
  • a scroll compressor 100 according to the ninth embodiment is obtained by changing the shape of the first balance weight 15a of the fifth embodiment shown in FIG.
  • FIG. 20 is an explanatory diagram of the upper structure of the rotor 5a of the scroll compressor 100 according to the ninth embodiment.
  • FIG. 20 is a view of the rotor 5a viewed from the axial direction.
  • the shape of a light weight portion 15b is changed from that of the first balance weight 15a of Embodiment 5 shown in FIG.
  • the light portion 15b of the first balance weight 315a has two arcuate portions 215p and 315p respectively connected to both ends of the weight portion 15c.
  • the first balance weight 315a has an arc shape surrounding the central axis by the weight portion 15c forming a half circumference around the central axis and the arc portions 215p and 315p connected to both ends of the weight portion 15c.
  • the through passage 5f provided on the side of the lightweight portion 215b is arranged to correspond to the spaced portion 15g provided on the circular arc portion 315p. ing.
  • the arrangement of the spaced portion 15g and the through-channel 5f can be changed as appropriate. That is, some of the plurality of through-flow channels 5f may be arranged under the arc portion 315p, the rest may be arranged under the arc portion 215p, and the separation portion 15g may be formed in each of the arc portions 315p and 215p.
  • the scroll compressor 100 according to the ninth embodiment can also obtain the same effect as the scroll compressor 100 according to the third embodiment.
  • the two circular arc portions 215p and 315p of the lightweight portion 315b according to Embodiment 9 may be formed to have the same thickness and the same inner and outer diameter dimensions as the heavy portion 15c.
  • the first balance weight 315a has an arc shape and is configured such that the center of gravity is eccentric with respect to the central axis, and the structure can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

本開示は、バランスウェイトによる冷媒ガスと冷凍機油の攪拌を抑制し、冷媒からの冷凍機油の分離効率を向上させた圧縮機を得ることを目的としている。本開示の圧縮機は、冷密閉容器と、密閉容器内に設けられ、冷媒を圧縮する圧縮機構部と、密閉容器内に設けられ、駆動力を発生させる電動機と、電動機で発生した駆動力を圧縮機構部へ伝達する回転軸と、を備える。電動機は、回転子と、固定子と、回転子の圧縮機構部に対向する端面に固定された第1バランスウェイトと、第1バランスウェイトの外周面を包囲する側壁を有する第1カップ状部材と、を備える。第1バランスウェイトは、円弧状の軽量部と円弧状の重量部とが接続されて形成され、回転子に対向する端面に形成された凹部であって、当該第1バランスウェイトの外周面に開口された離間部を備え、離間部は、貫通流路の開口と対向して配置され、第1カップ状部材の側壁は、離間部に対し径方向外側に位置する排出口部を備える。

Description

圧縮機及び冷凍サイクル装置
 本開示は、圧縮機及び冷凍サイクル装置に関し、特に圧縮機内部の冷媒流路の構造に関する。
 例えばスクロール圧縮機は、密閉容器と、固定スクロールおよび揺動スクロールからなる圧縮機構部と、この圧縮機構部の揺動スクロールを回転駆動する電動機とを備えている。圧縮機構部で圧縮され固定スクロールの吐出口より吐出された高圧の冷媒ガスがそのまま密閉容器外へ排出されると、冷媒ガスには駆動部の軸受部を潤滑する冷凍機油が含まれているため、その冷凍機油が冷媒ガスと共に密閉容器外へ持ち出されることになる。そのため、密閉容器の底部に貯留されている冷凍機油が減り、給油不足のため揺動スクロールを回転駆動する回転軸の軸受部の焼き付きなどが発生し、スクロール圧縮機の故障などを引き起こす。
 このような課題を解決するものとして、冷凍機油が密閉容器外に流出する量を低減する構造を備えたスクロール圧縮機が提案されている(例えば、特許文献1参照)。特許文献1に開示されているスクロール圧縮機は、圧縮機構部と、圧縮機構部を駆動する電動機と、圧縮機構部で発生する遠心力とモーメントのアンバランスを相殺するためのバランスウェイトと、を備える。バランスウェイトは、回転子の上端及び下端に固定されており、このバランスウェイトを囲うようにカップが設けられている。カップは、バランスウェイトにより密閉容器内の冷媒と冷凍機油が撹拌されることを防止するものである。
 圧縮機構部から吐出された冷媒ガスと冷凍機油の混合ガスは、冷媒流路を通り密閉容器の下部に案内される。密閉容器の下部に至った混合ガスは、回転子の貫通流路を通り、圧縮機構部側に排出され、圧縮機構の端面に取り付けられた吐出カバーに流入する。この混合ガスが冷媒流路及び貫通流路を通過する過程で、混合ガスに含まれている冷凍機油が分離され、混合ガスに含まれる冷凍機油の量を削減することができる。
特開2014-109194号公報
 特許文献1に開示されたスクロール圧縮機は、揺動スクロールの公転運動に伴う力のアンバランスを相殺するためのバランスウェイトが固定されている。このバランスウェイトがファンの羽根のように回転することで、回転子の下方から貫通流路を通り排出される冷凍機油と冷媒ガスとを攪拌する。そのため、回転子の貫通流路を通過して排出された冷媒と冷凍機油とは、バランスウェイトにより再度攪拌されるため、冷媒と冷凍機油との分離が抑制され、油流出防止効果が十分に得られないという課題があった。
 本開示は、上記のような課題を解決するためになされたもので、バランスウェイトによる冷媒ガスと冷凍機油の攪拌を抑制し、冷媒からの冷凍機油の分離効率を向上させた圧縮機及び冷凍サイクル装置を得ることを目的としている。
 本開示に係る圧縮機は、冷凍機油を溜める油溜めを有する密閉容器と、前記密閉容器内に設けられ、冷媒を圧縮する圧縮機構部と、前記密閉容器内に設けられ、駆動力を発生させる電動機と、前記電動機で発生した駆動力を前記圧縮機構部へ伝達する回転軸と、を備え、前記電動機は、前記回転軸に固定された回転子と、前記密閉容器に固定され、前記圧縮機構部から吐出された冷媒ガスを前記密閉容器の下部に導く冷媒流路が形成された固定子と、前記回転子の前記圧縮機構部に対向する端面に固定された第1バランスウェイトと、前記第1バランスウェイトの外周面を包囲する側壁を有する第1カップ状部材と、を備え、前記第1バランスウェイトは、円弧状の軽量部と円弧状の重量部とが接続されて形成され、前記回転子に対向する端面に形成された凹部であって、当該第1バランスウェイトの外周面に開口された離間部を備え、前記離間部は、前記回転子を軸方向に貫通して設けられた貫通流路の開口と対向して配置され、前記第1カップ状部材の前記側壁は、前記離間部に対し径方向外側に位置する排出口部を備える。
 本開示に係る冷凍サイクル装置は、上記圧縮機を備える。
 本開示によれば、圧縮機は、冷媒とともに回転子の貫通流路を通過する冷凍機油を、回転子の上部に備えられた第1バランスウェイトの端面に設けられた離間部に衝突させ、第1カップ状部材の側壁に設けられた排出口部から第1カップ状部材の外部へ排出する。これにより、冷凍機油の第1バランスウェイトによる攪拌を抑制し、冷凍機油が冷媒とともに吐出管に連通する吐出カバーの開口部に流入するのを抑制できる。これにより、圧縮機及び冷凍サイクル装置は、冷媒からの冷凍機油の分離効率が向上する。
実施の形態1に係る圧縮機としてのスクロール圧縮機100の縦断面図である。 実施の形態1に係るスクロール圧縮機100を用いた冷凍サイクル装置の一例である。 図1のガイドフレーム4の外周部に設けた第1通路4fを示す横断面図である。 実施の形態1に係るスクロール圧縮機100の回転子5aの断面図である。 実施の形態1に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態1に係るスクロール圧縮機100の第1カップ状部材17の周辺構造の拡大図である。 実施の形態1に係るスクロール圧縮機100の電動機5の固定子5bの断面図である。 実施の形態2に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態3に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態4に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。 実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。 実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。 実施の形態5に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態5に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。 実施の形態6に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態6に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。 実施の形態7に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態8に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。 実施の形態9に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。
 以下、本開示の圧縮機の実施の形態について図面に基づいて説明する。なお、ここで説明する圧縮機は、縦置き型のスクロール圧縮機の例を示すが、横置き型の圧縮機、また圧縮機構部がスクロールによるもの以外であってもよい。また、図1を含め、以下の図面は模式的に表したものであり、各構成部材の大きさの関係についても実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る圧縮機としてのスクロール圧縮機100の縦断面図である。図2は、実施の形態1に係るスクロール圧縮機100を用いた冷凍サイクル装置の一例である。冷凍サイクル装置200は、例えば、冷蔵庫や冷凍庫、空気調和装置、冷凍装置、給湯器等の各種産業機械に用いられるものである。スクロール圧縮機100は、冷凍サイクル装置200の構成要素の一つである。
 (冷凍サイクル装置200)
 冷凍サイクル装置200は、スクロール圧縮機100、四方切換弁103、室内側熱交換器106、減圧器105及び室外側熱交換器104を配管により順次接続して構成される。スクロール圧縮機100の吸入側には、吸入マフラ101が接続されており、四方切換弁103と接続されている。四方切換弁103は、スクロール圧縮機100の吐出側とも接続されておりスクロール圧縮機100からの冷媒の流れを切換え、冷凍サイクル装置200の回路内の冷媒の流れる方向を切り換える。
 実施の形態1において冷凍サイクル装置200は、一例として空気調和装置である。冷凍サイクル装置200は、四方切換弁103を切り換えることにより、冷房運転と暖房運転とを切り換える。一般的に空気調和装置は、室内側熱交換器106は屋内の装置に、残るスクロール圧縮機100、四方切換弁103、室外側熱交換器104、減圧器105は屋外の装置に搭載されている。
 例えば、空気調和装置の暖房運転においては、四方切換弁103は、図2の実線側に接続される。スクロール圧縮機100で圧縮された高温高圧の冷媒は、凝縮器として機能する室内側熱交換器106に流れ、凝縮し、液化する。液状冷媒は、減圧器105で絞られ、低温低圧の二相状態となり、室外側熱交換器104へ流入する。気液二相冷媒は、蒸発器として機能する室外側熱交換器104において蒸発し、ガス化して四方切換弁103を通って再びスクロール圧縮機100に戻る。すなわち、冷凍サイクル装置200は、暖房運転時において図2の実線矢印に示すように冷媒が循環する。この循環によって、蒸発器である室外側熱交換器104では外気と熱交換して、室外側熱交換器104に送られてきた冷媒が吸熱し、吸熱した冷媒は凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。
 空気調和装置の冷房運転の場合には、四方切換弁103は図2の破線側に接続される。スクロール圧縮機100で圧縮された高温高圧のガス冷媒は、凝縮器として機能する室外側熱交換器104に流れ、凝縮し、液化する。液状冷媒は、減圧器105で絞られ、低温低圧の二相状態となり、室内側熱交換器106へ流入する。気液二相冷媒は、蒸発器として機能する室内側熱交換器106において蒸発し、ガス化して四方切換弁103を通って再びスクロール圧縮機100に戻る。
 すなわち、暖房運転から冷房運転に変わると、室内側熱交換器106が凝縮器から蒸発器に変わり、室外側熱交換器104が蒸発器から凝縮器に変わる。よって、図2の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では室内の空気と熱交換を行い、室内の空気から吸熱すなわち室内の空気を冷却し、吸熱した冷媒は凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。
 このとき、冷凍サイクル装置200を循環する冷媒は、一般的にR410A冷媒あるいはR32冷媒、R290冷媒などが使われる。
 (スクロール圧縮機100)
 上記において説明したように、スクロール圧縮機100は、冷凍サイクル装置200を循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出させるものである。このスクロール圧縮機100は、密閉容器10内に固定スクロール1と固定スクロール1に対して公転(揺動)する揺動スクロール2を組み合わせた圧縮機構部14を備えている。また、スクロール圧縮機100は、回転軸6を介して揺動スクロール2を駆動する電動機5を備えている。実施の形態1においては、一例として縦置き型のスクロール圧縮機100について説明する。縦置き型のスクロール圧縮機100の場合、例えば圧縮機構部14は、密閉容器10の上部に配置され、電動機5は圧縮機構部14の下方に配置されている。
 (圧縮機構部14)
 圧縮機構部14は、固定スクロール1、揺動スクロール2、コンプライアントフレーム3及びガイドフレーム4を備える。固定スクロール1は、台板部1aと、台板部1aの電動機5が配置されている側を向いた一方の面(図1において下側の面)から突出して設けられた渦巻状突起である板状渦巻歯1bと、を備える。また、揺動スクロール2は、台板部2aと、台板部2aの固定スクロール1に対向する面(図1において上側の面)から突出して設けられ、板状渦巻歯1bと実質的に同一形状の渦巻状突起である板状渦巻歯2bと、を備える。固定スクロール1の板状渦巻歯1bと揺動スクロール2の板状渦巻歯2bとを互いに噛み合わせることで、揺動スクロール2の公転により相対的に容積が変化する圧縮室1fが形成される。
 スクロール圧縮機100は、圧縮機構部14を下方から支持するガイドフレーム4を備える。ガイドフレーム4は、密閉容器10の内部に固定されており、固定スクロール1は、外周部において、ガイドフレーム4にボルト(図示せず)によって締結されている。固定スクロール1の台板部1aの外周部には、冷媒ガスを圧縮室1fに導入するための吸入管13が設けられている。吸入管13は、吸入逆止弁1gが設けられた吸入口1eに接続されている。固定スクロール1の台板部1aの中央部には、圧縮され、高圧となった冷媒ガスを吐出する吐出口1dが形成されている。圧縮され、高圧となった冷媒ガスは、密閉容器10内の上部空間10aに排出されるようになっている。この上部空間10aに排出された冷媒ガスは、後で説明するように冷媒流路30を通って油分離機構に導かれ、冷凍機油を分離された冷媒ガスが吐出管12より吐出される。
 揺動スクロール2は、オルダム機構9により自転運動を阻止され、固定スクロール1に対して自転運動することなく公転運動(揺動運動)を行うように構成されている。固定スクロール1の台板部1aの外周部には、ほぼ一直線上に2個一対のオルダム案内溝1cが形成されている。このオルダム案内溝1cにはオルダム機構9の2個一対の固定側キー9aが往復摺動自在に係合されている。また、揺動スクロール2の台板部2aの外周部には、固定スクロール1のオルダム案内溝1cと90度の位相差をもつ2個一対のオルダム案内溝2cがほぼ一直線上に形成されている。オルダム案内溝2cにはオルダム機構9の2個一対の揺動側キー9bが往復摺動自在に係合されている。上記のように構成されたオルダム機構9によって揺動スクロール2は自転することなく揺動運動(旋回運動)を行うことができる。
 揺動スクロール2の板状渦巻歯2bの形成面と反対側(図1において下側)の面の中心部には、中空円筒形状のボス部2dが形成されている。ボス部2dには、回転軸6の上端部に設けられた偏心軸部6aが挿入される。
 揺動スクロール2の台板部2aの板状渦巻歯2bと反対側(図1において下側)の面にはコンプライアントフレーム3のスラスト軸受3aと圧接摺動可能なスラスト面2fが形成されている。また、揺動スクロール2の台板部2aには圧縮室1fとスラスト面2fを貫通する抽気孔2gが設けられ、圧縮途中の冷媒ガスを抽出してスラスト面2fに導く構造となっている。
 コンプライアントフレーム3は、ガイドフレーム4内に収納されている。コンプライアントフレーム3は、揺動スクロール2及びオルダム機構9を下方から支持し、回転軸6の軸方向及び半径方向を支持するものである。また、コンプライアントフレーム3は、ガイドフレーム4に支持されている。
 コンプライアントフレーム3は、外周部に上円筒面3pと下円筒面3sとが設けられている。ガイドフレーム4の内周部にはコンプライアントフレーム3の上円筒面3pが嵌合する上円筒面4c及びコンプライアントフレーム3の下円筒面3sが嵌合する下円筒面4dが設けられている。上円筒面4cおよび下円筒面4dにより、コンプライアントフレーム3は、ガイドフレーム4により半径方向に支持されている。
 コンプライアントフレーム3の下円筒面3sの中心部には電動機5の回転子5aにより回転駆動される回転軸6を半径方向に支持する主軸受3cおよび補助主軸受3dが設けられている。
 スラスト軸受3aの面内からコンプライアントフレーム3の外周部を軸方向に貫通する連通孔3eが設けられている。連通孔3eの上端に開口するスラスト軸受開口部3tは揺動スクロール2の台板部2aを貫通する抽気孔2gに対面して配置されている。
 コンプライアントフレーム3のスラスト軸受3aの外周側には、オルダム機構環状部9cが往復摺動運動する面である往復摺動面3bが形成されている。また、コンプライアントフレーム3は、内周面から外周面までを貫通する連通孔3fを有する。連通孔3fは、台板外周部空間2k及びフレーム上部空間4aとオルダム機構環状部9cの内側の空間とを連通するように形成されている。コンプライアントフレーム3は、フレーム上部空間4aとボス部外側空間2nとの間にボス部外側空間2nの圧力を調整する中間圧調整弁3g、中間圧調整弁押さえ3h及び中間圧調整スプリング3kが設けられている。中間圧調整スプリング3kは、中間圧調整弁空間3nに自然長より縮められて収納されている。なお、実施の形態1では、コンプライアントフレーム3とガイドフレーム4とは別体に構成されているが、これに限らず、両フレームを一体の一つのフレームで構成されていてもよい。
 ガイドフレーム4の内側面とコンプライアントフレーム3の外側面とによって形成されるフレーム下部空間4bは、その上下をリング状シール材7a、7bで仕切られている。ここでは、コンプライアントフレーム3の外周面にリング状シール材7a、7bを収納するリング状のシール溝が2箇所に形成されているが、このシール溝はガイドフレーム4の内周面に形成されていてもよい。フレーム下部空間4bは、コンプライアントフレーム3の連通孔3eとのみ連通しており、抽気孔2gより供給される圧縮途中の冷媒ガスを封入する構造となっている。また、上下を揺動スクロール2の台板部2aとコンプライアントフレーム3とで囲われたスラスト軸受3aの外周側の空間である台板外周部空間2kは、吸入ガス雰囲気(吸入圧)の低圧空間となっている。
 図3は、図1のガイドフレーム4の外周部に設けた第1通路4fを示す横断面図である。図3に示すように、ガイドフレーム4は、外周面40が焼きばめ又は溶接などによって密閉容器10に固着されている。ガイドフレーム4の外周部及び固定スクロール1の外周部は、切り欠きが設けられ、切り欠きにより第1通路4fが形成されている。即ち圧縮機構部14の外周部には、圧縮機構部14の上部の空間と下部の空間とを連通する第1通路4fが設けられている。
 吐出口1dより密閉容器10の上部空間10aに吐出された冷媒ガスは、第1通路4fを通って密閉容器10の下方へ流れていく。圧縮機構部14の下方に配置された電動機5を通過した冷媒ガスは、油溜め部10bが形成されている密閉容器10の底部に流れる。密閉容器10の底部の油溜め部10bには、冷凍機油11が貯留される。
 密閉容器10には内部の圧縮された冷媒ガスが外部へ排出される吐出管12が設けられている。上述した第1通路4fは、中心軸を挟んで吐出管12と反対側の位置に設けられている。ガイドフレーム4は、吐出管12に連通する第1吐出通路4gを備える。第1吐出通路4gは、下端面の中央寄りの部分及び側面に開口され、ガイドフレーム4の下方の空間と密閉容器10に固定された吐出管12とが連通するように形成されている。
 ガイドフレーム4の下端部には、コンプライアントフレーム3の下円筒面3sを径方向外側から支持する下部円筒部41(下円筒面4dが形成された部分)が形成されている。また、第1吐出通路4gが開口されているガイドフレーム4の電動機5に対向する端面には、吐出カバー16が下部円筒部41を囲むように固定されている。吐出カバー16は、中央部において下方に向かって開口部16bが形成されている。吐出カバー16とガイドフレーム4の端面とで形成される第2吐出通路16aは、第1吐出通路4gに連通している。
 (電動機5)
 電動機5は、電力により発生した駆動力で回転軸6を回転駆動するものであり、回転軸6に固定された回転子5a、密閉容器10に固定された固定子5bを備える。回転子5aは、回転軸6に焼きばめなどにより固定されている。固定子5bへの通電を開始することにより回転子5aは、回転駆動され、回転軸6を回転させるようになっている。また、回転軸6の上端部は、揺動スクロール2の揺動軸受2eと回転自在に係合する偏心軸部6aが形成されている。また、偏心軸部6aの下側の部分には、回転軸バランスウェイト6fが焼きばめなどにより固定されている。
 図1に示すように、密閉容器10の側面にはガラス端子10cが設置されており、ガラス端子10cと電動機5の固定子5bとはリード線5jで接続されている。
 偏心軸部6a及び回転軸バランスウェイト6fが固定されている固定部6gの下側にはコンプライアントフレーム3の主軸受3c及び補助主軸受3dと回転自在に係合する主軸部6bが形成されている。
 回転軸6の下端部には、密閉容器10の下部に固定されたサブフレーム8の副軸受8aと回転自在に係合する副軸部6cが形成されている。サブフレーム8は、密閉容器10の下部に焼きばめなどにより固定され、冷凍機油11が密閉容器10の下端部に形成された油溜め部10bに流入するように、流入孔8bが設けられている。
 回転軸6は、下端部の副軸部6cと上端部の主軸部6bとの間に、電動機5の回転子5aが例えば焼きばめにより固定されている。回転軸6は、軸方向に貫通する孔である給油路6dを有している。給油路6dの下端には、給油口6eが取り付けられている。給油口6eは、密閉容器10の底部に貯留された冷凍機油11内に浸かっている。そのため、回転軸6の下部に設けられた給油機構またはポンプ機構により給油口6eから冷凍機油11が上方に向かって吸い上げられる。給油路6dの上端は揺動スクロール2のボス部2d内に開口しており、吸い上げられた冷凍機油11が給油路6dの上端開口より揺動軸受2eに流れ出し、偏心軸部6aおよび揺動軸受2eを潤滑する。
 回転軸6は、給油路6dから分岐する給油孔6hが設けられている。給油孔6hは、給油路6dに交差する方向に延びている。冷凍機油11は、給油孔6hより補助主軸受3dに給油され、補助主軸受3dおよび主軸部6bを潤滑する。なお、回転軸6は、主軸受3cに対し冷凍機油11を供給する給油孔(図示無し)は、図1では図示を省略されている。
 (回転子5a)
 図4は、実施の形態1に係るスクロール圧縮機100の回転子5aの断面図である。図4(a)は、回転子5aの中心軸を含む縦断面を示しており、図4(b)は、回転子5aの中心軸に対し垂直な横断面を示している。回転子5aは、円筒形状をしており、中央部に回転軸6が固定される軸固定孔5hを備える。また、軸固定孔5hの周囲には、中心軸と平行に延び、回転子5aを上下方向に貫通する貫通流路5fが形成されている。実施の形態1においては、貫通流路5fは、回転子5aの中心軸周りに4箇所配置され、それぞれ中心軸から等距離に配置されている。
 回転子5aの上端面52には第1バランスウェイト15aが固定されている。回転子5aの下端面53には第2バランスウェイト15iが固定されている。第1バランスウェイト15aと第2バランスウェイト15iとは、回転軸6の軸方向視点において、回転軸6の中心軸に対し対称的に固定されている。換言すると、第1バランスウェイト15aと第2バランスウェイト15iとは、重心が回転軸6の中心軸に対し偏心して位置しており、それぞれの重心が中心軸に対し対称的な位置に配置されている。
 図5は、実施の形態1に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図5(a)は、回転子5aを軸方向視点で見た図であり、図5(b)は、図5(a)のA-A部の断面を示している。図5に示す様に、第1バランスウェイト15aは、円弧状に形成された軽量部15bと、円弧状に形成された重量部15cとが繋がって、中心軸の周りを包囲する円環状をなしている。また、第1バランスウェイト15aは、回転子5aの上端面に固定されている。第1バランスウェイト15aと回転子5aの上端面との間には、第1カップ状部材17が挟まれて配置されている。
 図5(a)に示されているように、軽量部15bは、回転子5aの外周に沿って配置された円弧部15pと、円弧部15pの内周面15kが部分的に中心に向かって突出して形成された2か所の突出部15qと、を備える。突出部15qは、回転子5aの軸固定孔5hの近傍まで突出しており、第1バランスウェイト15aを回転子5aに固定するための留め具15hを通す留め具孔15dが形成されている。
 重量部15cは、半円筒状に形成されており、軽量部15bよりも回転子5aの中心軸方向に厚く形成されている。また、重量部15cは、留め具15hを通すための留め具孔15dが形成された接触部15fと、重量部15cの回転子5aの上端面に対向し、第1カップ状部材17と当接する面から凹んで形成されている離間部15gと、を備える。図5(b)に示すように、離間部15gは、回転子5aの上端面に対向する面に形成された凹部である。その凹部は、第1バランスウェイト15aの外周面に開口されている。離間部15gは、回転子5aの貫通流路5fに対応した位置に形成されている。つまり、離間部15gは、第1バランスウェイト15aの下端面に部分的に形成された凹部であり、その凹部により囲まれた空間が第1バランスウェイト15aの外周面から外側の空間に連通するように形成されている。
 第1バランスウェイト15aは、回転子5aの下端面に固定された第2バランスウェイト15i及び上述の回転軸6の上端部に固定された回転軸バランスウェイト6fとともに、揺動スクロール2が揺動することにより生じる遠心力とモーメントの力とのアンバランスを相殺する。つまり、圧縮機構部14は、第1バランスウェイト15a、第2バランスウェイト15i及び回転軸バランスウェイト6fにより、動バランス及び静バランスをとるように構成されている。
 (第1カップ状部材17及び第2カップ状部材18)
 図1に示すように、回転子5aの上端面には第1バランスウェイト15aの外周面を径方向外側から包囲する第1カップ状部材17が固定されている。回転子5aの下端面には第2バランスウェイト15iの外周面を外側から包囲する第2カップ状部材18が固定されている。第1カップ状部材17及び第2カップ状部材18は、有底筒状に形成され、回転軸6が挿通される中央部、回転子5aの貫通流路5fに対応する位置及び留め具15hが挿通される部分に穴が形成されている。
 図6は、実施の形態1に係るスクロール圧縮機100の第1カップ状部材17の周辺構造の拡大図である。第1カップ状部材17は、上端の開口部17aが前述の吐出カバー16の開口部16bに対向して設けられている。第1カップ状部材17の側壁17cの先端は、第1バランスウェイト15aの端面よりも圧縮機構部14に向かって突出している。実施の形態1においては、第1カップ状部材17の側壁17cの先端は、軸方向において吐出カバー16の開口部16cの下方に位置しているが、開口部16cと同じ又は上方に位置していても良い。第1カップ状部材17の側壁17cには第1バランスウェイト15aの径方向に開口する離間部15gと重なる位置に排出口部17bが形成されている。貫通流路5fを通過した冷媒は、離間部15gから排出口部17bを通過して第1カップ状部材17の側壁17cの外側に流れるように構成されている。
 吐出カバー16の開口部16bの内径Dと第1カップ状部材17の開口部17aの内径dとの関係は、D<dとなっている。つまり、吐出カバー16の開口部16bの内径は、第1カップ状部材17の上端の開口部17aの内径dよりも小さい。そのため、第1カップ状部材17の外部へ排出された冷凍機油は、第1カップ部材17の側壁17cより内側にある開口部16bに流入するのが抑制される。
 第2カップ状部材18は、回転子5aの下端面において、開口部を下向きにした状態で取り付けられている。第2カップ状部材18は、有底筒形状の筒部が第2バランスウェイト15iの外周面を外側から包囲するように形成されている。
 (貫通流路5f)
 図1及び図4に示すように、回転子5aには軸方向に貫通する複数の貫通流路5fが設けられている。複数の貫通流路5fは、第1バランスウェイト15aの接触部15fを避けて配置されている。
 第1バランスウェイト15aの重量部15c側に設置された貫通流路5fの開口は、第1バランスウェイト15aの接触部15fに対面する位置を避けて配置されている。また、第1バランスウェイト15aの軽量部15b側に設置された貫通流路5fの開口は、第1バランスウェイト15aの接触部15fを避けた位置、つまり第1バランスウェイト15aの軽量部15bの突出部15qを避けて配置されている。
 (貫通流路5fと周辺部品との関係)
 複数の貫通流路5fは、回転子5aの下端面に固定された第2バランスウェイト15iの設置位置を避けて配置されている。第1カップ状部材17および第2カップ状部材18の底部は、複数の貫通流路5fに対応した位置に貫通孔が設けられている。
 第1カップ状部材17および第2カップ状部材18は、非磁性体とすることが好ましい。なお、貫通流路5fは、第2バランスウェイト15iを貫通して形成してもよく、第2カップ状部材18の位置を避けて設けてもよい。また、複数の貫通流路5fは、回転子5aの中心軸に対して対称または点対称に形成される。
 (固定子5b)
 図7は、実施の形態1に係るスクロール圧縮機100の電動機5の固定子5bの断面図である。図7は、固定子5bの中心軸に垂直な断面を示している。電動機5の固定子5bは、外周面が焼きばめまたは溶接などによって密閉容器10に固定されている。図7に示すように、固定子5bは、外周面の一部に中心軸に平行な平面5rが形成されている。換言すると、固定子5bは、円柱形状の外周部の一部が平面5rにより切り欠かれている。第2通路5gは、固定子5bに形成された平面5r及び密閉容器10の内周面に囲まれて形成されている。
 前述したガイドフレーム4の外周面に形成された第1通路4fおよび固定子5bの外周面に形成された第2通路5gが、圧縮機構部14の吐出口1dから吐出した冷媒ガスを密閉容器10の底部へ導く冷媒流路30を構成している。
 (スクロール圧縮機100の動作)
 実施の形態1に係るスクロール圧縮機100の起動時および運転時には、冷媒が吸入管13より吸入され、固定スクロール1の板状渦巻歯1bおよび揺動スクロール2の板状渦巻歯2bを噛み合わせることで形成される圧縮室1fに入る。電動機5により駆動される揺動スクロール2は偏心旋回運動に伴って圧縮室1fの容積を減少させる。この圧縮行程により吸入冷媒は高圧となる。なお、上記圧縮行程において、圧縮途中の中間圧力の冷媒ガスは揺動スクロール2の抽気孔2gよりコンプライアントフレーム3の連通孔3eを経て、フレーム下部空間4bに導かれる。フレーム下部空間4bは、抽気孔2gと連通孔3eにより中間圧力雰囲気に維持される。
 上記圧縮行程を経て冷媒と冷凍機油とで構成された混合ガスが固定スクロール1の吐出口1dから密閉容器10の上部空間10aに吐出される。混合ガスは、圧縮機構部14の外周部に設けられた第1通路4fと、電動機5の固定子5bの外周部に設けられた第2通路5gとからなる冷媒流路30を通って、電動機5より下方の空間、すなわち密閉容器10の底部に導かれる。混合ガスは、密閉容器10の底部に導かれる過程で冷凍機油が分離される。
 冷凍機油が分離された冷媒ガスは、電動機5の回転子5aの下端面に取り付けられた第2カップ状部材18の開口部18aから第2カップ状部材18の内部に入り、回転子5aに設けられた貫通流路5fに流入する。第1バランスウェイト15aの離間部15gに対応して設置された貫通流路5fを通過して上昇した冷媒ガス及び冷凍機油の一部は、第1バランスウェイト15aの離間部15gに衝突する。離間部15gに衝突した冷媒ガス及び冷凍機油は、径方向外方へ流れ、排出口部17bから第1カップ状部材17の外側へ排出される。
 離間部15gと対面していない貫通流路5fを通過した冷媒ガスは、第1カップ状部材17の内部を上昇して吐出カバー16内へ流入する。さらに、冷媒ガスは、吐出カバー16内の第2吐出通路16aを経て第1吐出通路4gを通り、さらに吐出管12を通って密閉容器10外へ放出される。
 次に、スクロール圧縮機100の外部への冷凍機油の排出について説明する。スクロール圧縮機100が運転している時、冷凍機油は、各軸受及び摺動部へ給油され、その後冷凍機油は冷媒とともに密閉容器10内部を循環し、油溜め部10bへ戻るものもあれば、冷媒とともに吐出管12を通り、密閉容器10外部へ排出されるものもある。この密閉容器10外部へ排出される冷凍機油の量が多いと、油溜め部10bで保有する冷凍機油の量が減少する。密閉容器10内の冷凍機油が減少すると、各軸受及び摺動部への給油量が減少し、最後には冷凍機油が枯渇し、各軸受及び摺動部において異常摩耗または凝着が発生し、圧縮機が破損に至る。
 実施の形態1に係るスクロール圧縮機100は、密閉容器10の外部へ排出される冷凍機油11の量を低減させるために、回転子5aの貫通流路5fを通り回転子5aの上端に流れてくる冷媒及び冷凍機油を、第1バランスウェイト15aの重量部15cの離間部15gに衝突させて、径方向外方へ導く。離間部15gは、貫通流路5fと対向する位置に形成されている。貫通流路5fを通過し離間部15gに衝突した冷媒及び冷凍機油は、流れる方向を変えられ、遠心力により離間部15gから外側に向かって流れる。第1カップ状部材17の側壁17cは、排出口部17bを備えている。第1カップ状部材17の排出口部17bは、第1バランスウェイト15aの外周面の離間部15gが設けられている位置に対応して設けられており、径方向において離間部15gと対向して設けられている。
 第1カップ状部材17は、回転子5aの上端に備えられた第1バランスウェイト15aを回転子5aの径方向外側から包囲し、且つ上方が開口されている。しかし、第1カップ状部材17の側壁17cには、離間部15gに対応して排出孔部17bが設けられているため、冷凍機油及び冷媒ガスは、側壁17cにある排出口部17bから第1カップ状部材17の外部へ排出される。
 第1カップ状部材17の排出口部17bから流出した冷媒ガス及び冷凍機油は、吐出カバー16の開口部16bよりも外側に吹き出しているため、吐出カバー16の開口部16bに流入しにくい。また、冷凍機油は、排出口部17bから外側へ向かって流れるため、密閉容器10の上方から下方に流れる冷媒ガスとともに密閉容器10の下方に流れる。
 以上のように、実施の形態1に係るスクロール圧縮機100は、圧縮機構部14で圧縮された冷媒ガスと冷凍機油との混合ガスが、密閉容器10内を下方に流れ、再び上方に循環するまでの間に冷凍機油11が分離される。よって、実施の形態1に係るスクロール圧縮機100は、従来の圧縮機と比較して、密閉容器10の外部へ排出される冷凍機油の量が大幅に低減される。これにより、スクロール圧縮機100は、油溜め部10bで保持することができる冷凍機油の量が増加する。ひいては、スクロール圧縮機100内の軸受及び摺動部材への給油量の低下を抑制し、信頼性の高いスクロール圧縮機100及び冷凍サイクル装置200を得ることができる。
 実施の形態2.
 実施の形態2に係るスクロール圧縮機100について説明する。実施の形態2に係るスクロール圧縮機100は、実施の形態1に対し第1カップ状部材17の構造を変更したものである。
 図8は、実施の形態2に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図8(a)は、回転子5aを軸方向視点で見た図であり、図8(b)は、図8(a)のA-A部の断面を示している。実施の形態2においては、第1カップ状部材17の第1バランスウェイト15aの軽量部15b側の側壁17cに排出口部17dを少なくとも1か所追加する。実施の形態1においては第1バランスウェイト15aの離間部15gに対向していない貫通流路5fから流出した冷媒ガスとともに冷凍機油が、吐出カバー16の開口部16bに流入する場合がある。実施の形態2においては、第1カップ状部材17に排出口部17dをさらに設けることにより、軽量部15b側に配置された貫通流路5fから流出する冷媒ガス及び冷凍機油を第1カップ状部材17の径方向外側に導くものである。なお、排出口部17dを第2排出口部と呼ぶ場合がある。
 実施の形態2に係る第1カップ状部材17においては、第1バランスウェイト15aの軽量部15b側であって、軽量部15bと重量部15cとの境目の近傍に排出口部17dが設けられている。ただし、軽量部15b側に設置された排出口部17dは、この位置のみに限定されるものではない。排出口部17dは、離間部15gの径方向外側以外の部分に設けられており、中心軸と排出口部17dとを結ぶ仮想直線上に離間部15gが配置されない。
 実施の形態2に係るスクロール圧縮機100は、第1カップ状部材17に新たに排出口部17bを設けることで第1カップ状部材17の外部へ排出される冷凍機油を増やすことができる。第1カップ状部材17へ冷凍機油が排出されることにより、吐出カバー16の開口部16bに流入する冷凍機油の量を低減させ、スクロール圧縮機100は、外部へ排出される冷凍機油を抑制できる。
 実施の形態3.
 実施の形態3に係るスクロール圧縮機100について説明する。実施の形態3に係るスクロール圧縮機100は、実施の形態1に対し第1カップ状部材17及び第1バランスウェイト15aの構造を変更したものである。
 図9は、実施の形態3に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図9(a)は、回転子5aを軸方向視点で見た図であり、図9(b)は、図9(a)のB-B部の断面を示している。実施の形態3に係るスクロール圧縮機100は、第1バランスウェイト15aの軽量部15bの接触部15fにも重量部15cの離間部15gと同様に径方向外方へ開口する離間部15gを設ける。そして、軽量部15bに設けられた離間部15gと対向するように回転子5aの貫通流路5fを配置する。軽量部15bの離間部15gの径方向外側に位置する第1カップ状部材17の側壁17cには、排出口部17bを形成する。なお、重量部15cに設けられた離間部15gを第1離間部15gと呼び、軽量部15bに設けられた離間部15gを第2離間部15gと呼ぶ場合がある。
 スクロール圧縮機100は、冷媒ガスが冷凍機油と共に電動機5の回転子5aの貫通流路5fを通り、回転子5aの上方へ上昇する。第1バランスウェイト15aの離間部15gに対面する貫通流路5fから上昇した冷媒ガスと冷凍機油は前述したように第1カップ状部材17の外部へ排出される。実施の形態1においては軽量部15b側に設けられた貫通流路5fは、そのまま吐出カバー16に向かって流れるが、実施の形態3においては、軽量部15b側に配置された貫通流路5fと第2離間部15gとが対向している。そのため、貫通流路5fを通過した冷媒ガス及び冷凍機油は、第2離間部15gに衝突し、径方向外側に流れる。第2離間部15gの径方向外側は第1バランスウェイト15aの外周面に開口されており、その開口に対向する位置に排出口部17bが設けられている。
 第2離間部15gも、実施の形態1において説明した重量部15cに設けられた第1離間部15gと同様に、貫通流路5fを通過した冷媒の流れを変え径方向外側に流し、冷凍機油と共に第1カップ状部材17の径方向外側に流す。これにより、第1カップ状部材17の開口部17aよりも内側にある吐出カバー16の開口部16bに冷媒と共に冷凍機油が流入するのを抑制できる。
 実施の形態4.
 実施の形態4のスクロール圧縮機100について説明する。実施の形態4に係るスクロール圧縮機100は、実施の形態1に対し離間部15g及び排出口部17bの構造を変更したものである。
 図10は、実施の形態4に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図10(a)は、回転子5aを軸方向視点で見た図であり、図10(b)は、図10(a)のA-A部の断面を示している。実施の形態4に係る第1バランスウェイト15aは、重量部15c側に設けられている回転子5aの2つの貫通流路5fに対し、1つの離間部15gが対向している。つまり、図5に示されている実施の形態1に係る第1バランスウェイト15aの重量部15cに形成された2つの離間部15gを接続して1つの離間部15gに変更したものである。第1バランスウェイト15aの強度が確保できる場合は、図10に示すように複数の貫通流路5fに対し1つの離間部15gを対向させて配置することにより、第1バランスウェイト15aの構造を簡略化できる。
 図10に示される第1カップ状部材17は、重量部15cに設けられた1つの離間部15gに対応して1つの排出口部17bを有する。つまり、排出口部17bは、軸方向視点において、中心軸と離間部15gとを結んだ直線の延長上に配置されている。
 以上のように、実施の形態4に係るスクロール圧縮機100によれば、実施の形態1と同様な効果を奏するとともに、第1バランスウェイト15a及び第1カップ状部材17の構造が簡略化するため、製造が容易でコストも低減させることができる。
 (変形例)
 図11は、実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。図11(a)は、回転子5aを軸方向視点で見た図であり、図11(b)は、図11(a)のA-A部の断面を示している。実施の形態4に係るスクロール圧縮機100の第1カップ状部材17は、実施の形態2と同様に、第1バランスウェイト15aの軽量部15b側であって、軽量部15bと重量部15cとの境目の近傍に排出口部17dを設けても良い。このように構成されることにより、実施の形態4に係るスクロール圧縮機100は、実施の形態2と同様の効果を奏する。
 図12は、実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。図12(a)は、回転子5aを軸方向視点で見た図であり、図12(b)は、図12(a)のA-A部の断面を示している。図12(a)に示される第1カップ状部材17は、重量部15cに形成された離間部15gに対し対応する1つの排出口部17bを有するが、2つの貫通流路5fのそれぞれに対応させた排出口部17bを有していても良い。つまり、2つの排出口部17bのそれぞれが、軸方向視点において、中心軸と貫通流路5fとを結んだ直線の延長上に配置されているように構成されていても良い。図12(a)に示される第1カップ状部材17は、1つ当たりの排出口部17bの面積が小さいため、図10(a)及び図11(a)に示される第1カップ状部材17よりも強度を高く保つことができる。また、図12(a)の第1カップ状部材17は、離間部15gと重なる位置に排出口部17bを2つ以上形成することにより、冷凍機油の排出効率も高い。
 図13は、実施の形態4に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。図13(a)は、回転子5aを軸方向視点で見た図であり、図11(b)は、図13(a)のA-A部の断面を示している。図12(a)に示される第1カップ状部材17は、実施の形態2と同様に、第1バランスウェイト15aの軽量部15b側であって、軽量部15bと重量部15cとの境目の近傍に排出口部17dを設けても良い。このように構成されることにより、実施の形態4に係るスクロール圧縮機100は、実施の形態2と同様の効果を奏する。
 実施の形態5.
 実施の形態5のスクロール圧縮機100について説明する。実施の形態5に係るスクロール圧縮機100は、図9に示す実施の形態3に対し離間部15g及び排出口部17bの構造を変更したものである。
 図14は、実施の形態5に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図14(a)は、回転子5aを軸方向視点で見た図であり、図14(b)は、図14(a)のB-B部の断面を示している。実施の形態5に係るスクロール圧縮機100は、実施の形態3と同様に第1バランスウェイト15aの軽量部15bにも離間部15gを設けたものである。実施の形態5に係る第1バランスウェイト15aは、2つの貫通流路5fに軽量部15bに設けた1つの離間部15gを対向させるように構成されている。
 図14に示されている第1カップ状部材17は、軽量部15b及び重量部15cのそれぞれに設けられた離間部15gの径方向外側に排出口部17bを備える。それぞれの排出口部17bは、離間部15gの周方向の幅に対応した幅に形成されている。つまり、排出口部17bは、軸方向視点において、中心軸と離間部15gとを結んだ直線の延長上に配置されている。このように構成されることにより、実施の形態5に係るスクロール圧縮機100の第1バランスウェイト15aと第1カップ状部材17は、貫通流路5fから流出する冷媒から冷凍機油を分離する効率が向上し、かつ簡易構造とすることができる。
 (変形例)
 図15は、実施の形態5に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。図15(a)は、回転子5aを軸方向視点で見た図であり、図15(b)は、図15(a)のB-B部の断面を示している。実施の形態5に係る第1カップ状部材17は、排出口部17bを複数の貫通流路5fのそれぞれに対応するように設けても良い。すなわち、図15(a)に示されるように、第1カップ状部材17は、1つの離間部15gに対応して2つの排出口部17bが配置されるように構成されていても良い。このとき、複数の排出口部17bのそれぞれは、軸方向視点において、中心軸と複数の貫通流路5fのそれぞれとを結んだ直線の延長上に1つずつ配置されている。
 実施の形態6.
 実施の形態6のスクロール圧縮機100について説明する。実施の形態6に係るスクロール圧縮機100は、図5に示す実施の形態1に対し第1カップ状部材17の排出口部17bの構造を変更したものである。
 図16は、実施の形態6に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図16(a)は、回転子5aを軸方向視点で見た図であり、図16(b)は、図16(a)のA-A部の断面を示している。実施の形態6に係るスクロール圧縮機100は、図5に示される実施の形態1の第1バランスウェイト15aは同じ構造であるが、第1カップ状部材17の排出口部17bの構造が異なる。実施の形態6においては、重量部15cに設けられた2つの離間部15gに対し1つの排出口部17bが設けられている。このような構造であっても実施の形態1に係るスクロール圧縮機100と同様な効果を得られると共に第1カップ状部材17の構造を簡易にすることができる。
 (変形例)
 図17は、実施の形態6に係るスクロール圧縮機100の変形例の回転子5aの上部の構造の説明図である。図17(a)は、回転子5aを軸方向視点で見た図であり、図17(b)は、図17(a)のA-A部の断面を示している。実施の形態4に係るスクロール圧縮機100の第1カップ状部材17は、実施の形態2と同様に、第1バランスウェイト15aの軽量部15b側であって、軽量部15bと重量部15cとの境目の近傍に排出口部17dを設けても良い。このように構成されることにより、実施の形態6に係るスクロール圧縮機100は、実施の形態2と同様の効果を奏する。
 実施の形態7.
 実施の形態7のスクロール圧縮機100について説明する。実施の形態7に係るスクロール圧縮機100は、図9に示す実施の形態3に対し第1カップ状部材17の排出口部17bの構造を変更したものである。
 図18は、実施の形態7に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図18(a)は、回転子5aを軸方向視点で見た図であり、図18(b)は、図18(a)のB-B部の断面を示している。実施の形態7に係るスクロール圧縮機100は、図9に示される実施の形態3の第1バランスウェイト15aとは同じ構造であるが、第1カップ状部材17の排出口部17bの構造が異なる。実施の形態7においては、重量部15cに設けられた2つの離間部15gに対し1つの排出口部17bが設けられている。このような構造であっても実施の形態7に係るスクロール圧縮機100は、実施の形態3と同様な効果を得られると共に第1カップ状部材17の構造を簡易にすることができる。
 (変形例)
 図18(a)に示される第1カップ状部材17は、軽量部15b又は重量部15cの何れか一方の離間部15gに対応した排出口部17bを複数の排出口部17bに変更しても良い。つまり、図18(a)の第1カップ状部材17の2つの排出口部17bのうち一方を図15(a)に示される複数の排出口部17bに変更しても良い。
 実施の形態8.
 実施の形態8のスクロール圧縮機100について説明する。実施の形態8に係るスクロール圧縮機100は、実施の形態1の第1バランスウェイト15aの形状を変更したものである。
 図19は、実施の形態8に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図19は、回転子5aを軸方向視点で見た図である。実施の形態8に係るスクロール圧縮機100は、図5に示される実施の形態1の第1バランスウェイト15aに対し、軽量部15bの形状を変更している。実施の形態8に係る第1バランスウェイト215aの軽量部215bは、重量部15cの両端のそれぞれに接続された2つの円弧部215pを有する。つまり、第1バランスウェイト215aは、中心軸周りの半周分を構成する重量部15cとその両端のそれぞれに接続された1/4周分に満たない円弧部215pとにより、中心軸を包囲する円弧形状となっている。図19に示されるように、実施の形態8のスクロール圧縮機100においては、軽量部215b側に設けられた貫通流路5fは、円弧部215pが設けられていない部分に配置されている。
 実施の形態8に係るスクロール圧縮機100においても、実施の形態2と同様に第1カップ状部材17の軽量部215b側に排出口部17bを設けても良い。また、重量部15c側の離間部15gを図10に示される実施の形態4と同様に複数の貫通流路5fに1つの離間部15gを対応させるように変更しても良い。排出口部17bも、図16に示される実施の形態6と同様に、複数の離間部15gに対し1つの排出口部17bが対応するように変更しても良い。実施の形態8に係るスクロール圧縮機100においても、実施の形態1と同様な効果を得ることができる。
 実施の形態8に係る軽量部215bは、重量部15cと同じ厚さ、同じ内外径寸法となるように形成しても良い。この場合、第1バランスウェイト215aは、円弧形状となっており中心軸に対し重心が偏心するように構成されており、かつ構造を単純化できる。
 実施の形態9.
 実施の形態9のスクロール圧縮機100について説明する。実施の形態9に係るスクロール圧縮機100は、図14に示される実施の形態5の第1バランスウェイト15aの形状を変更したものである。
 図20は、実施の形態9に係るスクロール圧縮機100の回転子5aの上部の構造の説明図である。図20は、回転子5aを軸方向視点で見た図である。実施の形態9に係るスクロール圧縮機100は、図14に示される実施の形態5の第1バランスウェイト15aに対し、軽量部15bの形状を変更している。第1バランスウェイト315aの軽量部15bは、重量部15cの両端のそれぞれに接続された2つの円弧部215p及び315pを有する。つまり、第1バランスウェイト315aは、中心軸周りの半周分を構成する重量部15cとその両端のそれぞれに接続された円弧部215p及び円弧部315pとにより、中心軸を包囲する円弧形状となっている。
 図20に示されるように、実施の形態9のスクロール圧縮機100においては、軽量部215b側に設けられた貫通流路5fは、円弧部315pに設けられた離間部15gと対応して配置されている。なお、実施の形態9において、離間部15g及び貫通流路5fの配置は、適宜変更することができる。つまり、複数の貫通流路5fのうち一部を円弧部315pの下に配置させ、残りを円弧部215pの下に配置させ、円弧部315p及び215pのそれぞれに離間部15gを形成しても良い。実施の形態9に係るスクロール圧縮機100においても、実施の形態3に係るスクロール圧縮機100と同様な効果を得ることができる。
 実施の形態9に係る軽量部315bの2つの円弧部215p及び315pは、重量部15cと同じ厚さ、同じ内外径寸法となるように形成しても良い。この場合、第1バランスウェイト315aは、円弧形状となっており中心軸に対し重心が偏心するように構成されており、かつ構造を単純化できる。
 以上のように、本開示の実施の形態1~9を説明したが、各実施の形態は一例であり、各実施の形態及び変形例同士を組み合わせることもでき、また別の公知の技術と組み合わせることもできる。また本開示の要旨を逸脱しない範囲で、構成の一部を省略変更することもできる。
 1 固定スクロール、1a 台板部、1b 板状渦巻歯、1c オルダム案内溝、1d 吐出口、1e 吸入口、1f 圧縮室、1g 吸入逆止弁、2 揺動スクロール、2a 台板部、2b 板状渦巻歯、2c オルダム案内溝、2d ボス部、2e 揺動軸受、2f スラスト面、2g 抽気孔、2k 台板外周部空間、2n ボス部外側空間、3 コンプライアントフレーム、3a スラスト軸受、3b 往復摺動面、3c 主軸受、3d 補助主軸受、3e 連通孔、3f 連通孔、3g 中間圧調整弁、3h 中間圧調整弁押さえ、3k 中間圧調整スプリング、3n 中間圧調整弁空間、3p 上円筒面、3s 下円筒面、3t スラスト軸受開口部、4 ガイドフレーム、4a フレーム上部空間、4b フレーム下部空間、4c 上円筒面、4d 下円筒面、4f 第1通路、4g 第1吐出通路、5 電動機、5a 回転子、5b 固定子、5f 貫通流路、5g 第2通路、5h 軸固定孔、5j リード線、5r 平面、6 回転軸、6a 偏心軸部、6b 主軸部、6c 副軸部、6d 給油路、6e 給油口、6f 回転軸バランスウェイト、6g 固定部、6h 給油孔、7a リング状シール材、7b リング状シール材、8 サブフレーム、8a 副軸受、8b 流入孔、9 オルダム機構、9a 固定側キー、9b 揺動側キー、9c オルダム機構環状部、10 密閉容器、10a 上部空間、10b 油溜め部、10c ガラス端子、11 冷凍機油、12 吐出管、13 吸入管、14 圧縮機構部、15a 第1バランスウェイト、15b 軽量部、15c 重量部、15d 留め具孔、15f 接触部、15g 離間部、15h 留め具、15i 第2バランスウェイト、15k 内周面、15p 円弧部、15q 突出部、16 吐出カバー、16a 第2吐出通路、16b 開口部、17 第1カップ状部材、17a 開口部、17b 排出口部、17c 側壁、17d 排出口、18 第2カップ状部材、18a 開口部、30 冷媒流路、40 外周面、41 下部円筒部、52 上端面、53 下端面、100 スクロール圧縮機、101 吸入マフラ、103 四方切換弁、104 室外側熱交換器、105 減圧器、106 室内側熱交換器、200 冷凍サイクル装置、215a 第1バランスウェイト、215b 軽量部、215p 円弧部、315a 第1バランスウェイト、315b 軽量部、315p 円弧部、D 内径、d 内径。

Claims (16)

  1.  冷凍機油を溜める油溜めを有する密閉容器と、
     前記密閉容器内に設けられ、冷媒を圧縮する圧縮機構部と、
     前記密閉容器内に設けられ、駆動力を発生させる電動機と、
     前記電動機で発生した駆動力を前記圧縮機構部へ伝達する回転軸と、を備え、
     前記電動機は、
     前記回転軸に固定された回転子と、
     前記密閉容器に固定され、前記圧縮機構部から吐出された冷媒ガスを前記密閉容器の下部に導く冷媒流路が形成された固定子と、
     前記回転子の前記圧縮機構部に対向する端面に固定された第1バランスウェイトと、
     前記第1バランスウェイトの外周面を包囲する側壁を有する第1カップ状部材と、を備え、
     前記第1バランスウェイトは、
     円弧状の軽量部と円弧状の重量部とが接続されて形成され、
     前記回転子に対向する端面に形成された凹部であって、当該第1バランスウェイトの外周面に開口された離間部を備え、
     前記離間部は、
     前記回転子を軸方向に貫通して設けられた貫通流路の開口と対向して配置され、
     前記第1カップ状部材の前記側壁は、
     前記離間部に対し径方向外側に位置する排出口部を備える、圧縮機。
  2.  前記離間部は、
     前記重量部に形成された第1離間部を含み、
     前記排出口部は、
     前記回転軸の軸方向視点において、前記第1離間部の径方向外側に位置する、請求項1に記載の圧縮機。
  3.  前記第1カップ状部材の側壁は、
     前記回転軸の軸方向視点において、前記第1離間部の径方向外側以外の部分に第2排出口部を備える、請求項2に記載の圧縮機。
  4.  前記離間部は、
     前記軽量部に形成された第2離間部を更に含み、
     前記排出口部は、
     前記第2離間部の径方向外側に位置する、請求項3に記載の圧縮機。
  5.  前記排出口部は、
     軸方向視点において、中心軸と前記貫通流路とを結んだ直線の延長上に配置されている、請求項1~4の何れか1項に記載の圧縮機。
  6.  前記排出口部は、
     軸方向視点において、中心軸と前記離間部とを結んだ直線の延長上に配置されている、請求項1~5の何れか1項に記載の圧縮機。
  7.  前記回転子の前記貫通流路は、
     複数の貫通流路を含み、
     前記離間部は、
     前記複数の貫通流路と連通する、請求項1~6の何れか1項に記載の圧縮機。
  8.  前記排出口部は、
     複数の排出口部を含み、
     前記複数の排出口部は、
     軸方向視点において、中心軸と前記複数の貫通流路のそれぞれとを結んだ直線の延長上にそれぞれ配置されている、請求項7に記載の圧縮機。
  9.  前記重量部は、
     前記軽量部よりも軸方向に厚い、請求項1~8の何れか1項に記載の圧縮機。
  10.  前記第1バランスウェイトの重心は、
     軸方向視点において、中心軸よりも前記重量部側に偏心している、請求項1~9の何れか1項に記載の圧縮機。
  11.  前記第1カップ状部材の側壁は、
     前記第1バランスウェイトよりも圧縮機構部に向かって突出している、請求項1~10の何れか1項に記載の圧縮機。
  12.  前記第1バランスウェイトは、
     前記重量部と前記軽量部とが繋がって前記回転軸を包囲する円環状に形成されている、請求項1~11の何れか1項に記載の圧縮機。
  13.  前記第1バランスウェイトは、
     前記重量部と前記軽量部とが繋がって前記回転軸を包囲する円弧状に形成されている、請求項1~11の何れか1項に記載の圧縮機。
  14.  前記軽量部は、
     前記重量部の両端に接続されている2つの円弧部を備える、請求項13に記載の圧縮機。
  15.  前記圧縮機構部の前記電動機に対向する端面に取り付けられた吐出カバーを備え、
     前記吐出カバーは、
     前記回転子に対向して設けられた開口部を備え、
     前記開口部は、
     前記回転軸の軸方向視点において、前記第1カップ状部材の前記側壁よりも内側に位置する、請求項1~14の何れか1項に記載の圧縮機。
  16.  請求項1~15の何れか1項に記載の圧縮機を備える、冷凍サイクル装置。
PCT/JP2021/011961 2021-03-23 2021-03-23 圧縮機及び冷凍サイクル装置 WO2022201300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/011961 WO2022201300A1 (ja) 2021-03-23 2021-03-23 圧縮機及び冷凍サイクル装置
JP2023508212A JP7399347B2 (ja) 2021-03-23 2021-03-23 圧縮機及び冷凍サイクル装置
CN202180092499.1A CN116940764A (zh) 2021-03-23 2021-03-23 压缩机以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011961 WO2022201300A1 (ja) 2021-03-23 2021-03-23 圧縮機及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022201300A1 true WO2022201300A1 (ja) 2022-09-29

Family

ID=83396476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011961 WO2022201300A1 (ja) 2021-03-23 2021-03-23 圧縮機及び冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP7399347B2 (ja)
CN (1) CN116940764A (ja)
WO (1) WO2022201300A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278374A (ja) * 2003-03-14 2004-10-07 Fujitsu General Ltd スクロール圧縮機
JP2012202208A (ja) * 2011-03-23 2012-10-22 Daikin Industries Ltd 圧縮機
JP2014109194A (ja) * 2012-11-30 2014-06-12 Mitsubishi Electric Corp スクロール圧縮機
JP2016031024A (ja) * 2014-07-28 2016-03-07 日立アプライアンス株式会社 圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278374A (ja) * 2003-03-14 2004-10-07 Fujitsu General Ltd スクロール圧縮機
JP2012202208A (ja) * 2011-03-23 2012-10-22 Daikin Industries Ltd 圧縮機
JP2014109194A (ja) * 2012-11-30 2014-06-12 Mitsubishi Electric Corp スクロール圧縮機
JP2016031024A (ja) * 2014-07-28 2016-03-07 日立アプライアンス株式会社 圧縮機

Also Published As

Publication number Publication date
CN116940764A (zh) 2023-10-24
JP7399347B2 (ja) 2023-12-15
JPWO2022201300A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
KR101719937B1 (ko) 스크롤 압축기
US20100326128A1 (en) Fluid machine
JP4879311B2 (ja) スクロール圧縮機
JP4980412B2 (ja) スクロール圧縮機
JP2011241750A (ja) 密閉型圧縮機
CN113167266B (zh) 压缩机及空调机
WO2022201300A1 (ja) 圧縮機及び冷凍サイクル装置
JP6057535B2 (ja) 冷媒圧縮機
CN110662902B (zh) 密封制冷压缩机及制冷装置
WO2022208739A1 (ja) スクロール圧縮機および冷凍サイクル装置
WO2017138131A1 (ja) スクロール圧縮機
WO2023170901A1 (ja) スクロール圧縮機および冷凍サイクル装置
WO2015125304A1 (ja) 圧縮機
WO2022149225A1 (ja) 圧縮機
JP2013238191A (ja) 圧縮機
WO2023248268A1 (ja) 固定子、回転電機、圧縮機及び冷凍サイクル装置
JP6987295B1 (ja) スクロール圧縮機及び冷凍サイクル装置
JP7157274B2 (ja) スクロール圧縮機、及び冷凍サイクル装置
WO2023148867A1 (ja) 圧縮機及び冷凍サイクル装置
WO2022244238A1 (ja) スクロール圧縮機
WO2023181141A1 (ja) 横形スクロール圧縮機およびこの横形スクロール圧縮機を備えた冷凍サイクル装置
WO2024069770A1 (ja) 圧縮機及び空気調和機
JP2013204488A (ja) スクロール式流体機械
WO2021100141A1 (ja) スクロール圧縮機および冷凍サイクル装置
WO2021090423A1 (ja) スクロール圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508212

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092499.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932910

Country of ref document: EP

Kind code of ref document: A1