WO2015125304A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2015125304A1
WO2015125304A1 PCT/JP2014/054327 JP2014054327W WO2015125304A1 WO 2015125304 A1 WO2015125304 A1 WO 2015125304A1 JP 2014054327 W JP2014054327 W JP 2014054327W WO 2015125304 A1 WO2015125304 A1 WO 2015125304A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
electric motor
compressor
shaft portion
compression mechanism
Prior art date
Application number
PCT/JP2014/054327
Other languages
English (en)
French (fr)
Inventor
山下 智弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480072181.7A priority Critical patent/CN105874203B/zh
Priority to PCT/JP2014/054327 priority patent/WO2015125304A1/ja
Priority to JP2016503903A priority patent/JP6192801B2/ja
Publication of WO2015125304A1 publication Critical patent/WO2015125304A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Definitions

  • the present invention relates to a compressor.
  • the compressor is mounted as, for example, an air conditioner or a refrigerator as a part of the refrigeration cycle circuit.
  • a conventional compressor is provided with a scroll type compression mechanism section.
  • “a compression mechanism section, an electric motor, and an oil reservoir are arranged in an airtight container, and the compression mechanism section is swirled on an end plate.
  • the crankshaft includes partition means for partitioning the orbiting bearing side space of the end plate of the orbiting scroll into a high pressure portion and a low pressure portion on the bearing member.
  • An oil supply mechanism for supplying the oil in the oil reservoir to the swing bearing portion space at the upper end of the swing shaft through an oil supply passage penetrating the crankshaft in the axial direction by a pump driven at the lower end of the swing shaft;
  • an oil discharge hole for discharging oil in the oil supply passage is provided in a radial direction of the crankshaft.
  • JP 2006-336541 A (Claim 1, FIG. 1)
  • the motor used in the compressor has a limited operating temperature of the motor in order to avoid demagnetization of the magnet inside the motor due to heat generation of the motor and motor burnout. That is, due to the limitation of the electric motor, the operable range of the compressor is limited. For this reason, in order to expand the operable range of the compressor, that is, in order to enable the compressor to operate under a wide range of operating pressure conditions, it is necessary to suppress the heat generation of the compressor.
  • the compressor described in Patent Document 1 returns oil supply, oil drainage, and oil discharge to an oil supply location (for example, a sliding location such as a bearing portion) to an oil reservoir, as with other conventional compressors.
  • the oil return is only repeated, and the effect of suppressing the heat generation of the motor by the oil cannot be obtained.
  • the conventional compressor has a problem that a heat generation suppression effect of the electric motor is improved and a compressor having a wide operable range is desired.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a compressor that can suppress heat generation of an electric motor more than before and can expand an operable range.
  • a compressor includes a compression mechanism portion that compresses a refrigerant, an electric motor, an oil supply passage formed in an axial direction, and a shaft portion that transmits a driving force of the electric motor to the compression mechanism portion.
  • a pump provided at a lower end; a plurality of bearings that rotatably support the shaft; a suction port and a discharge port; and an oil sump formed at a lower portion; the compression mechanism unit, the electric motor,
  • a compressor including a shaft portion, a pump and a sealed container for housing the bearing portion, sucking up oil stored in the oil reservoir by the pump, and supplying the oil to an oil supply location via the oil supply passage
  • a low pressure space for storing the refrigerant sucked from the suction port is formed in at least a part of the sealed container, the electric motor is disposed in the low pressure space, and the shaft portion is An oil drain hole communicating with the oil supply passage is formed in the radial direction of the shaft portion at a position in the low pressure space that is above the
  • the compressor according to the present invention is provided with an oil discharge hole for discharging oil supplied to the oil supply passage at a position above the electric motor and not facing the compression mechanism section and the bearing section. For this reason, the oil discharged
  • the relationship between the temperatures inside the compressor is (low temperature and low pressure refrigerant sucked from the suction port) ⁇ (temperature of oil in the oil reservoir) ⁇ (electric motor).
  • the compressor according to the present invention can cool the electric motor more than before by the oil dripped on the electric motor, so that the heat generation suppression effect of the electric motor can be improved more than before, and the operable range of the compressor can be expanded (more The compressor can be operated over a wide range of operating pressure conditions).
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention. Based on FIG. 1, the structure and operation
  • This scroll compressor 100 becomes one of the structures of the refrigerating cycle circuit used for an air conditioning apparatus or a refrigerator, for example.
  • the relationship of the size of each component may be different from the actual one.
  • the scroll compressor 100 includes a hermetic container 1, and the hermetic container 1 includes a compression mechanism unit 10, an electric motor 20, a shaft unit 30, a pump 51 and a bearing unit (a thrust bearing 6, a main bearing 7, and a sub-bearing described later). 9 etc.) are accommodated.
  • the compression mechanism unit 10 is disposed on the upper side
  • the electric motor 20 is disposed on the lower side.
  • the sealed container 1 has a substantially cylindrical shape, has a suction port 1a, and has a discharge port 1b on the top surface portion.
  • a suction pipe 2 is connected to the suction port 1a, and a discharge pipe 3 is connected to the discharge port 1b.
  • an oil reservoir 1e for storing oil (lubricating oil) for lubricating the bearing portion, the sliding portion of the compression mechanism portion 10 and the like is formed in the lower portion of the sealed container 1.
  • the sealed container 1 is provided with a frame 5.
  • the inside of the sealed container 1 is partitioned by the frame 5 and a fixed scroll 11 (to be described later) of the compression mechanism unit 10, and compressed by the compression mechanism unit 10 and the low-pressure space 1c that stores the low-temperature and low-pressure refrigerant sucked from the suction port 1a.
  • a high-pressure space 1d for storing the high-temperature and high-pressure refrigerant (refrigerant discharged from the discharge port 1b) is formed.
  • the compression mechanism unit 10 compresses the refrigerant sucked into the sealed container 1, and includes a fixed scroll 11 and a turning scroll 12.
  • the fixed scroll 11 is composed of a fixed scroll base plate 11b and a fixed scroll spiral protrusion 11a that is a spiral protrusion standing on one surface of the fixed scroll base plate 11b.
  • the orbiting scroll 12 includes an orbiting scroll base plate 12b and an orbiting scroll spiral projection 12a that is a spiral projection standing on one surface of the orbiting scroll base plate 12b.
  • a boss portion 12c is formed at substantially the center of the other surface of the orbiting scroll base plate 12b (surface opposite to the formation surface of the orbiting scroll spiral projection 12a (back surface)).
  • An eccentric shaft portion 30a provided at the upper end of the shaft portion 30 is inserted into the boss portion 12c.
  • the fixed scroll 11 and the orbiting scroll 12 are mounted in the sealed container 1 by combining the fixed scroll spiral projection 11a and the orbiting scroll spiral projection 12a with each other.
  • a compression chamber 13 whose volume changes relatively is formed between the fixed scroll spiral projection 11a and the orbiting scroll spiral projection 12a.
  • the fixed scroll 11 is fixed to the frame 5 with bolts or the like.
  • a discharge port 11c is formed at the center of the fixed scroll base plate 11b of the fixed scroll 11 to discharge the compressed and high-pressure refrigerant gas.
  • the compressed refrigerant gas having a high pressure is discharged into a high-pressure space 1 d provided in the upper part of the fixed scroll 11.
  • the refrigerant gas discharged to the high pressure space 1d is discharged to the refrigeration cycle via the discharge pipe 3.
  • the discharge port 11c is provided with a discharge valve 14 for preventing the refrigerant from flowing backward from the high-pressure space 1d to the discharge port 11c.
  • the orbiting scroll 12 is configured such that a thrust bearing load generated during the operation of the compressor is supported by the frame 5 via the thrust bearing 6. Further, the orbiting scroll 12 performs a revolving orbiting motion (oscillating motion) without rotating about the fixed scroll 11 by the Oldham ring 4 for preventing the rotating motion.
  • the Oldham ring 4 may be installed on the orbiting scroll spiral projection 12a forming surface side of the orbiting scroll base plate 12b.
  • the electric motor 20 includes a rotor 22 fixed to the shaft portion 30 and a stator 21 fixed to the sealed container 1.
  • the rotor 22 is rotationally driven by starting energization of the stator 21 and rotates the shaft portion 30. As shown in FIG. 1, the electric motor 20 is disposed in the low-pressure space 1c.
  • the shaft unit 30 transmits the driving force of the electric motor 20 to the orbiting scroll 12 of the compression mechanism unit 10, and rotates the orbiting scroll 12 by rotating with the rotation of the rotor 22.
  • the upper portion of the shaft portion 30 (near the eccentric shaft portion 30a) is rotatably supported by a main bearing 7 provided on the frame 5.
  • the lower portion of the shaft portion 30 is rotatably supported by the auxiliary bearing 9.
  • the sub-bearing 9 is provided in a bearing housing portion formed in the center portion of the sub-frame 8 provided in the lower part of the sealed container 1.
  • first balance weight 41 is provided on the upper portion of the shaft portion 30 in order to cancel out an unbalance caused by the swing scroll 12 being mounted on the eccentric shaft portion 30a and swinging.
  • a second balance weight 42 is provided at the lower portion of the rotor 22 in order to cancel out the unbalance that occurs when the orbiting scroll 12 is mounted on the eccentric shaft portion 30a and swings.
  • the oil supply passage 52 (through hole) penetrating in the axial direction of the shaft portion 30 is formed in the shaft portion 30 configured as described above.
  • a pump 51 is provided at the lower end of the shaft portion 30 to suck up the oil stored in the oil reservoir 1 e and supply it to the oil supply passage 52.
  • the oil supplied to the oil supply passage 52 by the pump 51 flows out from the upper end portion of the oil supply passage 52 and lubricates between the eccentric shaft portion 30 a and the boss portion 12 c of the orbiting scroll 12. After that, a part of the oil lubricates the main bearing 7, and then is discharged to the low pressure space 1c and returns to the oil reservoir 1e through the oil return passage. A part of this oil returns to the oil reservoir 1e through the oil drain pipe 55 and the oil return passage after lubricating the thrust bearing 6.
  • the oil return passage is, for example, a passage formed between the hermetic container 1 and the stator 21, a gap between the stator 21 and the rotor 22, and the like.
  • a through hole communicating with the oil supply passage 52 in the radial direction of the shaft portion 30 is formed at a position facing the eccentric shaft portion 30a and / or the main bearing 7, and the eccentric shaft portion 30a and / or via the through hole. Oil may be supplied to the main bearing 7.
  • the oil supply passage 52 is formed as a through hole, but the lower end of the oil supply passage 52 may be closed as long as oil can be supplied from the pump 51 to the oil supply passage 52. Further, the upper end portion of the oil supply passage 52 may be closed as long as the oil in the oil supply passage 52 can be supplied to an oil supply location (between the eccentric shaft portion 30a and the boss portion 12c, the main bearing 7 and the like). .
  • the shaft portion 30 of the scroll compressor 100 includes the compression mechanism portion 10 (more specifically, the boss portion of the orbiting scroll 12) in the low pressure space 1c and above the electric motor 20. 12c) and an oil discharge hole 53 communicating with the oil supply passage 52 is formed in a radial direction of the shaft portion 30 at a position not facing the main bearing 7. More specifically, in the first embodiment, the oil drain hole 53 is disposed at a height equal to or lower than the suction port 1a of the sealed container 1.
  • the oil stored in the oil reservoir 1e is sucked up by the pump 51 driven at the lower end portion of the shaft portion 30 and flows into the oil supply passage 52.
  • a part of the oil flowing into the oil supply passage 52 is supplied to the oil supply location (between the eccentric shaft portion 30a and the boss portion 12c, the main bearing 7 and the like) as described above, and lubricates the oil supply location.
  • the scroll compressor 100 according to the first embodiment since the oil drain hole 53 is formed in the shaft portion 30, a part of the oil flowing into the oil supply passage 52 is drained by the centrifugal force of the shaft portion 30. Discharged from. Then, the oil discharged from the shaft portion 30 is dropped on the electric motor 20.
  • the electric motor 20 and the oil drain hole 53 are arranged in the low pressure space 1c.
  • the relationship between the temperatures inside the scroll compressor 100 is (low temperature and low pressure refrigerant sucked from the suction port 1a) ⁇ (temperature of oil in the oil reservoir 1e) ⁇ (motor 20).
  • the electric motor 20 is cooled by the low-temperature and low-pressure refrigerant sucked from the suction port 1 a and is also cooled by the oil discharged from the oil discharge hole 53.
  • the scroll compressor 100 according to the first embodiment improves the heat generation suppression effect of the electric motor 20 as compared with the related art.
  • the position is in the low pressure space 1c and above the electric motor 20 and does not face the compression mechanism unit 10 and the bearing unit.
  • an oil drain hole 53 for discharging oil supplied to the oil supply passage 52 is provided.
  • the electric motor 20 is cooled by the low-temperature and low-pressure refrigerant sucked from the suction port 1 a and is also cooled by the oil discharged from the oil discharge hole 53.
  • the scroll compressor 100 according to the first embodiment can improve the heat generation suppression effect of the electric motor 20 compared to the conventional case, and can expand the operable range of the scroll compressor 100 (under a wider range of operating pressure conditions).
  • the scroll compressor 100 can be operated).
  • the heat generation suppressing effect of the electric motor 20 can be further improved, and the operable range of the scroll compressor 100 can be further expanded.
  • the refrigerant stored in the low-pressure space 1c is heated by the frame 5, the electric motor 20, the shaft portion 30, the oil in the oil reservoir 1e, and the like.
  • the refrigerant flowing into the low pressure space 1c from the suction port 1a has a lower temperature than the refrigerant already stored in the low pressure space 1c. Therefore, the refrigerant that has flowed into the low-pressure space 1c from the suction port 1a tends to flow downward.
  • the oil drain hole 53 at a height equal to or lower than the suction port 1a of the sealed container 1, the oil discharged from the oil drain hole 53 becomes a refrigerant flowing into the low pressure space 1c from the suction port 1a. Since it is cooled, the temperature is further lowered. For this reason, by arranging the oil drain hole 53 at a height equal to or lower than the suction port 1a of the sealed container 1, the heat generation suppressing effect of the electric motor 20 can be further improved, and the operable range of the scroll compressor 100 can be further expanded. .
  • the present invention has been described by taking a compressor having a scroll type compression mechanism unit 10 as an example.
  • the compression mechanism unit 10 of the compressor according to the present invention is not limited to a scroll type. Absent.
  • a rotary type or vane type compression mechanism 10 may be used.
  • the electric motor 20 is disposed in the low pressure space 1c, and is supplied to the oil supply passage 52 at a position in the low pressure space 1c that is above the electric motor 20 and that does not face the compression mechanism portion 10 and the bearing portion.
  • the oil drain hole 53 for discharging the oil
  • Embodiment 2 When the oil drain hole 53 is disposed at a height equal to or lower than the suction port 1a of the sealed container 1, the heat generation suppressing effect of the electric motor 20 can be further improved by arranging the oil drain hole 53 at the following position.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 2 is a longitudinal sectional view of a scroll compressor according to Embodiment 2 of the present invention. As shown in FIG. 2, in the scroll compressor 100 according to the second embodiment, the oil drain hole 53 is formed at a position facing the suction port 1 a of the sealed container 1.
  • the refrigerant stored in the low-pressure space 1c is heated by the frame 5, the electric motor 20, the shaft portion 30, the oil in the oil reservoir 1e, and the like. For this reason, the refrigerant flowing into the low pressure space 1c from the suction port 1a has a lower temperature than the refrigerant already stored in the low pressure space 1c. That is, in the low pressure space 1c, the temperature of the refrigerant immediately after flowing into the low pressure space 1c from the suction port 1a is the lowest.
  • the electric motor 20 can be cooled. Therefore, by configuring the scroll compressor 100 as in the second embodiment, the heat generation of the electric motor 20 can be further suppressed, and the operable range of the scroll compressor 100 can be further expanded.
  • FIG. A valve may be provided in the oil drain hole 53 of the scroll compressor 100 shown in the first embodiment or the second embodiment as follows.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 3 is a longitudinal sectional view of a scroll compressor according to Embodiment 3 of the present invention.
  • a valve 54 that opens when a centrifugal force of a certain level or more is provided in the oil discharge hole 53. That is, the scroll compressor 100 according to the third embodiment has a structure in which the valve 54 is opened by the centrifugal force of the shaft portion 30 when the rotational speed of the shaft portion 30 is equal to or higher than a certain rotational speed.
  • the valve 54 is closed when the load is low and the heat generation of the electric motor 20 is low at a low rotational speed.
  • the valve 54 opens, oil is discharged from the oil drain hole 53, and the discharged oil is dripped into the electric motor 20.
  • the motor 20 since it is possible to suppress the oil in the oil reservoir 1e from decreasing when the motor 20 generates a small amount of heat at low speed (operating conditions with a small load), the motor 20 generates a large amount of heat (during high load operation). Conditions), the oil can be dripped into the electric motor 20 through the oil drain hole 53 more reliably. Therefore, by configuring the scroll compressor 100 as in the third embodiment, the heat generation of the electric motor 20 can be further suppressed, and the operable range of the scroll compressor 100 can be further expanded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 スクロール圧縮機100は、密閉容器1の少なくとも一部に吸入口1aから吸入された冷媒を貯留する低圧空間1cが形成され、電動機20は該低圧空間1c内に配置され、軸方向に給油通路52が形成されたシャフト部30は、低圧空間1c内であり電動機20よりも上方であって、かつ圧縮機構部10及び主軸受7と対向しない位置に、給油通路52に連通する排油孔53が当該シャフト部30の径方向に形成されているものである。

Description

圧縮機
 本発明は、圧縮機に関するものである。
 従来より、圧縮機は、冷凍サイクル回路の一部の構成要素として、例えば空気調和装置や冷凍機等に搭載されている。このような従来の圧縮機には、スクロール式の圧縮機構部を備えたものとして、例えば「密閉容器内に、圧縮機構部と電動機とオイル溜まりを配し、前記圧縮機構部は、鏡板に渦巻状のラップを有する固定スクロールと、この固定スクロールのラップに対向して噛み合うラップを有する旋回スクロールと、この旋回スクロールを前記固定スクロールとにより挟む位置に設けられた主軸受部材と、前記旋回スクロールの鏡板に設けられた旋回軸受部に嵌合し、前記旋回スクロールを旋回運動させる旋回軸を有するクランクシャフトと、前記主軸受部材に設けられ前記クランクシャフトを軸支する主軸受部と、同じく前記主軸受部材に前記旋回スクロールの鏡板の旋回軸受側空間を高圧部と低圧部に仕切る仕切り手段を有し、前記クランクシャフトの下端で駆動されるポンプにより前記オイル溜まりのオイルを前記クランクシャフトに軸方向に貫通する給油通路を通じて前記旋回軸上端の旋回軸受部空間に供給する給油機構を有し、前記旋回軸受部空間と前記仕切り手段の低圧側を連通する給油経路を設けた密閉型スクロール圧縮機において、前記クランクシャフトの径方向に前記給油通路内のオイルを排出するための排油孔を設けたことを特徴とするスクロール圧縮機」(特許文献1参照)というものが提案されている。
特開2006-336541号公報(請求項1、図1)
 圧縮機に搭載されている電動機は、電動機の発熱による電動機内部の磁石の減磁及び電動機焼損を回避するため、電動機の使用温度が制限されている。すなわち、この電動機の制限により、圧縮機の運転可能範囲が制限される。このため、圧縮機の運転可能範囲を広げるためには、つまり、広範囲の運転圧力条件で圧縮機を運転可能とするためには、圧縮機の発熱を抑制する必要がある。
 ここで、特許文献1に記載の圧縮機は、電動機よりも上方となる位置に排油孔が配置されている。このため、一見すると、特許文献1に記載の圧縮機は、排油孔から排出されたオイル(潤滑油)が電動機に滴下することで、電動機を冷却でき、電動機の発熱を抑制できるように思われるかもしれない。しかしながら、特許文献1に記載の圧縮機は、圧縮機構部で圧縮された高温高圧の冷媒が貯留されている高圧空間内に電動機が配置されている。このため、特許文献1に記載の圧縮機においては、排油孔から排出されたオイルは高温の冷媒に加熱された後に電動機に滴下することとなる。つまり、特許文献1に記載の圧縮機は、その他の従来の圧縮機と同様、オイル供給箇所(例えば軸受部等の摺動箇所)へのオイル供給、排油、及び排油をオイル溜まりへ返す返油を繰り返すのみであり、オイルによる電動機の発熱抑制効果は得られない。
 すなわち、従来の圧縮機は、電動機の発熱抑制効果を向上させ、運転可能範囲の広い圧縮機が望まれているという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、電動機の発熱を従来よりも抑制でき、運転可能範囲を広げることが可能な圧縮機を得ることを目的としている。
 本発明に係る圧縮機は、冷媒を圧縮する圧縮機構部と、電動機と、軸方向に給油通路が形成され、前記電動機の駆動力を前記圧縮機構部に伝達するシャフト部と、前記シャフト部の下端部に設けられたポンプと、前記シャフト部を回転自在に支持する複数の軸受部と、吸入口及び吐出口を有し、下部にオイル溜まりが形成され、前記圧縮機構部、前記電動機、前記シャフト部、前記ポンプ及び前記軸受部を収容する密閉容器と、を備え、前記オイル溜まりに貯留されたオイルを前記ポンプで吸い上げ、該オイルを前記給油通路を介してオイル供給箇所に供給する圧縮機において、前記密閉容器の少なくとも一部に、前記吸入口から吸入された冷媒を貯留する低圧空間が形成され、前記電動機は該低圧空間内に配置され、前記シャフト部は、前記低圧空間内であり前記電動機よりも上方であって、かつ前記圧縮機構部及び前記軸受部と対向しない位置に、前記給油通路に連通する排油孔が当該シャフト部の径方向に形成されているものである。
 本発明に係る圧縮機は、電動機よりも上方となる位置であって、かつ圧縮機構部及び軸受部と対向しない位置に、給油通路に供給されたオイルを排出する排油孔を備えている。このため、排油孔から排出されたオイルは、電動機に滴下することとなる。さらに、本発明に係る圧縮機においては、吸入口から吸入された低温低圧の冷媒が貯留される低圧空間内に、電動機及び排油孔が配置されている。ここで、本発明に係る圧縮機においては、圧縮機内部の各温度の関係が、(吸入口から吸入された低温低圧の冷媒)<(オイル溜まりのオイルの温度)<(電動機)となる。このため、排油孔から排出されたオイルは、吸入口から吸入された低温低圧の冷媒によって冷却された後に電動機に滴下する。したがって、本発明に係る圧縮機は、電動機に滴下したオイルによって電動機を従来よりも冷却できるため、電動機の発熱抑制効果を従来よりも向上させ、圧縮機の運転可能範囲を広げることができる(より広範囲の運転圧力条件で圧縮機が運転可能となる)。
本発明の実施の形態1に係るスクロール圧縮機の縦断面図である。 本発明の実施の形態2に係るスクロール圧縮機の縦断面図である。 本発明の実施の形態3に係るスクロール圧縮機の縦断面図である。
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール圧縮機の縦断面図である。図1に基づいて、スクロール圧縮機100の構成及び動作について説明する。このスクロール圧縮機100は、例えば空気調和装置や冷凍機に用いられる冷凍サイクル回路の構成の一つとなるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 スクロール圧縮機100は密閉容器1を備えており、該密閉容器1には、圧縮機構部10、電動機20、シャフト部30、ポンプ51及び軸受部(後述するスラスト軸受6、主軸受7及び副軸受9等)等が収容されている。図1に示すように、本実施の形態1に係るスクロール圧縮機100は、圧縮機構部10が上側に、電動機20が下側に、それぞれ配置されている。
 密閉容器1は、略円筒形状をしており、吸入口1aを有し、天面部には吐出口1bを有している。また、吸入口1aには吸入配管2が接続されており、吐出口1bには吐出配管3が接続されている。さらに、密閉容器1の下部には、軸受部や圧縮機構部10の摺動箇所等を潤滑するためのオイル(潤滑油)を貯留するオイル溜まり1eが形成されている。また、密閉容器1にはフレーム5が設けられている。このフレーム5と圧縮機構部10の後述する固定スクロール11とによって密閉容器1内が区切られ、吸入口1aから吸入された低温低圧の冷媒を貯留する低圧空間1c、及び、圧縮機構部10で圧縮された高温高圧の冷媒(吐出口1bから吐出される冷媒)を貯留する高圧空間1dが形成されている。
 圧縮機構部10は、密閉容器1内に吸入された冷媒を圧縮するものであり、固定スクロール11及び旋回スクロール12を備えている。
 固定スクロール11は、固定スクロール台板11bと、固定スクロール台板11bの一方の面に立設された渦巻状突起である固定スクロール渦巻状突起11aと、で構成されている。また、旋回スクロール12は、旋回スクロール台板12bと、旋回スクロール台板12bの一方の面に立設された渦巻状突起である旋回スクロール渦巻状突起12aと、で構成されている。なお、旋回スクロール台板12bの他方の面(旋回スクロール渦巻状突起12aの形成面とは反対側の面(背面))の略中心部には、ボス部12cが形成されている。このボス部12cには、シャフト部30の上端に設けられた偏心軸部30aが挿入される。
 固定スクロール11及び旋回スクロール12は、固定スクロール渦巻状突起11aと旋回スクロール渦巻状突起12aとを互いに組み合わせ、密閉容器1内に装着されている。固定スクロール渦巻状突起11aと旋回スクロール渦巻状突起12aの間には、相対的に容積が変化する圧縮室13が形成される。
 固定スクロール11は、フレーム5にボルト等によって固定されている。固定スクロール11の固定スクロール台板11bの中央部には、圧縮され、高圧となった冷媒ガスを吐出する吐出口11cが形成されている。そして、圧縮され、高圧となった冷媒ガスは、固定スクロール11の上部に設けられている高圧空間1dに排出されるようになっている。高圧空間1dに排出された冷媒ガスは、吐出配管3を介して冷凍サイクルに吐出されることになる。なお、吐出口11cには、高圧空間1dから吐出口11c側への冷媒の逆流を防止する吐出弁14が設けられている。
 旋回スクロール12は、圧縮機運転中に生じるスラスト軸受荷重がスラスト軸受6を介してフレーム5で支持されるようになっている。また、旋回スクロール12は、自転運動を阻止するためのオルダムリング4により、固定スクロール11に対して自転運動することなく公転旋回運動(揺動運動)を行うようになっている。なお、オルダムリング4は、旋回スクロール台板12bの旋回スクロール渦巻状突起12a形成面側に設置するようにしてもよい。
 電動機20は、シャフト部30に固定された回転子22、及び、密閉容器1に固定された固定子21を備えている。回転子22は、固定子21への通電を開始することにより回転駆動し、シャフト部30を回転させるようになっている。図1に示すように、この電動機20は、低圧空間1c内に配置されている。
 シャフト部30は、電動機20の駆動力を圧縮機構部10の旋回スクロール12に伝達するものであり、回転子22の回転に伴って回転することで旋回スクロール12を旋回させるようになっている。このシャフト部30の上部(偏心軸部30a近傍)は、フレーム5に設けられた主軸受7によって回転自在に支持されている。一方、シャフト部30の下部は、副軸受9によって回転自在に支持されている。この副軸受9は、密閉容器1の下部に設けられたサブフレーム8の中央部に形成された軸受収納部に設けられている。
 また、シャフト部30の上部には、旋回スクロール12が偏心軸部30aに装着されて揺動することにより生じるアンバランスを相殺するため、第1バランスウェイト41が設けられている。回転子22の下部には、旋回スクロール12が偏心軸部30aに装着されて揺動することにより生じるアンバランスを相殺するため、第2バランスウェイト42が設けられている。
 上記のように構成されたシャフト部30には、当該シャフト部30の軸方向に貫通する給油通路52(貫通孔)が形成されている。そして、シャフト部30の下端部には、オイル溜まり1eに貯留されたオイルを吸い上げて給油通路52に供給するポンプ51が設けられている。ポンプ51によって給油通路52に供給されたオイルは、給油通路52の上端部から流出し、偏心軸部30aと旋回スクロール12のボス部12cとの間を潤滑する。その後、このオイルの一部は、主軸受7を潤滑した後、低圧空間1cに排出され、返油通路を通ってオイル溜まり1eに戻る。また、このオイルの一部は、スラスト軸受6を潤滑した後、排油パイプ55及び返油通路を通ってオイル溜まり1eに戻る。
 なお、返油通路とは、例えば、密閉容器1と固定子21との間に形成された通路、固定子21と回転子22との間の隙間等である。また、偏心軸部30a及び/又は主軸受7と対向する位置において、シャフト部30の径方向に給油通路52と連通する貫通孔を形成し、当該貫通孔を介して偏心軸部30a及び/又は主軸受7にオイルを供給してもよい。また、本実施の形態1では給油通路52を貫通孔で形成したが、ポンプ51から給油通路52にオイルを供給できる構成であれば、給油通路52の下端部が閉塞されていてもよい。また、給油通路52のオイルをオイル供給箇所(偏心軸部30aとボス部12cとの間、主軸受7等)に供給できる構成であれば、給油通路52の上端部が閉塞されていてもよい。
 さらに、本実施の形態1に係るスクロール圧縮機100のシャフト部30には、低圧空間1c内であり電動機20よりも上方であって、かつ圧縮機構部10(より詳しくは旋回スクロール12のボス部12c)及び主軸受7と対向しない位置に、給油通路52に連通する排油孔53が当該シャフト部30の径方向に形成されている。より詳しくは、本実施の形態1においては、排油孔53は、密閉容器1の吸入口1a以下の高さに配置されている。
 次に、スクロール圧縮機100の動作について説明する。
 固定子21に通電すると、固定子21の電線部に電流が流れ、磁界が発生する。この磁界は、回転子22を回転させるように働く。つまり、固定子21と回転子22にトルクが発生し、回転子22が回転する。回転子22が回転すると、それに伴いシャフト部30が回転駆動される。シャフト部30が回転駆動されると、オルダムリング4により自転を抑制された旋回スクロール12が公転旋回運動を行う。
 これにより、吸入口1aから密閉容器1の低圧空間1c内に流入した冷媒は、フレーム5の吸入ポート(図示せず)を介して圧縮室13内へ吸入される。圧縮室13は、旋回スクロール12の公転旋回運動により旋回スクロール12の中心へ移動し、さらに体積が縮小される。この工程により、圧縮室13に吸入された冷媒は圧縮されていく。圧縮された冷媒は、固定スクロール11の吐出口11cを通り、吐出弁14を押し開けて高圧空間1dに流入する。そして、吐出口1b及び吐出配管3を介して密閉容器1から吐出される。
 一方、シャフト部30が回転駆動されると、シャフト部30の下端部で駆動するポンプ51により、オイル溜まり1eに貯留されたオイルが吸い上げられて給油通路52に流入する。この給油通路52に流入した一部は、上述のようにオイル供給箇所(偏心軸部30aとボス部12cとの間、主軸受7等)に供給されて、オイル供給箇所を潤滑する。さらに、本実施の形態1に係るスクロール圧縮機100はシャフト部30に排油孔53が形成されているため、給油通路52に流入した一部は、シャフト部30の遠心力によって排油孔53から排出される。そして、シャフト部30から排出されたオイルは、電動機20に滴下する。
 ここで、本実施の形態1では、電動機20及び排油孔53が低圧空間1cに配置されている。この低圧空間1cでは、スクロール圧縮機100内部の各温度の関係が、(吸入口1aから吸入された低温低圧の冷媒)<(オイル溜まり1eのオイルの温度)<(電動機20)となる。このため、電動機20は、吸入口1aから吸入された低温低圧の冷媒によって冷却されると共に、排油孔53から排出されたオイルによっても冷却される。このため、本実施の形態1に係るスクロール圧縮機100は、従来よりも電動機20の発熱抑制効果が向上する。
 以上、本実施の形態1のように構成されたスクロール圧縮機100においては、低圧空間1c内であり電動機20よりも上方となる位置であって、かつ圧縮機構部10及び軸受部と対向しない位置に、給油通路52に供給されたオイルを排出する排油孔53を備えている。このため、電動機20は、吸入口1aから吸入された低温低圧の冷媒によって冷却されると共に、排油孔53から排出されたオイルによっても冷却される。このため、本実施の形態1に係るスクロール圧縮機100は、従来よりも電動機20の発熱抑制効果が向上し、スクロール圧縮機100の運転可能範囲を広げることができる(より広範囲の運転圧力条件でスクロール圧縮機100が運転可能となる)。
 また、排油孔53を密閉容器1の吸入口1a以下の高さに配置することにより、電動機20の発熱抑制効果をさらに向上でき、スクロール圧縮機100の運転可能範囲をさらに広げることができる。詳しくは、低圧空間1cに貯留されている冷媒はフレーム5、電動機20、シャフト部30及びオイル溜まり1eのオイル等によって加熱される。このため、吸入口1aから低圧空間1c内に流入してきた冷媒は、低圧空間1c内にすでに貯留されている冷媒と比べ、温度が低い。したがって、吸入口1aから低圧空間1c内に流入してきた冷媒は、下側へ流れようとする。このとき、排油孔53を密閉容器1の吸入口1a以下の高さに配置することにより、排油孔53から排出されたオイルは、吸入口1aから低圧空間1c内に流入してきた冷媒に冷却されるため、さらに低温になる。このため、排油孔53を密閉容器1の吸入口1a以下の高さに配置することにより、電動機20の発熱抑制効果をさらに向上でき、スクロール圧縮機100の運転可能範囲をさらに広げることができる。
 なお、本実施の形態1ではスクロール式の圧縮機構部10を備えた圧縮機を例に本発明を説明したが、本発明に係る圧縮機の圧縮機構部10はスクロール式に限定されるものではない。例えば、ロータリー式及びベーン式の圧縮機構部10を用いてもよい。電動機20を低圧空間1c内に配置し、低圧空間1c内であり電動機20よりも上方となる位置であって、かつ圧縮機構部10及び軸受部と対向しない位置に、給油通路52に供給されたオイルを排出する排油孔53を形成することにより、本発明を実施できる。
実施の形態2.
 排油孔53を密閉容器1の吸入口1a以下の高さに配置する場合、排油孔53を以下の位置に配置することにより、電動機20の発熱抑制効果をさらに向上させることができる。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図2は、本発明の実施の形態2に係るスクロール圧縮機の縦断面図である。
 図2に示すように、本実施の形態2に係るスクロール圧縮機100においては、排油孔53が、密閉容器1の吸入口1aと対向する位置に形成されている。
 上述のように、低圧空間1cに貯留されている冷媒はフレーム5、電動機20、シャフト部30及びオイル溜まり1eのオイル等によって加熱される。このため、吸入口1aから低圧空間1c内に流入してきた冷媒は、低圧空間1c内にすでに貯留されている冷媒と比べ、温度が低い。つまり、低圧空間1c内では、吸入口1aから低圧空間1c内に流入した直後の冷媒の温度が最も低い。このため、排油孔53を吸入口1aと対向する位置に配置することにより、この低圧空間1c内で最も低温の冷媒で排油孔53から排出されたオイルを冷却し、この冷却されたオイルで電動機20を冷却することができる。
 したがって、本実施の形態2のようにスクロール圧縮機100を構成することにより、電動機20の発熱をさらに抑制することができ、スクロール圧縮機100の運転可能範囲をさらに広げることができる。
実施の形態3.
 実施の形態1又は実施の形態2で示したスクロール圧縮機100の排油孔53に、以下のように弁を設けてもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図3は、本発明の実施の形態3に係るスクロール圧縮機の縦断面図である。
 図3に示すように、本実施の形態3に係るスクロール圧縮機100においては、排油孔53に、一定以上の遠心力が働くと開く弁54が設けられている。つまり、本実施の形態3に係るスクロール圧縮機100は、シャフト部30の回転速度がある一定の回転速度以上になると、シャフト部30の遠心力で弁54が開く構造となっている。
 スクロール圧縮機100においては、電動機20を低回転数で駆動させる場合、電動機20の負荷は小さく、電動機20の発熱も小さい。そして、電動機20の回転数が上昇するにしたがって、電動機20の負荷が大きくなり、電動機20の発熱も大きくなる。本実施の形態3に係るスクロール圧縮機100においては、低回転数で負荷が低く電動機20の発熱も低い場合は弁54が閉じている。そして、電動機20つまりシャフト部30がある一定の回転速度以上になると、弁54が開き、排油孔53からオイルが排出され、この排出されたオイルが電動機20に滴下する。このため、電動機20の発熱が小さい低回転時(負荷の小さい運転条件)にオイル溜まり1e内のオイルが減少することを抑制できるため、電動機20の発熱が大きくなる高回転時(負荷の高い運転条件において)、より確実に排油孔53を介して電動機20にオイルを滴下できる。
 したがって、本実施の形態3のようにスクロール圧縮機100を構成することにより、電動機20の発熱をさらに抑制することができ、スクロール圧縮機100の運転可能範囲をさらに広げることができる。
 1 密閉容器、1a 吸入口、1b 吐出口、1c 低圧空間、1d 高圧空間、1e オイル溜まり、2 吸入配管、3 吐出配管、4 オルダムリング、5 フレーム、6 スラスト軸受、7 主軸受、8 サブフレーム、9 副軸受、10 圧縮機構部、11 固定スクロール、11a 固定スクロール渦巻状突起、11b 固定スクロール台板、11c 吐出口、12 旋回スクロール、12a 旋回スクロール渦巻状突起、12b 旋回スクロール台板、12c ボス部、13 圧縮室、14 吐出弁、20 電動機、21 固定子、22 回転子、30 シャフト部、30a 偏心軸部、41 第1バランスウェイト、42 第2バランスウェイト、51 ポンプ、52 給油通路、53 排油孔、54 弁、55 排油パイプ、100 スクロール圧縮機。

Claims (5)

  1.  冷媒を圧縮する圧縮機構部と、
     電動機と、
     軸方向に給油通路が形成され、前記電動機の駆動力を前記圧縮機構部に伝達するシャフト部と、
     前記シャフト部の下端部に設けられたポンプと、
     前記シャフト部を回転自在に支持する複数の軸受部と、
     吸入口及び吐出口を有し、下部にオイル溜まりが形成され、前記圧縮機構部、前記電動機、前記シャフト部、前記ポンプ及び前記軸受部を収容する密閉容器と、を備え、
     前記オイル溜まりに貯留されたオイルを前記ポンプで吸い上げ、該オイルを前記給油通路を介してオイル供給箇所に供給する圧縮機において、
     前記密閉容器の少なくとも一部に、前記吸入口から吸入された冷媒を貯留する低圧空間が形成され、
     前記電動機は該低圧空間内に配置され、
     前記シャフト部は、前記低圧空間内であり前記電動機よりも上方であって、かつ前記圧縮機構部及び前記軸受部と対向しない位置に、前記給油通路に連通する排油孔が当該シャフト部の径方向に形成されていることを特徴とする圧縮機。
  2.  前記排油孔は、前記吸入口以下の高さに配置されていることを特徴とする請求項1に記載の圧縮機。
  3.  前記排油孔は、前記吸入口と対向する位置に形成されていることを特徴とする請求項2に記載の圧縮機。
  4.  前記排油孔に、一定以上の遠心力が働くと開く弁を設けたことを特徴とする請求項1~請求項3のいずれか一項に記載の圧縮機。
  5.  前記圧縮機構部はスクロール式であることを特徴とする請求項1~請求項4のいずれか一項に記載の圧縮機。
PCT/JP2014/054327 2014-02-24 2014-02-24 圧縮機 WO2015125304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480072181.7A CN105874203B (zh) 2014-02-24 2014-02-24 压缩机
PCT/JP2014/054327 WO2015125304A1 (ja) 2014-02-24 2014-02-24 圧縮機
JP2016503903A JP6192801B2 (ja) 2014-02-24 2014-02-24 圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054327 WO2015125304A1 (ja) 2014-02-24 2014-02-24 圧縮機

Publications (1)

Publication Number Publication Date
WO2015125304A1 true WO2015125304A1 (ja) 2015-08-27

Family

ID=53877837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054327 WO2015125304A1 (ja) 2014-02-24 2014-02-24 圧縮機

Country Status (3)

Country Link
JP (1) JP6192801B2 (ja)
CN (1) CN105874203B (ja)
WO (1) WO2015125304A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022071039A1 (ja) * 2020-10-01 2022-04-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112483429A (zh) 2019-09-12 2021-03-12 开利公司 离心压缩机和制冷装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025787A (ja) * 1988-06-22 1990-01-10 Mitsubishi Electric Corp スクロール圧縮機
JPH0343596U (ja) * 1989-09-08 1991-04-24
JP3016311U (ja) * 1994-03-31 1995-10-03 キャリア コーポレイション 低圧密閉形スクロール圧縮機
JP2004197698A (ja) * 2002-12-20 2004-07-15 Fujitsu General Ltd 密閉型圧縮機
JP3730260B2 (ja) * 1995-04-07 2005-12-21 アメリカン・スタンダード・インターナショナル・インコーポレイテッド スクロール式コンプレッサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518074B2 (ja) * 1990-01-22 1996-07-24 ダイキン工業株式会社 スクロ―ル形圧縮機
US5885066A (en) * 1997-02-26 1999-03-23 Matsushita Electric Industrial Co., Ltd. Scroll compressor having oil bores formed through the crank shaft
KR100315791B1 (ko) * 1999-01-19 2001-12-12 구자홍 스크롤 압축기
KR100548489B1 (ko) * 2003-12-20 2006-02-02 엘지전자 주식회사 스크롤 압축기의 급유구조
KR20130011863A (ko) * 2011-07-22 2013-01-30 엘지전자 주식회사 밀폐형 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025787A (ja) * 1988-06-22 1990-01-10 Mitsubishi Electric Corp スクロール圧縮機
JPH0343596U (ja) * 1989-09-08 1991-04-24
JP3016311U (ja) * 1994-03-31 1995-10-03 キャリア コーポレイション 低圧密閉形スクロール圧縮機
JP3730260B2 (ja) * 1995-04-07 2005-12-21 アメリカン・スタンダード・インターナショナル・インコーポレイテッド スクロール式コンプレッサ
JP2004197698A (ja) * 2002-12-20 2004-07-15 Fujitsu General Ltd 密閉型圧縮機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022071039A1 (ja) * 2020-10-01 2022-04-07
WO2022071039A1 (ja) * 2020-10-01 2022-04-07 三菱電機株式会社 スクロール圧縮機
GB2611698A (en) * 2020-10-01 2023-04-12 Mitsubishi Electric Corp Scroll compressor
JP7442668B2 (ja) 2020-10-01 2024-03-04 三菱電機株式会社 スクロール圧縮機
GB2611698B (en) * 2020-10-01 2024-07-17 Mitsubishi Electric Corp Scroll compressor
GB2627160A (en) * 2020-10-01 2024-08-14 Mitsubishi Electric Corp Scroll compressor

Also Published As

Publication number Publication date
CN105874203A (zh) 2016-08-17
JP6192801B2 (ja) 2017-09-06
CN105874203B (zh) 2018-01-09
JPWO2015125304A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
US20220025884A1 (en) High pressure scroll compressor
JP6366833B2 (ja) スクロール圧縮機
JP6192801B2 (ja) 圧縮機
WO2016125228A1 (ja) 圧縮機
JP5328536B2 (ja) スクロール圧縮機
WO2017208455A1 (ja) スクロール圧縮機
WO2016170615A1 (ja) スクロール圧縮機
JP6745913B2 (ja) 圧縮機
JP2011231653A (ja) スクロール圧縮機
JP2000337256A (ja) 流体機械
WO2017138131A1 (ja) スクロール圧縮機
JP2018131910A (ja) スクロール圧縮機
JP5752019B2 (ja) スクロール圧縮機及び冷凍サイクル装置
JP6598881B2 (ja) スクロール圧縮機
JP2010031729A (ja) スクロール圧縮機
JP6320575B2 (ja) 電動圧縮機
JP5836845B2 (ja) スクロール圧縮機
JP2014218934A (ja) スクロール圧縮機
JP6116333B2 (ja) スクロール圧縮機
JP4797548B2 (ja) 密閉型電動圧縮機
JP6471525B2 (ja) 冷媒圧縮機
JP2009062858A (ja) 横形圧縮機
JP2005220781A (ja) 横型多段回転圧縮機
JP2020186651A (ja) 空調用圧縮機
JP2023037549A (ja) スクロール圧縮機及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883221

Country of ref document: EP

Kind code of ref document: A1