WO2014083867A1 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- WO2014083867A1 WO2014083867A1 PCT/JP2013/064031 JP2013064031W WO2014083867A1 WO 2014083867 A1 WO2014083867 A1 WO 2014083867A1 JP 2013064031 W JP2013064031 W JP 2013064031W WO 2014083867 A1 WO2014083867 A1 WO 2014083867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- refrigerant
- parallel heat
- defrost
- pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/002—Defroster control
- F25D21/006—Defroster control with electronic control circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0251—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02743—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
Definitions
- the present invention relates to an air conditioner.
- heat pump type air conditioners that use air as a heat source have been introduced in place of boiler-type heaters that heat fossil fuels even in cold regions.
- the heat pump type air conditioner can efficiently perform heating as much as heat is supplied from the air in addition to the electric input to the compressor.
- frost forms on the outdoor heat exchanger serving as an evaporator. Therefore, it is necessary to perform defrost to melt the frost on the outdoor heat exchanger.
- As a method of performing defrosting there is a method of reversing the refrigeration cycle. However, this method has a problem that comfort is impaired because indoor heating is stopped during defrosting.
- the outdoor heat exchanger is divided and the other heat exchanger operates as an evaporator while some of the outdoor heat exchangers are defrosted.
- a method of absorbing heat from air and heating is proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
- Patent Document 3 a defrosting device that can also operate as an evaporator is installed on the windward side of the outdoor heat exchanger, and the defrosting device flows out of the defrosting device between the defrosting device and the compressor discharge pipe.
- An example of a high-pressure defrost is shown in which an electronic valve for preventing the refrigerant from flowing back to the indoor unit is attached.
- the outdoor heat exchanger is divided into a plurality of parallel heat exchangers, and a part of the high-temperature refrigerant discharged from the compressor is alternately flowed into each parallel heat exchanger, By defrosting each parallel heat exchanger alternately, heating is continuously performed without reversing the refrigeration cycle.
- the refrigerant supplied to the parallel heat exchanger to be defrosted is injected from the injection port of the compressor.
- the pressure of the internal refrigerant is lower than the discharge pressure of the compressor and higher than the suction pressure (pressure that is slightly higher than 0 ° C. in terms of saturation temperature). Defrost is performed in the state (medium pressure defrost).
- JP 2009-085484 A (paragraph [0019], FIG. 3) JP 2007-271094 A (paragraph [0007], FIG. 2) Japanese Unexamined Patent Publication No. 2004-219060 (paragraph [0032], paragraph [0046], paragraphs [0082] to [0084], FIG. 1) WO2012 / 014345 (paragraph [0006], FIG. 1)
- the heat exchanger part to be defrosted and the heat exchanger part functioning as an evaporator operate in the same pressure band. Since the heat exchanger section functioning as an evaporator absorbs heat from the outside air, the evaporation temperature of the refrigerant needs to be lower than the outside air temperature. Therefore, even in the heat exchanger part to be defrosted, the temperature of the refrigerant is lower than that of the outside air, and the saturation temperature may be 0 ° C. or lower. Even if it is attempted to melt frost (0 ° C.), the latent heat of condensation of the refrigerant could not be used, and defrost efficiency was poor.
- the latent heat of condensation is used by controlling the saturation temperature of the refrigerant to a slightly higher temperature (about 0 ° C. to 10 ° C.) than 0 ° C.
- This intermediate pressure defrost can efficiently defrost the entire parallel heat exchanger with less temperature unevenness than the low pressure defrost and the high pressure defrost.
- there is an upper limit to the amount of refrigerant that can be injected from the injection port of the compressor and there is a limit to the flow rate of refrigerant that can be supplied to the parallel heat exchanger to be defrosted. For this reason, the defrosting ability is limited, and the defrosting time cannot be shortened.
- it is necessary to use a compressor capable of performing injection and there is a problem in that the cost increases.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner that can efficiently defrost without stopping heating of an indoor unit.
- a compressor, an indoor heat exchanger, a first flow rate control device, and a plurality of parallel heat exchangers connected in parallel to each other are sequentially connected by piping so that the refrigerant circulates.
- a part of the refrigerant discharged from the main circuit and the compressor is branched, and the parallel heat exchanger selected from among the plurality of parallel heat exchangers is selected as a defrost target, and the selected parallel heat exchanger
- a connection switching device that flows into the main circuit on the upstream side of the parallel heat exchanger other than the defrost target.
- FIG. 2 is a Ph diagram during cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- FIG. 3 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. It is a figure which shows the flow of the refrigerant
- FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the air conditioner 100 includes an outdoor unit A and a plurality of indoor units B and C connected in parallel to each other, and the outdoor unit A and the indoor units B and C include a first extension pipe 11-1. 11-2b, 11-2c and second extension pipes 12-1, 12-2b, 12-2c.
- the air conditioner 100 is further provided with a control device 30 for controlling the cooling operation and heating operation (heating normal operation and heating defrost operation) of the indoor units B and C.
- a chlorofluorocarbon refrigerant or an HFO refrigerant is used as the refrigerant.
- the chlorofluorocarbon refrigerant include R32 refrigerant, R125, and R134a, which are HFC refrigerants, and R410A, R407c, and R404A, which are mixed refrigerants thereof.
- the HFO refrigerant include HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z).
- a vapor compression heat pump such as a CO 2 refrigerant, an HC refrigerant (for example, propane or isobutane refrigerant), an ammonia refrigerant, a mixed refrigerant of the above refrigerant such as a mixed refrigerant of R32 and HFO-1234yf, or the like.
- a vapor compression heat pump such as a CO 2 refrigerant, an HC refrigerant (for example, propane or isobutane refrigerant), an ammonia refrigerant, a mixed refrigerant of the above refrigerant such as a mixed refrigerant of R32 and HFO-1234yf, or the like.
- the refrigerant used in the above is used.
- each indoor unit has a refrigerant circuit configuration that enables simultaneous cooling and heating operations to select cooling and heating. Also good.
- the refrigerant circuit of the air conditioner 100 includes a compressor 1, a cooling / heating switching device 2 that switches between cooling and heating, indoor heat exchangers 3-b and 3-c, and a first flow control device 4- that can be opened and closed.
- b, 4-c and the outdoor heat exchanger 5 are sequentially connected by piping.
- the main circuit is further provided with an accumulator 6, but this is not always necessary and may be omitted.
- the cooling / heating switching device 2 is connected between the discharge pipe 1a and the suction pipe 1b of the compressor 1, and is configured by, for example, a four-way valve that switches the flow direction of the refrigerant. In the heating operation, the connection of the cooling / heating switching device 2 is connected in the direction of the solid line in FIG. 1, and in the cooling operation, the connection of the cooling / heating switching device 2 is connected in the direction of the dotted line in FIG.
- FIG. 2 is a diagram illustrating an example of the configuration of the outdoor heat exchanger of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the outdoor heat exchanger 5 is configured by, for example, a fin tube type heat exchanger having a plurality of heat transfer tubes 5 a and a plurality of fins 5 b.
- the outdoor heat exchanger 5 is divided into a plurality of parallel heat exchangers.
- a plurality of the heat transfer tubes 5a are provided in the step direction perpendicular to the air passage direction and the row direction that is the air passage direction.
- the fins 5b are arranged at intervals so that air passes in the air passage direction.
- the parallel heat exchangers 5-1 and 5-2 are configured by dividing the outdoor heat exchanger 5 in the casing of the outdoor unit A. The division may be divided into left and right, but if divided into left and right, the refrigerant inlets to the parallel heat exchangers 5-1, 5-2 are the left and right ends of the outdoor unit A. It becomes complicated. For this reason, it is desirable to divide up and down as shown in FIG.
- fins 5b may not be divided as shown in FIG. 2, or may be divided. Moreover, the division
- Outdoor air is conveyed to the parallel heat exchangers 5-1, 5-2 by the outdoor fan 5f.
- the outdoor fan 5f may be installed in each of the parallel heat exchangers 5-1, 5-2, but may be performed by only one fan as shown in FIG.
- First connection pipes 13-1 and 13-2 are connected to the side of the parallel heat exchangers 5-1 and 5-2 connected to the first flow control devices 4-b and 4-c.
- the first connection pipes 13-1 and 13-2 are connected in parallel to the main pipes extending from the second flow rate control devices 7-1 and 7-2, and each of them has a second flow rate control device 7-. 1 and 7-2 are provided.
- the second flow rate control devices 7-1 and 7-2 are valves that can vary the opening degree according to a command from the control device 30.
- the second flow rate control devices 7-1 and 7-2 are composed of, for example, electronically controlled expansion valves.
- the second flow rate control devices 7-1 and 7-2 in the first embodiment correspond to the “connection switching device” and the “second throttle device” of the present invention.
- Second connecting pipes 14-1 and 14-2 are connected to the side of the parallel heat exchangers 5-1 and 5-2 connected to the compressor 1, and the first electromagnetic valves 8-1 and 8-2 are connected. -2 to the compressor 1.
- the refrigerant circuit further includes a first defrost pipe 15 for supplying a part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 to the parallel heat exchangers 5-1 and 5-2 for defrosting. Yes.
- One end of the first defrost pipe 15 is connected to the discharge pipe 1a, the other end is branched, and each is connected to the second connection pipes 14-1 and 14-2.
- the first defrost pipe 15 is provided with a throttle device 10, and after reducing a part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 to an intermediate pressure by the throttle device 10, the parallel heat exchanger 5-1, 5-2.
- Second electromagnetic valves 9-1 and 9-2 are provided at the branches of the first defrost pipe 15, respectively.
- the first solenoid valves 8-1 and 8-2 and the second solenoid valves 9-1 and 9-2 only need to be able to switch the flow path, and can be four-way valves, three-way valves, or two-way valves. May be used.
- the front and rear pressures of the solenoid valves 8-1 and 8-2 are reversed during cooling, heating, and defrosting.
- a general solenoid valve may not be used when the front and rear pressures are reversed. In this case, as shown in FIG.
- the high pressure side of the valve is connected to the discharge pipe 1a of the compressor 1, and the low pressure side of the valve is connected to the suction pipe 1b of the compressor 1 2 and 2-3, an electromagnetic valve 8-3 that allows flow in only one direction, and check valves 31-1, 31-2, 31-3, and an electromagnetic valve 8 in which refrigerant flows in both directions.
- -1, 8-2 may be provided with the same function. Further, since the solenoid valves 9-1 and 9-2 are always at high pressure on the discharge pipe 1a side of the compressor 1, one-way valves can be used.
- the expansion device 10 may be a capillary tube if the necessary defrosting capacity, that is, the flow rate of refrigerant for defrosting is determined.
- the expansion device 10 may be eliminated, and the solenoid valves 9-1 and 9-2 may be downsized so that the pressure is reduced to an intermediate pressure at a preset defrost flow rate.
- the throttle device 10 may be eliminated, and a flow rate control device may be provided instead of the second electromagnetic valves 9-1 and 9-2.
- the diaphragm device 10 corresponds to the “first diaphragm device” of the present invention.
- the operation of the air conditioner 100 includes two types of operation modes, a cooling operation and a heating operation. Further, in the heating operation, normal heating operation and heating defrost operation (also referred to as continuous heating operation) in which both of the parallel heat exchangers 5-1 and 5-2 constituting the outdoor heat exchanger 5 operate as normal evaporators are used. There is.
- the parallel heat exchanger 5-1 and the parallel heat exchanger 5-2 are alternately defrosted while continuing the heating operation. That is, one parallel heat exchanger is operated as an evaporator, and the other parallel heat exchanger is defrosted while heating. When the defrosting of the other parallel heat exchanger is completed, the other parallel heat exchanger is operated as an evaporator this time to perform a heating operation, and the defrosting of the one parallel heat exchanger is performed.
- Table 1 below collectively shows ON / OFF of each valve and opening degree adjustment control during each operation in the air conditioner 100 of FIG.
- ON / OFF of the cooling / heating switching device 2 indicates a case where the four-way valve in FIG. 1 is connected in the direction of the solid line, and OFF indicates a case where the connection is in the direction of the dotted line.
- ON of the electromagnetic valves 8-1, 8-2, 9-1, 9-2 indicates a case where the electromagnetic valve is opened and the refrigerant flows, and OFF indicates a case where the electromagnetic valve is closed.
- FIG. 3 is a diagram showing a refrigerant flow during the cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- a portion where the refrigerant flows during the cooling operation is a thick line, and a portion where the refrigerant does not flow is a thin line.
- FIG. 4 is a Ph diagram during cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Note that the points (a) to (d) in FIG. 4 indicate the state of the refrigerant in the portions marked with the same symbols in FIG.
- the low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
- the refrigerant compression process of the compressor 1 is compressed so as to be heated by an amount equivalent to the heat insulation efficiency of the compressor 1 as compared with the case of adiabatic compression with an isentropic line, and from the point (a) in FIG. It is represented by the line shown in (b).
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the cooling / heating switching device 2 and branches into two, and one passes through the electromagnetic valve 8-1 and exchanges heat in parallel from the second connection pipe 14-1. Flows into the vessel 5-1. The other passes through the electromagnetic valve 8-2 and flows into the parallel heat exchanger 5-2 from the second connection pipe 14-2.
- the refrigerant that has flowed into the parallel heat exchangers 5-1 and 5-2 is cooled while heating the outdoor air, and becomes a medium-temperature and high-pressure liquid refrigerant.
- the refrigerant change in the parallel heat exchangers 5-1 and 5-2 is a slightly inclined straight line that is slightly inclined from the point (b) to the point (c) in FIG.
- the merged refrigerant passes through the second extension pipes 12-1, 12-2b, 12-2c and flows into the first flow control devices 4-b, 4-c, where they are throttled to expand and depressurize. It becomes a low-temperature low-pressure gas-liquid two-phase state.
- the change of the refrigerant in the first flow control devices 4-b and 4-c is performed under a constant enthalpy.
- the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
- the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed out of the first flow control devices 4-b, 4-c flows into the indoor heat exchangers 3-b, 3-c.
- the refrigerant flowing into the indoor heat exchangers 3-b and 3-c is heated while cooling the indoor air, and becomes a low-temperature and low-pressure gas refrigerant.
- the first flow control devices 4-b and 4-c are controlled so that the superheat (superheat degree) of the low-temperature and low-pressure gas refrigerant is about 2K to 5K.
- the change in the refrigerant in the indoor heat exchangers 3-b and 3-c is expressed by a slightly inclined straight line shown from point (e) to point (a) in FIG. 4 in consideration of pressure loss.
- the low-temperature and low-pressure gas refrigerant flowing out of the indoor heat exchangers 3-b and 3-c passes through the first extension pipes 11-2b, 11-2c and 11-1, the cooling / heating switching device 2 and the accumulator 6, and the compressor 1 and compressed.
- FIG. 5 is a diagram showing a refrigerant flow during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the portion where the refrigerant flows during normal heating operation is indicated by a thick line, and the portion where the refrigerant does not flow is indicated by a thin line.
- FIG. 6 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Note that the points (a) to (e) in FIG. 6 indicate the state of the refrigerant in the portion with the same symbol in FIG.
- the low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
- the refrigerant compression process of the compressor 1 is represented by a line shown from the point (a) to the point (b) in FIG.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out of the outdoor unit A after passing through the cooling / heating switching device 2.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit A passes through the first extension pipes 11-1, 11-2b, and 11-2c to the indoor heat exchangers 3-b and 3-c of the indoor units B and C. Inflow.
- the refrigerant flowing into the indoor heat exchangers 3-b and 3-c is cooled while heating the indoor air, and becomes a medium-temperature and high-pressure liquid refrigerant.
- the change of the refrigerant in the indoor heat exchangers 3-b and 3-c is represented by a slightly inclined straight line that is slightly inclined from the point (b) to the point (c) in FIG.
- the medium-temperature and high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers 3-b and 3-c flows into the first flow control devices 4-b and 4-c, where they are throttled to expand and depressurize. It becomes a gas-liquid two-phase state.
- the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
- the first flow control devices 4-b and 4-c are controlled so that the subcool (supercooling degree) of the medium-temperature and high-pressure liquid refrigerant is about 5K to 20K.
- the medium-pressure gas-liquid two-phase refrigerant that has flowed out of the first flow control devices 4-b and 4-c passes through the second extension pipes 12-2b, 12-2c, and 12-1.
- the refrigerant returned to the outdoor unit A flows into the first connection pipes 13-1 and 13-2.
- the refrigerant flowing into the first connection pipes 13-1 and 13-2 is throttled by the second flow rate control devices 7-1 and 7-2, and is expanded and depressurized to be in a low-pressure gas-liquid two-phase state.
- the change of the refrigerant at this time is changed from the point (d) to the point (e) in FIG.
- the second flow rate control devices 7-1 and 7-2 are fixed at a constant opening, for example, in a fully open state, or the saturation temperature of the intermediate pressure of the second extension pipe 12-1 or the like is 0 ° C. to It is controlled to be about 20 ° C.
- the refrigerant that has flowed out of the second flow rate control devices 7-1 and 7-2 flows into the parallel heat exchangers 5-1 and 5-2, and is heated while cooling the outdoor air to become a low-temperature and low-pressure gas refrigerant. .
- the refrigerant change in the parallel heat exchangers 5-1 and 5-2 is represented by a slightly inclined straight line that is slightly inclined from the point (e) to the point (a) in FIG.
- the low-temperature and low-pressure gas refrigerant that has flowed out of the parallel heat exchangers 5-1 and 5-2 flows into the second connection pipes 14-1 and 14-2 and passes through the solenoid valves 8-1 and 8-2. It merges, passes through the cooling / heating switching device 2 and the accumulator 6, flows into the compressor 1, and is compressed.
- the heating defrost operation is performed when the outdoor heat exchanger 5 is frosted during the heating normal operation.
- the determination of the presence or absence of frost formation is performed when, for example, the saturation temperature converted from the suction pressure of the compressor 1 is significantly lower than the preset outside air temperature. For example, the temperature difference between the outside air temperature and the evaporation temperature is equal to or greater than a preset value, and frost formation is determined when the elapsed time exceeds a certain time.
- the parallel heat exchanger 5-2 performs defrosting, and the parallel heat exchanger 5-1 functions as an evaporator to continue heating. If you have driving. Conversely, there is an operation in which the parallel heat exchanger 5-2 functions as an evaporator to continue heating and the parallel heat exchanger 5-1 performs defrosting. In these operations, the open / close states of the solenoid valves 8-1, 8-2, 9-1, 9-2 are reversed, and the refrigerant flows between the parallel heat exchanger 5-1 and the parallel heat exchanger 5-2. Other operations are the same just by switching. Therefore, in the following description, an operation in the case where the parallel heat exchanger 5-2 performs defrosting and the parallel heat exchanger 5-1 functions as an evaporator to continue heating will be described. The same applies to the following description of the embodiments.
- FIG. 7 is a diagram showing a refrigerant flow during the heating defrost operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- a portion where the refrigerant flows during the heating defrost operation is indicated by a thick line, and a portion where the refrigerant does not flow is indicated by a thin line.
- FIG. 8 is a Ph diagram during the heating defrost operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Note that the points (a) to (h) in FIG. 8 indicate the state of the refrigerant in the portion with the same symbol in FIG.
- the control device 30 When the control device 30 detects that the defrost for eliminating the frosting state is necessary during the normal heating operation, the control device 30 closes the electromagnetic valve 8-2 corresponding to the parallel heat exchanger 5-2 to be defrosted. Then, the control device 30 further opens the second electromagnetic valve 9-2 and opens the opening of the expansion device 10 to a preset opening. As a result, the compressor 1 ⁇ the expansion device 10 ⁇ the solenoid valve 9-2 ⁇ the parallel heat exchanger 5-2 ⁇ the second flow control device 7-2 ⁇ the second flow control device 7-1 are sequentially connected. The pressure defrost circuit is opened and heating defrost operation is started.
- the frost adhering to the parallel heat exchanger 5-2 can be melted by allowing the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to flow into the parallel heat exchanger 5-2.
- the change in the refrigerant at this time is represented by a change from point (f) to point (g) in FIG. Note that the refrigerant for defrosting has a saturation temperature of about 0 ° C. to 10 ° C. above the frost temperature (0 ° C.).
- the refrigerant after defrosting passes through the second flow control device 7-2 and joins the main circuit (point (h)).
- the merged refrigerant flows into the parallel heat exchanger 5-1 functioning as an evaporator and evaporates.
- FIG. 8-2 shows a case where the pressure of the outdoor heat exchanger 5 to be defrosted (converted to the saturated liquid temperature in the figure) is changed in the air conditioner using R410A refrigerant as the refrigerant while fixing the defrost capability. It is the result of calculating the heating capacity.
- Fig. 8-3 shows the case of changing the pressure of the outdoor heat exchanger 5 to be defrosted (converted to the saturated liquid temperature in the figure) while fixing the defrosting capability in the air conditioner using R410A refrigerant as the refrigerant It is the result of having calculated the front-back enthalpy difference of the outdoor heat exchanger 5 of defrosting.
- FIG. 8-2 shows a case where the pressure of the outdoor heat exchanger 5 to be defrosted (converted to the saturated liquid temperature in the figure) is changed in the air conditioner using R410A refrigerant as the refrigerant while fixing the defrost capability. It is the result of calculating the heating capacity.
- Fig. 8-3 shows the case
- FIG. 8-4 shows the case where the pressure of the outdoor heat exchanger 5 to be defrosted (converted to the saturated liquid temperature in the figure) is changed in the air conditioner using the R410A refrigerant as the refrigerant while fixing the defrost capability. This is the result of calculating the flow rate required for defrosting.
- FIG. 8-5 shows the case of changing the pressure of the outdoor heat exchanger 5 to be defrosted (converted to the saturated liquid temperature in the figure) while fixing the defrost capability in the air conditioner using R410A refrigerant as the refrigerant. It is the result of having calculated the refrigerant
- the heating capacity is increased when the saturated liquid temperature of the refrigerant is higher than 0 ° C. and lower than 10 ° C., and in other cases, the heating capacity is increased. It can be seen that is decreasing.
- the heating capacity is lowered when the saturated liquid temperature is 0 ° C. or less.
- the temperature of the refrigerant needs to be higher than 0 ° C.
- the saturated liquid temperature is set to 0 ° C. or lower and frost is melted, the position of the point (g) becomes higher than the saturated gas enthalpy.
- the latent heat of condensation of the refrigerant cannot be used, and the enthalpy difference between the front and rear outdoor heat exchangers 5 to be defrosted becomes small (FIG. 8-3).
- the flow rate required to flow into the outdoor heat exchanger to be defrosted is required to be about 3 to 4 times (Fig. 8-4). )
- the refrigerant flow rate that can be supplied to the indoor units B and C that perform heating correspondingly decreases, and the heating capacity decreases.
- the saturated liquid temperature is set to 0 ° C. or lower, the heating capacity is reduced as in the low pressure method of Patent Document 1, and the pressure of the outdoor heat exchanger 5 to be defrosted needs to be higher than 0 ° C. in terms of the saturated liquid temperature. There is.
- the subcool SC at the outlet of the outdoor heat exchanger 5 to be defrosted increases as shown in FIG. 8-6. That is, the amount of liquid refrigerant increases and the refrigerant density increases. Since an ordinary building multi-air conditioner requires a larger amount of refrigerant at the time of cooling than at the time of heating, surplus refrigerant exists in a liquid reservoir such as the accumulator 6 during heating operation. Therefore, as shown in FIG. 8-5, as the pressure increases, the amount of refrigerant required in the outdoor heat exchanger 5 to be defrosted increases, the amount of refrigerant accumulated in the accumulator 6 decreases, and the saturation temperature becomes 10 ° C.
- the accumulator is emptied by the degree.
- the refrigerant in the refrigeration cycle becomes insufficient, the suction density of the compressor decreases, and the heating capacity decreases.
- the upper limit of the saturation temperature can be increased by overfilling the refrigerant, but the liquid overflows from the accumulator during other operations, reducing the reliability of the air conditioner. It is better to fill it.
- the saturation temperature increases, there is a problem that the temperature difference is generated in the temperature difference between the refrigerant and the frost in the heat exchanger, so that a place where the frost can be melted immediately and a place where the frost cannot be melted easily are created.
- the pressure of the outdoor heat exchanger 5 to be defrosted is preferably higher than 0 ° C. and 10 ° C. or lower in terms of saturation temperature.
- the subcool SC at the outlet of the outdoor heat exchanger 5 to be defrosted is 0K considering that the medium pressure type defrost that uses latent heat is utilized to the maximum while suppressing the movement of the refrigerant in the defrost and eliminating the uneven melting. Is the optimum target value.
- the pressure of the outdoor heat exchanger 5 to be defrosted is higher than 0 ° C. in terms of saturation temperature so that the subcool SC is about 0 to 5K. And it is desirable to make it 6 degrees C or less.
- the control device 30 sets the opening degree of the second flow rate control device 7-2 so that the pressure of the parallel heat exchanger 5-2 to be defrosted is about 0 ° C. to 10 ° C. in terms of saturation temperature.
- the opening degree of the second flow rate control device 7-1 is fully opened in order to improve the controllability by applying a differential pressure before and after the second flow rate control device 7-2.
- the opening degree of the expansion device 10 is the required defrost that is designed in advance. Keep the opening fixed according to the flow rate.
- control device 30 may control the expansion device 10 and the second flow rate control device 7-2 so that the defrost flow rate increases as the outside air temperature decreases.
- the amount of heat given to the frost can be made constant regardless of the outside air temperature, and the time taken for defrosting can be made constant.
- control apparatus 30 may change the threshold value of the saturation temperature used when determining the presence or absence of frost formation, the time of normal operation, etc. according to outside temperature. That is, as the outside air temperature decreases, the operation time of the normal heating operation is shortened, and the frost formation amount at the start of the heating defrost operation is made constant. Thereby, the amount of heat given to the frost from the refrigerant becomes constant during the heating defrost operation. Therefore, it is not necessary to control the defrost flow rate by the expansion device 10, and an inexpensive capillary tube having a constant flow path resistance can be used as the expansion device 10.
- the control device 30 sets a threshold value for the outside air temperature.
- the controller 30 performs the heating defrost operation. In that case, heating of the indoor unit may be stopped, and a heating stop defrosting operation may be performed in which the entire surfaces of the plurality of parallel heat exchangers are defrosted. If the outside air temperature is as low as 0 ° C or lower, such as -5 ° C or -10 ° C, the normal humidity is low and the amount of frost formation is low until the frost amount reaches a constant value. The time will be longer.
- the proportion of the time during which the heating of the indoor units stops is small.
- heating defrost operation taking into consideration the heat radiation from the outdoor heat exchanger to be defrosted to the outside air, it is possible to selectively perform either the heating defrost operation or the heating defrost operation depending on the outside air temperature. , Can be defrosted efficiently.
- the cooling / heating switching device 2 is turned off, the second flow rate control devices 7-1 and 7-2 are fully opened, the electromagnetic valves 8-2 and 8-1 are turned on, and the second electromagnetic valve 9- 1 and 9-2 are set to OFF, and the diaphragm device 10 is set to closed.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the cooling / heating switching device 2, the electromagnetic valve 8-1 and the electromagnetic valve 8-2, and enters the parallel heat exchangers 5-1, 5-2.
- the frost that flows in and adheres to the parallel heat exchangers 5-1, 5-2 can be melted.
- the heating defrost is used.
- the fan output may be reduced as the outside air temperature decreases.
- FIG. 9 is a diagram showing a control flow of the air conditioner of FIG.
- S1 When the operation is started (S1), it is determined whether the operation mode of the indoor units B and C is the cooling operation or the heating operation (S2), and the normal cooling operation (S3) or the heating operation (S4) is controlled. Is called.
- S3 the normal cooling operation
- S4 the heating operation
- the heating operation taking into account the heat transfer due to frost formation and the decrease in the heat transfer performance of the outdoor heat exchanger due to the decrease in the air volume, for example, whether or not the defrost start condition as shown in equation (1) is satisfied (that is, Determination of frost is performed (S5).
- x1 (Saturation temperature of suction pressure) ⁇ (outside air temperature) ⁇ x1 (1) x1 may be set to about 10K to 20K.
- the heating defrost operation is performed using the parallel heat exchanger 5-2 as the defrost and the parallel heat exchanger 5-1 as the evaporator ( S7, S8). If the frost adhering to the parallel heat exchanger 5-2 is melted by continuing the heating defrost operation, the refrigerant temperature in the first connection pipe 13-2 rises. For this reason, as a defrost end condition, for example, a temperature sensor may be attached to the first connection pipe 13-2, and the end may be determined when the sensor temperature exceeds a threshold value as shown in Expression (2).
- x2 (Refrigerant temperature of injection pipe)> x2 (2) x2 may be set to 5 to 10 ° C.
- Each valve is changed to the state shown in “5-1: Defrost 5-2: Evaporator” in “Heating defrost operation” in Table 1, and this time, the heating defrost operation in which the parallel heat exchanger 5-1 is defrosted.
- (S10) to (S13) are different from (S6) to (S9) only in the valve numbers, they are omitted.
- defrosting in the order of the upper parallel heat exchanger 5-2 and the lower parallel heat exchanger 5-1 of the outdoor heat exchanger 5 can prevent root ice.
- the defrosting of both the upper parallel heat exchanger 5-2 and the lower parallel heat exchanger 5-1 is completed and the heating defrost operation of (S6) to (S13) is completed, the normal heating operation of (S4) is performed.
- segmented into multiple units will be defrosted at least once.
- the outdoor heat exchanger 5 defrosted first is frosted and the heat transfer performance is reduced. If it is determined, the second defrost may be performed on the outdoor heat exchanger 5 for a short time.
- the following effects can be obtained in addition to the effect of continuously heating the room while performing defrosting by the heating defrosting operation. That is, the refrigerant that has flowed out of the parallel heat exchanger 5-2 to be defrosted flows into the main circuit on the upstream side of the parallel heat exchanger 5-1 other than the defrost target. For this reason, the efficiency of defrost can be improved. Further, a part of the high-temperature and high-pressure gas refrigerant branched from the discharge pipe 1a is decompressed to a pressure of about 0 ° C.
- the outdoor heat exchanger 5 to be defrosted It is possible to use the latent heat of condensation of the refrigerant. Also, since the saturation temperature is about 0 ° C to 10 ° C and the temperature difference between the frost and the temperature is small, the subcooling (supercooling) at the outlet of the outdoor heat exchanger 5 to be defrosted is as small as about 5K, and the outdoor to be defrosted The amount of refrigerant required for the heat exchanger 5 is reduced, and a shortage of refrigerant in the entire refrigeration cycle can be avoided.
- the refrigerant in the heat transfer tube of the outdoor heat exchanger 5 to be defrosted has a large gas-liquid two-phase region, a region where the temperature difference from the frost is constant increases, and the defrost amount of the entire heat exchanger can be made uniform. .
- coolant which flowed out from the outdoor heat exchanger 5 made into a defrost object is flowed in into the outdoor heat exchanger 5 which is functioning as an evaporator, and the evaporating capability of a refrigerating cycle is maintained and the fall of suction pressure is suppressed. Can do.
- liquid back to the compressor 1 can be prevented.
- the defrosting capability can be made variable.
- the time required for defrosting can be made constant by increasing the flow rate of the expansion device 10 at a low outside air temperature.
- FIG. FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
- the air conditioning apparatus 101 will be described focusing on the differences from the first embodiment.
- the air conditioner 101 according to the second embodiment is provided with a third flow rate control device 7-3 in addition to the configuration of the air conditioner 100 according to the first embodiment.
- the third flow rate control device 7-3 is a valve that is provided in a pipe that bypasses the first connection pipe 13-1 and the first connection pipe 13-2, and whose opening degree can be varied. It consists of a type expansion valve.
- the third flow rate control device 7-3 in the second embodiment corresponds to the “connection switching device” and the “second throttling device” of the present invention.
- FIG. 11 is a diagram showing a refrigerant flow during the heating defrost operation of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
- coolant flows at the time of heating defrost operation is made into the thick line, and the part into which a refrigerant
- FIG. 12 is a Ph diagram during the heating defrost operation of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention. Note that the points (a) to (g) in FIG. 12 indicate the state of the refrigerant in the portions marked with the same symbols in FIG.
- the heating and defrosting operation of the second embodiment is different from the air conditioner 100 according to the first embodiment in the position where the mainstream refrigerant and the refrigerant that has passed through the outdoor heat exchanger 5 to be defrosted merge.
- the control device 30 detects that the defrost for eliminating the frosting state is necessary during the normal heating operation, the control device 30 closes the electromagnetic valve 8-2 corresponding to the parallel heat exchanger 5-2 to be defrosted. Then, the control device 30 opens the second electromagnetic valve 9-2 and opens the opening of the expansion device 10 to a preset opening. At this time, the opening degree of the second flow rate control device 7-2 corresponding to the parallel heat exchanger 5-2 to be defrosted is fully closed. Further, the opening degree of the third flow control device 7-3 is fully opened.
- the intermediate pressure defrost circuit in which the compressor 1 ⁇ the expansion device 10 ⁇ the solenoid valve 9-2 ⁇ the parallel heat exchanger 5-2 ⁇ the third flow rate control device 7-3 is sequentially connected is opened, and the heating defrost operation is performed. Is started.
- the refrigerant after defrosting passes through the third flow rate control device 7-3 and passes through the first connection pipe 13-1 between the second flow rate control device 7-1 and the parallel heat exchanger 5-1. To the main circuit (point (e)).
- the merged refrigerant flows into the parallel heat exchanger 5-1 functioning as an evaporator and evaporates.
- the refrigerant that has passed through the outdoor heat exchanger 5 to be defrosted flows into the low pressure (equivalent to the suction pressure of the compressor 1), and the intermediate pressure (point ( The control of d)) and the control of medium pressure (point (f)) can be separated.
- the intermediate pressure may be higher than the intermediate pressure, a small valve having a small Cv value can be used for the second flow rate control devices 7-1 and 7-2.
- the intermediate pressure pressure of the second connection pipe 12-1) is changed to the medium pressure (defrost target) in order to return the refrigerant that has passed through the outdoor heat exchanger 5 to be defrosted to the mainstream. The pressure of the refrigerant flowing into the heat exchanger).
- FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 102 according to Embodiment 3 of the present invention.
- the air conditioning apparatus 102 will be described focusing on the differences from the first embodiment.
- the air conditioner 102 has a main circuit (second connection pipe 12-1 and second flow rate control device 7) serving as an intermediate pressure. -1 and 7-2), a bypass pipe 16a connecting the first connection pipes 13-1 and 13-2, an electromagnetic valve 16 provided in the bypass pipe 16a, an intermediate pressure, Check valves 17-1 and 17-2 that allow only the flow of refrigerant from the main circuit piping to the parallel heat exchangers 5-1 and 5-2 are installed.
- a main circuit second connection pipe 12-1 and second flow rate control device 7
- bypass pipe 16a connecting the first connection pipes 13-1 and 13-2
- an electromagnetic valve 16 provided in the bypass pipe 16a
- Check valves 17-1 and 17-2 that allow only the flow of refrigerant from the main circuit piping to the parallel heat exchangers 5-1 and 5-2 are installed.
- the second flow rate control devices 7-1 and 7-2 correspond to the “connection switching device” and the “second throttle device” of the present invention.
- the compressor 1 ⁇ the expansion device 10 ⁇ the electromagnetic valve 9-2 ⁇ the parallel heat exchanger 5-2 ⁇ the second flow control device 7 -2 ⁇
- the intermediate pressure defrost circuit in which the second flow rate control device 7-1 is sequentially connected is opened, and the heating defrost operation is started.
- the solenoid valve 16 is further opened so that the intermediate pressure (the pressure of the second connection pipe 12-1) is supplied to the upstream of the second flow control device 7-2. And to the downstream side of the second flow control device 7-1.
- the intermediate-pressure refrigerant flows into the first connection pipes 13-1 and 13-2. Therefore, the second flow control devices 7-1 and 7-2 are used. However, even a small valve having a small Cv value can reduce the intermediate pressure. Therefore, the medium pressure control of the outdoor heat exchanger 5 to be defrosted can be stably performed by the second flow rate control devices 7-1 and 7-2.
- FIG. 14 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the air-conditioning apparatus 103 according to Embodiment 4 of the present invention.
- the air conditioning apparatus 103 will be described focusing on the differences from the first embodiment.
- the first defrost pipe 15 is connected to the first connection pipes 13-1 and 13-2 instead of the configuration of the air conditioner 102 according to the third embodiment. ing.
- the main circuit (between the second connection pipe 12-1 and the second flow control devices 7-1 and 7-2) serving as an intermediate pressure is provided.
- the second defrost pipe 20 is a valve whose opening degree can be varied.
- a fourth flow control device 19 configured by an electronically controlled expansion valve is installed.
- the second defrost pipe 20 is provided with solenoid valves 18-1 and 18-2 corresponding to the second connection pipes 14-1 and 14-2, respectively.
- the 4th flow control apparatus 19 in this Embodiment 4 is corresponded to the "connection switching apparatus" and the “2nd aperture apparatus” of this invention.
- the control device 30 When the control device 30 detects that the defrost for eliminating the frost state is necessary during the heating normal operation, the control device 30 closes the electromagnetic valve 8-2 corresponding to the parallel heat exchanger 5-2 to be defrosted, The second flow control device 7-2 is fully closed. Then, the control device 30 opens the second electromagnetic valve 9-2 and opens the opening of the expansion device 10 to a preset opening. Further, the control device 30 opens the electromagnetic valve 18 corresponding to the parallel heat exchanger 5-2 to be defrosted, and opens the opening of the third flow control device.
- the intermediate pressure defrost circuit sequentially connected is opened, and the heating defrost operation is started.
- control device 30 determines the opening degree of the fourth flow control device 19 and the pressure (medium pressure) of the parallel heat exchanger 5-2 to be defrosted is about 0 ° C. to 10 ° C. in terms of saturation temperature. Control to become.
- the intermediate pressure refrigerant is supplied to the upstream side of the second flow rate control device 7-2 and the downstream side of the second flow rate control device 7-1. Bypass to the side.
- the fourth embodiment the case where the intermediate pressure bypass pipe, the electromagnetic valve 16, and the check valves 17-1 and 17-2 described in the third embodiment are provided will be described. It is not limited to this. These configurations may be omitted.
- FIG. 15 is a diagram illustrating a refrigerant flow in the outdoor heat exchanger during the heating defrost operation.
- the flow direction of the refrigerant is indicated by dotted arrows.
- a part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the first connection pipe 13-2 through the first defrost pipe 15 and is parallel to the defrost target. It is supplied to the heat exchanger 5-2. Then, the refrigerant after defrosting passes through the second defrost pipe 20 and joins the main circuit from the first connection pipe 13-1.
- the first connection pipes 13-1, 13-2 are connected to the heat transfer pipe 5a on the upstream side in the air flow direction in the parallel heat exchangers 5-1, 5-2.
- the heat transfer tubes 5a of the parallel heat exchangers 5-1, 5-2 are provided in a plurality of rows in the air flow direction, and sequentially flow to the downstream row. Therefore, the refrigerant supplied to the parallel heat exchanger 5-2 to be defrosted flows from the upstream heat transfer pipe 5a in the air flow direction to the downstream side, so that the refrigerant flow direction and the air flow direction are changed. Can be matched (cocurrent flow).
- the direction of the refrigerant flow and the direction of the air flow can be matched in the outdoor heat exchanger 5 to be defrosted. Also, by making the refrigerant flow parallel, the heat that is radiated to the air during defrosting can use defrosted frost that adheres to the downstream fins 5b, and the defrosting efficiency increases.
- FIG. FIG. 16 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 104 according to Embodiment 5 of the present invention.
- the air conditioning apparatus 104 will be described focusing on the differences from the second embodiment.
- the second flow rate control device 7-2 is deleted, and the second flow rate control device 7- Check valves 21-1 and 21-2 that allow only the flow of refrigerant from 1 to the first connection pipes 13-1 and 13-2 are provided.
- check valves 21-3 and 21-4 that allow only the flow of refrigerant from the first connection pipes 13-1 and 13-2 to the second connection pipe 12-1 are provided.
- the intermediate pressure can be made higher than the refrigerant pressure of the outdoor heat exchanger 5 to be defrosted while reducing the number of flow rate control devices that control the refrigerant flow rate, and the control stability can be increased. Can do.
- FIG. 17 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 105 according to Embodiment 6 of the present invention.
- the air conditioning apparatus 105 will be described focusing on the differences from the fourth and fifth embodiments.
- the air conditioner 105 according to the sixth embodiment is changed from the air conditioner 101 according to the second embodiment to the air conditioner 104 according to the fifth embodiment instead of the configuration of the air conditioner 103 according to the fourth embodiment. Adding a circuit. Further, at the time of heating defrost operation, check valves 21-5, 21 are provided so that the refrigerant flowing out from the second defrost pipe 20 and the fourth flow control device 19 can flow into the outdoor heat exchanger 5 operating as an evaporator. -6 is installed.
- the intermediate pressure can be made higher than the refrigerant pressure of the outdoor heat exchanger to be defrosted while reducing the number of flow rate control devices that control the refrigerant flow rate. Stability can be increased.
- Embodiments 1 to 6 the case where the outdoor heat exchanger 5 is divided into two parallel heat exchangers 5-1 and 5-2 has been described, but the present invention is not limited to this. Even in a configuration including three or more parallel heat exchangers, by applying the above-described inventive concept, some parallel heat exchangers are targeted for defrosting, and heating operation is continued with some other parallel heat exchangers. Can be operated to.
- the present invention is not limited to this. Even in a configuration including a plurality of separate outdoor heat exchangers 5 connected in parallel to each other, by applying the above-described inventive concept, some of the outdoor heat exchangers 5 can be defrosted, and some of the other outdoor heats The exchanger 5 can be operated so as to continue the heating operation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
ヒートポンプ式の空気調和装置は、圧縮機への電気入力に加えて空気から熱が供給される分だけ効率よく暖房を行うことができる。
しかしこの反面、外気温度が低温になると、蒸発器となる室外熱交換器に着霜するため、室外熱交換器についた霜を融かすデフロストを行う必要がある。
デフロストを行う方法として、冷凍サイクルを逆転させる方法があるが、この方法では、デフロスト中、室内の暖房が停止されるため、快適性が損なわれる課題があった。
このとき、デフロスト対象の熱交換器部では、内部の冷媒の圧力が圧縮機の吸入圧力と同等となる状態でデフロストが行われる(低圧デフロスト)。
このとき、デフロスト対象の熱源機側熱交換器では、内部の冷媒の圧力が圧縮機の吐出圧力と同等となる状態でデフロストが行われる(高圧デフロスト)。
このとき、デフロスト対象の並列熱交換器では、内部の冷媒の圧力が、圧縮機の吐出圧力より低く吸入圧力より高い圧力(飽和温度換算で0℃よりやや高い温度となる圧力)となる状態の状態でデフロストが行われる(中圧デフロスト)。
そのため、デフロスト対象の熱交換器部においても冷媒の温度が外気と比較して低くなり、飽和温度が0℃以下となる場合があり、霜(0℃)を融かそうとしても冷媒の凝縮潜熱を利用することができず、デフロストの効率が悪かった。
そのため、デフロスト対象の熱源側熱交換器内に温度分布が発生し、効率のよいデフロストができなくなる。また、サブクールが大きい分だけデフロスト対象の熱源側熱交換器内の液冷媒の量が増大し、液冷媒の移動に時間がかかる場合があった。
そのため、デフロスト能力に限界があり、デフロスト時間を短くできなかった。また、インジェクションを実施できる圧縮機を用いる必要があり、コストアップを招くという問題点があった。
なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
図1は、本発明の実施の形態1に係る空気調和装置100の冷媒回路構成を示す冷媒回路図である。
空気調和装置100は、室外機Aと、互いに並列に接続された複数の室内機B、Cとを備えており、室外機Aと室内機B、Cとは、第1の延長配管11-1、11-2b、11-2c、第2の延長配管12-1、12-2b、12-2cで接続されている。
空気調和装置100には更に、制御装置30が設けられ、室内機B、Cの冷房運転、暖房運転(暖房通常運転、暖房デフロスト運転)を制御する。
主回路には更に、アキュムレータ6を備えているが、必ずしも必須ではなく、省略しても良い。
暖房運転では冷暖切替装置2の接続が図1中の実線の向きに接続され、冷房運転では冷暖切替装置2の接続が図1中の点線の向きに接続される。
図2に示すように、室外熱交換器5は、例えば複数の伝熱管5aと複数のフィン5bとを有するフィンチューブ型の熱交換器で構成される。室外熱交換器5は、複数の並列熱交換器に分割されている。ここでは、室外熱交換器5が2つの並列熱交換器5-1、5-2に分割されている場合を例に説明する。
伝熱管5aは、内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向及び空気通過方向である列方向に複数設けられている。
フィン5bは、空気通過方向に空気が通過するように間隔を空けて配置されている。
並列熱交換器5-1、5-2は、室外機Aの筐体内において室外熱交換器5を分割して構成される。その分割は、左右に分割されていてもよいが、左右に分割すると、並列熱交換器5-1、5-2のそれぞれへの冷媒入口が室外機Aの左右両端になるため、配管接続が複雑になる。このため、図2に示すように上下方向に分割することが望ましい。
室外ファン5fは、並列熱交換器5-1、5-2のそれぞれに設置されてもよいが、図1のように1台のファンのみで行ってもよい。
第1の接続配管13-1、13-2は、第2の流量制御装置7-1、7-2から延びる主配管に並列に接続されており、各々には第2の流量制御装置7-1、7-2が設けられている。
第1のデフロスト配管15は、一端が吐出配管1aに接続され、他端が分岐されて各々が第2の接続配管14-1、14-2に接続されている。
空気調和装置100の運転動作には、冷房運転と暖房運転と2種類の運転モードがある。
更に暖房運転には、室外熱交換器5を構成する並列熱交換器5-1、5-2の両方が通常の蒸発器として動作する暖房通常運転と暖房デフロスト運転(連続暖房運転とも称する)とがある。
なお、表中の冷暖切替装置2のONは、図1の四方弁の実線の向きに接続した場合を示し、OFFは点線の向きに接続した場合を示す。電磁弁8-1、8-2、9-1、9-2のONは、電磁弁が開いて冷媒が流れている場合を示し、OFFは電磁弁が閉じている場合を示す。
図3は、本発明の実施の形態1に係る空気調和装置100の冷房運転時の冷媒の流れを示す図である。なお、図3において冷房運転時に冷媒が流れる部分を太線とし、冷媒が流れない部分を細線としている。
図4は、本発明の実施の形態1に係る空気調和装置100の冷房運転時のP-h線図である。なお、図4の点(a)~点(d)は図3の同じ記号を付した部分での冷媒の状態を示す。
この圧縮機1の冷媒圧縮過程は、圧縮機1の断熱効率の分だけ、等エントロピ線で断熱圧縮される場合と比較して加熱されるように圧縮され、図4の点(a)から点(b)に示す線で表される。
並列熱交換器5-1、5-2に流入した冷媒は、室外空気を加熱しながら冷却され、中温高圧の液冷媒となる。並列熱交換器5-1、5-2での冷媒変化は、室外熱交換器5の圧力損失を考慮すると、図4の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
なお、室内機B、Cの運転容量が小さい場合などは、電磁弁8-2を閉止して並列熱交換器5-2に冷媒が流れないようにし、結果的に室外熱交換器5の伝熱面積を小さくすることで、安定したサイクルの運転を行うことができる。
室内熱交換器3-b、3-cでの冷媒の変化は、圧力損失を考慮すると、図4の点(e)から点(a)に示すやや傾いた水平に近い直線で表される。室内熱交換器3-b、3-cを流出した低温低圧のガス冷媒は、第1の延長配管11-2b、11-2c、11-1、冷暖切替装置2及びアキュムレータ6を通って圧縮機1に流入し、圧縮される。
図5は、本発明の実施の形態1に係る空気調和装置100の暖房通常運転時の冷媒の流れを示す図である。なお、図5において暖房通常運転時に冷媒が流れる部分を太線とし、冷媒が流れない部分を細線としている。
図6は、本発明の実施の形態1に係る空気調和装置100の暖房通常運転時のP-h線図である。なお、図6の点(a)~点(e)は図5の同じ記号を付した部分での冷媒の状態を示す。
室内熱交換器3-b、3-cに流入した冷媒は、室内空気を加熱しながら冷却され、中温高圧の液冷媒となる。室内熱交換器3-b、3-cでの冷媒の変化は、図6の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
このときの冷媒変化は図6の点(c)から点(d)に示す垂直線で表される。
なお、第1の流量制御装置4-b、4-cは、中温高圧の液冷媒のサブクール(過冷却度)が5K~20K程度になるように制御される。
第1の接続配管13-1、13-2に流入した冷媒は、第2の流量制御装置7-1、7-2によって絞られて膨張、減圧し、低圧の気液二相状態になる。このときの冷媒の変化は図6の点(d)から点(e)となる。
なお、第2の流量制御装置7-1、7-2は、一定開度、例えば全開の状態で固定されるか、第2の延長配管12-1などの中間圧の飽和温度が0℃~20℃程度になるように制御される。
並列熱交換器5-1、5-2を流出した低温低圧のガス冷媒は、第2の接続配管14-1、14-2に流入し、電磁弁8-1、8-2を通った後合流し、冷暖切替装置2、アキュムレータ6を通過して圧縮機1に流入し、圧縮される。
暖房デフロスト運転は、暖房通常運転中に、室外熱交換器5に着霜した場合に行われる。
着霜の有無の判定は、例えば圧縮機1の吸入圧力から換算される飽和温度が、予め設定した外気温度と比較して大幅に低下した場合に着霜を判定する。また例えば、外気温度と蒸発温度との温度差が予め設定した値以上となり、経過時間が一定時間以上になった場合に着霜を判定する、などの方法によって行われる。
これらの運転では、電磁弁8-1、8-2、9-1、9-2の開閉状態が逆転し、並列熱交換器5-1と並列熱交換器5-2との冷媒の流れが入れ替わるだけで、その他の動作は同じとなる。よって、以下の説明では、並列熱交換器5-2がデフロストを行い、並列熱交換器5-1が蒸発器として機能して暖房を継続する場合の運転について説明する。以降の実施の形態の説明においても同様である。
図8は、本発明の実施の形態1に係る空気調和装置100の暖房デフロスト運転時のP-h線図である。なお、図8の点(a)~点(h)は、図7の同じ記号を付した部分での冷媒の状態を示す。
これによって、圧縮機1→絞り装置10→電磁弁9-2→並列熱交換器5-2→第2の流量制御装置7-2→第2の流量制御装置7-1を、順次接続した中圧デフロスト回路が開かれ、暖房デフロスト運転が開始される。
そして、中圧(点(f))まで減圧された冷媒は、電磁弁9-2を通り、並列熱交換器5-2に流入する。並列熱交換器5-2に流入した冷媒は、並列熱交換器5-2に付着した霜と熱交換することによって冷却される。
このように、圧縮機1から吐出された高温高圧のガス冷媒を並列熱交換器5-2に流入させることで、並列熱交換器5-2に付着した霜を融かすことができる。このときの冷媒の変化は図8中の点(f)から点(g)の変化で表される。
なお、デフロストを行う冷媒は、霜の温度(0℃)以上の0℃~10℃程度の飽和温度になっている。
図8-3は、冷媒としてR410A冷媒を用いた空気調和装置において、デフロスト能力を固定してデフロスト対象の室外熱交換器5の圧力(図中では飽和液温度に換算済)を変化させた場合の、デフロスト対象の室外熱交換器5の前後エンタルピ差を計算した結果である。
図8-4は、冷媒としてR410A冷媒を用いた空気調和装置において、デフロスト能力を固定してデフロスト対象の室外熱交換器5の圧力(図中では飽和液温度に換算済)を変化させた場合の、デフロストに必要な流量を計算した結果である。
図8-5は、冷媒としてR410A冷媒を用いた空気調和装置において、デフロスト能力を固定してデフロスト対象の室外熱交換器5の圧力(図中では飽和液温度に換算済)を変化させた場合の、アキュムレータ6とデフロスト対象の室外熱交換器5の冷媒量を計算した結果である。
図8-6は、冷媒としてR410A冷媒を用いた空気調和装置において、デフロスト能力を固定してデフロスト対象の室外熱交換器5の圧力(図中では飽和液温度に換算済)を変化させた場合の、デフロスト対象の室外熱交換器5の出口のサブクールSCを計算した結果である。
霜を融かすには冷媒の温度を0℃より高くする必要がある。図8からわかるように、飽和液温度を0℃以下にして、霜を融かそうとすると、点(g)の位置が飽和ガスエンタルピよりも高くなる。そのため、冷媒の凝縮潜熱を利用できず、デフロスト対象の室外熱交換器5前後のエンタルピ差は小さくなる(図8-3)。
このとき、0℃から10℃の最適な場合と同じくデフロストの能力を発揮しようとすると、デフロスト対象の室外熱交換器に流入させるのに必要な流量は3~4倍程度必要(図8-4)になり、その分だけ暖房を行う室内機B、Cに供給できる冷媒流量が減少して暖房能力が低下する。
飽和液温度を0℃以下にすると、特許文献1の低圧方式と同じく暖房能力が低下することになり、デフロスト対象の室外熱交換器5の圧力は飽和液温度換算で0℃よりも高くする必要がある。
通常のビル用マルチエアコンは冷房時のほうが暖房時よりも必要な冷媒量が多いため、暖房運転時にはアキュムレータ6のような液だめに余剰冷媒が存在する。このため、図8-5に示すように、圧力の増大にしたがってデフロスト対象の室外熱交換器5で必要な冷媒量が増えてアキュムレータ6にたまっている冷媒量は減少し、飽和温度が10℃程度でアキュムレータが空になる。
アキュムレータ6の余分な液がなくなると、冷凍サイクルの冷媒が不足し、圧縮機の吸入密度が下がるなどして、暖房能力が低下する。
なお、冷媒を過充填することで、飽和温度の上限を高くすることはできるが、その他の運転時にアキュムレータから液があふれたりして、空気調和装置の信頼性が低下するため、冷媒は適正に充填しておいたほうが良い。また、飽和温度が高くなるほど、熱交換器内の冷媒と霜の温度差に温度ムラができて、すぐに霜が融けきる場所となかなか融けない場所ができる課題もある。
なお、潜熱を利用する中圧方式のデフロストを最大限活かしつつ、デフロスト中の冷媒の移動を抑え、融けムラをなくすことを考えると、デフロスト対象の室外熱交換器5の出口のサブクールSCが0Kの場合が最適な目標値である。サブクールの検知のための温度計や圧力計の精度を考慮に入れると、サブクールSCが0Kから5K程度になるように、デフロスト対象の室外熱交換器5の圧力を飽和温度換算で0℃より高くかつ6℃以下にすることが望ましい。
暖房デフロスト運転中、制御装置30は、第2の流量制御装置7-2の開度を、デフロスト対象の並列熱交換器5-2の圧力が飽和温度換算で0℃~10℃程度になるように制御する。第2の流量制御装置7-1の開度は、第2の流量制御装置7-2の前後の差圧をつけて制御性を向上させるため、全開状態にする。また、暖房デフロスト運転中、圧縮機1の吐出圧力とデフロスト対象の並列熱交換器5-2の圧力との差は大きく変化しないため、絞り装置10の開度は、事前に設計した必要なデフロスト流量に合わせて、開度を固定したままにする。
つまり、外気温度が低下するにつれて、通常暖房運転の運転時間を短くして、暖房デフロスト運転開始時の着霜量を一定にする。これにより、暖房デフロスト運転中に、冷媒から霜に与える熱量が一定になる。
よって、絞り装置10によってデフロスト流量を制御する必要が無くなり、絞り装置10として、流路抵抗を一定にした安価な毛細管を用いることができる。
外気温度が例えば-5℃又は-10℃など、外気温度が0℃以下と低い場合は、もともと外気の絶対湿度が低く着霜量が少なく、着霜量が一定値になるまでの通常運転の時間が長くなる。室内機の暖房を止めて複数の並列熱交換器の全面をデフロストしても、室内機の暖房が停止する時間の割合は小さい。暖房デフロスト運転をした場合、デフロスト対象の室外熱交換器から外気へ放熱することも考慮に入れると、外気温度に応じて、暖房デフロスト運転又は暖房停止デフロスト運転の何れかを選択的に行うことで、効率よくデフロストすることができる。
なお、暖房停止デフロスト運転では、冷暖切替装置2をOFF、第2の流量制御装置7-1、7-2を全開、電磁弁8-2、8-1をON、第2の電磁弁9-1、9-2をOFF、絞り装置10を閉に設定する。これにより、圧縮機1から吐出された高温高圧のガス冷媒は、冷暖切替装置2、電磁弁8-1、電磁弁8-2を通過して、並列熱交換器5-1、5-2に流入し、並列熱交換器5-1、5-2に付着した霜を融かすことができる。
図9は、図1の空気調和装置の制御フローを示す図である。
運転が開始される(S1)と、室内機B、Cの運転モードで冷房運転か暖房運転かの判断を行い(S2)、通常の冷房運転(S3)又は暖房運転(S4)の制御が行われる。暖房運転時には、着霜による伝熱、風量の低下による室外熱交換器の伝熱性能の低下を考慮にいれて例えば式(1)に示すようなデフロスト開始条件を満たすか否か(つまり、着霜有無)の判定を行う(S5)。
x1は10K~20K程度に設定すればよい。
(a)電磁弁8-2 OFF
(b)電磁弁9-2 ON
(c)絞り装置10 開く
(d)第2の流量制御装置7-1 全開にする
(e)第2の流量制御装置7-2 制御開始
x2は5~10℃に設定すればよい。
(a)電磁弁9-2 OFF
(b)電磁弁8-2 ON
(c)第2の流量制御装置7-1,7-2 通常の中間圧制御
すなわち、デフロスト対象の並列熱交換器5-2から流出した冷媒を、デフロスト対象以外の並列熱交換器5-1の上流側の主回路へ流入させる。このため、デフロストの効率を向上させることができる。
また、吐出配管1aから分岐した高温高圧のガス冷媒の一部を、飽和温度換算で霜の温度と比較して高い0℃~10℃程度の圧力まで減圧し、デフロスト対象の室外熱交換器5に流入させることで、冷媒の凝縮潜熱を利用することができる。
また、飽和温度は0℃~10℃程度と、霜の温度との温度差が小さいため、デフロスト対象の室外熱交換器5出口のサブクール(過冷却度)は5K程度と小さく、デフロスト対象の室外熱交換器5の必要な冷媒量が少なくなり、冷凍サイクル全体の冷媒不足を回避することができる。
また、デフロスト対象の室外熱交換器5の伝熱管内の冷媒は気液二相の領域が大きくなり、霜との温度差が一定な領域が増え、熱交換器全体のデフロスト量を均一化できる。
また、デフロスト対象の室外熱交換器5から流出した冷媒を、蒸発器として機能している室外熱交換器5に流入させることで、冷凍サイクルの蒸発能力を維持して吸入圧力の低下を抑えることができる。
また、圧縮機1への液バックを防ぐことができる。
また、絞り装置10の流量制御を行うと、デフロスト能力を可変にすることができる。
また、低外気温では絞り装置10の流量を増やすことで、デフロストにかかる時間を一定にすることができる。
図10は、本発明の実施の形態2に係る空気調和装置101の冷媒回路構成を示す冷媒回路図である。
以下、空気調和装置101が実施の形態1と異なる部分を中心に説明する。
第3の流量制御装置7-3は、第1の接続配管13-1と第1の接続配管13-2とをバイパスする配管に設けられ、開度を可変できる弁であり、例えば、電子制御式膨張弁で構成される。
図12は、本発明の実施の形態2に係る空気調和装置101の暖房デフロスト運転時のP-h線図である。なお、図12の点(a)~点(g)は図11の同じ記号を付した部分での冷媒の状態を示す。
制御装置30は、暖房通常運転を行っている際に着霜状態を解消するデフロストが必要と検知した場合、デフロスト対象の並列熱交換器5-2に対応する電磁弁8-2を閉止する。そして、制御装置30は、第2の電磁弁9-2を開き、絞り装置10の開度を予め設定した開度に開く。このとき、デフロスト対象の並列熱交換器5-2に対応する第2の流量制御装置7-2の開度は、全閉状態にする。また、第3の流量制御装置7-3の開度は、全開状態にする。
これによって、圧縮機1→絞り装置10→電磁弁9-2→並列熱交換器5-2→第3の流量制御装置7-3を、順次接続した中圧デフロスト回路が開かれ、暖房デフロスト運転が開始される。
そして、中圧(点(f))まで減圧された冷媒は、電磁弁9-2を通り、並列熱交換器5-2に流入する。並列熱交換器5-2に流入した冷媒は、並列熱交換器5-2に付着した霜と熱交換することによって冷却される。このときの冷媒の変化は図12中の点(f)から点(g)の変化で表される。なお、デフロストを行う冷媒は、霜の温度(0℃)以上の0℃~10℃程度の飽和温度になっている。
また、中間圧が中圧と比較して高くなってもよいため、第2の流量制御装置7-1、7-2にCv値が小さな小型の弁を用いることができる。
なお、上述した実施の形態1では、デフロスト対象の室外熱交換器5を通った冷媒を主流に戻すため、中間圧(第2の接続配管12-1の圧力)を、中圧(デフロスト対象の熱交換器に流入する冷媒の圧力)と比較して下げる必要がある。
図13は、本発明の実施の形態3に係る空気調和装置102の冷媒回路構成を示す冷媒回路図である。
以下、空気調和装置102が実施の形態1と異なる部分を中心に説明する。
従って、第2の流量制御装置7-1、7-2によってデフロスト対象の室外熱交換器5の中圧制御を安定して行うことができる。
図14は、本発明の実施の形態4に係る空気調和装置103の冷媒回路構成を示す冷媒回路図である。
以下、空気調和装置103が実施の形態1と異なる部分を中心に説明する。
また、上記実施の形態3の空気調和装置102の構成に加え、中間圧となる主回路(第2の接続配管12-1と第2の流量制御装置7-1、7-2との間)の配管と、第2の接続配管14-1、14-2とを接続する第2のデフロスト配管20が設けられている。
第2のデフロスト配管20には、開度を可変できる弁であり、例えば、電子制御式膨張弁で構成された第4の流量制御装置19が設置されている。また、第2のデフロスト配管20には、第2の接続配管14-1、14-2の各々に対応して電磁弁18-1、18-2が設けられている。
これによって、圧縮機1→絞り装置10→電磁弁9-2→並列熱交換器5-2→電磁弁18-2→第4の流量制御装置19→第2の流量制御装置7-1を、順次接続した中圧デフロスト回路が開かれ、暖房デフロスト運転が開始される。
本実施の形態4の暖房デフロスト運転においては、圧縮機1から吐出した高温高圧の冷媒の一部が第1のデフロスト配管15によって、第1の接続配管13-2へ流入し、デフロスト対象の並列熱交換器5-2へ供給される。そして、デフロストを行った後の冷媒は、第2のデフロスト配管20を通り、第1の接続配管13-1から主回路に合流する。
このため、デフロスト対象の並列熱交換器5-2へ供給される冷媒は、空気の流れ方向の上流側の伝熱管5aから下流側に流れることとなり、冷媒の流れ方向と空気の流れ方向とを一致させることができる(並向流)。
図16は、本発明の実施の形態5に係る空気調和装置104の冷媒回路構成を示す冷媒回路図である。
以下、空気調和装置104が実施の形態2と異なる部分を中心に説明する。
暖房運転時には、中間圧の冷媒が第2の流量制御装置7-1、逆止弁21-1、21-2を通して第2の接続配管12-1から第1の接続配管13-1、13-2に流入する。
また、暖房デフロスト運転では、デフロスト対象の室外熱交換器5から、蒸発器として動作する室外熱交換器5に移動する冷媒は、第3の流量制御装置7-3を通して移動する。主流(中間圧)から、蒸発器として動作する室外熱交換器5に移動する冷媒は、第2の流量制御装置7-1と、逆止弁21-1または21-2とを通して移動する。
図17は、本発明の実施の形態6に係る空気調和装置105の冷媒回路構成を示す冷媒回路図である。
以下、空気調和装置105が実施の形態4、実施の形態5と異なる部分を中心に説明する。
Claims (13)
- 圧縮機、室内熱交換器、第1の流量制御装置、及び、互いに並列に接続された複数の並列熱交換器が、配管で順次接続されて冷媒が循環する主回路と、
前記圧縮機が吐出した冷媒の一部を分岐し、前記複数の並列熱交換器のうちいずれかの前記並列熱交換器をデフロスト対象として選択し、選択された前記並列熱交換器に流入させる第1のデフロスト配管と、
前記第1のデフロスト配管に設けられ、前記圧縮機が吐出した前記冷媒を減圧する第1の絞り装置と、
デフロスト対象の前記並列熱交換器から流出した冷媒を、デフロスト対象以外の前記並列熱交換器の上流側の前記主回路へ流入させる接続切替装置と、
を備えたことを特徴とする空気調和装置。 - デフロスト対象の前記並列熱交換器に前記圧縮機が吐出した前記冷媒の一部を流入させるデフロスト運転中に、
前記複数の並列熱交換器のうち、デフロスト対象以外の前記並列熱交換器の少なくとも1つが蒸発器として機能して暖房運転を行う
ことを特徴とする請求項1に記載の空気調和装置。 - 前記接続切替装置は、
前記複数の並列熱交換器の前記第1の流量制御装置側の配管に、それぞれ設けられた第2の絞り装置によって構成された
ことを特徴とする請求項1又は2に記載の空気調和装置。 - 前記接続切替装置は、
前記複数の並列熱交換器の前記第1の流量制御装置側の配管を、それぞれ相互に接続する配管に設けられた第2の絞り装置によって構成され、
デフロスト対象の前記並列熱交換器から流出した冷媒を、デフロスト対象以外の前記並列熱交換器の入口配管へ流入させる
ことを特徴とする請求項1又は2に記載の空気調和装置。 - 前記第2の絞り装置と前記第1の流量制御装置との間の配管と、前記第2の絞り装置と前記並列熱交換器との間の配管とを接続する第2のバイパス配管と、
前記第2のバイパス配管に設けられ、前記第2の絞り装置と前記第1の流量制御装置との間の配管から、前記第2の絞り装置と前記並列熱交換器との間の配管への冷媒の流れを許容する逆止弁と、
を備えたことを特徴とする請求項3又は4に記載の空気調和装置。 - 一端が前記複数の並列熱交換器の前記圧縮機の配管にそれぞれ接続され、他端が前記複数の並列熱交換器と前記第1の流量制御装置との間の配管に接続された第2のデフロスト配管を備え、
前記第1のデフロスト配管は、
一端が前記圧縮機の吐出配管に接続され、他端が前記複数の並列熱交換器の前記第1の流量制御装置側の配管に、それぞれ接続され、
前記並列熱交換器は、
内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向及び前記空気通過方向である列方向に複数設けられた伝熱管と、
前記空気通過方向に空気が通過するように間隔を空けて配置された複数のフィンとを有し、
前記空気通過方向の風上側の列の前記伝熱管に接続された配管に、前記第1のデフロスト配管が接続され、
前記空気通過方向の風下側の列の前記伝熱管に接続された配管に、前記第2のデフロスト配管が接続された
ことを特徴とする請求項1~5の何れか一項に記載の空気調和装置。 - 外気温度に応じて、前記第1の絞り装置の流量制御を行う
ことを特徴とする請求項1~6の何れか一項に記載の空気調和装置。 - 前記複数の並列熱交換器の全てを蒸発器として機能させる通常暖房運転の運転時間を、外気温度に応じて設定する
ことを特徴とする請求項1~7の何れか一項に記載の空気調和装置。 - 外気温度が閾値以上の場合に、
前記複数の並列熱交換器のうち、デフロスト対象の前記並列熱交換器に前記圧縮機が吐出した前記冷媒の一部を流入させ、デフロスト対象以外の前記並列熱交換器の少なくとも1つが蒸発器として機能して暖房運転を行う暖房デフロスト運転を行い、
前記外気温度が閾値未満の場合に、
前記複数の並列熱交換器の全てに、前記圧縮機が吐出した前記冷媒を流入させる暖房停止デフロスト運転を行う
ことを特徴とする請求項1~8の何れか一項に記載の空気調和装置。 - 前記複数の並列熱交換器に、空気を送風するファンを備え、
デフロスト対象の前記並列熱交換器に前記圧縮機が吐出した前記冷媒の一部を流入させるデフロスト運転中に、外気温度に応じてファン出力を変更する
ことを特徴とする請求項1~9の何れか一項に記載の空気調和装置。 - デフロスト対象の前記並列熱交換器を流出する冷媒の圧力を、前記第2の絞り装置によって制御する
ことを特徴とする請求項3~5の何れか一項に記載の空気調和装置。 - デフロスト対象の前記並列熱交換器を流出する冷媒の圧力が、飽和温度換算で0℃~10℃の範囲内となるように前記第2の絞り装置の開度を制御する
ことを特徴とする請求項11に記載の空気調和装置。 - 前記複数の並列熱交換器のうち、デフロスト対象の前記並列熱交換器に前記圧縮機が吐出した前記冷媒の一部を流入させるデフロスト運転において、
前記複数の並列熱交換器のそれぞれを、少なくとも1回以上、デフロフト対象とする
ことを特徴とする請求項1~8、10~12の何れか一項に記載の空気調和装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014550040A JP6021940B2 (ja) | 2012-11-29 | 2013-05-21 | 空気調和装置 |
EP13857995.8A EP2927623B1 (en) | 2012-11-29 | 2013-05-21 | Air-conditioning device |
CN201380062375.4A CN104813123B (zh) | 2012-11-29 | 2013-05-21 | 空气调节装置 |
US14/441,945 US10001317B2 (en) | 2012-11-29 | 2013-05-21 | Air-conditioning apparatus providing defrosting without suspending a heating operation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012261016 | 2012-11-29 | ||
JP2012-261016 | 2012-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083867A1 true WO2014083867A1 (ja) | 2014-06-05 |
Family
ID=50827524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064031 WO2014083867A1 (ja) | 2012-11-29 | 2013-05-21 | 空気調和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10001317B2 (ja) |
EP (1) | EP2927623B1 (ja) |
JP (1) | JP6021940B2 (ja) |
CN (1) | CN104813123B (ja) |
WO (1) | WO2014083867A1 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016046927A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱電機株式会社 | 冷凍サイクル装置及び空気調和装置 |
WO2016111003A1 (ja) * | 2015-01-09 | 2016-07-14 | 三菱電機株式会社 | 蓄熱ユニットおよび冷凍サイクル装置 |
EP3048387A1 (en) * | 2014-11-25 | 2016-07-27 | Lennox Industries Inc. | Methods and systems for operating hvac systems in low load conditions |
WO2017006596A1 (ja) * | 2015-07-06 | 2017-01-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2017130299A1 (ja) * | 2016-01-26 | 2017-08-03 | 三菱電機株式会社 | 冷凍装置 |
WO2017199289A1 (ja) * | 2016-05-16 | 2017-11-23 | 三菱電機株式会社 | 空気調和装置 |
WO2018020654A1 (ja) * | 2016-07-29 | 2018-02-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2018047416A1 (ja) * | 2016-09-12 | 2018-03-15 | 三菱電機株式会社 | 空気調和装置 |
WO2019073621A1 (ja) | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 空気調和装置 |
WO2019146070A1 (ja) * | 2018-01-26 | 2019-08-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP6594599B1 (ja) * | 2019-04-11 | 2019-10-23 | 三菱電機株式会社 | 空気調和装置 |
US10508826B2 (en) | 2015-01-13 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US10520233B2 (en) | 2015-01-13 | 2019-12-31 | Mitsubishi Electric Corporation | Air-conditioning apparatus for a plurality of parallel outdoor units |
JP6661843B1 (ja) * | 2019-03-25 | 2020-03-11 | 三菱電機株式会社 | 空気調和装置 |
WO2020121411A1 (ja) * | 2018-12-11 | 2020-06-18 | 三菱電機株式会社 | 空気調和装置 |
CN111473556A (zh) * | 2019-01-24 | 2020-07-31 | 新奥数能科技有限公司 | 一种空气源低温热泵机组熔霜的方法 |
WO2020174687A1 (ja) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | 空気調和機の室外機 |
CN111829387A (zh) * | 2020-07-02 | 2020-10-27 | 北京迪威尔石油天然气技术开发有限公司 | 一种空冷器及其控制方法 |
EP3163217A4 (en) * | 2014-06-27 | 2020-12-02 | Mitsubishi Electric Corporation | REFRIGERATION CIRCUIT DEVICE |
WO2020255192A1 (ja) * | 2019-06-17 | 2020-12-24 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2021053820A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
CN112665207A (zh) * | 2020-12-30 | 2021-04-16 | 南京三尼电器设备有限公司 | 一种双水温出水的变频空气源热泵系统 |
JPWO2022059155A1 (ja) * | 2020-09-17 | 2022-03-24 | ||
RU2774135C1 (ru) * | 2019-06-17 | 2022-06-15 | Мицубиси Электрик Корпорейшн | Устройство холодильного цикла |
CN115405993A (zh) * | 2022-09-01 | 2022-11-29 | 合肥美的暖通设备有限公司 | 一种空气源热泵供热系统、化霜控制方法及控制装置 |
DE112021007081T5 (de) | 2021-02-12 | 2023-12-07 | Mitsubishi Electric Corporation | Klimaanlage |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104813123B (zh) * | 2012-11-29 | 2017-09-12 | 三菱电机株式会社 | 空气调节装置 |
JP6201872B2 (ja) * | 2014-04-16 | 2017-09-27 | 三菱電機株式会社 | 空気調和機 |
CN105258408A (zh) * | 2015-10-08 | 2016-01-20 | Tcl空调器(中山)有限公司 | 空调器及空调器除霜方法 |
CN106705474A (zh) * | 2015-11-18 | 2017-05-24 | 杭州三花微通道换热器有限公司 | 热泵系统 |
JP6252606B2 (ja) * | 2016-01-15 | 2017-12-27 | ダイキン工業株式会社 | 冷凍装置 |
CN105526680B (zh) * | 2016-01-19 | 2018-09-25 | 珠海格力电器股份有限公司 | 多系统风冷冷风机组化霜控制方法和装置 |
WO2017195296A1 (ja) * | 2016-05-11 | 2017-11-16 | 三菱電機株式会社 | 空気調和装置 |
CN106016874A (zh) * | 2016-06-30 | 2016-10-12 | 珠海格力电器股份有限公司 | 空调器及其制冷系统 |
JP6341326B2 (ja) * | 2016-08-03 | 2018-06-13 | ダイキン工業株式会社 | 冷凍装置の熱源ユニット |
CN106958964A (zh) * | 2017-03-07 | 2017-07-18 | 杭州三花家电热管理系统有限公司 | 热泵系统及其控制方法和具有该热泵系统的热水器 |
CN107084561A (zh) * | 2017-06-19 | 2017-08-22 | Tcl空调器(中山)有限公司 | 空调器及其除霜控制方法 |
JP6758500B2 (ja) * | 2017-06-27 | 2020-09-23 | 三菱電機株式会社 | 空気調和装置 |
US11226149B2 (en) * | 2017-11-29 | 2022-01-18 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
JP6984439B2 (ja) * | 2018-01-25 | 2021-12-22 | 株式会社デンソー | 電池冷却用冷凍サイクル装置 |
CN108626841A (zh) * | 2018-04-25 | 2018-10-09 | 广东美的制冷设备有限公司 | 空调器、除霜方法和计算机可读存储介质 |
US11493260B1 (en) | 2018-05-31 | 2022-11-08 | Thermo Fisher Scientific (Asheville) Llc | Freezers and operating methods using adaptive defrost |
WO2020115812A1 (ja) * | 2018-12-04 | 2020-06-11 | 三菱電機株式会社 | 空気調和機 |
KR102704627B1 (ko) * | 2019-01-25 | 2024-09-06 | 엘지전자 주식회사 | 공기조화기 |
CN109945330B (zh) * | 2019-03-22 | 2019-12-24 | 珠海格力电器股份有限公司 | 能连续制热的制冷系统及化霜控制方法 |
US20210003322A1 (en) * | 2019-07-02 | 2021-01-07 | Heatcraft Refrigeration Products Llc | Cooling System |
CN110686342A (zh) * | 2019-10-14 | 2020-01-14 | 青岛海尔空调电子有限公司 | 具有除霜支路的空调机组 |
JP7183447B2 (ja) * | 2019-11-12 | 2022-12-05 | 三菱電機株式会社 | 冷凍サイクル装置 |
US20220325928A1 (en) * | 2019-12-13 | 2022-10-13 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN111878891A (zh) * | 2020-06-16 | 2020-11-03 | 青岛海尔空调电子有限公司 | 空调系统及其控制方法 |
CN112443999A (zh) * | 2020-11-30 | 2021-03-05 | 青岛海信日立空调系统有限公司 | 一种空调器 |
CN113654122A (zh) * | 2021-08-11 | 2021-11-16 | 珠海格力电器股份有限公司 | 空调系统和空调控制方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485469A (en) * | 1977-12-20 | 1979-07-07 | Fuji Electric Co Ltd | Cold air circulating type refrigerating and freezing apparatus |
JPS62123264A (ja) * | 1985-11-25 | 1987-06-04 | 株式会社日立製作所 | 空冷ヒ−トポンプ式冷凍サイクル装置 |
JPS6317369A (ja) * | 1986-07-08 | 1988-01-25 | 松下精工株式会社 | 空気調和機 |
JPH07280378A (ja) * | 1994-04-08 | 1995-10-27 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式空気調和機 |
JP2004219060A (ja) | 2003-01-13 | 2004-08-05 | Lg Electronics Inc | 霜除去装置付きマルチ空気調和機 |
JP2006023005A (ja) * | 2004-07-07 | 2006-01-26 | Denso Corp | ヒートポンプ式給湯装置 |
JP2007032987A (ja) * | 2005-07-28 | 2007-02-08 | Denso Corp | エジェクタ式サイクル |
JP2007271094A (ja) | 2006-03-30 | 2007-10-18 | Mitsubishi Electric Corp | 空気調和装置 |
JP2009085484A (ja) | 2007-09-28 | 2009-04-23 | Daikin Ind Ltd | 空気調和機用室外機 |
JP2009281607A (ja) * | 2008-05-20 | 2009-12-03 | Hitachi Appliances Inc | 空気調和機 |
WO2010082325A1 (ja) * | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2010164257A (ja) * | 2009-01-16 | 2010-07-29 | Mitsubishi Electric Corp | 冷凍サイクル装置及び冷凍サイクル装置の制御方法 |
WO2012014345A1 (ja) | 2010-07-29 | 2012-02-02 | 三菱電機株式会社 | ヒートポンプ |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686969B2 (ja) * | 1984-12-07 | 1994-11-02 | 株式会社日立製作所 | 空冷ヒ−トポンプ式冷凍サイクル |
JPH01127872A (ja) * | 1987-11-12 | 1989-05-19 | Mitsubishi Electric Corp | ヒートポンプ装置 |
JPH01131862A (ja) * | 1987-11-16 | 1989-05-24 | Mitsubishi Electric Corp | ヒートポンプ装置 |
JPH0730978B2 (ja) * | 1988-11-18 | 1995-04-10 | 三菱電機株式会社 | ヒートポンプ装置 |
JP2723953B2 (ja) * | 1989-02-27 | 1998-03-09 | 株式会社日立製作所 | 空気調和装置 |
EP0800940A3 (en) * | 1996-04-10 | 2001-06-06 | Denso Corporation | Vehicular air conditioning system for electric vehicles |
JPH09318206A (ja) * | 1996-05-28 | 1997-12-12 | Sanyo Electric Co Ltd | ヒートポンプ式空気調和機 |
JPH11182994A (ja) * | 1997-12-18 | 1999-07-06 | Toshiba Corp | 空気調和機 |
JP2001004234A (ja) * | 1999-06-21 | 2001-01-12 | Mitsubishi Electric Building Techno Service Co Ltd | 空気調和機 |
DE10036038B4 (de) * | 2000-07-25 | 2017-01-05 | Mahle International Gmbh | Verfahren zum Betrieb einer Klimaanlage eines Kraftfahrzeuges |
KR100569930B1 (ko) * | 2004-05-21 | 2006-04-10 | 엘지전자 주식회사 | 히트펌프 시스템의 난방 운전 제어장치 |
US20060254308A1 (en) | 2005-05-16 | 2006-11-16 | Denso Corporation | Ejector cycle device |
JP4990221B2 (ja) * | 2008-05-26 | 2012-08-01 | 日立アプライアンス株式会社 | 空気調和機 |
CN102216700B (zh) * | 2008-11-11 | 2014-04-02 | 开利公司 | 热泵系统及操作方法 |
JP5634682B2 (ja) * | 2009-04-24 | 2014-12-03 | 日立アプライアンス株式会社 | 空気調和機 |
CN102667366B (zh) * | 2009-10-28 | 2015-10-07 | 三菱电机株式会社 | 空调装置 |
AU2011258052B2 (en) * | 2010-05-27 | 2016-06-16 | XDX Global, LLC | Surged heat pump systems |
WO2013008278A1 (ja) * | 2011-07-14 | 2013-01-17 | 三菱電機株式会社 | 空気調和装置 |
JP5774121B2 (ja) * | 2011-11-07 | 2015-09-02 | 三菱電機株式会社 | 空気調和装置 |
CN202470528U (zh) * | 2012-03-06 | 2012-10-03 | 俞绍明 | 热泵系统 |
CN102635969A (zh) * | 2012-04-11 | 2012-08-15 | 广东美的制冷设备有限公司 | 一种空调器 |
JP5791807B2 (ja) * | 2012-08-03 | 2015-10-07 | 三菱電機株式会社 | 空気調和装置 |
JP6072813B2 (ja) * | 2012-10-05 | 2017-02-01 | 三菱電機株式会社 | ヒートポンプ装置 |
CN104813123B (zh) * | 2012-11-29 | 2017-09-12 | 三菱电机株式会社 | 空气调节装置 |
WO2014101225A1 (en) * | 2012-12-31 | 2014-07-03 | Trane International Inc. | Heat pump water heater |
CN105247302B (zh) * | 2013-05-31 | 2017-10-13 | 三菱电机株式会社 | 空调装置 |
JP6017058B2 (ja) * | 2013-10-24 | 2016-10-26 | 三菱電機株式会社 | 空気調和装置 |
EP3112781B1 (en) * | 2014-02-27 | 2019-04-03 | Mitsubishi Electric Corporation | Heat source side unit and refrigeration cycle device |
US10508826B2 (en) * | 2015-01-13 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
-
2013
- 2013-05-21 CN CN201380062375.4A patent/CN104813123B/zh active Active
- 2013-05-21 EP EP13857995.8A patent/EP2927623B1/en active Active
- 2013-05-21 WO PCT/JP2013/064031 patent/WO2014083867A1/ja active Application Filing
- 2013-05-21 US US14/441,945 patent/US10001317B2/en active Active
- 2013-05-21 JP JP2014550040A patent/JP6021940B2/ja active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485469A (en) * | 1977-12-20 | 1979-07-07 | Fuji Electric Co Ltd | Cold air circulating type refrigerating and freezing apparatus |
JPS62123264A (ja) * | 1985-11-25 | 1987-06-04 | 株式会社日立製作所 | 空冷ヒ−トポンプ式冷凍サイクル装置 |
JPS6317369A (ja) * | 1986-07-08 | 1988-01-25 | 松下精工株式会社 | 空気調和機 |
JPH07280378A (ja) * | 1994-04-08 | 1995-10-27 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式空気調和機 |
JP2004219060A (ja) | 2003-01-13 | 2004-08-05 | Lg Electronics Inc | 霜除去装置付きマルチ空気調和機 |
JP2006023005A (ja) * | 2004-07-07 | 2006-01-26 | Denso Corp | ヒートポンプ式給湯装置 |
JP2007032987A (ja) * | 2005-07-28 | 2007-02-08 | Denso Corp | エジェクタ式サイクル |
JP2007271094A (ja) | 2006-03-30 | 2007-10-18 | Mitsubishi Electric Corp | 空気調和装置 |
JP2009085484A (ja) | 2007-09-28 | 2009-04-23 | Daikin Ind Ltd | 空気調和機用室外機 |
JP2009281607A (ja) * | 2008-05-20 | 2009-12-03 | Hitachi Appliances Inc | 空気調和機 |
WO2010082325A1 (ja) * | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2010164257A (ja) * | 2009-01-16 | 2010-07-29 | Mitsubishi Electric Corp | 冷凍サイクル装置及び冷凍サイクル装置の制御方法 |
WO2012014345A1 (ja) | 2010-07-29 | 2012-02-02 | 三菱電機株式会社 | ヒートポンプ |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3163217A4 (en) * | 2014-06-27 | 2020-12-02 | Mitsubishi Electric Corporation | REFRIGERATION CIRCUIT DEVICE |
EP3885670A1 (en) * | 2014-06-27 | 2021-09-29 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
GB2545112A (en) * | 2014-09-25 | 2017-06-07 | Mitsubishi Electric Corp | Refrigeration cycle device and air-conditioning device |
WO2016046927A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱電機株式会社 | 冷凍サイクル装置及び空気調和装置 |
GB2545112B (en) * | 2014-09-25 | 2020-05-20 | Mitsubishi Electric Corp | Refrigeration cycle apparatus and air-conditioning apparatus |
US11092368B2 (en) | 2014-11-25 | 2021-08-17 | Lennox Industries Inc. | Methods and systems for operating HVAC systems in low load conditions |
US11493250B2 (en) | 2014-11-25 | 2022-11-08 | Lennox Industries Inc. | Methods and systems for operating HVAC systems in low load conditions |
US11573038B2 (en) | 2014-11-25 | 2023-02-07 | Lennox Industries Inc. | Methods and systems for operating HVAC systems in low load conditions |
EP3048387A1 (en) * | 2014-11-25 | 2016-07-27 | Lennox Industries Inc. | Methods and systems for operating hvac systems in low load conditions |
US10365025B2 (en) | 2014-11-25 | 2019-07-30 | Lennox Industries, Inc. | Methods and systems for operating HVAC systems in low load conditions |
WO2016111003A1 (ja) * | 2015-01-09 | 2016-07-14 | 三菱電機株式会社 | 蓄熱ユニットおよび冷凍サイクル装置 |
US10520233B2 (en) | 2015-01-13 | 2019-12-31 | Mitsubishi Electric Corporation | Air-conditioning apparatus for a plurality of parallel outdoor units |
US10508826B2 (en) | 2015-01-13 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US10415861B2 (en) | 2015-07-06 | 2019-09-17 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
WO2017006596A1 (ja) * | 2015-07-06 | 2017-01-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017006596A1 (ja) * | 2015-07-06 | 2017-10-26 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017130299A1 (ja) * | 2016-01-26 | 2018-08-23 | 三菱電機株式会社 | 冷凍装置 |
WO2017130299A1 (ja) * | 2016-01-26 | 2017-08-03 | 三菱電機株式会社 | 冷凍装置 |
WO2017199289A1 (ja) * | 2016-05-16 | 2017-11-23 | 三菱電機株式会社 | 空気調和装置 |
DE112016006864T5 (de) | 2016-05-16 | 2019-02-14 | Mitsubishi Electric Corporation | Klimaanlage |
CN109154463A (zh) * | 2016-05-16 | 2019-01-04 | 三菱电机株式会社 | 空气调节装置 |
GB2563776A (en) * | 2016-05-16 | 2018-12-26 | Mitsubishi Electric Corp | Air conditioning device |
JPWO2017199289A1 (ja) * | 2016-05-16 | 2018-11-22 | 三菱電機株式会社 | 空気調和装置 |
DE112016006864B4 (de) | 2016-05-16 | 2023-02-16 | Mitsubishi Electric Corporation | Klimaanlage |
GB2563776B (en) * | 2016-05-16 | 2020-11-04 | Mitsubishi Electric Corp | Air conditioning apparatus |
US10808976B2 (en) | 2016-05-16 | 2020-10-20 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
JPWO2018020654A1 (ja) * | 2016-07-29 | 2019-02-28 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2018020654A1 (ja) * | 2016-07-29 | 2018-02-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
GB2569898A (en) * | 2016-09-12 | 2019-07-03 | Mitsubishi Electric Corp | Air conditioner |
WO2018047416A1 (ja) * | 2016-09-12 | 2018-03-15 | 三菱電機株式会社 | 空気調和装置 |
JPWO2018047416A1 (ja) * | 2016-09-12 | 2019-04-25 | 三菱電機株式会社 | 空気調和装置 |
GB2569898B (en) * | 2016-09-12 | 2021-02-03 | Mitsubishi Electric Corp | Air-conditioning apparatus |
JPWO2019073621A1 (ja) * | 2017-10-12 | 2020-04-02 | 三菱電機株式会社 | 空気調和装置 |
WO2019073621A1 (ja) | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 空気調和装置 |
US11268743B2 (en) | 2017-10-12 | 2022-03-08 | Mitsubishi Electric Corporation | Air-conditioning apparatus having heating-defrosting operation mode |
WO2019146070A1 (ja) * | 2018-01-26 | 2019-08-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2020121411A1 (ja) * | 2018-12-11 | 2021-05-20 | 三菱電機株式会社 | 空気調和装置 |
WO2020121411A1 (ja) * | 2018-12-11 | 2020-06-18 | 三菱電機株式会社 | 空気調和装置 |
CN113167517A (zh) * | 2018-12-11 | 2021-07-23 | 三菱电机株式会社 | 空调装置 |
CN111473556A (zh) * | 2019-01-24 | 2020-07-31 | 新奥数能科技有限公司 | 一种空气源低温热泵机组熔霜的方法 |
WO2020174687A1 (ja) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | 空気調和機の室外機 |
JP7053942B2 (ja) | 2019-02-28 | 2022-04-12 | 三菱電機株式会社 | 空気調和機の室外機 |
JPWO2020174687A1 (ja) * | 2019-02-28 | 2021-09-13 | 三菱電機株式会社 | 空気調和機の室外機 |
WO2020194435A1 (ja) * | 2019-03-25 | 2020-10-01 | 三菱電機株式会社 | 空気調和装置 |
AU2019436796B2 (en) * | 2019-03-25 | 2022-12-08 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
US11920841B2 (en) | 2019-03-25 | 2024-03-05 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN113614463A (zh) * | 2019-03-25 | 2021-11-05 | 三菱电机株式会社 | 空调装置 |
CN113614463B (zh) * | 2019-03-25 | 2022-11-08 | 三菱电机株式会社 | 空调装置 |
JP6661843B1 (ja) * | 2019-03-25 | 2020-03-11 | 三菱電機株式会社 | 空気調和装置 |
JP6594599B1 (ja) * | 2019-04-11 | 2019-10-23 | 三菱電機株式会社 | 空気調和装置 |
US11796212B2 (en) | 2019-04-11 | 2023-10-24 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2020208776A1 (ja) * | 2019-04-11 | 2020-10-15 | 三菱電機株式会社 | 空気調和装置 |
WO2020255192A1 (ja) * | 2019-06-17 | 2020-12-24 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2020255430A1 (ja) * | 2019-06-17 | 2020-12-24 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP7069420B2 (ja) | 2019-06-17 | 2022-05-17 | 三菱電機株式会社 | 冷凍サイクル装置 |
RU2774135C1 (ru) * | 2019-06-17 | 2022-06-15 | Мицубиси Электрик Корпорейшн | Устройство холодильного цикла |
JPWO2020255430A1 (ja) * | 2019-06-17 | 2021-10-14 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP7262595B2 (ja) | 2019-09-20 | 2023-04-21 | 三菱電機株式会社 | 空気調和機 |
JPWO2021053820A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
WO2021053820A1 (ja) * | 2019-09-20 | 2021-03-25 | 三菱電機株式会社 | 空気調和機 |
US11959672B2 (en) | 2019-09-20 | 2024-04-16 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN111829387A (zh) * | 2020-07-02 | 2020-10-27 | 北京迪威尔石油天然气技术开发有限公司 | 一种空冷器及其控制方法 |
WO2022059155A1 (ja) * | 2020-09-17 | 2022-03-24 | 東芝キヤリア株式会社 | 空気調和機 |
JPWO2022059155A1 (ja) * | 2020-09-17 | 2022-03-24 | ||
JP7528236B2 (ja) | 2020-09-17 | 2024-08-05 | 日本キヤリア株式会社 | 空気調和機 |
CN112665207A (zh) * | 2020-12-30 | 2021-04-16 | 南京三尼电器设备有限公司 | 一种双水温出水的变频空气源热泵系统 |
DE112021007081T5 (de) | 2021-02-12 | 2023-12-07 | Mitsubishi Electric Corporation | Klimaanlage |
CN115405993A (zh) * | 2022-09-01 | 2022-11-29 | 合肥美的暖通设备有限公司 | 一种空气源热泵供热系统、化霜控制方法及控制装置 |
Also Published As
Publication number | Publication date |
---|---|
US10001317B2 (en) | 2018-06-19 |
CN104813123A (zh) | 2015-07-29 |
US20150292789A1 (en) | 2015-10-15 |
JP6021940B2 (ja) | 2016-11-09 |
CN104813123B (zh) | 2017-09-12 |
EP2927623A4 (en) | 2016-07-27 |
EP2927623B1 (en) | 2019-02-06 |
EP2927623A1 (en) | 2015-10-07 |
JPWO2014083867A1 (ja) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6021940B2 (ja) | 空気調和装置 | |
JP6017058B2 (ja) | 空気調和装置 | |
JP5968534B2 (ja) | 空気調和装置 | |
JP6022058B2 (ja) | 熱源側ユニット及び冷凍サイクル装置 | |
JP5791807B2 (ja) | 空気調和装置 | |
JP6785988B2 (ja) | 空気調和装置 | |
EP3246635B1 (en) | Refrigeration cycle device | |
JP6576552B2 (ja) | 空気調和装置 | |
CN107110546B (zh) | 空气调节装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857995 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014550040 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14441945 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013857995 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |